
A foundation for multi-level modelling.

CLARK, Tony <http://orcid.org/0000-0003-3167-0739>, GONZALEZ-PEREZ,
Cesar and HENDERSON-SELLERS, Brian

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/12074/

This document is the Published Version [VoR]

Citation:

CLARK, Tony, GONZALEZ-PEREZ, Cesar and HENDERSON-SELLERS, Brian
(2014). A foundation for multi-level modelling. In: ATKINSON, Colin, GROSSMAN,
Georg, KÜHNE, Thomas and LARA, Juan de, (eds.) MULTI 2014 : multi-level
modelling : proceedings of the Workshop on Multi-Level Modellingco-located with
ACM/IEEE 17th International Conference on Model Driven Engineering Languages
&Systems (MoDELS 2014), Valencia, Spain, September 28, 2014. CEUR Workshop
Proceedings (1286). Tilburg University, 43-52. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A Foundation for Multi-Level Modelling

Tony Clark1, Cesar Gonzalez-Perez2, Brian Henderson-Sellers3

1 Middlesex University, London, UK. t.n.clark@mdx.ac.uk
2 Institute of Heritage Sciences Santiago de Compostela, Spain

cesar.gonzalez-perez@incipit.csic.es
3 University of Technology, Sydney, Australia

brian.henderson-sellers@uts.edu.au

Abstract. Multi-level modelling allows types and instances to be mixed
in the same model, however there are several proposals for how meta-
models can support this. This paper proposes a meta-circular basis for
meta-modelling and shows how it supports two leading approaches to
multi-level modelling.

1 Introduction

Contemporary and future engineering of information systems place an increasing
emphasis on the use of models, either directly to aid design and implementation,
in a more formal sense for code generation or as the backbone to model-driven
engineering (MDE) [27]. Models must be described using a language that itself
may be defined in many ways but typically using a meta-model e.g., [26, 20].
That meta-model must itself be defined, by a meta-meta-model. Together with
the instances conformant to the model, this leads to an identification of four ab-
straction levels of interest to the modeller and meta-modeller. Although in use
for almost two decades, a four-layer architecture like that of the Object Manage-
ment Group (OMG) raises some concerns both theoretically and pragmatically;
a prime problem being the use of strict meta-modelling [5, 4] that constrains the
instance-of relation to only be permitted between pairs of conterminous layers
and never within a layer (see also [5]). This led several researchers (e.g., [7, 6])
to seek a way of describing models and modelling languages without the use of
this ‘strict meta-modelling’ hierarchy of the OMG.

A foundation for meta-modelling should be unifying and complete in the
sense that it supports the development of both general-purpose and domain-
specific languages and also integrates their representation so that tools can work
across multiple languages. Leading approaches include: strict meta-modelling:
The OMG strict meta-modelling architecture has been criticized, especially when
applied to processes and methodologies (see summary in [18]) since the tradi-
tional strict meta-modelling approach is unable to support enactment e.g., [2];
it defines attributes at level M2, thus giving them values at M1 by virtue of the
prevailing type-instance semantics, when what is actually needed is values at
M0. This enactment support is provided by the architecture used by ISO/IEC
24744 but at the expense of relying on power-type patterns, which do not accord

with the philosophy of strict meta-modelling. clabjects: Potency is associated
with the notion of deep instantiation, [8, 12, 13], and introduces the idea of an
entity with both a class facet and an object fact, entity given the name clabject
[5]. OCA: Two different kinds of meta-model structures have been identified:
ontological meta-modelling in contrast to the linguistic meta-modelling utilized
in a strict meta-modelling architecture. This was later called the Orthogonal
Classification Architecture (OCA) [9]. In [22] we describe these ideas and relate
them to some more recent concerns raised by the application of language use the-
ory to this approach. More recently, Atkinson and colleagues have extended the
OCA in their description of the Pan Level Model (PLM) and the Level-agnostic
Modeling Language (LML) [7]. powertypes: The need to provide access to, and
control over, the meta-types of elements in a model when designing languages led
to proposals for powertypes [17, 23]. This is a methodological approach that uses
standard classes both conventionally and as meta-classes by disciplined use of
instance-of associations. The approach allows the modeller to control attribute
definitions at M2 that affect the properties in model elements at M1.

Our claim is that none of the approaches above are complete as a basis
for meta-modelling. In particular, such a basis must achieve the following fea-
tures: meta-circularity: Self description is key to achieving virtually all of the
desirable features for language engineering. Just as it is possible to embed a
λ-calculus interpreter in itself and thereby characterize an infinite tower of op-
erational languages, we seek to construct a self describing basis for an infinite
tower of modelling languages. uniformity: Any basis for meta-modelling that
is self-describing implies a precisely defined relation between representations for
type and instance. A system that achieves the conflation of these representations,
i.e., uses the identity relationship, is minimal in the family of such relationships.
Furthermore, a uniform representation is essential if we are not to encounter lim-
itations on the type of languages that can be defined, for example where we need
to mix instances and types. Therefore, we seek to provide a single representation
for types and instances at any level. extensibility: We assume that any family
of modelling languages will use type-based extension (sub-classes, inheritance,
etc.), and that new languages are based on extending existing languages. Meta-
circularity and extensibility implies that languages can be extended at both type
and meta-type levels and therefore the question arises as to whether there is a
limit to the levels over which extension can be applied. We seek a basis that
places no restriction on the number of levels of both extensibility and instanti-
ation. views: Languages should support multiple modes of interaction that are
defined at the meta-level. Although we will use multiple language views, we will
not consider this aspect further.

Our approach (subsuming those above) is to use simple objects together
with two simple relations: type A relation that exists between every object
and its class and can be applied an arbitrary number of times to define the
meta-classifications of instance, class and meta-class; extension A relation that
exists between classes that provides a minimal basis for incremental addition of
features. The approach is based on existing proposals for meta-classes provided

by languages such as Smalltalk [16] and ObjVLisp [10]. Although Smalltalk was
the first language to introduce meta-classes (and thereby three-levels of meta-
class, class and instance), each meta-class is restricted to having a single instance
which severely limits its use as the basis for language engineering where meta-
properties are reused across multiple languages.

Fig. 1. Object Classifications As
Sub-Sets of Object

The approach to object classification and
the instance-of relation is shown in Fig. 1
where circles represent sub-sets of the set O
of objects. Consider the set A that denotes
a set of objects representing animals. In or-
der for an element of A to be well-formed, it
must have an instance-of link to an object in
the set C of all classes. Note that elements of
C are objects (everything is an object), but
they are objects that satisfy some criteria for
class-hood. Since the element of C that rep-
resents the class Animal is itself an object, it
must have an instance-of link to an object that
represents its class. Such an object is a meta-

class and is a member of the set of objects M (perhaps the class called Class). A
meta-class is just an object that satisfies the constraint for membership of M.
This means that it must have an instance-of link to a meta-meta-class in MM. It
should be stressed at this point, that there is no limit to the instance-of regress.
In addition to objects that satisfy Animal-hood. There are objects that are used
to group objects: snapshots that are members of the set S. Snapshots contain
objects that are all instances of related classes: packages that are members of the
set P. Finally, classes can be related by extension so that there are two classes
Animal and Herbivore in C that designate the rules for membership of the sets
A and H. Of course, since every element of M is also in C, the extension relation
can be defined between meta-classes that will designate different sub-sets of C.

Our basis for meta-modelling is defined as a self-describing object-oriented
kernel. The Kernel is essentially a logic. However, unlike a traditional logic
that consists of boolean valued formulas whose sub-expressions denote values
drawn from a collection of predefined types, the Kernel can only denote ob-
jects. Some objects are designated classes because they conform to a particular
object-interface that includes boolean valued expressions (or constraints) that
characterize objects designated as well-formed instances of the class. Such a self-
describing logic might lead to doubts related to Russell’s Paradox, although the
use of types and identities as described below, together with an implementation
of the approach that supports a collection of real-world applications (including
itself), gives us confidence that this is not a problem. Our claim is that this
approach is novel and that it subsumes existing approaches to meta-modelling.
Our contribution is the definition of a meta-circular foundation for model-based
language engineering in the form of a kernel language that is validated in terms
of an implementation as a toolkit that has been used for a variety of real-world

applications. In addition we show that other approaches to multi-level modelling
can be represented in the Kernel.

2 A Meta-Modelling Kernel

Our proposal is to set up a system whereby everything is an object [21] and
where a simple set of rules governs the ability to construct configurations of ob-
jects that constitute self-describing languages. The system consists of an object-
representation and then sugarings that are convenient language structures de-
fined to de-sugar into the basic representation.

Figure 2(a) shows the proposed kernel language as a diagram. Fundamen-
tally, everything is an object and a partial view of the Kernel as a collection of
objects and slots is shown in figure 2(b). An object has a unique id, some slots,
and a type. The type of an object is a class. Classes are organised into packages
whose instances are snapshots that are assemblies of objects. Since classes are
just objects that conform to some structural conditions, packages can be simi-
larly viewed as snapshots with appropriate conditions. Collections of objects are
organised as sequences in terms of pairs and Null. Since types are always imple-
mented as classes, there is a special class called Listof whose instances are lists.
There is no need to special types of atomic value such as integers and booleans
because we can designate special objects via their identities as being members
of these data types. Expressions are objects that can be asked to evaluate them-
selves in a supplied context. Constraints are special types of expressions that
always return boolean values. Constraints are important because they are used
in classes to classify objects that are considered to be instances. Classes have op-
erations, that are objects used to handle messages sent to instances of the class.
Note that there is no notion of side-effect, operations are purely functional.

(a) Kernel as a Class Diagram (b) Kernel as an Object Diagram

Fig. 2. Two Views of the Kernel

Fig. 3 shows the complete textual definition of the Kernel. It uses a number
of external definitions and notational conventions that are outlined as follows:
classes define a predicate ? that is used to determine instance-hood; operations
use λ-notation where arguments are patterns; objects are (C,i)[s 7→v] where C

is the class of the object, i is the id, s is a slot name and v is the corresponding
value; intern maps a class and slots to an object; lists are [v1,...,vn] and can
be appended using +; :: is used to dereference names in a name-space; ⇑ is an
inheritance relationship between classes.

Since the Kernel is essentially a logic we need something equivalent to OCL.
We use the following shorthand where l is a list: l.∀(p) is true when the pred-
icate p returns true for each element in the list l; l.∃(p) is true when the
predicate p returns true for any element in the list l; l.3(x) is true when the el-
ement x is contained in the list l; l.⇐(p,a,y) is the result of applying operation
a to the first element x of l for which p(x) is true and y if no such element exists;
l.flatten() expects l to be a list of lists and returns a list formed by appending
all elements of l in order. # maps a list to its length. It is convenient to be able
to construct and manipulate lists using comprehension expressions. For example,
if l is the list [2,3,4] then [x*2 | x ←l] is the list [4,6,8]. Predicates may be
used to filter lists as in [x | x←l,?even(x)] = [2,4].

In order for this to be meta-circular, we require that and Kernel.?(Kernel)

holds. This is difficult to establish without tooling since all the objects in the
definition must be checked against their classes, and, since the classes themselves
are part of the package, this requires the classes to be self-describing. The Kernel
has been implemented as part of the XModeler toolkit and has been used to
implement the rest of the tools including diagram tools, model browsers, model
editors, model transformers and libraries. The XModeler Kernel contains many
more classes than the language described in this article, but the essential features
are the same. XModeler can be instructed to apply the Kernel-defined constraints
to itself (over 100 classes) and to produce a report that shows that it is self-
consistent.

3 Validation

Section 1 describes a list of features that we claim to be characteristic for any
language that is used as a basis for meta-modelling. We have introduced such a
language and used it to build a model of itself. This section analyses the Kernel
language with respect to the characteristic features: type: In Kernel everything
is an object and all objects have an intrinsic type property. meta-circularity:
This property is essential for multi-level modelling and in order to be able develop
tools (such as serializers) that are language-level agnostic [25]. The XModeler
tool can be shown to establish that Kernel.?(Kernel). uniformity: We have used
a single representation (with a small number of externally defined conventions
and rules) for all data in Kernel. extensibility: Extension is supported through
class relationships that are then used by constraints in order to place conditions

class Object {
id : Object;
type : Class;
slots : [Slot]
constraints { type.?(self) }
operations {
dot(n) = slots.⇐(
λ(n’ 7→ _)n=n’,λ(_ 7→ v) v,error)

send(n,args) =
type.ops().⇐(
λ(n’ 7→ (Operation)[args 7→ args ’])
n=n’ and #args = #args ’,

λ(_ 7→ f) f.invoke(self ,args),
error)

}
}
class Slot {name:Str;value:Object}
class Operation {
me : Str;
env : [Slot];
args : [Arg];
body : Exp
operations {
invoke(target ,values) =
body.eval(env+[’self ’ 7→ target] +
[me 7→ self] + target.slots +
target.type.ops() +
[a 7→ v | (a,v) ← args * values])

}
}
class Listof extends Class {
etype : Class;
operations {
?(o) = list?(o) and

o.∀(λ(x)etype.?(x))
}

}
class Snapshot extends Object {

package : Package;
objects : [Object];
bindings : [Slot]
constraints {
package.?(self);
bindings.∀(λ(b)objects.3(b.value))

}
operations {
::(k,d) = bindings.⇐(
λ(s)s.name=k,λ(s)s.value ,d)

}
}

class Class {
name : Str;
supers : [Class];
attributes : [Attribute];
operations : [Binding];
constraints : [Constraint]
operations {
supers () = [self] +
[c | p ← supers;

c ← p.supers ()]. remDups ()
⇑(c) = supers ().3(c)
atts() =
[a | c ← supers(),a ← c.attributes]

ops() =
[b | c ← supers(),b ← c.operations]

cond() =
[a | c ← supers(),a ← c.constraints]

::(n,d) =
atts ().⇐(λ(n’ 7→ a)n’=n,λ(n 7→ a)a,

ops ().⇐(λ(n’ 7→ o)n’=n,λ(n 7→ o)o,d))
?(o) = o.type.⇑(self) and
atts ().∀(λ(a)o.slots.∃(λ(s)
s.name = a.name and
a.type.?(s.value))) and
cond ().∀(λ(c) c.eval([self 7→ o] +
[s.name 7→ s.value | s ← o.slots]))

}
}
class Package extends Snapshot ,Class {
constraints {
objects.∀(Class ?);
attributes.∀(λ(a) objects.3(a.atype));
parents.∀(λ(p) p.type.⇑(Package))

}
operations {
::(n,d) = obj ().⇐(λ(o)o.n=n,λ(o)o,d)
obj() = objects +
[p.objects | p ← parents]. flatten ()
⇑(p) = objects.∀(λ(c)obj().∃(λ(c’)c.⇑(c’)))
?(o) = o.type.⇑(Snapshot) and
o.package.⇑(self) and
o.objects.∀(λ(o)
objects.∃(λ(c) c.?(o))) and
Class::?(intern(self ,o.slots))

}
}
class Pair {head:Object;tail:Object}
class Nulll {}
class Constraint extends Exp {}
class Arg { name:Str }

Fig. 3. Definition of Kernel

on objects that are instances of a sub-class. The definitions are Class::? and
Package::? in Fig. 3.

Our claim is that the Kernel is a suitable basis for multi-level modelling. In
order to validate this claim we present the definition of two different languages,
each based on independent approaches, both defined in the Kernel. Models writ-
ten in the languages are shown in Fig. 4.

The model in figure 4(a) shows the use of type facets that allow classes to
have properties. These can be implemented by including a potency as part of
an attribute definition. The potency is an integer value indicating the number
of type-levels (3 are shown in the model) spanned by the relationship between

(a) A Use of Potency (in [3]) (b) A use of Power-Types (in [23])

Fig. 4. Two Approaches to Multi-Level Modelling

an attribute and its corresponding slots. The model defines a language (Domain
Metatypes) of engines. The class Engine defines a type facet called max_speed

that results in a slot at the domain type (model) level, and an instance facet
called inertia that becomes a slot at a remove of two type-levels.

The model in figure 4(b) shows the power-type pattern where a class (in this
case Vehicle) is classified by another class (VehicleKind). Instances of VehicleKind
are used to partition subclasses of Vehicle as shown in the ellipse, forming a clab-
ject. The result is that an object is contributing to the type-level information in
a class that will eventually affect instances of the class.

Each language definition takes the form of a package that is both an instance
and an extension of Kernel. By the definition of Package::?, an instance of a
package P should be a snapshot whose contents are all instances of classes in P.
By the definition of Package::extends?, a package P extends a package Q when
every class in P extends some class in (or inherited by) Q. Therefore, by extending
and instantiating Kernel a package is a well-formed language definition in its
own right, that can, by the definition of extension, modify the basic definition
of Class::?. Such a modification might place extra conditions on instance-hood,
or even relax existing conditions.

Fig. 5 contains the definition for the language and models shown in figure
4(a). The class CAtt extends Attribute with an attribute for potency-level. The
class CClass modifies atts so that it gathers together all attributes that apply
to this level. This is achieved using a counter that is incremented when the
type-level is traversed. A concrete-syntax for potency-level in attributes is used
in the definition of the package DomainMetaTypes, and slots are permitted in
class definitions due to potency-levels becoming 0 in DomainTypes. The snapshot
DomainInstances contains a single object whose slots correspond to attributes
from different type-levels as defined by their respective potency-levels.

Fig. 6 contains the definition for the language and models shown in figure
4(b). The meta-class PowClass defines an attribute classifier and the constraint
on PartClass requires that all its descriptor objects are instances of the classi-
fier inherited by a parent power-class. The package Vehicles contains a single
power-class Vehicle that is classified by VehicleKind and a partitioned-class Boat

package CKernel:Kernel extends Kernel {
class CAtt extends Attribute {
level:Integer;

}
class CClass extends Class {
operations {
atts() = catts(1,self)
catts(n,c=(_,c)[]) = []
catts(n,c) =

[a | a ← c.atts(),
?a.type=CAtt ,a.level=n] +

catts(n+1,c.type)
}
constraints {atts.∀(λ(a)a.type=CAtt)}

}
}
snapshot DomainInstances:DomainTypes {
(DType)[inertia7→0.28; ECU_version7→7.3]

}

package DomainMetaTypes:CKernel {
class Engine:CClass extends CClass {
inertia [2]: Float;
max_speed [1]: Integer

}
class DieselEngine:CClass extends Engine {
preheat_time [1]: Float

}
class OttoEngine:CClass extends Engine {
ignition_alpha [1]: Float

}
}
package DomainTypes:DomainMetaTypes {
class DType:DieselEngine {
ECU_version [1]: Float;
max_speed =5000;
preheat_time =1.5

}
}

Fig. 5. Definition and use of CKernel

that includes an instance of VehicleKind as its descriptor. The snapshot ABoat

is governed by the classes defined in the package Vehicles which in turn are
governed by the language PKernel therefore, ABoat is constrained by the clabject
Boat and Boat.descr.

package PKernel:Kernel extends Kernel {
class PowClass extends Class {
classifier:Class

}
class PartClass extends Class {
descr:[Object]
constraints {
supers ().∀(λ(c) PowClass ?(c));
descr.∀(λ(o)
supers ().∃(λ(c)
c.classifier.?(o)))

}
}

}
snapshot ABoat:Vehicles {
(Boat)[beam 7→ 9; weight 7→ 185]

}

package Vehicles:PKernel {
class Vehicle:PowClass {
classifier=VehicleKind
weight:Int

}
class VehicleKind {
name:Str;
canTravelOnWater:Bool

}
class Boat:PartClass extends Vehicle {
descr =[(VehicleKind)[

name7→’Boat ’;
canTravelOnWater 7→ true]]

beam:Int
}

}

Fig. 6. Definition and use of PKernel

The examples described above contribute evidence that Kernel can define
different languages and is not restricted to a fixed number of type-levels, and
that objects, classes and meta-classes can be mixed. This is possible because of
the uniformity of representation, the unrestricted access to type-level information
and meta-circularity. Although outside the scope of this paper, the formulation
of Kernel makes it possible to write level-agnostic tools, such as those for model-
management, that can be used on any type-level.

4 Conclusion

Our aim is to produce a meta-circular level-agnostic basis for model-based lan-
guage engineering. We have reviewed the current proposals for such a basis and

argued that they are not optimal by providing a new language definition that is
self-describing and can be used to embed the competing approaches. The Kernel
language is simple and can be implemented as demonstrated by the XMF and
XModeler toolkit [11] that is capable of both describing and reasoning about
itself. The toolkit was reported as a leading technology for Software Engineering
[19] and has been used for a variety of applications including modelling languages
for aerospace applications, telecoms applications [1], and is currently being used
to implement aspects of the MEMO enterprise modelling language [24, 14].

In [15], the authors show how the OMG levels M0-M3 can be represented
on a single object-diagram. This allows OCL constraints to range over all levels
and thereby support clabjects and potency. This is consistent with our approach,
although OCL is just one of the languages that could be used with our approach
(as a view of models and constraints) and the authors of [15] do not claim to be
a foundation for model-based language engineering.

Our intention is that the Kernel language defined in this article provides a
basis for ourselves and others to experiment with language definitions. Because
all such kernel-defined languages are based on a single object representation, it
is feasible to build a collection of tools that work against well defined sub-sets
of objects (as shown in figure 1) and thereby incrementally develop a shared
library.

References

1. Achilleas Achilleos, Nektarios Georgalas, and Kun Yang. An open source domain-
specific tools framework to support model driven development of oss. In Model
Driven Architecture-Foundations and Applications, pages 1–16. Springer, 2007.

2. Anat Aharoni and Iris Reinhartz-Berger. A domain engineering approach for sit-
uational method engineering. In Conceptual Modeling-ER 2008, pages 455–468.
Springer, 2008.

3. Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. Representation and
traversal of large clabject models. In Model Driven Engineering Languages and
Systems, pages 17–31. Springer, 2009.

4. Colin Atkinson. Meta-modelling for distributed object environments. In Enter-
prise Distributed Object Computing Workshop [1997]. EDOC’97. Proceedings. First
International, pages 90–101. IEEE, 1997.

5. Colin Atkinson. Supporting and applying the UML conceptual framework. In The
Unified Modeling Language. UML 98: Beyond the Notation, pages 21–36. Springer,
1999.

6. Colin Atkinson, Bastian Kennel, and Björn Goß. Supporting constructive and ex-
ploratory modes of modeling in multi-level ontologies. In Procs. 7th Int. Workshop
on Semantic Web Enabled Software Engineering, Bonn (October 24, 2011).

7. Colin Atkinson, Bastian Kennel, and Björn Goß. The level-agnostic modeling
language. In Software Language Engineering, pages 266–275. Springer, 2011.

8. Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In
UML 2001 The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, pages 19–33. Springer, 2001.

9. Colin Atkinson and Thomas Kühne. Concepts for comparing modeling tool ar-
chitectures. In Model Driven Engineering Languages and Systems, pages 398–413.
Springer, 2005.

10. Jean-Pierre Briot and Pierre Cointe. The objvlisp model: Definition of a uniform,
reflexive and extensible object oriented language. In ECAI, pages 225–232, 1986.

11. Tony Clark and James Willans. Software language engineering with xmf and
xmodeler. Formal and Practical Aspects of Domain Specific Languages: Recent
Developments. IGI Global, USA, 2012.

12. Juan De Lara and Esther Guerra. Deep meta-modelling with metadepth. In
Objects, Models, Components, Patterns, pages 1–20. Springer, 2010.

13. Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. Extend-
ing deep meta-modelling for practical model-driven engineering. The Computer
Journal, page bxs144, 2012.

14. Ulrich Frank. Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges. Software and System Modeling,
13(3):941–962, 2014.

15. Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On squeezing m0, m1,
m2, and m3 into a single object diagram. Proceedings Tool-Support for OCL and
Related Formalisms-Needs and Trends, 2005.

16. Adele Goldberg and David Robson. Smalltalk-80: the language and its implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., 1983.

17. Cesar Gonzalez-Perez and Brian Henderson-Sellers. A powertype-based metamod-
elling framework. Software & Systems Modeling, 5(1):72–90, 2006.

18. Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling for software
engineering. Wiley Publishing, 2008.

19. Simon Helsen, Arthur Ryman, and Diomidis Spinellis. Where’s my jetpack? Soft-
ware, IEEE, 25(5):18–21, 2008.

20. Brian Henderson-Sellers. On the mathematics of modelling, metamodelling, ontolo-
gies and modelling languages. Springer, 2012.

21. Brian Henderson-Sellers, Tony Clark, and Cesar Gonzalez-Perez. On the search
for a level-agnostic modelling language. In Camille Salinesi, Moira C. Norrie, and
Oscar Pastor, editors, CAiSE, volume 7908 of Lecture Notes in Computer Science,
pages 240–255. Springer, 2013.

22. Brian Henderson-Sellers, Owen Eriksson, Cesar Gonzalez-Perez, and Pär J
Ågerfalk. Ptolemaic metamodelling? the need for a paradigm shift. Cueva Lovelle
JM, Pelayo Garćıa-Bustelo C, Sanjuán Mart́ınez O (eds) Progressions and innova-
tions in model-driven software engineering. IGI Global, Hershey, PA, pages 90–146,
2013.

23. Brian Henderson-Sellers and Cesar Gonzalez-Perez. Connecting powertypes and
stereotypes. Journal of Object Technology, 4(7):83–96, 2005.

24. Thomas Johanndeiter, Anat Goldstein, and Ulrich Frank. Towards business process
models at runtime. In Nelly Bencomo, Robert B. France, Sebastian Götz, and
Bernhard Rumpe, editors, MoDELS@Run.time, volume 1079 of CEUR Workshop
Proceedings, pages 13–25. CEUR-WS.org, 2013.

25. Fabio Kon, Fabio Costa, Gordon Blair, and Roy H Campbell. The case for reflective
middleware. Communications of the ACM, 45(6):33–38, 2002.

26. Thomas Kühne. Matters of (meta-) modeling. Software & Systems Modeling,
5(4):369–385, 2006.

27. Jesús Sánchez-Cuadrado, Juan De Lara, and Esther Guerra. Bottom-up meta-
modelling: An interactive approach. In Model Driven Engineering Languages and
Systems, pages 3–19. Springer, 2012.

