
Gmodel, a language for modular meta modelling

BETTIN, Jorn and CLARK, Anthony <http://orcid.org/0000-0003-3167-0739>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/11920/

This document is the

Citation:

BETTIN, Jorn and CLARK, Anthony (2009). Gmodel, a language for modular meta
modelling. In: Australian Software Engineering Conference, KISS Workshop, Gold
Coast, Australia, 14-17 April 2009. [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

GMODEL - A LANGUAGE FOR MODULAR META MODELLING

JORN BETTIN, TONY CLARK

It is increasingly recognised that domain specific modelling languages hold the key for
improving productivity and quality in software design, development, configuration, inter-
operability, an operation. Although there are a number of languages that can be used for
specifying the abstract syntax of a modelling language, none of these languages provides
optimal support for modular specifications of sets of complementary modeling languages.
Gmodel is a language that has been designed from the ground up for the purpose of meta
modelling. It addresses modularity and extensibility as primary concerns, and is based
on a small number of language elements that have their origin in graph theory.

1. Introduction

ToDo Ia general introduction to topic, introduce terms DSL etc...J

Designing and implementing domain specific modelling languages for industrial use is
only practical if the tooling used for language design and implementation is sufficiently
robust and easy to use. At this point in time (2009), the number of tool chains that
can be used for language design and implementation is growing, but easy integration of
languages that have been developed with different tool kits is not yet a reality.

ToDo Icite some examples of interoperability problemsJ

ToDo Ian example that motivates the need for tool chains and interoperability...J

The design of a domain specific modelling language involves the specification of an
abstract syntax based on familiar and established domain terminology, the design of
one or more concrete syntaxes, and the design of ergonomic model editors for each of
the concrete syntaxes. Concrete syntax is mainly relevant for humans and model editor
design, whereas abstract syntax is also relevant for all other tools (beyond editors) that
process model-based artefacts.

Interoperability hinges on the ability of tools in a tool chain to exchange model-based
artefacts, which entails the ability to read modelling language definitions and models.
In this context a shared abstract syntax for articulating language definitions is essential,
and consequently there is a need for a meta language that can serve as the glue in
model-based tool chains.

Experience shows that software vendors want to - and need to - compete in terms
of implementations. No single meta language can address all interoperability issues.
Therefore, in order to be relevant, any shared meta language must be extensible, and

1

2 JORN BETTIN, TONY CLARK

Figure 1. Gmodel in the context of the development of domain specific languages

should only be viewed as the substrate on top of which practical interoperability solutions
can be built - and not as the ultimate solution for all interoperability needs.

Choosing graph theory as the main source of terminology for Gmodel has three very
nice effects:

• It is a a universal representation that does not imply any particular implemen-
tation for language structures - unlike an object-and-slot based approach.

• It minimizes the risk of confusing meta modelling concepts with concepts in the
language that is being modelled or with concepts of the languages used in the
solution space - especially in verbal discussion about language design.

• It simplifies the exploitation of existing software and powerful algorithms for
graph based computations and transformations

Section 2 in this paper positions Gmodel in the context of the KISS initiative, section 3
introduces the Gmodel language elements, section 4 describes the instantiation semantics
for graphs and constraints related to best practices for modelling language design, and
section 5 contains a set of use cases that illustrate the context for which Gmodel has
been conceived.

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 3

2. motivation

The motivation for developing Gmodel is closely linked to the five core values of the
KISS initiative:

(1) We strive to automate software construction from domain models; therefore we
consciously distinguish between building software factories and building software
applications

The decision to use terminology from graph theory is a conscious one, intended
to minimize terminological overloading between meta modelling and modelling.

(2) We work with domain-specific assets, which can be anything from models, com-
ponents, frameworks, generators, to languages and techniques

Gmodel is a valuable asset for the specialized task of designing modelling lan-
guages.

(3) We support the emergence of supply chains for software services, which implies
domain-specific specialization and enables mass customization

Gmodel enables the creation of highly modular meta models and models. Beyond
that it also provides the means for participants in a supply chain to specify
architectural constraints for artefacts produced (to order) by their suppliers.

(4) We see Open Source test beds and reference implementations as driving the in-
teroperability required for economically viable software supply chains and as a
catalyst for Open standards

The implementation is open source and is subject to the evolutionary forces in
the open source software ecosystem.

(5) The methodologies we use conform with the values of the Agile Manifesto

The design involves a minimal set of language elements. A closer analysis of
the use cases for modelling language design and the use cases for modelling in
section [x] shows that the language elements included in Gmodel are essential
for achieving good modularity and extensibility.

2.1. Striving for simplicity. The specification of an abstract syntax of a language
boils down to the specification of language elements and the allowable links between
them - some of which may be navigable in both directions, and some only in one direc-
tion. Hence an abstract syntax specification is isomorphic to a graph where language
elements correspond to vertices, links between language elements correspond to edges,
and the role of a vertex in a link corresponds to an edge end. These elementary graph
theoretical concepts form the basis of Gmodel, and allow users of Gmodel to tap into
a wealth of graph theoretical knowledge without the need for encoding this knowledge
in some other terminology. Beyond graphs Gmodel is equipped with a minimal set of
additional concepts that are useful for meta modelling (generalization/specialization and
properties) and dependency management (module references).

4 JORN BETTIN, TONY CLARK

2.2. Modularity and separation of concerns. Gmodel also strives for further fea-
tures that are related to good separation of concerns:

• Fractal decomposition

• Modularity as a first class concept in all language designs

• Relationships between models as first class language design concepts

ToDo Istuff below requires citations to back up...J

Poor separation of concerns lies at the root of most software maintainability problems,
even though every modern programming language provides at least one mechanism for
modularizing specifications. But it seems that the mechanisms available are insufficient
for practical purposes. After more than a decade of object oriented dominance in software
development paradigms it is useful to step back and to take stock.

Objects turned out to be to small for achieving reuse, and led to the development of
frameworks and components. Large frameworks are very expensive to develop, and for
the most part have proved impractical to use.

These shortcomings have led to a number of complementary or rather compensatory
approaches and techniques.

Firstly, the use of configuration files has become pervasive. In many organizations the
amount of decisions that are managed in poorly designed configuration files or configura-
tion databases is alarming. It is not uncommon to address the symptoms with generative
techniques, but often this just means that the problem is shifted to a new set of poorly
designed abstractions. Configuration files can be viewed as domain specific languages
with ad-hoc designs.

Observation: What is really lacking is a set of best practices - a paradigm - for designing
domain specific modelling languages, such that configuration files don’t continuously
remain the poor cousins of ”real” source code.

Secondly, aspect orientation is attempting to tackle separation of concerns head-on. The
problematic part in this case lies in the level of abstraction at which aspects are intro-
duced. Tooling for aspect oriented programming operates at the level of code, and there
is no established set of best practices for defining useful complementary aspects.

Observation: Given that in the context of software the term coding is often used inter-
changeably with programming, it is instructive to compare the dictionary definitions of
to code and to model to understand the not-so-subtle difference in intent:

ToDo IWe need to tease out the issue that the key development aspects of ’software engineering’ are

’language engineering’ and and then bridging the gap between the notation and the implementation

platform. Coding can then be viewed as having to deal with someone else’s representation (program

notation or otherwise). Modelling can then be viewed as dealing with a representation that is fit for

purpose.J

to code: express (a statement or communication) in an indirect or euphemistic
way

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 5

to model: devise a representation, especially a mathematical one of (a phenome-
non or system)

Gmodel is designed for modelling, and not for coding. It is intended for use in conjunction
with a number of best practices for language design that lead to

• good separation between language definitions, and

• good separation between the artefacts modelled in these languages.

A good meta language does not magically separate concerns, but it can be designed to
minimize the effort required of the language designer to cater for modularity. Further in-
centives for modularization can be built into graphical editors for Gmodel and languages
developed with Gmodel, for example by optimizing the usability of model browsers and
diagramming tools for the scenario of sufficiently modularized models.

There are several important relationships between language definitions (graphs) in Gmodel:

equivalence relationships: two language definitions are deemed equivalent if
their graphs are isomorphic in the mathematical sense, and if the values of the
properties attached to the elements of the graph are equivalent.

refinement relationships: a language element at one level expands into an entire
(corresponding) language definition at a more detailed level.

sub-model relationships: the use of refinement relationships leads to relation-
ships at a detailed level that correspond to higher level relationships between lan-
guage elements that have refinements (have been expanded into a sub-language
definition).

semantic relationships: two languages are related by a semantic mapping that
describes how the elements in one language are represented in the other. For
example classes are represented by objects, state machines are represented by
traces. Jorn Iis this not the ”instantiation” relationship?J

2.3. architecture and agile collaboration. Keeping up consistent software design
quality over extended periods of time is always difficult, even in when the software
development team is collocated in one site. The larger a software supply chain (say a
geographically distributed software product development team and external suppliers in
the form of technology vendors), the more difficult it is to prevent degradation of the
quality of software design over time.

The reasons for software design degradation in large systems have a lot to do with the
topics discussed above, poor separation of concerns within general purpose languages,
and the difference in intent between coding and modelling. In a coded solution the design
intent is not explicit or easily accessible, and essential knowledge needed to maintain and
evolve the design often is scattered across a group of people. The big picture of an initial
top down design that may have existed when the system was conceived rapidly loses its
value, as the implementation moves ahead and the design is only updated at the code
level based on very pragmatic and localized considerations.

6 JORN BETTIN, TONY CLARK

In a model driven solution, the design intent is captured in models that are always in
sync with the implementation, therefore the risk of design degradation is much reduced.
However, as the discussion of configuration files shows, only well-designed modelling
languages that achieve a good separation of concerns have this positive effect on main-
tainability. This highlights the timelines of the KISS objective to agree on a set of
fundamental principles and best practices for designing domain specific modelling lan-
guages.

Gmodel allows graphs to be partitioned into subgraphs, and forces the language designer
to articulate the allowed dependencies between subgraphs before any edges can be defined
that cross the boundaries between two subgraphs. In fact, the allowed dependencies
between the subgraphs of a graph constitute a separate architectural artefact, such that
modification of the artefact can be managed via off the shelf or open source version
control software and role based access control.

From the perspective of the person who models a subgraph, the constraints implemented
within Gmodel prevent the creation of any subgraph structures that violate the archi-
tecture of allowable dependencies defined at the level of the containing graph. Hence, in
case there is a valid reason for changing the architecture, the modeller of the subgraph
needs to discuss and agree the intended change with the owner of the containing graph
(the owner of the architecture), so that the latter can update the graph model accord-
ingly. Only once the architecture is updated, is the modeller of the subgraph able to
create edges that meet the new architecture definition.

Likewise, the owner of a graph can not remove allowable subgraph dependencies from
the active version of the graph until all corresponding dependencies between subgraphs
have been removed. The latter action can either be conducted automatically by the
modelling tool (if the graph owner has write privileges to the relevant subgraphs), or in
consultation with relevant subgraph owners.

These Gmodel features for architecture management can be used to enforce appropriate
collaboration between owners of graphs and subgraphs, and thereby enable model driven
designs to scale much better than coded designs.

3. The language elements of Gmodel

ToDo IWe need to fit some examples. One familiar example like ”class models” and something

very non-standard. We’ll define the example languages in concrete terms using Gmodel. Jorn

IUntil we have a working Gmodel API implementation (not far off) this can be done using a simple

Ecore based implementation of Gmodel and corresponding model instances.J The examples need

to include an illustration of how the development process works (e.g. refinement or modularity etc).

Then we deconstruct the examples in terms of gModel and show how gModel underpins: the models;

the links between the models in the development process; the language definitions; the relationship

between the models and the language definition; the relationship between the models and gModel

(we can also mention that all this applies to gModel in terms of itself). Lastly we exhibit some feature

of gModel that would be difficult using another approach (such as in Ecore).J

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 7

GraphGraph

-nameSpacePrefix : String
-nameSpaceURI : String
-isAbstract : Boolean

+isModelRoot() : Boolean+isModelRoot() : Boolean
+isInstantiableArtefact() : Boolean

0..1 *-secondarySubGraphs*-subGraphTree *0..1 -toSubGraph1-owner 0..1 -fromSubGraph 1-owner 1-vertexGeneralization1

Vertex

-pluralName : String

+generalizations() : List

GeneralizationReference

EdgeEnd

AbstractEdge

Edge

ModuleReference
-graphSpecialization
1 -generalizationReferences

*

*-vertices * *-abstractEdges **

+generalizations() : List
+navigableEdgeEnds() : List
+navigableEdgeEndsInclFromGeneralizations() : List
+propertiesInclFromGeneralization() : List

EdgeEnd

-minCardinality : Integer
-maxCardinality : Integer
-isContainer : Boolean
-isNavigable : Boolean

Edge

no circuits allowed!

-vertex

1 * -edgeEnds

2 -owner

1

-isNavigable : Boolean

+isMany() : Boolean
+oppositeEdgeEnd() : EdgeEnd

TimestampBigDecimal Boolean

An Edge that connect Vertices in
two different SubGraphs must
have EdgeEnd navigability that is
consistent with the directionality of
 the ModuleReference between TimestampBigDecimal Boolean

IntegerRealString

 the ModuleReference between
the two SubGraphs.
ModuleReferences are used to
define which Verticies are visible
from a given SubGraph.

Property
PropertyValue

-value : StringList Atom

-typedLists*

1 * -name : String
-isOptional : Boolean

DerivedProperty

StructuredElement

-name : String [0..1]

-value : String
-isApplicable : Boolean
-isKnown : Boolean

+name() : String
+isOptional() : Boolean
+isDerived() : Boolean

List

-name : String

Atom

-propertyValues

*

-owner

1
*

-derivedProperties 1

-properties
* -owner

1

-valueType
1 *

DerivedProperty

-name : String
-OCLExpression : String [0..1]TypedElement

+isDerived() : Boolean

Vertex Graph
-innerType

1

* -owner

-valueType
1 *

Graph and root element of itself

Figure 2. The structural overview of the modelling elements available in Gmodel

Figures 3 and 4 show how Gmodel has been encoded in itself to achieve a first imple-
mentation.

4. Instantiation semantics

4.1. Features for modelling of graphs.

Graph: A graph consists of a collection of vertices and a collection of edges. In
Gmodel the links between a graph and the vertices and edges constituting the
graph are encoded as physical containment - a graph artefact contains or in-
cludes vertices and edges, and no vertex or edge can exist independently from a
containing graph.

This concept is equivalent to the containment concept in the UML, which also
demands lifetime-dependency between container and contained parts. Since the
term container or containment heavily used in many contexts in software engi-
neering, Gmodel uses the term owner to refer to containment in the strict sense
involving lifetime-dependency as described above. Each element in Gmodel must
have exactly one active owner at a given point in time. The graph artefact that
encodes Gmodel is a special case (and the only such case) where the owner of a
a graph is the graph itself.

Vertex: A vertex is the source and the target of any number of edges.

Edge: An edge has two edge ends that connect the edge to two vertices.

8 JORN BETTIN, TONY CLARK

Figure 3. Encoding of graphs and vertices

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 9

Figure 4. Encoding of edges

Edge end: An edge end is connected to a vertex and determines whether the
vertex is visible from the vertex connected to the edge end at the other side of
the edge.

Sub graph tree: The content of a graph (vertices and edges) can be organized
into a sub graph tree, which is a decomposition of the graph intonon overlapping
sets of sub graphs. Each graph (or sub graph) is only contained exactly once in
a sub graph tree structure. This leads to the containment semantics needed for
physically modularizing graphs.

10 JORN BETTIN, TONY CLARK

Secondary sub graphs: The sub graph tree may also contain sub graphs that
(independently from containing sub sub graphs) reference further sub graphs.
Thus secondary sub graphs provide the mechanism needed to represent overlap-
ping sets of sub graphs.

4.2. Fundamental features for meta modeling.

4.2.1. Generalizations.

Generalization: A graph may refer to one or more generalizations. All general-
izations of a graph are graphs as well. A specialization inherits all properties
from its generalizations. However inheritance of properties does not imply poly-
morphism in the object oriented sense.

A specialization may not redefine any inherited properties, and although a graph
may have multiple generalizations, any property definitions inherited from more
than one generalization must be traceable back to exactly one common root in
the generalization hierarchy.

Is abstract: A graph has a property to indicate whether it can be instantiated
or whether it only serves as an abstract generalization that has instantiable
specializations.

Abstract edge: An abstract edge is an abstract generalization of an edge.

4.2.2. Element.

Element: All vertices (or graphs) in the encoding of Gmodel are either direct or
indirect specializations of Element. Each element is an instance of a metatype,
which provides the basis for distinguishing meta levels. In Gmodel there is no
artificial limits to the number of meta levels. Hence any concrete (non-abstract)
graph can be used in the role of a meta model, and Gmodel can be used to create
”instantiate” a graph (a meta model).

Structured element: In Gmodel there is a conscious distinction between struc-
tured elements that may have properties (vertex, abstract edge, and edge end)
and the other elements that may not have properties. Structured elements consti-
tute first-class meta modelling concepts whose properties are used as a template
that determines which property values are available when a vertex (or Graph) is
instantiated.

Typed element: Vertices, atoms, and lists may be used as inner types in lists,
and are therefore encoded as specializations of a common generalization called
typed element.

Property: Properties are part of the definition of a structured element. A property
can be defined as optional, which means that a property does not necessarily
apply to all instances of a structured element.

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 11

Property value: The metatype of a property value is always a property. Property
values constitute the items that can be set in Gmodel after a structured element
has been instantiated. If a property has been defined as optional, then this means
that there may be some instances of a structured element where the property
is not applicable and hence the associated property value is set to the state of
not-applicable. When setting a property value Gmodel only accepts the state
of not-applicable if the property is defined as optional. The other two states of
a property value (unknown and known) are permissible both for optional and
mandatory properties.

4.2.3. Atom.

Atom: Every property refers to exactly one value type. All permissible value types
are atomic in the sense of not containing substructures that are accessible in the
form of properties. Atoms constitute the insulation layer between the problem
space (which is modelled) and an underlying solution space (the platform or
implementation technology that is being abstracted away by models). Gmodel
comes with an extensible predefined set of atoms. Users are able to plug in addi-
tional (domain specific) atoms as required. Property values are always instances
of atoms. Instances of atoms are serializable and are they are persisted as part
of a graph in all the places where they are referred to by a property value (via
the metatype of the property value and the value type of the metatype).

4.2.4. Edge end.

Minimum cardinality: The minimum cardinality of the associated vertex. This
property is only relevant when the graph is used in the role of a meta model.

Maximum cardinality: The maximum cardinality of the associated vertex. This
property is only relevant when the graph is used in the role of a meta model.

Is container: Only one of the two edge ends associated with an edge can act in
the role of container. If an edge is used to model containment, then there needs
to be navigability from the container to the contained part. This property is
only relevant when the graph is used in the role of a meta model.

Is navigable: Is used to indicate in which way the associated edge can be nav-
igated. This property is only relevant when the graph is used in the role of a
meta model.

4.3. Features to support modularity.

4.3.1. Graphs.

Graphs are specialized vertices: When a graph owns a large number of vertices
and edges, partitioning the graph into smaller sub graphs is essential for human
understandability and for the practical aspect of managing modifications to the
graph. Additionally there is the practical aspect of providing a mechanism that

12 JORN BETTIN, TONY CLARK

allows a hierarchical drill-down perspective into set of sub graphs. In Gmodel
this is achieved by encoding a graph as a specialization of a vertex, such that an
element that appears as a vertex in a graph, may at the same time be expanded
into a sub graph that contains further vertices and edges.

This approach avoids the need to introduce an additional - in many ways artificial
- concept for modularity. Graphs in the role of specialized vertices together
with the sub graph tree constitute the foundation for modularity in Gmodel.
In practice the role of some graphs is exclusively one of sub graph owner and
architecture owner for these sub graphs.

Instantiable artefacts: Non-abstract graphs are the only elements in Gmodel
that can be instantiated as independent physical artefacts. This means that
Gmodel does not allow the creation of any non-graph elements outside the con-
text of a graph (in the role of owner). Gmodel starts treating a non-abstract
graph as an independent physical artefact as soon as the graph is referenced via
a sub graph tree link from another graph. A graph may only be removed from
the sub graph tree when it no longer contains any vertices (and by implication
any edges). Gmodel discontinues treating a graph as an independent physical
artefact as soon as it is no longer referenced from any graph in the sub graph
tree.

Lastly vertices and edges are only allowed to be added to a graph that is not
referenced in a sub graph tree if the graph itself constitutes the top element
in the sub graph tree. Taken together this constitutes a policy that imposes
modularity at exactly one level of granularity (the graph) by guaranteeing that
all non-empty graphs are independent physical artefacts.

This policy differs noticeably from the two prevailing policies applied by software
modelling tools, namely the policy of making modularity an optional aspect that
the modeller may chose to ignore (which is commonly used applied by tools
that don’t shield the user from file system level abstractions), and the policy of
enforcing modularity at the level of atomic model elements (which is commonly
applied in repository based tools that abstract away the file system).

4.3.2. Dependency management between graphs.

Secondary sub graphs: Only very few graphs encountered in practice in soft-
ware engineering can be fully represented in a sub graph tree containing non-
overlapping sub graphs. This leads to the concept or secondary sub graphs
which allow the representation of overlapping sets of sub graphs. This feature is
essential for actively managing the complexity in any non-trivial model.

In software engineering most modelling and programming languages provide
mechanisms for defining and restricting visibility between elements. In Gmodel
secondary sub graphs are used to model visibility between graphs and to model
which references between vertices owned by different sub graphs are considered

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 13

Figure 5. Example of a modular graph consisting of several sub graphs

allowable from an architectural perspective. Note that the sub graph tree ref-
erence between a graph and its contained sub graphs points to vertices (sub
graphs) that are also owned by the graph (via the owner vertices link between
graph and vertex).

Repositories: Gmodel abstracts away file system level abstractions as far as pos-
sible. Instead of files, the user interacts with Gmodel via a repository concept.
The Gmodel repository concept builds on the sub graph tree feature. Every
graph in a sub graph tree may be nominated as a repository, in which case the
graph in question holds a reference to a server and a folder in a file system.

The graphs that are physically stored in a repository are all the graphs in the
sub graph tree of the repository with the exception of those that are reposito-
ries themselves and their respective sub graph trees. This means that Gmodel
repositories may be geographically distributed as required to provide optimal
performance for users working (primarily) on specific models in a specific lo-
cation. Within a Gmodel repository each graph is stored as a file in a folder
structure that mirrors the sub graph tree.

Repositories impose a number of constraints on the links between graphs that are
essential for the ability to handle very large graphs. The most basic constraint
relates to the navigability of edges between vertices owned by two different sub

14 JORN BETTIN, TONY CLARK

Figure 6. Example of unidirectional edges across two sub graphs

Figure 7. Instantiation links between graph, DSL definitions, and DSL models

graphs, which is restricted to be uni-directional. In conjunction with the feature
of module references this constitutes a mechanism that pro-actively prevents cir-
cuits that include vertices and edges from more than one physical graph artefact.
In other words circuits are allowed locally (within a single graph) but not on any
wider scale.

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 15

Product repositories: A product repository is a repository that stores internally
consistent sets of versions and variants of graph artefacts, that is such a set of
artefacts constitutes the source specification of a deployable product release.

Project repositories: A repository that stores versions and variants of the work
of a project team. The content of a project repository is always an extract from
a product repository. While a user is modifying a graph artefact, he or she has
an exclusive lock on the artefact. A [graph] artefact may be part of multiple
projects, but may only be modified in one project at a time.

Once an artefact has been modified as part of a project, any second or fur-
ther project requesting to modify the artefact is provided with the latest version
(across all project repositories) of the artefact. This approach encourages fre-
quent integration of results between projects that, and it discourages the common
practice of modifying artefacts in any number of projects, and worrying about
integration later.

At the level of traditional code based specification (as opposed to model based
specifications) such a restrictive approach would be unrealistic due to the poor
separation of concerns in such specifications. Highly modular model based speci-
fications however allow for a very good separation of concerns, and hence min-
imise the need for several modellers to work on the same artefact at the same
time. If variants of an artefact are consistently expressed via explicit language
elements for delta-modelling, then all copy and paste practices become obsolete,
and there is no longer any need for sophisticated diff and merge tooling.

Module references: Achieving good overall modularity in the sense of loose cou-
pling between modules requires not only features that allow modules to be cre-
ated, but also features that enable architects to articulate allowable dependencies
between modules.

In Gmodel the owner of a graph is also known as the architecture owner. This
terminology reflects the architectural significance of the owner for all the sub
graphs it contains. A graph in the role of architecture owner contains one or
more module references between sub graphs that are either part of the architec-
ture owner’s sub graph tree or its collection of secondary sub graphs. Module
references indicate constraints for the dependencies that may exist between the
sub graphs owned by or referenced by the architecture owner.

A dependency between two sub graphs amounts to an edge between a vertex
owned by one of the sub graphs and a vertex owned by the other sub graph. As
described earlier, such cross-graph edges are only navigable in one direction, and
the module references defined in the architecture owner (a) determine whether
such a cross-graph edge is allowed at all, and (b) indicate the allowable naviga-
bility (and by implication visibility) of edges between the sub graphs in question.

Since the sub graph tree provides a practically unlimited ability to nest sub
graphs, architecture management becomes a distributed task, and architecture
definitions are very closely tied to the graphs that these definitions apply to.

16 JORN BETTIN, TONY CLARK

Figure 8. Example of module references at different levels in a sub graph hierarchy

Overall the rules around Gmodel repositories and module references are intended
to provide fractal scalability: modelling is only possible in an architectural con-
text, and any graph plays the role of architecture owner for its sub graphs. In
order to ensure that architecture definitions can never get out of sync with the
graphs they apply to, module references can only be removed once there are no
remaining cross-graph edges between the corresponding sub graphs.

4.3.3. Extensibility.

Specializations of the Gmodel graph: Gmodel is intended to be extensible.
This feature is motivated by the realization that any de-facto standard for meta
languages will have to provide powerful and easy to use features to extend the
meta language in order to become attractive for use by organizations that cur-
rently have to rely on idiosyncratic meta languages that are not widely used, or
on languages such as EMF Ecore that were not designed for meta modelling but
have been shoehorned into the meta language role.

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 17

When Gmodel is used to instantiate a graph that is linked to the Graph element
in Gmodel via a generalization reference, then this graph is treated as an exten-
sion of Gmodel. That is, the graph is treated at residing on the same meta level
as Gmodel. Such an extension of Gmodel may then include further vertices and
edges beyond what is provided in Gmodel, as well as specializations of vertices,
abstract edges, typed elements, and structured elements.

One usage scenario for such extensions is the scenario where a meta language is
needed that can can act in a pivot role for interoperability between multiple meta
languages. Other usage scenarios include specialized functionality for manipulat-
ing graphs in specific domains or integration with specific version management
software.

An important difference between inheritance in object orientation and gener-
alization/specialization hierarchies in Gmodel is that edges are not treated as
properties. When specializing a graph, by default only properties are inherited
and become visible in the specialization, and not edges. However, a generaliza-
tion reference may optionally be defined with inherited edge visibility enabled,
which enables edges defined in a generalization be be instantiated as part of an
instance of the specialization.

One example scenario where inherited edge visibility enabled is needed, is the
scenario of extending (specializing) Gmodel with further modelling elements. A
similar scenario exists when extending a language defined in Gmodel with further
elements.

A scenario where inherited edge visibility enabled is explicitly not desired is the
scenario of the scenario of extending (specializing) Gmodel such that only spe-
cializations of Gmodel elements are instantiable by users of the language. A
concrete example would be the definition of an entity relation modelling lan-
guage in Gmodel, where a Schema is defined as the model root, and Entities,
Attributes, and Relationships are the only elements that should be instantiable
within a Schema (and not Vertices, Edges, etc. - even if Schema is defined as a
specialization of Graph).

5. Significant use cases

18 JORN BETTIN, TONY CLARK

5.0.4. Terminology.

Artefact: the unit of persistent storage used in GraphRepositories

ArchitectureOwner: The ArchitectureOwner of a Graph is the parent of the
Graph in the subGraphTree

CurrentModelRoot: The CurrentModelRoot is the ModelRoot that is part of
the state of an in memory instance of Gmodel and it reflects the artefact that
the user is currently working with

GraphRepository: a facility for persistent storage of Graph artefacts that en-
forces all semantics associated with subGraphTrees, secondarySubGraphs, and
ModuleReferences in Gmodel

ModelRoot: A ModelRoot is a Graph that has the role of an Artefact. (Not all
Graphs are a ModelRoot but all ModelRoots are Graphs)

ProductRepository: A GraphRepository that stores Versions and Variants of
deployable Products

ProjectRepository: A GraphRepository that stores Versions and Variants of the
work of a ProjectTeam. The content of a ProjectRepository is always an extract
from a ProductRepository

Visibility: The Visibility from the CurrentModelRoot includes all those Elements
that are accessible in accordance to the ModuleReference rules defined in the
ArchitectureOwner of the CurrentModelRoot

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 19

5.1. instantiate Gmodel as a Graph in Graph.gmodel.

Purpose: definition and validation of the InstantiationSemantics (encoding) for
Graphs

Pre conditions: the LanguageDesigner has expressed a draft of Gmodel in Ecore
and has written this use case

Post conditions: The metatype of any Graph is a Graph with the name of ”Graph”
encoded in a PropertyValue, and there is a ”Graph.gmodel” artefact that con-
tains the Graph ”Graph”

Frequency of use per day per system: 1.0E-4

Main Flow:

20 JORN BETTIN, TONY CLARK

Actor Step
ProductArchitect 1. implements the ”owner vertices” references be-

tween the classes Graph and Vertex with con-
tainment semantics (lifetime dependency)

ProductArchitect 2. implements functionality to instantiate a Graph
and its properties and propertyValues

ProductArchitect 3. requests Gmodel to instantiate a new Graph
where the propertyValue called name is set to
”Graph”

Gmodel 4. instantiates a Graph (in memory) where the
propertyValue name is ”Graph” and where the
propertyValues pluralName, nameSpaceURI,
nameSpacePrefix, and isAbstract are set to the
values requested by the ProductArchitect (as
defined in the Ecore draft of Gmodel)

ProductArchitect 5. requests Gmodel to instantiate further Graphs
that are vertices owned by the ModelRoot
”Graph” (Vertex, AbstractEdge, Atom, Type,
StructuredElement, and Element - as defined in
the Ecore draft of Gmodel, with all the proper-
tyValues as defined in the Ecore draft)

Gmodel 6. instantiates further Graphs that are owned by
”Graph” as requested by the ProductArchitect
that have propertyValues set to the values re-
quested by the ProductArchitect

ProductArchitect 7. requests Gmodel to instantiate Vertices that
are owned by the ModelRoot ”Graph” (List,
BigDecimal, Boolean, Timestamp, String, Real,
Integer, Property, EdgeEnd, Edge, Generaliza-
tion, PropertyValue, and ModuleReference - as
defined in the Ecore draft of Gmodel, with all
the propertyValues as defined in the Ecore draft)

Gmodel 8. instantiates Vertices that are owned by ”Graph”
as requested by the ProductArchitect that have
propertyValues set to the values requested by
the ProductArchitect

9. execute use case store Graph [store the Graph
named ”Graph”]

ProductArchitect 10. implements the full functionality of two of the
specializations of AbstractEdge (Edge and Gen-
eralization)

11. execute use case load GraphRepository [load the
GraphRepository containing Graph.gmodel] (At
this point in the bootstrap process only a proto-
typish loadGraphRepository use case implemen-
tation is required)

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 21

Actor Step
ProductArchitect 12. requests Gmodel to instantiate all the Abstract-

Edges (Edges and Generalizations) that are
shown in the Ecore draft of Gmodel

Gmodel 13. instantiates Edges and Generalizations that are
owned by ”Graph” as requested by the Pro-
ductArchitect

14. execute use case store Graph [store the Graph
named ”Graph”]

15. execute use case define Atoms as external Arte-
facts in Graph.gmodel

16. execute use case create a ModuleReference with
Gmodel

5.2. define Abstract Syntax.

Purpose: definition of abstract syntax of a domain specific language

Pre conditions: the Gmodel editor is open and a ProjectRepository has been
selected

Post conditions: a Graph that contains a meta model has been stored

Frequency of use per day per system: 0.1

Main Flow:

Actor Step
Gmodel Editor 1. displays the SubGraph tree of the ProjectRepos-

itory
LanguageDesigner 2. requests the creation of a meta model at the

appropriate location in the SubGraph tree
Gmodel Editor 3. creates a Graph with the name supplied by the

LanguageDesigner
Gmodel Editor 4. obtains an exlusive lock on the new Graph for

the LanguageDesigner
Gmodel Editor 5. displays the modeling perspective for for the new

Graph
LanguageDesigner 6. defines the Elements of the domain specific lan-

guage
LanguageDesigner 6. links the new Elements as required to existing

Elements that are within visibility
Gmodel Editor 7. commits the Graph to the ProjectRepository

8. execute use case define Abstract Syntax

Alternate flow: 8a

Condition: LanguageDesigner choses to exit Gmodel editor

Frequency of use per day per system: 0.1

22 JORN BETTIN, TONY CLARK

Actor Step
Gmodel Editor 1. closes editor window

2. End of use case

Exception: 3a

Condition: name of the Graph is not unique within name space

Frequency of use per day per system: 0.02

Message: name of the Graph must be unique within name space

Actor Step
1. Continue with: define Abstract Syntax [Step 2.]

5.3. create a ModuleReference with Gmodel.

Purpose: enable Gmodel to enforce ModuleReference constraints defined in the
ArchitectureOwner of a Graph

Pre conditions: the use case ”define Atoms as external Artefacts in Gmodel” has
been executed

Post conditions: the ModuleReference ”SGA-¿SGB” has been stored in the Ar-
chitectureOwner of SGA

Frequency of use per day per system: 1.0

Main Flow:

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 23

Actor Step
ProductArchitect 1. implements the full functionality of the Mod-

uleReference specialization of AbstractEdge
2. execute use case load GraphRepository [load a

GraphRepository]
3. execute use case model a Graph [model a Graph

”GTest”]
4. execute use case model a Graph [model a Graph

”SGA” as a subGraph of ”GTest” such that it
has a Vertex ”SGAV1”]

5. execute use case model a Graph [model a Graph
”SGB” as a subGraph of ”Gtest” such that it
has a Vertex ”SGV1”]

6. execute use case model a Graph [model the
Graph ”GTest” to instantiate a ModuleRefer-
ence ”SGA-¿SGB”]

7. execute use case store Graph [store Graphs
”GTest”, ”SGA”, and ”SGB”]

8. execute use case model a Graph [model the
Graph ”SGA” such that an Edge from ”SGAV1”
to ”SGBV1” is instantiated]

9. execute use case store Graph [store Graph
”SGA”]

Exception: 4a

Condition: ”SGA” is already a subGraph of ”GTest’

Frequency of use per day per system: 0.01

Message: Graph [name] is already a subGraph of [name]

Actor Step
1. End of use case

Exception: 5a

Condition: ”SGB” is already a subGraph of ”GTest’

Frequency of use per day per system: 0.01

Message: Graph [name] is already a subGraph of [name]

Actor Step
1. End of use case

Alternate flow: 6a

Condition: the GmodelUser forgets to define a ModuleReference ”SGA-¿SGB” in
”GTest”

Frequency of use per day per system: 0.01

24 JORN BETTIN, TONY CLARK

Actor Step
1. Continue with: create a ModuleReference with

Gmodel [Step 8.]

Exception: 6b

Condition: the ”SGA-¿SGB” ModuleReference already exists in ”GTest”

Frequency of use per day per system: 0.01

Message: The ModuleReference [name] is already defined

Actor Step
1. Continue with: create a ModuleReference with

Gmodel [Step 8.]

Exception: 8a

Condition: no ModuleReference ”SGA-¿SGB” is defined in ”GTest”

Frequency of use per day per system: 0.01

Message: An Edge between [Vertex1. name] and [Vertex2.name] can’t be instan-
tiated as it violates the architecture defined in [ArchitectureOwner of Vertex1]

Actor Step
1. End of use case

5.4. define Atoms as external Artefacts in Graph.gmodel.

Purpose: enabling LanguageDesigners to extend Gmodel with further Atoms as
required

Pre conditions: a first working implementation of Gmodel is available

Post conditions: the ”Graph” Graph that represents Gmodel refers to exter-
nal Atom Artefacts ”BigDecimal.atom”, ”Boolean.atom”, ”Timestamp.atom”,
”String.atom”, ”Real.atom”, ”Integer.atom”

Frequency of use per day per system: 0.0010

Main Flow:

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 25

Actor Step
ProductArchitect 1. implements the functionality to delete Elements

from ”Graph”, and functionality to instantiate
Atoms as independent external ”.atom” arte-
facts outside of a Graph

ProductArchitect 2. requests Gmodel to store the following Ver-
tices (BigDecimal, Boolean, Timestamp, String,
Real, Integer) as ”.atom” artefacts in a
GraphRepository located at [location name]

Gmodel 3. creates ”.atom” files for BigDecimal, Boolean,
Timestamp, String, Real, and Integer (but does
not keep any representation in memory) in the
GraphRepository [location name]

ProductArchitect 4. modifies the Graph.gmodel artefact in a text
editor such that all Properties reference the
”.atom” artefacts rather than the Atoms defined
within Graph.gmodel

5. execute use case load GraphRepository [load the
GraphRepository containing Graph.gmodel]

ProductArchitect 6. requests Gmodel to delete the following Ver-
tices (BigDecimal, Boolean, Timestamp, String,
Real, Integer) from the ”Graph” Graph

Gmodel 7. deletes the requested Vertices from ”Graph”
8. execute use case store Graph [store ”Graph” in

Graph.gmodel]

5.5. explore subGraphTree.

Purpose: expansion of the subGraphTree

Pre conditions: a GraphRepository has been loaded and this use case may have
been executed zero or more times

Post conditions: the LanguageDesigner has navigated to a selected ModelRoot
one level down in the subGraphTree

Frequency of use per day per system: 1000.0

Main Flow:

26 JORN BETTIN, TONY CLARK

Actor Step
Gmodel 1. returns the list of subGraphs of the Current-

ModelRoot for which the GmodelUser has at
least one of the CRUDX rights

Gmodel User 2. requests to expand one of the subGraphs re-
turned by Gmodel

Gmodel 3. sets the CurrentModelRoot to the selected sub-
Graph

4. execute use case explore subGraphTree

Alternate flow: 2a

Condition: the user requests to [Read—Update—Delete—Execute] one of the sub-
Graphs returned by Gmodel and has appropriate Permissions

Frequency of use per day per system: 1000.0

Actor Step
Gmodel 1. sets the CurrentModelRoot to the selected sub-

Graph
Gmodel 2. performs the requested action

3. Continue with: explore subGraphTree [Step 4.]

Exception: 2b

Condition: the Gmodel User requests to [Read—Update—Delete—Execute] one
of the subGraphs returned by Gmodel and does not have appropriate Permissions

Frequency of use per day per system: 100.0

Message: Lacking permision for the [Read—Update—Delete—Execute] action on
[CurrentModelRoot]

Actor Step
1. Continue with: explore subGraphTree [Step 1.]

5.6. instantiate a ModelRoot.

Purpose: creating a new ModelRoot and adding it to the subGraphTree

Pre conditions: a GraphRepository has been loaded

Post conditions: a new ModelRoot is attached to the in memory subGraphTree
and is the CurrentModelRoot

Frequency of use per day per system: 50.0

Main Flow:

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 27

Actor Step
Gmodel User 1. requests Gmodel to instantiate a ModelRoot of

metatype [metatype name]
Gmodel 2. instantiates a ModelRoot with [name] (supplied

by the GmodelUser) of metatype [metatype
name]

Gmodel 3. attaches the new ModelRoot as an element of
the subGraphTree at the CurrentModelRoot

Gmodel 4. makes the newly instantiated ModelRoot the
CurrentModelRoot

5.7. load GraphRepository.

Purpose: instantiating an in memory representation of the content of a GraphRepos-
itory

Pre conditions: an artefact named ”Graph.gmodel” and an artefact named [lo-
cation name].gmodel exist in the location [location name]

Post conditions: Gmodel has the subGraphTree (and optionally all Graphs) con-
tained in the GraphRepository at [location name] in memory

Frequency of use per day per system: 50.0

Main Flow:

Actor Step
Gmodel User 1. requests Gmodel to load the GraphRepository

at [location name] into memory
Gmodel 2. loads Graph.gmodel and [location name].gmodel

into memory
Gmodel 3. traverses the structure that corresponds to

the subGraphTree hierarchy of [location
name].gmodel to load all Graphs contained in
the GraphRepository into memory

Alternate flow: 2a

Condition: the metatype of the ModelRoot of [location name].gmodel is not Graph
but a specialization (direct or indirect via a series of generalization/specialization
Edges) of Graph

Frequency of use per day per system: 1.0

28 JORN BETTIN, TONY CLARK

Actor Step
Gmodel 1. loads Graph.gmodel and [location name].gmodel

into memory
Gmodel 2. traverses the generalization/specialization

Edges between the metatype of the ModelRoot
of [location name].gmodel and Graph.gmodel
and loads all the meta meta models encountered
in this traversal into memory

3. Continue with: load GraphRepository [Step 3.]

Alternate flow: 3a

Condition: the LanguageDesigner chose the option to only load the subGraphTree

Frequency of use per day per system: 5.0

Actor Step
Gmodel 1. traverses the structure that corresponds to the

subGraph hierarchy of [location name].gmodel
to load the subGraphTree structure of the
GraphRepository into memory

2. End of use case

5.8. model a Graph.

Purpose: definition of the Elements of a Graph

Pre conditions: some GmodelEditor has loaded a GraphRepository

Post conditions: a Graph that contains Elements has been instantiated in mem-
ory

Frequency of use per day per system: 1000.0

Main Flow:

Actor Step
Gmodel User 1. requests Elements to be added to the Current-

ModelRoot
Gmodel 2. adds the new Elements to the CurrentModel-

Root or one of the Elements contained in the
CurrentModelRoot

Alternate flow: 1a

Condition: the Graph that the GmodelUser wants to model does not yet exist in
the loaded GraphRepositoryTree

Frequency of use per day per system: 100.0

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 29

Actor Step
Gmodel User 1. requests the instantiation of a new ModelRoot

[name] at the CurrentModelRoot
2. execute use case instantiate a ModelRoot
3. Continue with: model a Graph [Step 1.]

Alternate flow: 1b

Condition: the Graph that the GmodelUser wants to edit is not part of the first-
level Elements in the SubGraphTree of the CurrentModelRoot

Frequency of use per day per system: 500.0

Actor Step
1. execute use case explore subGraphTree [explore

SubGraphTree to change the CurrentModelRoot
to the approriate location]

2. Continue with: model a Graph [Step 1.]

5.9. store Graph.

Purpose: persistent storage of a Graph

Pre conditions: Gmodel has a Graph with name [name] in memory and this
Graph is a ModelRoot

Post conditions: the [name] Graph has been stored (persisted) in the artefact
[name].gmodel, and the [name] Graph remains in memory

Frequency of use per day per system: 1000.0

Main Flow:

Actor Step
Gmodel User 1. requests Gmodel to store (persist) the in mem-

ory Graph with name [name] using the artefact
name ”[name].gmodel”

Gmodel 2. stores (persists) the in memory Graph
with name [name] using the artefact name
”[name].gmodel” in the GraphRepository
structure that corresponds to the subGraph
hierarchy of the [name] Graph

5.10. instantiate a Graph.

Purpose: extended validation of the InstantiationSemantics (encoding) for Graphs
(beyond the instantiaton of Gmodel in itself)

Pre conditions: the LanguageDesigner has expressed a draft of an E/R modellig
language design in Gmodel.xmi and has written this use case

30 JORN BETTIN, TONY CLARK

Post conditions: A Product-Order-Customer model has been instantiated in the
Schema E/R modelling language, which has been defined in Gmodel

Frequency of use per day per system: 1.0

Main Flow:

Actor Step
1. execute use case model a Graph [model a graph

called Schema, with vertices Entity and At-
tribute, and with edges Relationships (between
two Entities) and Attributes (between Entity and
Attribute with containment semantics)]

LanguageDesigner 2. requests Gmodel to instantiate the Schema
graph

Gmodel 3. instantiates the Schema graph (in memory)
[Rule A]

LanguageDesigner 4. specifies propertyValues for the Schema
LanguageDesigner 5. requests the addition of the Product entity to

the Schema
Gmodel 6. The Product entity is instantiated [Rule B]

LanguageDesigner 7. requests the addition of the Order entity to the
Schema

Gmodel 8. The Order entity is instantiated [Rule B]
LanguageDesigner 9. requests the addition of the Customer entity to

the Schema
Gmodel 10. The Customer entity is instantiated [Rule B]

LanguageDesigner 11. specifies propertyValues for the instantiated En-
tities and adds appropriate Attributes for each
of the instantiated Entities, and specifies prop-
ertyValues for each of the added Attributes

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 31

Actor Step
LanguageDesigner 12. requests the addition of a Relationship from Or-

der to Customer
Gmodel 13. Instantiate all properties of the edge Relation-

ships as propertyValues of the Relationships
instance that have a name corresponding to
the name of the instantiated property and a
metatype that points to the valueType of the
instantiated property

Gmodel 14. Instantiate all properties of the edge ends at Or-
der and Customer as propertyValues of the Rela-
tionships instance that have a name correspond-
ing to the name of the instantiated property and
a metatype that points to the valueType of the
instantiated property.

LanguageDesigner 15. specifies propertyValues for the instantiated re-
lationship and associated edge ends

LanguageDesigner 16. requests the addition of a Relationship from Or-
der to Product

Gmodel 17. Instantiate all properties of the edge Relation-
ships as propertyValues of the Relationships
instance that have a name corresponding to
the name of the instantiated property and a
metatype that points to the valueType of the
instantiated property

Gmodel 18. Instantiate all properties at the edge ends of Or-
der and Product as propertyValues of the Rela-
tionships instance that have a name correspond-
ing to the name of the instantiated property and
a metatype that points to the valueType of the
instantiated property

LanguageDesigner 19. specifies propertyValues for the instantiated re-
lationship and associated edge ends

LanguageDesigner 20. decorates the instantiated Schema and other el-
ements (Entities, Attributes, Relationships etc.)
with the properties relevant for instantiation at
the next level down

Alternate flow: 2a

Condition: the LanguageDesigner has specified a GeneralizationReference from
Schema to Graph

Frequency of use per day per system: 0.1

32 JORN BETTIN, TONY CLARK

Actor Step
1. The use case continues with rule C being appli-

cable [Rule C]
2. Continue with: instantiate a Graph [Step 2.]

Rules

A: Any properties of the graph Schema are instantiated as propertyValues of the
Schema instance that have a name corresponding to the name of the instanti-
ated property and a metatype that points to the valueType of the instantiated
property.

B: Any properties of Entity are instantiated as propertyValues for the instantiated
entity. Each propertyValue has a name corresponding to the name of the instan-
tiated property and a metatype that points to the valueType of the instantiated
property.

C: Instantiated propertyValues are also created for all properties that Schema has
inherited from its generalization (Graph). The GeneralizationReference from
the ModelRoot (which is Schema in this case) to Graph is sufficient to trigger
the property inheritance mechanism for all other meta model elements (Entity,
Attribute, relationships, attributes).

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 33

Use Case Design

Figures 9 to 11 illustrate the E/R modelling language, and show the intended use of the
Gmodel property and property value concepts. The notation used is a possible (heavily
graphical) concrete syntax for Gmodel based models:

• The diagrams correspond to the main flow of the instantiate Graph use case.

• All rectangular boxes in the diagrams represent objects in an implementation
language such as Java.

• All arrows can be read as references between objects in an implementation lan-
guage.

• Bidirectional arrows represent pairs of opposite references.

• Colour coding is aligned with the Gmodel overview picture: blue for vertices,
and organge for graphs. Egdes and edge ends are without colour. Orange ar-
rows repesent the owner-vertices and owner-abstactEdges links from the Gmodel
overview picture at the level of instances.

• name1] name2 means that name1 is the metatype of name2. The @ symbol has
been used to indicate objects that don’t have a name.

• Properties of edges are not shown in the diagrams, as the example only requires
properties of edge ends. Additionally the implementation of the links between
edges and edge ends has been abstracted away to keep the diagrams readable.

6. comparison with other approaches

ToDo Isummary of the shortcomings of existing toolingJ

6.1. Outlook. In a further paper we will outline the work in progress on building in-
teroperability solutions with Gmodel. We invite modelling language designers to exper-
iment with Gmodel, to contribute useful Gmodel extensions, and - by all means - to
design and implement alternative meta languages, so that the merits and drawbacks of
various approaches can be a discussed in a constructive dialogue.

34 JORN BETTIN, TONY CLARK

Figure 9. Definition of a simple E/R modelling language in Gmodel

GMODEL - A LANGUAGE FOR MODULAR META MODELLING 35

Figure 10. Use of the E/Rmodelling language to define a Product-
Order-Customer schema

36 JORN BETTIN, TONY CLARK

Figure 11. Instantiated Order and Product, and example of an instan-
tiated attribute

