
3D Point Cloud Data and Triangle Face Compression by a
Novel Geometry Minimization Algorithm and Comparison
with other 3D Formats

SIDDEQ, M.M. and RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-
1303>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/11863/

This document is the Accepted Version [AM]

Citation:

SIDDEQ, M.M. and RODRIGUES, Marcos (2016). 3D Point Cloud Data and Triangle
Face Compression by a Novel Geometry Minimization Algorithm and Comparison
with other 3D Formats. Proceedings of the international conference on computational
methods, 3, 379-394. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

1

3D Point Cloud Data and Triangle Face Compression by a Novel Geometry

Minimization Algorithm and Comparison with other 3D Formats

*M. M. Siddeq
1
, †M. A. Rodrigues

2

1 ,2
GMPR-Geometric Modeling and Pattern Recognition Research Group,

Sheffield Hallam University, Sheffield, UK

*Presenting author: mamadmmx76@gmail.com

 †Corresponding author: M.Rodrigues@shu.ac.uk

Abstract

Polygonal meshes remain the primary representation for visualization of 3D data in a wide range of

industries including manufacturing, architecture, geographic information systems, medical imaging,

robotics, entertainment, and military applications. Because of its widespread use, it is desirable to

compress polygonal meshes stored in file servers and exchanged over computer networks to reduce

storage and transmission time requirements. 3D files encoded by OBJ format are commonly used to

share models due to its clear simple design. Normally each OBJ file contains a large amount of data

(e.g. vertices and triangulated faces) describing the mesh surface. In this research we introduce a

novel algorithm to compress vertices and triangle faces called Geometry Minimization Algorithm

(GM-Algorithm). First, each vertex consists of (x, y, z) coordinates that are encoded into a single

value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences

between two adjacent vertex locations, and then coded by the GM-Algorithm followed by

arithmetic coding. We tested the method on large data sets achieving high compression ratios over

90% while keeping the same number of vertices and triangle faces as the original mesh. The

decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to

recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with

a number of commonly used 3D file formats such as MATLAB, VRML, OpenCTM and STL

showing the advantages and effectiveness of our approach.

Keywords: 3D Object Compression and Reconstruction, Data Compression, GM-Algorithm,

Parallel-FMS Algorithm

1. Introduction

Polygonal meshes are the primary representation used in the manufacturing, architectural, and

entertainment industries for the visualization of 3D data, and they are central to Internet and

broadcast multimedia standards such as MPEG-4 [1,2,4] and VRML [3]. In these standards, a

polygonal mesh is defined by the position of its vertices (geometry); by the association between

each face and its sustaining vertices (connectivity); and optional colour, normal and texture

coordinates (properties). Deering [5] introduced the first geometry compression scheme to compress

the bit stream sent by a CPU to a graphics adapter, generalizing the popular triangle strips and fans.

Motivated by Deering’s work, but optimized for transmission over the internet instead, Taubin and

Rossignac introduced the Topological Surgery (TS) method [6], the first connectivity preserving

single-resolution manifold triangular mesh compression scheme. TS was later extended to handle

arbitrary manifold polygonal meshes with attached properties, and proposed as a compressed file

format to encode VRML files [9]. With a more efficient encoding, Topological Surgery is now part

of the MPEG-4 standard.

Several closely related methods were subsequently developed by Touma and Gotsman [12],

Gumhold and Strasser [7], Li and Kuo [8] and Rossignac [10]. The methods proposed by Gumhold

mailto:mamadmmx76@gmail.com
mailto:M.Rodrigues@shu.ac.uk

2

and Strasser, and by Rossignac only capable of encoding connectivity. The method proposed by

Touma and Gotsman, predicts geometry and properties better, and the method proposed by Li and

Kuo improves on the entropy encoding of prediction errors. More recently, Bajaj et al. [11]

proposed yet another method to encode single-resolution triangular meshes. It is based on a

decomposition of the mesh into rings of triangles originally used by Taubin and Rossignac in their

compression algorithm, but with a different and more complex encoding. All of these schemes

require O(n) total bits of data to represent a single-resolution mesh in compressed form.

While single resolution schemes can be used to reduce transmission bandwidth, it is frequently

desirable to send the mesh in progressive fashion. A progressive scheme sends a compressed

version of the lowest resolution level of a level-of-detail (LOD) hierarchy, followed by a sequence

of additional refinement operations. In this manner, successively finer levels of detail may be

displayed while even more detailed levels are still arriving. To prevent visual artefacts, sometimes

referred to as popping, it is also desirable to be able to transition smoothly from one level of the

LOD hierarchy to the next by interpolating the positions of corresponding vertices in consecutive

levels of detail as a function of time [11].

The Progressive Mesh (PM) scheme introduced by Hoppe [13] was the first method to address the

progressive transmission of multi-resolution manifold triangular mesh data. PM is an adaptive

refinement scheme where new faces are inserted in between existing faces. Every triangular mesh

can be represented as a base mesh followed by a sequence of vertex split refinements. Each vertex

split is specified for the current level of detail by identifying two edges and a shared vertex. The

mesh is refined by cutting it through the pair of edges, splitting the common vertex into two vertices

and creating a quadrilateral hole, which is filled with two triangles sharing the edge connecting the

two new vertices. The PM scheme is not an efficient compression scheme. Since the refinement

operations perform very small and localized changes, the scheme requires O(V log2(V)) bits to

double the size of a mesh with V vertices. Later on Hoppe proposed a more efficient

implementation based on changing the order of transmission of the edge split operations [14].

In progressive representations discussed above, multi-resolution polygonal models are represented

in compressed form. However, as compression schemes, these are not as efficient as the single-

resolution schemes described earlier. Taubin et al. [15] recently introduced a method to compress

any multi-resolution mesh produced by a vertex clustering algorithm with compression ratios

comparable to the best single resolution schemes. In this scheme, the connectivity of the LOD

hierarchy is transmitted from high resolution to low resolution, followed by the geometry and

properties from low resolution to high resolution. The main contribution of this scheme is a method

to compress the clustering mappings which relate consecutive levels of detail, from high to low

resolution. The method achieves high compression ratios but is not progressive.

The MPEG-4 3D Mesh Coding scheme is based on the Topological Surgery and Progressive Forest

Split schemes. But it incorporates improvements to connectivity encoding for progressive

transmission proposed by Bossen [16], non-manifold encoding proposed by Guéziec et al. [17],

error resiliency proposed by Jang et al. [18], parallelogram prediction proposed by Touma and

Gotsman [15], and error encoding proposed by Li and Kuo [8]. It allows the encoding of any

polygonal mesh (including non-manifolds) with no loss of connectivity information and no

repetition of geometry and property data associated to singular vertices as a progressive single-

resolution bit stream, and any manifold polygonal mesh in hierarchical multi-resolution mode.

Extensive experimentation performed during the course of the MPEG-4 process has shown that the

resulting methods are state-of the-art.

3

Siddeq and Rodrigues proposed a new way to compress vertices by using a Geometry Minimization

Algorithm (paper submitted to a journal and under review – for more information please contact the

authors). In this paper we introduce a new concept for geometry and mesh connectivity

compression. The proposed method encodes both the point cloud data representing the integer

vertices (geometry) and the triangulated faces (connectivity). Thereafter, the encoded output is

subjected to arithmetic coding. We demonstrate the approach by performing a comparative analysis

with a number of 3D data file formats focusing on compression ratios.

This remainder of this paper is organized as follows: Section 2 introduces geometry coding and

describes the proposed Geometry Minimization (GM-Algorithm) applied to the vertices. Section 3

describes mesh connectivity lossless coding by the GM-Algorithm, while section 4 describes the

Parallel Fast Matching Search algorithm (PFMS), used to reconstruct vertices and triangulated faces.

Section 5 describes experimental results with a comparative analysis followed by conclusions in

Section 6.

2. Geometry Compression

Geometry compression combines quantization and statistical coding. Quantization truncates the

vertex coordinates to a desired accuracy and maps them into integers that can be represented with a

limited number of bits. The quantization parameter, , is a scale parameter that normally moves the

decimal place of each vertex to the right. A tight (min-max) axis aligned bounding box around each

object is computed. The minima and maxima of the (x, y, z) coordinates, which define the box,

together with the parameter are encoded and transmitted with the compressed representation of

each object. In this way, the 3D structure can be reconstructed in the same units and scale as the

original.

The quantization by transforms each (x, y, z) coordinates into integers ranging from 0 to 2B–1,

where B is the maximum number of bits needed to represent the quantized coordinates. Normally,

12bit integers are sufficient to ensure geometric fidelity for most applications and most models.

Thus, such lossy quantization step reduces the storage cost of geometry from 96-bits to less than 36-

bits. The quantization of vertices (x, y, z) is defined as:

𝑉𝑥,𝑦,𝑧 = 𝑓𝑙𝑜𝑜𝑟(𝑉𝑥,𝑦,𝑧 𝛼) (1)

Where 2 ≤ 𝛼 ≤ 10,000 . In addition to reducing the storage cost of geometry, we reduced the

number of bits for each vertex to less than 16-bit by calculating the differences between two

adjacent coordinates for increased redundancy data and thus, more susceptible to compression. The

differential process defined in Eq. (2) below is applied to axes X, Y and Z independently [19].

𝐷(𝑖) = 𝐷(𝑖) − 𝐷(𝑖 + 1) (2)

Where i=1, 2, 3... m-1 and m is the size of the list of vertices.

4

Figure 1. The GM-Algorithm applied to each block of vertices

Once the differential process is applied to the vertices, the list of vertices is divided into blocks, and

the GM-Algorithm is applied to each block of vertices (i.e. the vertex matrix from 3D object file is

divided into k non-overlapping blocks) as illustrated in Figure 1. The main reason for placing

vertices into separate blocks is to speed up the compression and decompression steps. Each k block

is reduced to an encoded data array. The GM-Algorithm is defined as taking three key values and

multiplying these by three geometry coordinates (x, y, z) from a block of vertices which are then

summed over to a single integer value. A 3-value compression key KC is generated from vertex data

as follows:

𝑀 = max(𝑉𝑋, 𝑉𝑌, 𝑉𝑍) +
max(𝑉𝑋,𝑉𝑌,𝑉𝑍)

2
 % Define M as a function of maximum

𝐾𝐶1 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) % First weight1 defined by random between 0 and 1

𝐾𝐶2 = (𝐾𝐶1 + 𝑀) + 𝐹 % F is an integer factor F=1,2,3,…

𝐾𝐶3 = (𝑀 ∗ 𝐾𝐶1 + 𝑀 ∗ 𝐾𝐶2) ∗ 𝐹

Where 𝐹 is a positive factor multiplier, each vertex is then encoded as:

𝑉(𝑖) = 𝑉𝑥(𝑖)𝐾𝐶1 + 𝑉𝑦(𝑖)𝐾𝐶2 + 𝑉𝑧(𝑖)𝐾𝐶3 (3)

Figure 2(a) illustrates the GM-Algorithm by applying Equation (3) to a sample of vertices. After

this operation, the likelihood for each block of vertices is selected from which a Ku (unique Key) is

generated to be used in the decompression stage as illustrated in Figure 2(b) with a numerical

example.

3D object file
Vertices

Block(1)

Block(2)

Block(p)

 Encoded Data - Block(1)

 Encoded Data - Block(2)

 Encoded Data - Block(p)

KU Block(1)

KU Block(2)

KU Block(p)

…

…

GM-Algorithm

Convert each [X Y Z] to
single data

X1 Y1 Z1

X2 Y2 Z2

…

XkYkZk

 Xk+1Yk+1 Zk+1

Xk+2Yk+2 Zk+2

…
Xk+kYk+kZk+k

X2k+1 Y2k+1 Z2k+1
X2k+2Y2k+2 Z2k+2

…

XnYn Zn

X1 Y1 Z1

X2 Y2 Z2
X3 Y3 Z3

X4 Y4 Z4

…

XnYn Zn

After Differential

Process

3D object data

V X1 Y1 Z1

V X2 Y2 Z2

V X3 Y3 Z3

V X4 Y4 Z4

V …

V XnYn Zn

Shift
X, Y and Z,

Divide list of vertices to
small block size:

k x 3

5

(a) Floating point vertices

(b) Unique Key

Figure 2: (a): Sample of vertices compressed by GM-Algorithm, (b) The set of KUvalues generated

from a block of vertices

3. Connectivity Compression

Several algorithms have been developed to address the problem of compactly encoding the

connectivity of polygonal meshes, both as the theoretical problem of short encodings of embedded

graphs and as a practical problem of compressing the incidence table of the triangle mesh in a 3D

model.

Triangulated meshes represent geometric connectivity. In a 3D OBJ file, each triangle is followed

by reference numbers representing the index of the vertices in the 3D file. These reference numbers

are arranged in ascending order in most 3D OBJ files. We refer to these as regular triangles. One of

regular triangles’ advantages is that they can be lossless compressed in a few bits by applying a

differential process (e.g. the differential processed fined by Equation (2) applied to all reference

numbers). The resulting 1D-array is divided into sub-arrays, and each sub-array encoded

independently by the GM-Algorithm followed by arithmetic coding as illustrated in Figure 3. The

GM-Algorithm works in the same way as applied to the vertices: three key values are generated and

multiplied by three adjacent values which are then summed to a single value by Equation (3).

KU

Vertices: after differential process
 X Y Z

1 1 3

1 2- 2-

2 3 3

. . .

 1 1 2

GM-Algorithm

1, 3,-2, 2, 3, . . .

Encoded Data

KC

Sample of vertices (before coding)

-101.284 48.426 45.478

 -100.916 48.399 45.468

-100.636 48.414 45.426

-100.396 48.449 45.341

-100.150 48.480 45.215

-99.900 48.510 45.053

-99.6262 48.529 44.863

-99.355 48.548 44.653

Quantized vertices

-1013 484 455

-1009 484 455

-1006 484 454

-1004 484 453

-1002 485 452

-999 485 451

-996 485 449

-994 485 447

Differential Eq. applied GM-Algorithm applied

-4 0 0

-0.4

-3 0 1 42.9

-2 0 1 43

-2 -1 1 35.9

-3 0 1 42.9

-3 0 2 86.1

-2 0 2 86.2

-994 485 447 -994 485 447

Subtract each column by Eq(2); then apply the GM-Algorithm, maximum value

M=|4|, F=1:- Kc1=0.1, Kc2=7.1, Kc3=43.2

6

(a) Triangle Face are scanned row-by-row

(b), 1D-array divided into sub-arrays, each sub-array encoded independently

Figure 3. (a) and (b): Lossless Triangle Mesh Compression by GM-Algorithm and Arithmetic

Coding

4. Data Decompression: Parallel Fast-Matching-Search Algorithm (Parallel-FMS)

The decompression algorithm represents the inverse of compression using the Parallel-Fast-

Matching-Search Algorithm (Parallel-FMS) to reconstruct vertices and mesh connectivity. First, the

Parallel-FMS is applied to encoded block of vertices to reconstruct the original vertices as a point

cloud. Second, the Parallel-FMS is applied to each encoded sub-array resulting in the reconstructed

triangle mesh sub-array. Thereafter, all the sub-arrays are combined together to recover the

incidence table of triangulated faces of the 3D model. Figure 4 shows the layout of the

decompression algorithm.

The Parallel-FMS provides the means for fast recovery of both vertices and triangulated meshes,

which has been compressed by three different keys (𝐾𝐶) for each three entries. The header of the

compressed file contains information about the compressed data namely 𝐾𝐶 and 𝐾𝑈 followed by

streams of compressed encoded data. The Parallel-FMS algorithm picks up in turn each block of

encoded data to reconstruct the vertices and the triangle sub-array. The Parallel-FMS uses a binary

search algorithm and is illustrated through the following steps A and B:

A) Initially, KU is copied three times to sepatared arrays to estimates coordinates (X,Y,Z), that

is X1=Y1=Z1, X2=Y2=Z2, X3=Y3=Z3 the searching algorithm computes all possible

combinations of X with KU(1), Y with KU(2) and Z with KU(3) that yield a result R-Array

Triangle faces in 3D

object file

Scan all vertices locations

to convert matrix to 1D-
array

f 1 2 3

f 4 5 6

f 7 8 9

f 10 5 11

 … etc

 1 2 3

4 5 6

7 8 9

10 5 11

… etc

Face = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11,…etc]

Face= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6,..etc].

Face divided into sub-arrays for coding

 Sub-Array= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6, -2, -3, -1, -1, -3, -8, -11, -5, -1, -1, -1, -1, ..etc].

 Encoded data by GM-Algorithm

-50.4, -50.4, -50.4, -223.8, -55.7, -367, -79.8, -50.4…etc

KU : -1, 5, -6, -2, -3, -8, -11, -5, ... etc

…

GM-Algorithm

Each three data compressed to single integer data

KC : 0.1, 7.1, 43.2

Arithmetic Coding

(Stream of compressed bits are generated)

7

illustrated in Figure 5(a). As a means of an example consider that KU(1)=[X1 X2 X3] ,

KU(2)=[Y1 Y2 Y3] and KU(3)=[Z1 Z2 Z3]. Then, Equation (3) is executed 27 times to build

the R-Array, as described in Figure 5(a). The match indicates that the unique combination of

X, Y and Z are represented in the original vertex block.

B) A Binary Search algorithm [21] is used to recover an item in an array. In this research we

designed a parallel binary search algorithm consisting of k-Binray Search algorithms

working in parallel to reconstruct k block of vertices in the list of vertices, as shown in

Figure 5(b). In each step k-Binary Search Algorithms compare k-Encoded Data (i.e. each

binary search algorithm takes a single compressed data item) with the middle of the element

of the R-Array, If the values match, then a matching element has been found and its R-

Array's relevant (X,Y,Z) returned. Otherwise, if the search is less than the middle element of

the R-Array, then the algorithms repeats its action on the sub-array to the left of the middle

element or, if the value is greater, on the sub-array to the right. All k-Binary Search

algorithms are synchronised such that the correct R-Array is returned. To illustrate our

decompression algorithm, the compressed samples in Figure 2(a) (by our GM-Algorithm)

can be used by our decompression algorithm to reconstruct X, Y and Z values as shown in

Figure 5(c).

In order to Decode Triangle Faces and Vertices, reverse the differential process of Equation (2) by

addition such that the encoded values in the triangle faces and vertices return to their original

values. This process takes the last value at position m, and adds it to the previous value, and then the

total adds to the next previous value and so on. The following equation defines the addition decoder

[20].

)()1()1(iAiAiA (4)

where i= m, (m-1), (m-2), (m-3),…,2

(a) Vertices (X,Y and Z) reconstructed

 Encoded Data - Block(1)

 Encoded Data - Block(2)

 Encoded Data - Block(p)

KUBlock(1)

KUBlock(2)

KU Block(p)

… …

Parallel Fast Matching

Search Algorithm

(Parallel-FMS)

After inverse Differential Process

Block(1)

Block(2)

Block(p)

X1 Y1 Z1

X2 Y2 Z2

…

XkYkZk

 Xk+1Yk+1 Zk+1

Xk+2Yk+2 Zk+2

…

Xk+kYk+kZk+k

X2k+1Y2k+1 Z2k+1

X2k+2Y2k+2 Z2k+2

…

XnYn Zn

List of vertices

reconstructed

…

8

(b) Triangle mesh reconstructed

Figure 4. (a) and (b): Parallel-FMS Algorithm applied on encoded vertices and encoded

triangle mesh

(a) Compute all the probabilities for compute all possible k-Encoded Data for reconstruct k-block of data

R-Array

Apply Eq.(3) on all possibilities (X,Y and Z)

to generate R-Array linked with the relevant

 R1 R2 R3 R4 Rk

X1 Y2 Z5

Xn Y1 Zn

 X2 Y2 Z2

 X3 Y5 Z1

Sort R-Array ascending order

 … …

 …

…

KU (1) KU (2) KU (3)

X1

X2

X3

…

Xm

Y1

Y2

Y3

…

Ym

Z1

Z2

Z3

...

Zm

 Encoded Data - sub-array (1)

 Encoded Data - sub-array (2)

 Encoded Data - sub-array (p)

KU sub-array(1)

KU sub-array(2)

KU sub-array(p)

… …

Parallel Fast Matching

Search Algorithm

(Parallel-FMS)

Decoded array

After inverse differential

process, convert 1D array to

2D Matrix

Reconstructed

Triangle mesh

 1 2 3

 4 5 6

 7 8 9

 10 5 11

… etc

R-Array

Binary Search Algorithm Function 3

Compressed

data in file

(Encoded Data)

Binary Search Algorithm Function 2

Binary Search Algorithm Function 1

Binary Search Algorithm Function k

 R1 R2 R3 R4 Rk

Xn Y1 Zn

 Xn Y1 Zn

 X2 Y2 Z2

X1 Y2 Z5

 Each Binary Search find Location of the "R-Array" corresponding to the compressed
data, output is relevant [X,Y,Z], which represents a original data

…

…

…

Decoded

Data

9

(b) All Binary Search algorithms work in Parallel to find group of decompressed data approximately at the same time.

(c) All Binary Search Algorithm run in Parallel to recover the sample of vertices, approximately at same time.

Figure 5. Parallel-FMS algorithm to reconstruct the reduced array (a) Compute all the

probabilities for all possible k-Encoded Data (R-Array) by using KC combinations with KU.

(b) All Binary Search Algorithm run in Parallel to recover the decompressed 3D data

approximately at the same time. (c) Sample of data recovered.

5. Experimental Results

The algorithms were implemented in MATLAB R2013a and Visual C++ 2008 running on an AMD

Quad-Core microprocessor. We applied the compression and decompression algorithms to 3D data

object generated by 3dsmax, CAD/CAM, 3D camera or other devices/software. Table 1 shows our

compression algorithm applied to each 3D OBJ file, and Figure 6 shows the visual properties of the

decompressed 3D object data for 3D images respectively. Additionally, 3D RMSE are used to

compare 3D original file sizes with the recovered files. The Root Mean Square Error (RMSE) is

used to refer to 3D mesh quality mathematically [22, 23] and can be calculated very easily by

computing the differences between the geometry of the decompressed and the original 3D OBJ

files.

-4 0 -3 1 -2 -1 2 -4 0 -3..... 2 -4 2
-4 0 -3 1 -2 -1 2

-4 0 -3 1 -2 -1 2

-4 0 -3 1 -2 -1 2

Ku1

Ku2

Ku3

-201.6 -173.2 -158.4 -130 -115.2 ... -0.4 ... 100.8

Apply Eq.(3) on all possibilities (X,Y and Z)

to generate R-Array linked with the relevant

-4 -4 -4 -4 -4 -4 -4 0 0 0..... 0 -3..... 2

-4 -4 -4 -4 -4 -4 -4 -4 -4 -4.....-4 -4 2

-201.6 -28.8 -158.4 14.4 -115.2 -72 57.6 -173.2 -0.4 -130

Sort R-Array ascending order

R-Array generated

-0.4

42.9

43

35.9

42.9

86.1

86.2

Binary Search Algorithm Function 3

Binary Search Algorithm Function 2

Binary Search Algorithm Function1

Binary Search Algorithm Function 7

-4 0 0

-3 0 1

-2 0 1

-2 0 2

…

…

…

Block of vertex

Compressed data

10

Table 1. Our compression approach results

3D

object

Name

Original

file size

Quantization

value

Compressed

file size

No. of

Vertices

(Compressed

Size)

No. of

Triangle

faces

(Compressed

size)

3D

RMSE

(X Y

Z)

Compression

ratio

Face1 13.3MB 10 213 KB
105819

(187 KB)

206376

(26 KB)
0.288 98%

Face2 96MB 10 3.7 MB
621693

(1.8MB)

1216249

(1.9MB)
0.289 96%

Angel
23.5

MB
20 1.75MB

307144

(1.055MB)

614288

(715 KB)
0.288 93%

Robot 1.5 MB 400 88.9KB
23597

(56.3KB)

45814

(32.6KB)
0.289 94%

Cup 57KB 2 3.5 KB
594

(2.13 KB)

572

(1.36KB)

0.263

91%

Knot 178 KB 2
7.94KB

1440

(7.4 KB)

2880

(553 Bytes)
0.027 96%

11

(a) (Top left) original 3D FACE1 object, (Top Right) reconstructed 3D mesh FACE1 without texture, compressed size: 213

KB, (middle) original 3D mesh zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab

application.

12

(b) (Top left) original 3D FACE2 object, (Top Right) reconstructed 3D mesh FACE2 without texture, compressed size: 3.7

MB, (middle), original 3D mesh zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab

application.

13

(c) (Top left) original 3D Angel object, (Right left) reconstructed 3D mesh Angel at compressed size: 1.75 MB, (middle)

original 3D zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab application.

14

(d) (Top) original 3D Robot object, (bottom) reconstructed 3D mesh Robot, at compressed size: 88.9KB

(e) (Top) original and reconstructed 3D mesh cup, at compressed size: 3.5 KB, (bottom) original and reconstructed 3D mesh

Knot, at compressed size: 7.94 KB

Figure 6: (a – e) shows decompressed 3D objects by the proposed algorithms

Tables 2 and 3 show a comparison of the proposed method with the 3D file formats: VRML,

OpenCTM and STL. In this research we also used a new simple file format referred here as

MATLAB format. This format saves the geometry, texture and triangle faces as lossless data, in

separated matrices and all the matrices are collected into a single file. We investigate this format

obtaining compression ratios over 50% for most of 3D OBJ files. In comparison, our approach uses

a unique format to compress 3D files over 98% in the best case; this is mostly dependent on the

triangle face details.

15

Table 2. Our approach compared with other encoding 3D data format according to compressed size

3D object

Name

Original

file size
Proposed

Algorithm

MATLAB

format

VRML

format

OpenCTM STL

Angel 23.5 MB 1.75MB 5.31 MB 23.2 MB 1.92 MB 29.2 MB

Face1 13.3 MB 213 KB 4.04 MB 9.19 MB 808 KB 9.84 MB

Face2 96MB 3.7MB 23.3 MB 47.7MB 3.7MB 57.9MB

Robot 1.5 MB 88.9 KB 449 KB 1.7 MB 151 KB 2.18 MB

Cup 57 KB 3.5 KB 12 KB 25.2 KB 3.24 KB 28 KB

Knot 178 KB 7.94 KB 23.6KB 95.4KB 14.2KB 140 KB

Total

Compressed Size
 5.75 MB 33.12 MB 81.9 MB 6.57 MB 99.28 MB

Mean

Compression

Ratio

 95.7 % 75.3 % 39.4% 95.1 % 26.2 %

Table 3. Our approach compared with other encoding 3D data format according to 3D RMSE

3D object Proposed Method MATLAB VRML OpenCTM STL

Angel 0.288 0 0.0002 44.86 46.32

Face1 0.289 0 0.00021 64.79 42.05

Face2 0.288 0 0.000109 82.23 43.44

Robot 0.289 0 0 0.0587 0.137

Cup 0.263 0 0.00000075 37.7 39.2

Knot 0.027 0 0.000105 47.65 12.62

6. Conclusion

This research has presented and demonstrated a new method for 3D data compression and

compared the quality of compression through 3D reconstruction, 3D RMSE and the perceived

quality of the 3D visualisation. The method is based on minimization of geometric values to a

stream of new integer data by the GM-Algorithm. Mesh connectivity is partitioned into groups of

data, where each group is compressed by the GM-Algorithm followed by arithmetic coding. We

note that some of the existing 3D file formats do not efficiently encode geometry and connectivity,

as a simple format developed in MATLAB showed higher compression ratios than STL and

VRML. The results show that our approach yields high quality encoding of 3D geometry and

connectivity with high compression ratios compared to a number of standard 3D data formats. The

slight disadvantage is a larger number of steps for decompression, leading to increased execution

time at decoding stage, making the method slower than 3D standard compression methods. Further

research includes investigation of methods to speed up decoding, possibly by sorting the R-Array

entries by frequency. Also, a comparative analysis with a larger number of 3D file formats and

compression technique is forthcoming.

16

References

[1] R. Koenen. (1999) Mpeg-4: Multimedia for our time. IEEE Spectrum, 36(2):26–33.

[2] Mpeg-4 overview Seoul revision, (1999). ISO/IEC JTC1/SC29/WG11 Document No. W2725

[3] The Virtual Reality Modeling Language (1999) . http://www.web3d.org, September 1997. ISO/IEC 14772-1.

[4] M.M. Chow. Optimized geometry compression for real-time rendering. In IEEE Visualization’97 Conference

Proceedings, pages 347–354, 1997.

[5] M. Deering. (1995) Geometric Compression. In Siggraph’95 Conference Proceedings, pages 13–20,

[6] G. Taubin and J. Rossignac.(1998) Geometry Compression through Topological Surgery.ACM Transactions

on Graphics, 17(2):84–115.

[7] S. Gumhold and W. Strasser (1998). Real time compressions of triangle mesh connectivity - In Siggraph’98

Conference Proceedings, pages 133–140, July 1998.

[8] J. Li and C.C. Kuo (1998). Progressive Coding of 3D Graphics Models - Proceedings of the IEEE,

86(6):1052–1063.

[9] G. Taubin, W.P. Horn, and F. Lazarus (1997) . The VRML Compressed Binary Format, June 1997

http://www.research.ibm.com/vrml/binary.

[10] J. Rossignac. Edgebreaker (1999) : Connectivity compression for triangular meshes. IEEE Transactions on

Visualization and Computer Graphics, 5(1):47–61.

[11] C. Bajaj, V. Pascucci, and G. Zhuang.Single (1999) Resolution compression of arbitrary triangular meshes

with properties - In IEEE Data Compression Conference Proceedings.

[12] C. Touma and C. Gotsman (1998). Triangle mesh compression - In Graphics Interface Conference

Proceedings, Vancouver.

[13] H. Hoppe (1996) Progressive meshes - In Siggraph’96 Conference Proceedings, pages 99–108, August 1996.

[14] H. Hoppe (1998) Efficient implementation of progressive meshes. Computers& Graphics, 1998.

[15] G. Taubin,W. Horn, and P. Borrel (1999). Compression and transmission of multi-resolution clustered meshes.

Technical Report RC-21398, IBM Research, February 1999.

[16] F. Bossen (1999) On The Art Of Compressing Three-Dimensional Polygonal Meshes And Their Associated

Properties .PhD thesis, École Poly technique Fédérale de Lausanne (EPFL), June 1999.

[17] A. Guéziec, G. Taubin, F. Lazarus, and W.P. Horn (1998). Converting sets of polygons to manifold surfaces by

cutting and stitching. In IEEE Visualization’98 Conference Proceedings, pages 383–390.

[18] E.S. Jang, S.J. Kim, M. Song, M. Han, S.Y. Jung, and Y.S. Seo (1998). Results of ce m5 error resilient 3D

mesh coding. ISO/IEC JTC 1/SC 29/WG 11 Input Document No. M4251.

[19] M. M. Siddeq, M. A. Rodrigues (2014) A Novel Image Compression Algorithm for high resolution 3D

Reconstruction, 3D Research. Springer Vol. 5 No.2.DOI 10.1007/s13319-014-0007-6

[20] M. M. Siddeq, M. A. Rodrigues (2015) A Novel 2D Image Compression Algorithm Based on Two Levels

DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured

Light 3D Surface Reconstruction, 3D Research. Springer Vol. 6 No.3.DOI 10.1007/s13319-015-0055-6

[21] Knuth, Donald (1997). Sorting and Searching: Section 6.2.1: Searching an Ordered Table, The Art of

Computer Programming (3rd Ed.), Addison-Wesley. pp. 409–426. ISBN 0-201-89685-0

[22] I.E. G.Richardson (2002) Video Codec Design, John Wiley & Sons.

[23] K. Sayood, (2000) Introduction to Data Compression, 2
nd

 edition, Academic Press, Morgan Kaufman Publishers.

http://www.research.ibm.com/vrml/binary
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Addison-Wesley
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0

