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Abstract 

Polygonal meshes remain the primary representation for visualization of 3D data in a wide range of 

industries including manufacturing, architecture, geographic information systems, medical imaging, 

robotics, entertainment, and military applications. Because of its widespread use, it is desirable to 

compress polygonal meshes stored in file servers and exchanged over computer networks to reduce 

storage and transmission time requirements. 3D files encoded by OBJ format are commonly used to 

share models due to its clear simple design. Normally each OBJ file contains a large amount of data 

(e.g. vertices and triangulated faces) describing the mesh surface. In this research we introduce a 

novel algorithm to compress vertices and triangle faces called Geometry Minimization Algorithm 

(GM-Algorithm). First, each vertex consists of (x, y, z) coordinates that are encoded into a single 

value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences 

between two adjacent vertex locations, and then coded by the GM-Algorithm followed by 

arithmetic coding. We tested the method on large data sets achieving high compression ratios over 

90% while keeping the same number of vertices and triangle faces as the original mesh. The 

decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to 

recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with 

a number of commonly used 3D file formats such as MATLAB, VRML, OpenCTM and STL 

showing the advantages and effectiveness of our approach. 
 

Keywords: 3D Object Compression and Reconstruction, Data Compression, GM-Algorithm, 

Parallel-FMS Algorithm  

1. Introduction 

Polygonal meshes are the primary representation used in the manufacturing, architectural, and 

entertainment industries for the visualization of 3D data, and they are central to Internet and 

broadcast multimedia standards such as MPEG-4 [1,2,4] and VRML [3]. In these standards, a 

polygonal mesh is defined by the position of its vertices (geometry); by the association between 

each face and its sustaining vertices (connectivity); and optional colour, normal and texture 

coordinates (properties). Deering [5] introduced the first geometry compression scheme to compress 

the bit stream sent by a CPU to a graphics adapter, generalizing the popular triangle strips and fans. 

Motivated by Deering’s work, but optimized for transmission over the internet instead, Taubin and 

Rossignac introduced the Topological Surgery (TS) method [6], the first connectivity preserving 

single-resolution manifold triangular mesh compression scheme. TS was later extended to handle 

arbitrary manifold polygonal meshes with attached properties, and proposed as a compressed file 

format to encode VRML files [9]. With a more efficient encoding, Topological Surgery is now part 

of the MPEG-4 standard.  

 

Several closely related methods were subsequently developed by Touma and Gotsman [12], 

Gumhold and Strasser [7], Li and Kuo [8] and Rossignac [10]. The methods proposed by Gumhold 
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and Strasser, and by Rossignac only capable of encoding connectivity. The method proposed by 

Touma and Gotsman, predicts geometry and properties better, and the method proposed by Li and 

Kuo improves on the entropy encoding of prediction errors. More recently, Bajaj et al. [11] 

proposed yet another method to encode single-resolution triangular meshes. It is based on a 

decomposition of the mesh into rings of triangles originally used by Taubin and Rossignac in their 

compression algorithm, but with a different and more complex encoding. All of these schemes 

require O(n) total bits of data to represent a single-resolution mesh in compressed form. 

 

While single resolution schemes can be used to reduce transmission bandwidth, it is frequently 

desirable to send the mesh in progressive fashion. A progressive scheme sends a compressed 

version of the lowest resolution level of a level-of-detail (LOD) hierarchy, followed by a sequence 

of additional refinement operations. In this manner, successively finer levels of detail may be 

displayed while even more detailed levels are still arriving. To prevent visual artefacts, sometimes 

referred to as popping, it is also desirable to be able to transition smoothly from one level of the 

LOD hierarchy to the next by interpolating the positions of corresponding vertices in consecutive 

levels of detail as a function of time [11]. 

 

The Progressive Mesh (PM) scheme introduced by Hoppe [13] was the first method to address the 

progressive transmission of multi-resolution manifold triangular mesh data. PM is an adaptive 

refinement scheme where new faces are inserted in between existing faces. Every triangular mesh 

can be represented as a base mesh followed by a sequence of vertex split refinements. Each vertex 

split is specified for the current level of detail by identifying two edges and a shared vertex. The 

mesh is refined by cutting it through the pair of edges, splitting the common vertex into two vertices 

and creating a quadrilateral hole, which is filled with two triangles sharing the edge connecting the 

two new vertices. The PM scheme is not an efficient compression scheme. Since the refinement 

operations perform very small and localized changes, the scheme requires O(V log2(V)) bits to 

double the size of a mesh with V vertices. Later on Hoppe proposed a more efficient 

implementation based on changing the order of transmission of the edge split operations [14]. 

 

In progressive representations discussed above, multi-resolution polygonal models are represented 

in compressed form. However, as compression schemes, these are not as efficient as the single-

resolution schemes described earlier. Taubin et al. [15] recently introduced a method to compress 

any multi-resolution mesh produced by a vertex clustering algorithm with compression ratios 

comparable to the best single resolution schemes. In this scheme, the connectivity of the LOD 

hierarchy is transmitted from high resolution to low resolution, followed by the geometry and 

properties from low resolution to high resolution. The main contribution of this scheme is a method 

to compress the clustering mappings which relate consecutive levels of detail, from high to low 

resolution. The method achieves high compression ratios but is not progressive. 

 

The MPEG-4 3D Mesh Coding scheme is based on the Topological Surgery and Progressive Forest 

Split schemes. But it incorporates improvements to connectivity encoding for progressive 

transmission proposed by Bossen [16], non-manifold encoding proposed by Guéziec et al. [17], 

error resiliency proposed by Jang et al. [18], parallelogram prediction proposed by Touma and 

Gotsman [15], and error encoding proposed by Li and Kuo [8]. It allows the encoding of any 

polygonal mesh (including non-manifolds) with no loss of connectivity information and no 

repetition of geometry and property data associated to singular vertices as a progressive single-

resolution bit stream, and any manifold polygonal mesh in hierarchical multi-resolution mode. 

Extensive experimentation performed during the course of the MPEG-4 process has shown that the 

resulting methods are state-of the-art. 
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Siddeq and Rodrigues proposed a new way to compress vertices by using a Geometry Minimization 

Algorithm (paper submitted to a journal and under review – for more information please contact the 

authors). In this paper we introduce a new concept for geometry and mesh connectivity 

compression. The proposed method encodes both the point cloud data representing the integer 

vertices (geometry) and the triangulated faces (connectivity). Thereafter, the encoded output is 

subjected to arithmetic coding. We demonstrate the approach by performing a comparative analysis 

with a number of 3D data file formats focusing on compression ratios.  

 

This remainder of this paper is organized as follows: Section 2 introduces geometry coding and 

describes the proposed Geometry Minimization (GM-Algorithm) applied to the vertices. Section 3 

describes mesh connectivity lossless coding by the GM-Algorithm, while section 4 describes the 

Parallel Fast Matching Search algorithm (PFMS), used to reconstruct vertices and triangulated faces. 

Section 5 describes experimental results with a comparative analysis followed by conclusions in 

Section 6. 

2. Geometry Compression 

Geometry compression combines quantization and statistical coding. Quantization truncates the 

vertex coordinates to a desired accuracy and maps them into integers that can be represented with a 

limited number of bits. The quantization parameter, , is a scale parameter that normally moves the 

decimal place of each vertex to the right. A tight (min-max) axis aligned bounding box around each 

object is computed. The minima and maxima of the (x, y, z) coordinates, which define the box, 

together with the parameter  are encoded and transmitted with the compressed representation of 

each object. In this way, the 3D structure can be reconstructed in the same units and scale as the 

original. 

 

The quantization by  transforms each (x, y, z) coordinates into integers ranging from 0 to 2B–1, 

where B is the maximum number of bits needed to represent the quantized coordinates. Normally, 

12bit integers are sufficient to ensure geometric fidelity for most applications and most models. 

Thus, such lossy quantization step reduces the storage cost of geometry from 96-bits to less than 36-

bits. The quantization of vertices (x, y, z) is defined as: 
 

𝑉𝑥,𝑦,𝑧 = 𝑓𝑙𝑜𝑜𝑟(𝑉𝑥,𝑦,𝑧  𝛼)                                                                                                                                             (1) 

Where 2 ≤ 𝛼 ≤ 10,000 . In addition to reducing the storage cost of geometry, we reduced the 

number of bits for each vertex to less than 16-bit by calculating the differences between two 

adjacent coordinates for increased redundancy data and thus, more susceptible to compression. The 

differential process defined in Eq. (2) below is applied to axes X, Y and Z independently [19].  
 

𝐷(𝑖) = 𝐷(𝑖) − 𝐷(𝑖 + 1)                                                                                                                           (2) 

Where i=1, 2, 3... m-1 and m is the size of the list of vertices. 
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Figure 1. The GM-Algorithm applied to each block of vertices 

 

Once the differential process is applied to the vertices, the list of vertices is divided into blocks, and 

the GM-Algorithm is applied to each block of vertices (i.e. the vertex matrix from 3D object file is 

divided into k non-overlapping blocks) as illustrated in Figure 1. The main reason for placing 

vertices into separate blocks is to speed up the compression and decompression steps. Each k block 

is reduced to an encoded data array. The GM-Algorithm is defined as taking three key values and 

multiplying these by three geometry coordinates (x, y, z) from a block of vertices which are then 

summed over to a single integer value. A 3-value compression key KC is generated from vertex data 

as follows: 
 

 

𝑀 = max(𝑉𝑋, 𝑉𝑌, 𝑉𝑍) +
max(𝑉𝑋,𝑉𝑌,𝑉𝑍)

2
   % Define M as a function of maximum 

𝐾𝐶1 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)      % First weight1 defined by random between 0 and 1 

𝐾𝐶2 = (𝐾𝐶1 + 𝑀) + 𝐹      % F is an integer factor F=1,2,3,… 

𝐾𝐶3 = (𝑀 ∗ 𝐾𝐶1 +  𝑀 ∗ 𝐾𝐶2) ∗ 𝐹 

 

Where 𝐹 is a positive factor multiplier, each vertex is then encoded as: 
 

𝑉(𝑖) = 𝑉𝑥(𝑖)𝐾𝐶1 + 𝑉𝑦(𝑖)𝐾𝐶2 + 𝑉𝑧(𝑖)𝐾𝐶3                           (3) 

 

Figure 2(a) illustrates the GM-Algorithm by applying Equation (3) to a sample of vertices. After 

this operation, the likelihood for each block of vertices is selected from which a Ku (unique Key) is 

generated to be used in the decompression stage as illustrated in Figure 2(b) with a numerical 

example. 

3D object file 
Vertices 

 

 

Block(1) 

Block(2) 

Block(p) 

 Encoded Data - Block(1) 

 Encoded Data - Block(2) 

 Encoded Data - Block(p) 

KU Block(1) 

KU Block(2) 

KU Block(p) 

… 

… 

GM-Algorithm 

Convert each [X Y Z] to 
single data 

 

X1 Y1 Z1 

X2 Y2 Z2 

… 

XkYkZk 
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Xk+2Yk+2 Zk+2 

… 
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X4 Y4 Z4 

… 
 

XnYn Zn 

After Differential 

Process 

 

 
3D object data 

V  X1 Y1 Z1 

V  X2 Y2 Z2 

V  X3 Y3 Z3 

V  X4 Y4 Z4 

 

V  … 

 

V  XnYn Zn 

Shift  
X, Y and Z, 

 
 

Divide list of vertices to 
small block size:  
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(a) Floating point vertices  

 

 

 

 

(b) Unique Key 

Figure 2: (a): Sample of vertices compressed by GM-Algorithm, (b) The set of KUvalues generated 

from a block of vertices 

 

3. Connectivity Compression  

Several algorithms have been developed to address the problem of compactly encoding the 

connectivity of polygonal meshes, both as the theoretical problem of short encodings of embedded 

graphs and as a practical problem of compressing the incidence table of the triangle mesh in a 3D 

model. 

 

Triangulated meshes represent geometric connectivity. In a 3D OBJ file, each triangle is followed 

by reference numbers representing the index of the vertices in the 3D file. These reference numbers 

are arranged in ascending order in most 3D OBJ files. We refer to these as regular triangles. One of 

regular triangles’ advantages is that they can be lossless compressed in a few bits by applying a 

differential process (e.g. the differential processed fined by Equation (2) applied to all reference 

numbers). The resulting 1D-array is divided into sub-arrays, and each sub-array encoded 

independently by the GM-Algorithm followed by arithmetic coding as illustrated in Figure 3. The 

GM-Algorithm works in the same way as applied to the vertices: three key values are generated and 

multiplied by three adjacent values which are then summed to a single value by Equation (3). 
 

 

 

 

 

KU 

 

Vertices: after differential process 
                    X       Y        Z  

1 1 3 

1 2-  2-  

2 3 3 

. . . 

 1  1 2 

 

 

 

 

GM-Algorithm 

 

 

1, 3,-2, 2, 3, . . . 

Encoded Data 

KC 

Sample of vertices (before coding) 

-101.284 48.426 45.478 

 -100.916 48.399 45.468 

-100.636 48.414 45.426 

-100.396 48.449 45.341 

-100.150 48.480 45.215 

-99.900 48.510 45.053 

-99.6262 48.529 44.863 

-99.355 48.548 44.653 

 

Quantized vertices 

-1013 484 455 

-1009 484 455 

-1006 484 454 

-1004 484 453 

-1002 485 452 

-999 485 451 

-996 485 449 

-994 485 447 

 

Differential Eq. applied              GM-Algorithm applied 

-4 0 0  

 

 

 

 

 

 

 

-0.4 

-3 0 1 42.9 

-2 0 1 43 

-2 -1 1 35.9 

-3 0 1 42.9 

-3 0 2 86.1 

-2 0 2 86.2 

-994 485 447 -994 485 447 

 

Subtract each column by Eq(2); then apply the GM-Algorithm, maximum value 

M=|4|, F=1:- Kc1=0.1, Kc2=7.1, Kc3=43.2 
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(a) Triangle Face are scanned row-by-row  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(b), 1D-array divided into sub-arrays, each sub-array encoded independently  

Figure 3. (a) and (b): Lossless Triangle Mesh Compression by GM-Algorithm and Arithmetic 

Coding 

4. Data Decompression: Parallel Fast-Matching-Search Algorithm (Parallel-FMS) 

The decompression algorithm represents the inverse of compression using the Parallel-Fast-

Matching-Search Algorithm (Parallel-FMS) to reconstruct vertices and mesh connectivity. First, the 

Parallel-FMS is applied to encoded block of vertices to reconstruct the original vertices as a point 

cloud. Second, the Parallel-FMS is applied to each encoded sub-array resulting in the reconstructed 

triangle mesh sub-array. Thereafter, all the sub-arrays are combined together to recover the 

incidence table of triangulated faces of the 3D model. Figure 4 shows the layout of the 

decompression algorithm. 

The Parallel-FMS provides the means for fast recovery of both vertices and triangulated meshes, 

which has been compressed by three different keys (𝐾𝐶) for each three entries. The header of the 

compressed file contains information about the compressed data namely 𝐾𝐶  and 𝐾𝑈  followed by 

streams of compressed encoded data. The Parallel-FMS algorithm picks up in turn each block of 

encoded data to reconstruct the vertices and the triangle sub-array. The Parallel-FMS uses a binary 

search algorithm and is illustrated through the following steps A and B: 

A) Initially, KU is copied three times to sepatared arrays to estimates coordinates (X,Y,Z), that 

is X1=Y1=Z1, X2=Y2=Z2, X3=Y3=Z3 the searching algorithm computes all possible 

combinations of X with KU(1), Y with KU(2) and Z with KU(3) that yield a result R-Array 

Triangle faces in 3D 

object file 

Scan all vertices locations 

to convert matrix to 1D-
array 

f 1 2 3 

f 4 5 6 

f 7 8 9 

f 10 5 11 

 … etc 

 

 

 

 

 1       2        3 

4        5        6 

7         8       9 

10        5       11 

… etc 

 

 

 

 

Face = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11,…etc] 

 
 

Face= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6,..etc]. 

 

 

 

 

Face divided into sub-arrays for coding 

   

 Sub-Array= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6, -2, -3, -1, -1, -3, -8, -11, -5, -1, -1, -1, -1, ..etc]. 

 

 
 

 

 

 

 
                              Encoded data by GM-Algorithm 
 

 

 

 

-50.4, -50.4, -50.4, -223.8, -55.7, -367, -79.8, -50.4…etc 

KU : -1, 5, -6, -2, -3, -8, -11, -5, ... etc 

… 

GM-Algorithm 

Each three data compressed to single integer data 

KC : 0.1, 7.1, 43.2 

Arithmetic Coding  

(Stream of compressed bits are generated)  
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illustrated in Figure 5(a). As a means of an example consider that KU(1)=[X1 X2 X3] , 

KU(2)=[Y1 Y2 Y3] and KU(3)=[Z1 Z2 Z3]. Then, Equation (3) is executed 27 times to build 

the R-Array, as described in Figure 5(a). The match indicates that the unique combination of 

X, Y and Z are represented in the original vertex block.  

B) A Binary Search algorithm [21] is used to recover an item in an array. In this research we 

designed a parallel binary search algorithm consisting of k-Binray Search algorithms 

working in parallel to reconstruct k block of vertices in the list of vertices, as shown in 

Figure 5(b). In each step k-Binary Search Algorithms compare k-Encoded Data (i.e. each 

binary search algorithm takes a single compressed data item) with the middle of the element 

of the R-Array, If the values match, then a matching element has been found and its R-

Array's relevant (X,Y,Z) returned. Otherwise, if the search is less than the middle element of 

the R-Array, then the algorithms repeats its action on the sub-array to the left of the middle 

element or, if the value is greater, on the sub-array to the right. All k-Binary Search 

algorithms are synchronised such that the correct R-Array is returned. To illustrate our 

decompression algorithm, the compressed samples in Figure 2(a) (by our GM-Algorithm) 

can be used by our decompression algorithm to reconstruct X, Y and  Z values as shown in 

Figure 5(c).   

   

In order to Decode Triangle Faces and Vertices, reverse the differential process of Equation (2) by 

addition such that the encoded values in the triangle faces and vertices return to their original 

values. This process takes the last value at position m, and adds it to the previous value, and then the 

total adds to the next previous value and so on. The following equation defines the addition decoder 

[20]. 

 

 )()1()1( iAiAiA                                                                                                                                  (4) 

where i= m, (m-1), (m-2), (m-3),…,2 

 

 

 

 

 

 

 

 

 

(a) Vertices (X,Y and Z) reconstructed 
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(b) Triangle mesh reconstructed 

Figure 4. (a) and (b): Parallel-FMS Algorithm applied on encoded vertices and encoded 

triangle mesh 

 

 

 

 

 

 

 

 

 

 

 

(a) Compute all the probabilities for compute all possible k-Encoded Data for reconstruct k-block of data 
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(b) All Binary Search algorithms work in Parallel to find group of decompressed data approximately at the same time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) All Binary Search Algorithm run in Parallel to recover the sample of vertices, approximately at same time. 

 

Figure 5. Parallel-FMS algorithm to reconstruct the reduced array (a) Compute all the 

probabilities for all possible k-Encoded Data (R-Array) by using KC combinations with KU. 

(b) All Binary Search Algorithm run in Parallel to recover the decompressed 3D data 

approximately at the same time. (c) Sample of data recovered.  

 

5. Experimental Results 

The algorithms were implemented in MATLAB R2013a and Visual C++ 2008 running on an AMD 

Quad-Core microprocessor. We applied the compression and decompression algorithms to 3D data 

object generated by 3dsmax, CAD/CAM, 3D camera or other devices/software. Table 1 shows our 

compression algorithm applied to each 3D OBJ file, and Figure 6 shows the visual properties of the 

decompressed 3D object data for 3D images respectively. Additionally, 3D RMSE are used to 

compare 3D original file sizes with the recovered files. The Root Mean Square Error (RMSE) is 

used to refer to 3D mesh quality mathematically [22, 23] and can be calculated very easily by 

computing the differences between the geometry of the decompressed and the original 3D OBJ 

files. 
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Table 1. Our compression approach results 

3D 

object 

Name 

Original 

file size 

Quantization 

value 

Compressed 

file size 

No. of 

Vertices 

(Compressed 

Size) 

 

No. of 

Triangle 

faces 

(Compressed 

size) 

3D 

RMSE 

(X Y 

Z) 

 

Compression 

ratio 

Face1 13.3MB 10 213 KB 
105819 

(187 KB) 

206376 

(26 KB) 
0.288 98% 

Face2 96MB 10 3.7 MB 
621693 

(1.8MB)
 

1216249 

(1.9MB) 
0.289 96% 

Angel 
23.5 

MB 
20 1.75MB 

307144 

(1.055MB)
 

614288 

(715 KB) 
0.288 93% 

Robot 1.5 MB 400 88.9KB 
23597 

(56.3KB) 

45814 

(32.6KB) 
0.289 94% 

Cup 57KB 2 3.5 KB 
594 

(2.13 KB) 

572 

(1.36KB) 

0.263 

 
91% 

Knot 178 KB 2 
7.94KB 

 

1440 

(7.4 KB) 

2880 

(553 Bytes) 
0.027 96% 
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(a) (Top left) original 3D FACE1 object, (Top Right) reconstructed 3D mesh FACE1 without texture, compressed size: 213 

KB, (middle) original 3D mesh zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab 

application. 
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(b) (Top left) original 3D FACE2 object, (Top Right) reconstructed 3D mesh FACE2 without texture, compressed size: 3.7 

MB, (middle), original 3D mesh zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab 

application.  
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(c) (Top left) original 3D Angel object, (Right left) reconstructed 3D mesh Angel at compressed size: 1.75 MB, (middle) 

original 3D zoomed by Autodesk application, (bottom) reconstructed 3D mesh zoomed by Meshlab application.  
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(d) (Top) original 3D Robot object, (bottom) reconstructed 3D mesh Robot, at compressed size: 88.9KB 

 

 

 

(e) (Top) original and reconstructed 3D mesh cup, at compressed size: 3.5 KB, (bottom) original and reconstructed 3D mesh 

Knot, at compressed size: 7.94 KB 

Figure 6: (a – e) shows decompressed 3D objects by the proposed algorithms 

 

 

Tables 2 and 3 show a comparison of the proposed method with the 3D file formats: VRML, 

OpenCTM and STL. In this research we also used a new simple file format referred here as 

MATLAB format. This format saves the geometry, texture and triangle faces as lossless data, in 

separated matrices and all the matrices are collected into a single file. We investigate this format 

obtaining compression ratios over 50% for most of 3D OBJ files. In comparison, our approach uses 

a unique format to compress 3D files over 98% in the best case; this is mostly dependent on the 

triangle face details. 
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Table 2. Our approach compared with other encoding 3D data format according to compressed size 

3D object 

Name 

Original  

file size 
Proposed 

Algorithm 

MATLAB 

format 

VRML 

format 

OpenCTM STL 

Angel 23.5 MB 1.75MB 5.31 MB 23.2 MB 1.92 MB 29.2 MB 

Face1 13.3 MB 213 KB 4.04 MB 9.19 MB 808 KB 9.84 MB 

Face2 96MB 3.7MB 23.3 MB 47.7MB 3.7MB 57.9MB 

Robot 1.5 MB 88.9 KB 449 KB 1.7 MB 151 KB 2.18 MB 

Cup 57 KB 3.5 KB 12 KB 25.2 KB 3.24 KB 28 KB 

Knot 178 KB 7.94 KB 23.6KB 95.4KB 14.2KB 140 KB 

Total  

Compressed Size 
 5.75 MB 33.12 MB 81.9 MB 6.57 MB 99.28 MB 

Mean  

Compression 

Ratio 

 95.7 % 75.3 % 39.4% 95.1 % 26.2 % 

   

Table 3. Our approach compared with other encoding 3D data format according to 3D RMSE 

3D object Proposed Method MATLAB VRML OpenCTM STL 

Angel 0.288 0 0.0002 44.86 46.32 

Face1 0.289 0 0.00021 64.79 42.05 

Face2 0.288 0 0.000109 82.23 43.44 

Robot 0.289 0 0 0.0587 0.137 

Cup 0.263 0 0.00000075 37.7 39.2 

Knot 0.027 0 0.000105 47.65 12.62 

 

6. Conclusion 

This research has presented and demonstrated a new method for 3D data compression and 

compared the quality of compression through 3D reconstruction, 3D RMSE and the perceived 

quality of the 3D visualisation. The method is based on minimization of geometric values to a 

stream of new integer data by the GM-Algorithm. Mesh connectivity is partitioned into groups of 

data, where each group is compressed by the GM-Algorithm followed by arithmetic coding. We 

note that some of the existing 3D file formats do not efficiently encode geometry and connectivity, 

as a simple format developed in MATLAB showed higher compression ratios than STL and 

VRML. The results show that our approach yields high quality encoding of 3D geometry and 

connectivity with high compression ratios compared to a number of standard 3D data formats. The 

slight disadvantage is a larger number of steps for decompression, leading to increased execution 

time at decoding stage, making the method slower than 3D standard compression methods. Further 

research includes investigation of methods to speed up decoding, possibly by sorting the R-Array 

entries by frequency. Also, a comparative analysis with a larger number of 3D file formats and 

compression technique is forthcoming. 
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