

# **Reconceptualising inquiry in science education**

BEVINS, Stuart <a href="http://orcid.org/0000-0001-7139-1529">http://orcid.org/0000-0003-2728-6769</a> and PRICE, Gareth

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/11517/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

## **Published version**

BEVINS, Stuart and PRICE, Gareth (2016). Reconceptualising inquiry in science education. International Journal of Science Education, 38 (1), 17-29.

# Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

#### Reconceptualising inquiry in science education

Stuart Bevins and Gareth Price Centre for Science Education, Sheffield Hallam University Abstract

Decades of discussion and debate about how science is most effectively taught and learned have resulted in a number of similar but competing inquiry models. These aim to develop students learning of science through approaches which reflect the authenticity of science as practiced by professional scientists while being practical and manageable within the school context. This paper offers a collection of our current reflections and suggestions concerning inquiry and its place in science education. We suggest that many of the current models of inquiry are too limited in their vision concerning themselves, almost exclusively, with constricting scaffolds which reduce inquiry to an algorithmic approach based on a series of relatively simple tasks to be performed. We argue that this restricts students' experience of authentic inquiry to make classroom management and assessment procedures easier. We then speculate that a more integrated approach is required through an alternative inquiry model that depends on three dimensions (conceptual, procedural and personal) and we propose that it will be more likely to promote effective learning and a willingness to engage in inquiry across all facets of a students' school career and beyond. We draw on aspects of Self-Determination Theory (SDT) and existing literature reporting on inquiry in science education to support our suggestions and finally, we suggest a way to explore this more complex model by working with practitioners to develop it into an efficient, acceptable and resourced system for schools.

#### Key Words

Inquiry-based teaching; learning environment; secondary school

#### Introduction

The effectiveness of inquiry in science teaching and learning has been supported by a wide range of empirical work which reports positive learning outcomes for students in terms of achievement, enthusiasm, ownership and scientific skills development (Minner, et al, 2009; Minstrell and Van Zee, 2000; OFSTED, 2011). This work represents a continuing focus on inquiry teaching in science education and demonstrates its perceived importance by the science education community. The majority of existing work tends to report on structures and processes of inquiry in the science classroom and seems to have accepted current models as a *fait accompli*. There is, although somewhat limited, evidence which identifies the difficulties which teachers can face when attempting to implement inquiry approaches in the science classroom. These include time constraints caused by over-full curricular demands, assessment procedures and the availability of laboratory resources. (Anderson, 2002; Crawford, 2007). We suggest that these difficulties are, in part, due to the models themselves and would argue that some existing models reduce inquiry to a sequence of tasks driven by a mechanistic approach which we believe to be unhelpful and ultimately self-defeating in the context of what we believe to be authentic inquiry. We also reject as untenable that the only possible response to these scaffolded models is that inquiry must be entirely student-driven and completely unsupported by the teacher (Kirschner, Sweller and Clark, 2010). Instead, we suggest a new model of inquiry that identifies three dimensions:

- scientific knowledge includes facts and theories
- evidence-generating and handling procedures includes data gathering and analysis
- psychological energy includes intrinsic and extrinsic motivation

This model recognises the inquirer as an active agent who is required to navigate within, and manage the interactions between, these dimensions to construct a meaningful, productive inquiry that supports the construction of new knowledge, development of evidence handling skills and promotes student autonomy and exploration. We explore the nature of this model later after having considered what is currently understood by inquiry in the science classroom within existing literature.

#### The concept of inquiry

The belief, that an over emphasis on subject facts reduces the space for thinking and developing attitudes about science, has been discussed and debated within the science education literature over a number of decades. Over 50 years ago Schwab (1962) argued that school science should more accurately represent science as practiced by professional scientists and this argument continues to influence science curriculum development globally to this day. For example, Minner, *et al* (2009), conducting a review of 20 years' research into the topic, quotes the following description from the NRC (2000) paper as a useful summary of much of the current understanding of inquiry in school science:

(1) Learners are engaged by scientifically oriented questions.

(2) Learners give priority to evidence, which allows them to develop and evaluate explanations that address scientifically oriented questions.

(3) Learners formulate explanations from evidence to address scientifically oriented questions.

(4) Learners evaluate their explanations in light of alternative explanations, particularly those reflecting scientific understanding.

(5) Learners communicate and justify their proposed explanations.

The ideology above appears, with minor modifications, in a range of curricula across the world and attempts to define science as 'practised by professional scientists' through a series of procedures which, taken together, are often abbreviated to 'The scientific method' (TSM). (Windschitl, Thompson and Braaten, 2008)

Alongside the growth of inquiry has been the development of active teaching and learning approaches, constructivism and the idea that students should have more control over, and take more responsibility for, their own learning. These are often conflated into a single view of science education that could be described as student-centred, progressive or inquiry-led. The term Inquiry-Based Science Education (IBSE) is now used extensively to describe curricula which include at least some inquiry activities designed to reflect this approach. This conflation of a range of ideas into a single identity has created some of the problems we have encountered when thinking about inquiry because many different science education professionals have a highly personal, and distinctive, view of what they mean by inquiry ranging from simple practical work to completely unsupported, student-led learning programmes (Barrow, 2006).

## The value of inquiry as a teaching approach

We believe that inquiry is currently the best way for students to leverage their existing knowledge and their investigative skills to find, and internalise, new knowledge and solutions to questions they have formulated. This approach gives students better ownership of their learning and allows them to actively navigate the routes to increased understanding, greater motivation, improved attitudes to scientific endeavour and growth in their self esteem and their ability to handle new data in an increasingly complex world. However, we feel that many of the existing IBSE approaches fail to leverage the full power of inquiry and that, while they may be the best strategies currently available for learning, we now need to move on to the next, more sophisticated model to reap further benefits. Despite the confusion around the formal definition of inquiry the view that helping students to reconstruct their knowledge through interaction with objects in the environment and problem-solving is paramount for the science teacher is supported by a significant amount of evidence concerning teaching and learning science through inquiry (Sadeh and Zion, 2009). Supporters claim that it

deepens students' understanding of the Nature of Science (NoS), develops critical and higher order thinking skills, and promotes autonomous learning (Kaberman and Dori, 2009; Carter 2008). However, other authors have questioned the effectiveness of inquiry claiming that many of the minimally-led inquiry learning experiences 'do not work' (Kirschner et al, 2006) or that models of inquiry are too limited, revolve around extensive practical work, and omit the wealth, power and complexity of the scientific endeavor. Windschitl *et al* (2008) describe the poverty of the 'scientific method' model as practised in many US schools and use this criticism to promote a more sophisticated model-based inquiry which recognises the importance of scientific models as a source of predictions and ideas to test.

#### Inquiry is not just an algorithmic process

Despite the lack of a definitive statement of what inquiry is in school science few topics have generated as much heat as inquiry over the last few years since it tends to hit at the heart of what many educators regard as 'a good science education'. However, it is likely that teachers do not simply provide either a totally teacher-led, theoretical exposition nor a completely open inquiry diet for their students but instead seek a more practical option taking in to consideration the time demands of inquiry approaches within a heavily content-laden curricula. Even when teachers claim explicitly to be using inquiry as their main teaching strategy there are nuances of meaning based broadly on the level of control the student enjoys. With the lowest level of student control are confirmation or verification activities (these are often not considered inquiry at all) with structured inquiry offering more freedom and guided inquiry even more. Only open inquiry offers students the chance to design and carry out their own investigations into a topic of their own choosing and interpret them with reference to their own scientific knowledge. Detailed descriptions of the different levels of inquiry are given elsewhere (Zion and Mendelovici, 2012; refs) however, table 1 shows the essential components of the three typical models of inquiry—open, guided and structured.

### **Table 1 Models of Inquiry and Associated Skills**

| Improved<br>enquiry grid           | Enquiry skill area                                                                                          |                                                                          |                                                                                  |                                                                                                   |                                                                                       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Level                              | 1. Scientifically<br>orientated<br>questions                                                                | 2. Priority to<br>evidence                                               | 3. Explanations from evidence                                                    | 4. Explanation<br>connected to<br>knowledge                                                       | 5. Communicate<br>and justify                                                         |
| 3 Open<br>enquiry                  | Learner poses a question                                                                                    | Learner<br>determines what<br>constitutes<br>evidence and<br>collects it | Learner<br>formulates<br>explanations<br>after<br>summarizing<br>evidence        | Learner<br>independently<br>examines other<br>resources and<br>forms the links<br>to explanations | Learner forms<br>reasonable and<br>logical argument<br>to communicate<br>explanations |
| 2 Guided<br>enquiry                | Learner selects<br>among<br>questions, poses<br>new questions                                               | Learner directed<br>to collect certain<br>data                           | Learner guided<br>in process of<br>formulating<br>explanations<br>from evidence  | Learner<br>directed toward<br>areas and<br>sources of<br>scientific<br>knowledge                  | Learner coached<br>in development<br>of<br>communication                              |
| 1 Structured<br>enquiry            | Learner<br>sharpens or<br>clarifies<br>question<br>provided by<br>teacher,<br>materials, or<br>other source | Learner given<br>data and asked<br>to analyse                            | Learner given<br>possible ways to<br>use evidence to<br>formulate<br>explanation | Learner given<br>possible<br>connections                                                          | Learner provided<br>broad guidelines<br>to use sharpen<br>communication               |
| 0<br>Confirmation/<br>verification | Learner engages<br>in question<br>provided by<br>teacher,<br>materials, or<br>other source                  | Learner given<br>data and told<br>how to analyse                         | Learner<br>provided with<br>evidence                                             | Learner<br>provided with<br>precise<br>connections                                                | Learner given<br>steps and<br>procedures for<br>communication                         |

Table 1, or variations of it, appear in many papers which discuss the nature of inquiry in science education. We argue that, while the models described are valid and helpful, they constitute only a single component of a more complete description of the nature of inquiry—a component we call 'procedural'.

The procedural dimension depends on a linear Question-Procedure-Result-Interpretation (QPRI) understanding of inquiry. We acknowledge that QPRI is a way *some* scientists conduct *some*, or *much*, of their day-to-day work. The question, often referred to as a 'scientific question' leads to a suitable procedure (fair test, literature search, fieldwork etc.) which generates a result that is interpreted in terms of the original question. This is a clear and convenient statement of the inquiry process and is reflected in many of the rubrics used for assessment of 'inquiry' by awarding bodies in the UK (AQA, 2014). However, we suggest that this can reduce the students' role in inquiry into a sort of cognitive clockwork toy—just wind it up and watch it go through the pre-recorded sequence of events to produce the answer. This perception is supported by Windschitl et al (2008) who state that this view....'works too well for teachers'. And that:

The idea of a self-contained procedure, only nominally linked to conceptual content, with orderly, predictable steps and much of the epistemological complexity stripped away, is actually a useful framework. ... this highly prescribed protocol may be the only form of investigation seen as manageable in today's overcrowded classrooms. ... one can complete the technical aspects of many types of classroom inquiry without knowing the underlying content or being pressed to reason scientifically at all. (p947)

The statement above reveals the two major criticisms of inquiry- that it does not link sensibly to any scientific conceptual material and, perhaps more damningly, it does not even require the students to reason scientifically. It can fail to deliver both content and process.

#### Inquiry as it is, not as we would like it to be

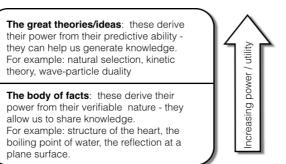
We suggest that Inquiry is more complex than the QPRI model. It does not always start with a clear 'scientific' question that is amenable to simple laboratory experiment. It can begin with an interest, a hunch, a problem defined by another party or even the arrival of a new piece of equipment or development of a new observational technique. If the question is not always present what of the second part - the hypothesis generation, the practical work? These are often labeled as 'the scientific method' (TSM) as if it is the only way scientific evidence is gathered or that it is somehow unique to science.

While there are some procedures that are common to 'science as practised by professional scientists' not all are always clearly defined at the start of the inquiry and much of a research scientists' work is refining and developing their procedures, methods and equipment. Furthermore, results are very often tentative telling us as much about the procedure that produced them as the underlying question we may have wanted to answer or the hypothesis we were testing. Finally, interpretation of these results can be so much more than simply answering the original research question (which could have been lost in the difficulties and refining of the procedures or data collection).

Organising a messy, complex and dynamic process (which has many twists, turns and reversals) into a neat, simple sequence of independent procedures is attractive. These types of scaffolding systems are popular with teachers and can relate to assessment objectives provided by their awarding bodies (AQA, 2014) or a conceptual view of TSM like the 5 E's or 7E's (Robertson, 2007). Unfortunately, these scaffolds can remove the need for strategic or deep thinking in favour of mechanistic subject content coverage. The arguments against this neatening of inquiry and TSM into a set of manageable events or simple steps designed to deliver inquiry is set out by Windschitl *et al* (2008) but fundamentally revolve around the fact that it does not reflect authentic science or generate an assessment of scientific

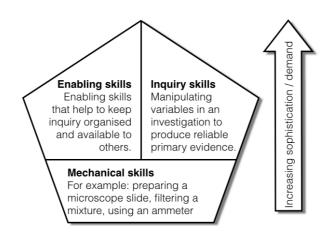
reasoning. The scaffold, in some cases, has replaced the building it was meant to support in that the method becomes more important than the learning or the evidence generated.

### Fruit salad science


We propose a model of inquiry that relies on three interrelated dimensions. We believe that this model represents a more complete model of inquiry which resists becoming merely a scaffold and instead promotes students' conceptual and strategic thinking.

- Dimension 1: A body of knowledge: this informs scientists' thinking about phenomena and can generate questions and suggestions for inquiry.
- Dimension 2: Evidence-management procedures: these ensure evidence is generated reliably, interpreted with reference to the underlying ideas and the observed data and communicated appropriately
- Dimension 3: Psychological energy: this provides the energy to create and manage an authentic inquiry.

The three dimensions above have different natures and characteristics and do not link conveniently to each other in a simple sequence. One does not 'lead' to the other nor 'depend' on another in a strict linear sense. All are interrelated but only to the extent that they belong to a system that requires their presence. They are as related to each other as the individual fruits in a fruit salad. They are all essential to make up the salad but apples are not like bananas and pineapples do not lead to oranges or grapes. The system is more than merely the sum of its parts even though the parts might be externally still recognisable.


The body of knowledge described as 'science' is fairly clearly defined and distinct from the body of knowledge familiar to historians or geographers. This includes both the 'great theories' of science (e.g. evolution or atomic theory) to explain phenomena and verifiable facts about a particular situation (e.g. the melting point of sodium). This body of knowledge, both the theories and facts, grows every year and is prone to continuous revisions as new data or ways of interpreting it become available.

## Figure 1 Dimension 1



Dimension 2 includes a range of mechanical skills that scientists may use in particular circumstances, (e.g. using a microscope or heating materials with a Bunsen burner). The catalogue of these skills is extensive with many used in very specific contexts. Other procedures that make up Dimension 2 (e.g. identifying and controlling variables, careful experimentation, hypothesis generation and data analysis) are recognisably scientific when linked to scientific knowledge and are named TSM to distinguish it from other ways of making sense of the world. Dimension 2 also includes a range of other enabling skills that are relevant to inquiry but are not exclusive to science. These include communication and teamwork skills, organisational skills and keeping of accurate records.

#### **Figure 2 Dimension 2**



Dimension attempts to put the 'inquirer' back into the 'inquiry'. This is the dimension that elevates the algorithmic procedures of Dimension 2 into a dynamic, active process that has the potential to generate new knowledge. An inquiry is a temporary, purposeful construction built from relevant

Dimension 1 knowledge and useful Dimension 2 procedures driven along by the 'psychological energy' generated by Dimension 3. So, how is this psychological energy, which is the ability to do investigative work, produced in Dimension 3? We suggest that Self-Determination Theory (SDT) (Deci and Ryan, 2008) is a useful way of looking at this.

SDT has been used extensively to explore 'motivation'. In education, motivation is often perceived as a way to encourage students to engage in work that might not otherwise interest them. However, motivation as seen through an SDT lens is better understood as the force that supports and drives any activity and the development of a healthy self (Lavigne, Vallerand and Miquelon, 2007). Rather than seeing motivation as a single factor that can be measured SDT allows for a number of classes of motivation from intrinsic (the task is perceived as personally worth doing for its own sake) through various types of extrinsic motivation: identified regulation (the task is completed because it fits in with longer-term goals, e.g. doing science to make a career as a doctor possible); introjected regulation (the task is completed because it seems to be the 'right thing to do' even if the justification for it has not been entirely accepted, e.g. a student attends a science class because otherwise they will feel guilty, they will be letting someone down) and external regulation where the motivation is contingent on external rewards or avoidance of punishment (e.g. if you do not pass this examination you will not be allowed to graduate). Extensive work on the positive effects of autonomy-supporting motivation (intrinsic motivation and identified regulation) compared with controlling motivation (introjected and controlling regulation) exists reviewing persistence in science courses, (Lavigne, et al, 2007), achievement (Ratelle et al 2007) and a range of other positive behavioural, cognitive and affective outcomes (Guay, et al, 2008). For example, Lavigne, et al, (2007) tested a motivational model of persistence in science education. The authors posited that science teachers' support of students' autonomy positively influences students' self-perceptions of autonomy and competence. In turn, these self-perceptions have a positive impact on students' self-determined motivation to participate in science education and their level of achievement. In short, it would appear that the most selfdetermined kind of motivation is intrinsic motivation (Deci and Ryan, 2000).

In order to generate this intrinsic motivation SDT identifies three basic psychological needs:

- autonomy
- a sense of competence
- relatedness to significant others

Where these three needs are met intrinsic motivation can develop but where they are thwarted to some extent motivation is reduced or converted from the useful intrinsic motivation into the less productive external regulation. A detailed discussion of SDT can be found elsewhere (Deci and Ryan, 2012) but for our purposes we feel that it is the insight into 'motivation' as a driving factor for self-development that fits well with our proposed third dimension. This moves inquiry from a process to

be completed to an outpouring of an inquirer's central identity. Therefore, it is the motivation to inquire, to find out and to explore, coupled with a collection of useful procedures and a store of relevant knowledge that allows inquirers to inquire.

# Constructing inquiry in three dimensions

Operationalising the third dimension means that the inquirer organises together aspects from all three dimensions to create a temporary, dynamic cognitive object that exists and has meaning as long as the inquiry progresses. Thus, bringing the 3D inquiry into existence requires a student to draw on all of the dimensions purposefully selecting and using knowledge, skills and psychological energy (motivation) to ensure the inquiry remains viable. Just as they select items of knowledge from Dimension 1 so they will select particular procedures from Dimension 2 and develop a dynamic, temporary complex using energy from Dimension 3. Figure 3 shows our proposed model of a 3D inquiry.

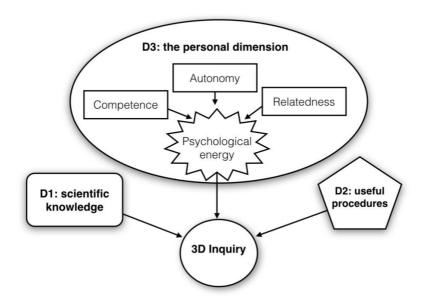



Figure 3 Creating an inquiry complex in 3 dimensions

The above model recognizes and requires active integration of the three dimensions which we feel is more likely to promote reflection on tasks, processes and emergent knowledge than simply following a procedure (even one that has been designed by the student). We believe that it would reduce the chance of students 'drifting' through practical work in a manner identified by Osborne (1998). Of great importance is that the 3D model places the student as an agent within the inquiry process and therefore, should have greater opportunity for encouraging a more positive attitude to science and personal growth (Guay, *et al*, 2008). Student ownership of their learning is strongly advocated among those who favour inquiry approaches to school science and is seen as crucial to developing a sense of

value of science and positive dispositions towards scientific study and careers (Sadeh and Zion, 2009; Kaberman and Dori, 2008; Carter 2008). In emphasising motivation, contained in dimension three of our model, we would argue that opportunities for encouraging student ownership of their learning are greatly enhanced.

We are mindful that, in arguing for acceptance of the 3D model of inquiry, two key obstacles may prevent its wider dissemination in the UK—science education policy and the traditional school science culture. Unfortunately the emphasis on high stakes assessment has twisted many actual classroom inquiries into mechanisms for generating marks in a highly structured assessment model. Students are trained to carry out pre-designed 'investigations' to ensure they fit into the requirements of the mark scheme. For example, in one commonly used qualification in the UK, students are required to state a clear hypothesis (1 mark), identify variables (1 mark), make a comment about accuracy (1 mark) and, ideally, produce quantitative data that is easy to graph or chart. An investigation that produced complex quantitative data or even qualitative data will often fail to gain these marks even if the quality of the student's work is exemplary. Additionally, traditional student and teacher roles may also be problematic. Nuthall (2005) noted that fixed patterns can arise from 'ritualised routines' within classroom learning and are typically born of the difficulty of managing large cohorts of learners with diverse needs and learning styles. This means that both teachers and students identify parameters within the classroom which become fixed and they are able to, for the most part, comfortably negotiate within these parameters or boundaries. Therefore, we accept that it may be difficult for both teachers and students to move from these more traditional patterns of teaching and learning to a more open inquiry approach.

We are also aware that teachers whom seek to support inquiry work in the science classroom may simply claim they are just practicing 'good teaching' and that the 3D model is merely another description of this. However, while we believe that there is an extensive, and encouraging, catalogue of work looking at SDT and education the full power of this motivational approach has not been used in the context of inquiry. Many of the scaffolding systems and approaches to inquiry work in science education explicitly state that they are designed to increase motivation. But the reduction of inquiry into a series of smaller, simpler steps seems to us to isolate the student and reduce autonomy-support and, in turn, intrinsic motivation. Since autonomy is a central feature of SDT, anything that reduces autonomy, and we would argue that some of the scaffolds do exactly that, will tend to reduce the opportunity for, and performance in, inquiry replacing it instead with the 2D model. In this way, our 3D model shows its utility by allowing us to suggest new ways to support inquiry by supporting the inquirer rather than merely making inquiry more attractive (providing real world contexts) or easier to navigate (scaffolded procedures) or have a more obvious payoff for teachers and students (guided

inquiry towards a piece of Dimension 1 knowledge from the curriculum or assessed inquiry towards a mark for public examinations).

#### Implications and the way forward

We accept that the 3D model does not seek to make the teaching of inquiry easier. Indeed, it arguably makes it more difficult as it identifies yet another area which needs coverage—the personal dimension. We are also aware that to merely claim the existence of a dimension (3D) and not be able to describe in detail its nature, components and ways of operating can be less than helpful. However, we believe that the benefits of pursuing this alternative inquiry model can outweigh its operational difficulties and that we have the beginnings of an understanding of Dimension 3 through SDT. We propose that using the 3D inquiry model is an effective way of avoiding algorithmic and passive learning and is essential for classroom science inquiry as it reflects more closely, than other inquiry models, authentic science. Also it promotes motivation in learners and has the potential for encouraging student autonomy and, therefore, greater potential for developing ownership of, positive attitudes towards, and interest in, science study and careers.

Our intention is to pursue the development of the model through a pilot study with a number of schools within the UK. We will use an action research approach to develop the 3D model with classroom teachers and students. We anticipate that working collaboratively with classroom practitioners will identify contexts in which the 3D model of inquiry is most appropriate, enable us to develop strategies to support classroom implementation of it and to find solutions to both the known and, as yet, unknown problems that any new initiative generates.

There is no shortage of inquiry models available in the literature, educational textbooks or Continuing Professional Development courses. Does the world need yet another one? We justify presenting our 3D model as a stimulus to conversation and reflection. We also draw support from Simonton's discussion of the US Patent Office's criteria for deciding if something is worth a patent (Simonton, 2012). These criteria require an invention to be new (N), useful (U) and non-obvious or surprising (S). Creativity (C) is then defined as the product of these three factors where each factor can vary from 0 to 1. C = N x U x S

We argue that the 3D model in total is novel even if components are familiar and potentially very useful as it informs development of more engaging and effective curricula leading to more competent and confident citizens. We argue that there is a degree of surprise in that, while so much of the discussion around inquiry concerns detailed definitions of skills, cataloguing of required content, assessment components and scaffolding strategies, the central message of 3D is that it is the inquirer themselves, potentially drowning in the thoughtful advice about the inquiry process, that is central to what we really mean by inquiry.

#### References

AQA (2014) GCSE SCIENCES Guidance on controlled assessment.

AQA (2014) GCSE specification Biology For exams June 2014 onwards.

Anderson, R. (2002) Reforming science teaching: what research says about science teaching. *Journal of Science Teacher Education*. 13, (1). Pp. 1-12.

Barrow, L. H. (2006). A brief history of inquiry: From Dewey to standards. *Journal of Science Teacher Education*. 17, (3), 265-278.

Cook, C., Goodman, N.D., and Schultz, L.E. (2011) When science starts: Spontaneous experiments in preschoolers' exploratory play. *Cognition*. 3, pp. 341-349.

Carter, L. (2008) Globalisation and science education: The implication of science in the new economy. Journal of Research in Science Teaching. 45, (5), pp. 617-633.

Crawford, B. (2007) Learning to teach science as inquiry in the rough and tumble of practice. *Journal of Science Teacher Education*. 44, (4). Pp. 613-642.

Csikszentmihalyi, M. (1996) Creativity. HarperCollins.

Deci, E. L., Ryan, R. M. (2008) Self Determination Theory: A macrotheory of Human Motivation, Development and Health. *Canadian Psychology*. 49, No. 3, pp. 182–185.

Deci, E. L., & Ryan, R. M. (2012). Motivation, personality, and development within embedded social contexts: An overview of self-determination theory. In R. M. Ryan (Ed.), Oxford handbook of human motivation (pp. 85-107). Oxford, UK: Oxford University Press.

Dunbar, K. (2000) How Scientists Think in the Real World: Implications for Science Education *Journal of Applied Developmental Psychology* 21(1): 49–58

Guay, F., Ratelle, C., Chanal, J. (2008) Optimal Learning in Optimal Contexts: The Role of Self-Determination in Education *Canadian Psychology*. Aug 2008; 49, 3;

Kaberman, Z, and Dori, Y.J. (2009) "Metacognition in chemical education: Question posing in the case-based computerized learning environment." *Instructional Science* 37.5 (2009): 403-436.

Kerr, M.S., Rynearson and Kerr, M. C. (2006) Student characteristics for online learning success. *Internet and Higher Education*. 9, pp. 91–105.

Kirshner, P.A., Sweller, J., and Clark, R.E. (2010) Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist. 41, No 2, pp. 75-86.

Lavigne, G.L., Vallerand, R.J., and Miquelon, P. (2007) A motivational model of persistence in science education: a self-determination theory approach. *European Journal of psychology of Education*. 22, No 3, pp. 351-369.

Lemke, J. (1990) Talking science: Language, learning and values. Norwood, NJ: Ablex.

Minner, D.D., Levy, A.J, and Century, J. (2010) Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. *Journal of Research in Science Teaching*. 47, 4, pp.474-496.

Minstrell, J., and van Zee, E.H. (Eds.) (2000) Inquiry in to inquiry learning and teaching in science. Washington, DC: American Association for the Advancement of Science.

Morrison, G. M. and Allen, M. R., (2007) Promoting Student Resilience in School Contexts, *Theory Into Practice*, 46:2, 162-169.

Nuthall, G. (2005) The cultural myths and realities of classroom teaching and learning: A personal journey. *Teachers College Record*. 107 (5) pp. 895-934.

OFQUAL, Consultation on the Assessment of Practical Work in GCSE Science 2014

Osborne, J. (1998). Science education without a laboratory? In J.J. Wellington (Ed.), *Practical work in school science. Which way now?* (pp. 156-173). London: Routledge.

Robertson, B. (2007) Getting past 'inquiry versus content'. Educational Leadership. 64 (4) pp. 67-70.

Schwab, J.J. (1962) The teaching of science as inquiry. In J.J. Schwab and P.F. Brandwein (Eds.) The teaching of science. Cambridge, MA. Harvard University Press.

Sadeh, I. and Zion, M. (2009) The development of dynamic inquiry performances within an open inquiry setting: a comparison to guided inquiry setting. *Journal of Research in Science Teaching*. 46, 10, pp. 1137-1160.

Simonton, D. K. (2012) Taking the U.S. Patent Office Criteria Seriously: A Quantitative Three-Criterion Creativity Definition and Its Implications, Creativity Research Journal. 24 (2-3), 97-106,

Windschitl, M. (2003) Inquiry Projects in Science Teacher Education: What Can Investigative Experiences Reveal About Teacher Thinking and Eventual Classroom Practice? *Science Education.* 87, No 1, 112-143

Windschitl, M., Thompson, J., Braaten, M., (2008) Beyond the Scientific Method: Model-Based Inquiry as a New Paradigm of Preference for School Science Investigations *Science Education*. 92 Issue 5.

Zion, M., Slezak, M., Shapira, D., Link, E., Bashan, N., Brumer, M., Orian, T., Nussinowitz, R., Court, D., Agrest, B., and Mendelovici, R. (2004) Dynamic, open inquiry in biology learning. Science Education. 88, pp. 728-753.

Zion, M., and Sadeh, I. (2007) Curiosity and open inquiry learning. *Educational Research*. 41 (4) pp. 162-169.