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Abundant stable gauge field hair for black holes in anti-de Sitter space
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?INSA de Rouen, Laboratoire de Mathématiques (LMI),

Place Emile Blondel BP 08, 76131 Mont Saint Aignan Cedex, France.
(Dated: February 22, 2013)

We present new hairy black hole solutions of su(/N) Einstein-Yang-Mills theory (EYM) in asymp-
totically anti-de Sitter (adS) space. These black holes are described by N + 1 independent param-
eters, and have N — 1 independent gauge field degrees of freedom. Solutions in which all gauge
field functions have no zeros exist for all N, and for sufficiently large (and negative) cosmological
constant. At least some of these solutions are shown to be stable under classical, linear, spherically
symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field
hair with which a black hole in adS can be endowed.

PACS numbers: 04.20.Jb, 04.40.Nr, 04.70.Bw

The “no-hair” conjecture [1] states that black hole
equilibrium states possess extremely simple geometries,
determined completely by the mass, angular momentum
and charge of the black hole. While hairy black hole
solutions of the Einstein equations have been discovered,
particularly in Einstein-Yang-Mills (EYM) theory and its
variants (see [2] for a review), many of the plethora of
new black hole solutions found in the literature are clas-
sically unstable. Those hairy black holes which are sta-
ble (such as the su(2) EYM black holes in anti-de Sitter
space (adS) |3, 4]) have, at least to date, been described
by only a small number of parameters additional to the
mass, angular momentum and charge of the black hole.
This means that the “spirit” if not the “letter” of the
no-hair conjecture is maintained.

In recent years there has been an explosion of interest
in hairy black holes in adS, partly because at least some
of these configurations are stable, but also because of the
importance of the adS/CFT correspondence [5] in string
theory. In particular, it has been suggested [G] that there
should be observables in the dual (deformed) CFT which
are sensitive to the presence of black hole hair (see also
[7] for an adS/CFT interpretation of some stable seven-
dimensional black holes with so(5) gauge fields). Our
purpose in this letter is to present new stable, asymp-
totically adS, hairy black hole solutions of su(N) EYM
for sufficiently large |A| which are described by an un-
bounded number of parameters. The existence of these
solutions casts the status of the “no-hair” conjecture in a
completely new light: equilibrium black holes in adS are
no longer simple objects, but rather require an infinite
number of parameters in order to fully determine their
geometry.

We consider static, spherically symmetric,
dimensional black holes with metric

four-

ds? = —pS?dt* + =t dr® + 12 d6? +r?sin? 0de*, (1)

where the metric functions p and S depend on the ra-

dial co-ordinate r only. Here, and throughout this letter,
the metric has signature (—,+,+,+) and we use units
in which 47G = ¢ = 1. In the presence of a negative
cosmological constant A, we write the metric function p
as

2m(r) A_T2

r 3 2)

The most general, spherically symmetric, ansatz for the
su(N) gauge potential has been given in [8]. Here, we
assume that the gauge potential is purely magnetic and
has the gauge-fixed form:

pr) =1 -

A= % (C—CH) de — % [(C—i—CH) sinf + D cos 6] dg,
(3)

where C is an (N x N) upper-triangular matrix with
non-zero entries immediately above the diagonal:

Cjj+1 = wj(r), (4)

for j =1,...,N — 1, with C¥ the Hermitian conjugate
of C', and D is a constant diagonal matrix:

D =Diag(N—1,N—3,...,.—-N+3,—-N+1). (5

The (N — 1) Yang-Mills equations take the form

3

2A
r2uw3' + (2m — 2r3py — 3r

) w; +Wiw; =0 (6)

for j=1,...,N — 1, where a prime ' denotes d/dr, and

N
1 N2
P = mz [(W?_W?A_N_l‘f'?‘?) ] (7
j=1
1
W, = 1—wj2-—|—§(w]2-,1 —|—wj2-+1), (8)
with wg = wy = 0. The Einstein equations take the form
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where

-1
G=) wi (10)

Jj=1

The field equations (@@) have the following trivial so-
lutions. Setting w;(r) = £4/j(IN — j) for all j gives the
Schwarzschild-adS black hole with m(r) = M = constant
(which can be set to zero to give pure adS space). Set-
ting w;(r) = 0 for all j gives the Reissner-Nordstrom-adS
black hole with magnetic charge. There is an additional
special class of solutions, given by setting

wi(r) = £ Jj(N — j)w(r) Vi=1,...,N—1. (11)
In this case, it is possible to show, using a rescaling
method along the lines of that in [9], that the field vari-
ables w(r), m(r) and S(r) satisfy the su(2) EYM field
equations with a negative cosmological constant. Fur-
thermore, the boundary conditions (as discussed below)
are also preserved. Therefore any su(2), asymptotically
adS, EYM black hole solution can be embedded into
su(N) EYM to give another asymptotically adS black
hole.

In this letter we study black hole solutions of the field
equations (@M), returning to soliton solutions elsewhere
[10]. We assume there is a regular, non-extremal, black
hole event horizon at r = rj. The field variables w;(r),
m(r) and S(r) will have regular Taylor series expansions
about r = rj,. These expansions are determined by the
N + 1 quantities w;(rp), rn, S(rp) for fixed cosmological
constant A. Since the field equations (G0 are invariant
under the transformation w;(r) — —w;(r) (for any j in-
dependently), we may consider w;(ry) > 0 without loss
of generality. For the event horizon to be non-extremal,
it must be the case that

2m/(rp,) = 2ripe(rn) < 1 — Ary, (12)

which constrains the possible values of the gauge field
functions w;(ry) at the event horizon. At infinity, the
boundary conditions are considerably less stringent than
in the asymptotically flat case. In order for the metric (1))
to be asymptotically adS, we simply require that the field
variables w;(r), m(r) and S(r) converge to constant val-
ues as r — oo, and have regular Taylor series expansions
in 7~! near infinity. Since A < 0, there is no cosmological
horizon.

The field equations ([@H) are integrated numerically us-
ing standard ‘shooting’ techniques [11]. The equation
for S(r) decouples from the other Einstein equation and
the Yang-Mills equations so can be integrated separately
if required. We start integrating just outside the event
horizon, using as our shooting parameters the N vari-
ables w;(rp,) and rp,, subject to the weak constraint (I2]).
The field equations are then integrated outwards in the
radial co-ordinate r until either the field variables start

to diverge or they have converged to the asymptotic form
at infinity.

As in the su(2) case [3], we find black hole solutions
in open subsets of the N-dimensional parameter space
(wj(ry),my) for fixed A. For sufficiently large |A| (where
how large “sufficiently large” is depends on the radius
of the event horizon r), we find that the gauge field
functions w;(r) all have no zeros. In figure [Il we show a
typical nodeless solution, for su(4) EYM. It can be seen
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FIG. 1: A typical black hole solution of su(4) EYM in which
all the gauge field functions w;(r) are nodeless. For this so-
lution, A = —10 and 7, = 1. The values of the gauge field
functions on the event horizon are: wi(ry) = 2.3, wa(rn) = 2.6
and ws(rp) = 2.2.

that the metric functions m(r) and S(r) have very similar
behaviour to the su(2) case, and that, since |A| is so large,
the gauge field functions do not vary significantly from
their values at the event horizon.

The phase space of black hole solutions in the su(3)

case, with A = —10 and 7, = 1 is shown in figure 2] and
is typical of the phase space for large values of |A|. In
figure 2l we have examined, for A = —10 and r, = 1, all

values of the wi(ry) and wa(ry) which satisfy the con-
straint (I2)). The inequality in (I2]) is saturated on the
outer-most curve in figure[2l It can be seen from figure
that not all values of (w1 (ry),wa(rp)) give black hole so-
lutions; those values for which no regular black hole solu-
tion satisfying the boundary conditions at infinity could
be found lie in the narrow band on the outside of the
plot. The region between this narrow band and the co-
ordinate axes contains black hole solutions in which both
gauge field functions wy (r) and wa(r) have no zeros. We
have also plotted in figure 2l the line wq(r) = wa(rp), on
which lie embedded su(2) solutions given by (IIl). The
significance of the shaded region in figure [2] will be de-
scribed shortly. More detailed properties of the phase
space of black hole solutions will be discussed elsewhere
[10].
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FIG. 2: Phase space of black hole solutions in su(3) EYM
with A = —10 and r, = 1. The shaded region shows where
solutions exist which satisfy the inequalities (I6]) at the event
horizon.

In [3], the existence of black hole solutions for which
the gauge function w(r) had no zeros was proven ana-
lytically in the su(2) case. Since su(2) solutions can be
embedded as su(N) solutions via (IIl), we have automat-
ically an analytic proof of the existence of nodeless su(N)
EYM black holes in adS. However, these embedded solu-
tions are ‘trivial’ in the sense that they are described by
just three parameters: r,, A and w(ry). An important
question is whether the existence of ‘non-trivial’ (that is,
genuinely su(N)) solutions in which all the gauge field
functions w; () have no zeros can be proven analytically.
The answer to this question is affirmative, and involves a
generalization to su(N) of the continuity-type argument
used in |3]. The details are lengthy and will be presented
elsewhere. However, the main thrust of the argument
can be simply stated. We firstly prove (generalizing the
analysis of [9] to include A) that the field equations (GI[)
and initial conditions at the event horizon possess, lo-
cally in a neighborhood of the horizon, solutions which
are analytic in 7, 7, A and the parameters w;(rp). This
enables us to prove that, in a sufficiently small neighbor-
hood of any embedded su(2) solution in which w(r) has
no nodes, there exists (at least in a neighborhood of the
event horizon) an su(N) solution in which all the w;(r)
have no nodes. The key part of the proof lies in then
showing that these su(N) solutions can be extended out
to r — oo and that they satisfy the boundary conditions
at infinity. This gives genuinely su(N) black hole solu-
tions in which all the gauge field functions have no zeros,
and which are characterized by the N + 1 parameters ry,,
A and w;(rp).

The other outstanding question is whether these new
black holes, with potentially unbounded amounts of

gauge field hair, are stable. We consider linear, spher-
ically symmetric perturbations only for simplicity. Even
for spherically symmetric perturbations, the analysis is
highly involved in the su(N) case and the details will be
presented elsewhere. Here we briefly outline just the key
features.

Firstly we consider spherically symmetric perturba-
tions of the gauge potential (), fixing the gauge so that
the perturbed potential is purely magnetic and has the
form [§]

14=Bm+%w—cﬂ%
—% [(C+C™)sinf+ Dcos] dp.  (13)

Here, the matrices B and C' depend on both ¢ and r, and
matrix D is still constant and given by (Bl). The matrix
B(t,r) is traceless, diagonal and has purely imaginary
entries. The only non-zero entries of the matrix C(t,r)
are:

Cjit1(t,m) = wj(t,r)exp (i, (t,r)) . (14)

As usual, the metric retains the form () but now the
functions m and S depend on both ¢ and r. With this
choice of gauge potential ([I3)), the perturbation equations
decouple into two sectors:

e the sphaleronic sector consisting of entries of B and
the functions ;;

e the gravitational sector which consists of the per-
turbations of the metric functions dm and 4.5 and
the perturbations of the gauge field functions dw;.

The form of the perturbation equations in the sphaleronic
sector is little changed from the asymptotically flat case
[12]. Tt consists of 2N —1 coupled equations for the 2N —1
variables (N diagonal entries of the matrix B and N — 1
functions v;). In addition, there is the Gauss constraint,
which gives N coupled consistency conditions. After
much algebra (along the lines of [12]), the sphaleronic
sector perturbation equations can be cast in the form

~- & =YD, (15)

where a dot denotes 9/0t, the (2N — 1)-dimensional vec-
tor W consists of combinations of perturbations and ¥/ is
a self-adjoint, second order, differential operator (involv-
ing derivatives with respect to r but not t), depending
on the equilibrium functions w;(r), m(r) and S(r). It
can be shown that the operator I/ is regular and positive
provided the unperturbed gauge functions w;(r) have no
zeros and satisfy the N — 1 inequalities

1
w?>1+ 3 (Wi +wiy) (16)



for all j = 1,... N — 1. These inequalities define a non-
empty subset of the parameter space, which is shown in
the su(3) case in figure

The shaded region in figure 2l shows where the inequal-
ities (6] are satisfied for the gauge field functions at the
event horizon. However, the requirements of (I6]) are con-
siderably stronger, as the inequalities have to be satisfied
for all r > rp,. Our analytic work shows that, in fact, for
sufficiently large |A|, there do exist solutions to the field
equations for which the inequalities ([I6]) are indeed sat-
isfied for all » (an example of such a solution is shown
in figure B)). This involves proving that for at least some
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FIG. 3: An example of an su(3) solution for which the in-
equalities (6] are satisfied for all » > 7. In this example,
A = —10, r, = 1 and the values of the gauge field functions
at the event horizon are wi(rn) = 2, wa(rn) = 1.95.

solutions for which the gauge field function values at the
event horizon lie within the region where the inequalities
(1G] are satisfied, the gauge field functions remain within
this open region.

For the gravitational sector, the metric perturbations
can be eliminated to yield a set of N — 1, coupled per-
turbation equations of the form

— 6 = Mw, (17)

where dw = (0w, ..., 5wN,1)T, and M is a self-adjoint,
second order, differential operator (involving derivatives
with respect to r but not t), depending on the equilib-
rium functions w;(r), m(r) and S(r). The operator M
is more difficult to analyze than the operator U. For
sufficiently large |A|, it can be shown that M is a posi-
tive operator for embedded su(2) solutions, provided that
w?(r) > 1 for all r (the existence of such su(2) solutions
is proved, for sufficiently large |A|, in [3]). As described

above, our analytic work ensures the existence of gen-
uinely su(N) solutions in a sufficiently small neighbor-
hood of these embedded su(2) solutions. These su(N)
solutions are such that the inequalities (I6) are satisfied
for all » > 75, (and therefore the solutions are stable un-
der sphaleronic perturbations). The positivity of M can
then be extended to these genuinely su(/N) solutions us-
ing an analyticity argument, based on the nodal theorem
of [13]. The technical details of this argument will be
presented elsewhere. Therefore at least some of our so-
lutions are linearly stable in both the gravitational and
sphaleronic perturbation sectors.

For sufficiently large |A| (for each fixed rp), we have
shown the existence of su(N) EYM black holes in adS,
which are described by N 4 1 parameters and are stable
under linear, spherically symmetric perturbations. If the
cosmological constant is very large and negative, there
are potentially a very large number of possible gauge
field configurations giving the same mass and magnetic
charge at infinity. As explained in the introduction, we
anticipate that these solutions may well have interesting
consequences for the adS/CFT correspondence [5]. We
hope to return to these questions in the near future.
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