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Abstract. We study the existence of soliton and black hole solutions of four-

dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant.

We prove the existence of non-trivial solutions for any integer N , with N − 1 gauge

field degrees of freedom. In particular, we prove the existence of solutions in which

all the gauge field functions have no zeros. For fixed values of the parameters (at the

origin or event horizon, as applicable) defining the soliton or black hole solutions, if

the magnitude of the cosmological constant is sufficiently large, then the gauge field

functions all have no zeros. These latter solutions are of special interest because at

least some of them will be linearly stable.
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1. Introduction

Since the discovery of non-trivial, spherically symmetric, soliton [1] and black hole

[2] solutions of the su(2) Einstein-Yang-Mills (EYM) equations in four-dimensional

asymptotically flat space-time, there has been an explosion of interest in the properties

of solutions of EYM theory and its variants (see, for example, [3] for a review). The

original soliton solutions were a surprise discovery because there are no gravitational

solitons [4] nor solitons in pure Yang-Mills theory in flat space-time [5]. The black hole

solutions are counter-examples to the “no-hair” conjecture [6], in that they have no

global charge, and are indistinguishable from a standard Schwarzschild black hole at

infinity. However, while the “letter” of the no-hair conjecture is violated, its “spirit”

remains intact because these black hole solutions, like the solitons, are linearly unstable

[7].

Introducing a negative cosmological constant changes the picture completely (see

[8] for a recent review). In asymptotically flat space, soliton and black hole solutions

exist at discrete points in the parameter space, but in four-dimensional asymptotically

anti-de Sitter (adS) space, su(2) EYM solutions are found in continuous open sets of

the parameter space [9, 10, 11]. Of particular interest are those solitons and black holes

for which the single gauge field function ω has no zeros. In asymptotically flat space,

all solutions are such that ω must have at least one zero, and the number of unstable

perturbation modes of the solutions is 2k, where k is the number of zeros of ω [12].

In asymptotically adS space, at least some (but, interestingly, not all [11]) solutions

where ω(r) has no zeros are linearly stable under spherically symmetric [9, 10, 11] and

non-spherically symmetric [13] perturbations, provided |Λ| is sufficiently large. Stable

black holes in this model violate the “no-hair” conjecture in that, at infinity, they

are indistinguishable from magnetically-charged Reissner-Nordström-adS black holes.

However, only one extra parameter (which can be taken to be the value of the gauge

field function at the event horizon) is required to completely determine the geometry

exterior to the event horizon. While this is not a global charge measurable at infinity,

one might still argue that the “spirit” of the “no-hair” conjecture is still valid as only a

small number of parameters are required to fully describe stable black holes.

Recently soliton and black hole solutions of four-dimensional su(N) EYM theory

with a negative cosmological constant have been found [8, 14, 15]. For purely magnetic

solutions, the gauge field is described by N − 1 gauge field functions ωj. As in the

su(2) case, there are solutions for which all the gauge field functions have no zeros.

For |Λ| sufficiently large, at least some of these are stable, for any value of N [14, 16].

Stable black hole solutions in su(N) EYM in adS therefore require an additional N − 1

parameters to completely describe the configuration, even though the metric is identical

to magnetically charged Reissner-Nordström-adS at infinity. Therefore an unbounded

number of parameters is required to determine the structure of stable hairy black holes

in adS.

Our purpose in the present paper is to prove analytically the existence of solitons
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and hairy black holes in four-dimensional su(N) EYM in adS, confirming the numerical

work presented in [15]. Existence theorems for the original soliton and black hole

solutions of su(2) EYM in asymptotically flat space were challenging to prove [17, 18],

but it has been shown analytically in this case that there are an infinite number of

soliton and black hole solutions of the field equations, parameterized by the radius of

the event horizon (if there is one) and k, the number of zeros of the gauge field function

ω. It has also been proven that k > 0. For su(N) EYM in asymptotically flat space,

rather less analytic work exists in the literature [19, 20]. Arguments for the existence of

solutions for arbitrary N are presented in [20], but the only complete analytic work is for

su(3) [19]. For su(2) EYM in adS, proving the existence of solutions [9] is considerably

easier than in the asymptotically flat case, mostly due to the boundary conditions at

infinity. It is therefore reasonable to imagine that the corresponding proof for su(N)

EYM in adS will also be significantly easier than in the asymptotically flat case.

The outline of this paper is as follows. We start, in Section 2, by outlining the field

equations, gauge field ansatz and boundary conditions for soliton and hairy black hole

solutions of su(N) EYM theory with a negative cosmological constant in four space-time

dimensions [15]. Some trivial solutions of the field equations are discussed in Section

2.3, the most important of which (for our later analysis) are embedded su(2) solutions.

We also review the salient features of the numerical solutions presented in [15]. The field

equations, presented in Section 2.1, are singular at the origin, black hole event horizon

(if there is one) and at infinity. The first part of the proof of the existence of solutions

is therefore to prove local existence of solutions satisfying the appropriate boundary

conditions (which are given in Section 2.2) at these singular points, and this is the

subject of Section 3. It turns out that this is the most lengthy and technically intricate

part of the whole existence proof, particularly for local solutions near the origin. Our

method in Section 3 follows a well-established approach [17, 20, 21, 22] which involves

casting the field equations in an appropriate form, so that a standard theorem (Theorem

1 [17]) can be applied. It is deriving a suitable form for the equations near the origin

which is the most complicated part of the analysis. The standard theorem then gives us

local existence of solutions in a neighbourhood of the singular point (i.e. the origin, event

horizon or infinity), and an important consequence of this theorem is that the solutions

are analytic in the parameters which determine them. This property of analyticity is

central to the arguments, presented in Section 4, which prove the existence of genuinely

su(N) soliton and black hole solutions of the field equations.

Our existence theorems are presented in Sections 4.3 and 4.4. In Section 4.3 we

show existence of su(N) EYM solutions in a neighbourhood of any embedded su(2)

solution, and, as a corollary of this, the existence of su(N) solutions for which all the

gauge field functions have no zeros for any value of |Λ|. The behaviour of the solution

space for large |Λ| is discussed in Section 4.4, and, in particular, we show that for

any fixed values of the “initial” parameters (defined in Section 4.4) determining the

solution of the field equations, for sufficiently large |Λ|, the solution generated by these

parameters will be such that all the gauge field functions have no zeros. Finally, our
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conclusions are presented in Section 5.

2. su(N) Einstein-Yang-Mills theory

In this section we will describe in detail our field equations and boundary conditions

for both soliton and black hole solutions. We will also describe some simple embedded

solutions of the theory, as well as reviewing the key features of the numerical solutions

studied in [15].

2.1. Ansatz and field equations

We consider four-dimensional su(N) EYM theory with a negative cosmological constant,

described by the following action, in suitable units:

SEYM =
1

2

∫

d4x
√−g [R− 2Λ − TrFµνF

µν ] , (1)

where R is the Ricci scalar of the geometry and Λ the cosmological constant. Throughout

this paper, the metric has signature (−,+,+,+) and we use units in which 4πG = 1 = c.

In this article we focus on a negative cosmological constant, Λ < 0. Varying the action

(1) gives the field equations

Tµν = Rµν −
1

2
Rgµν + Λgµν ;

0 = DµFν
µ = ∇µFν

µ + [Aµ, Fν
µ] ; (2)

where the YM stress-energy tensor is

Tµν = TrFµλFν
λ − 1

4
gµνTrFλσF

λσ. (3)

In equations (1–3) we have employed the usual Einstein summation convention, where a

summation over repeated indices is understood. However, from now on all summations

will be given explicitly, and this will be particularly important in Section 3.

In this paper we are interested in static, spherically symmetric soliton and black hole

solutions of the field equations (2), and we write the metric in standard Schwarzschild-

like co-ordinates as:

ds2 = −µS2 dt2 + µ−1 dr2 + r2 dθ2 + r2 sin2 θ dφ2, (4)

where the metric functions µ and S depend on the radial co-ordinate r only. In the

presence of a negative cosmological constant Λ < 0, we write the metric function µ as

µ(r) = 1 − 2m(r)

r
− Λr2

3
. (5)

We emphasize that we are considering only spherically symmetric black holes and not

topological black holes which have been found in the su(2) case [23].

The most general, spherically symmetric, ansatz for the su(N) gauge potential is

[24]:

A = A dt+ B dr +
1

2

(

C − CH
)

dθ − i

2

[(

C + CH
)

sin θ +D cos θ
]

dφ, (6)



su(N) EYM solitons and black holes with Λ < 0 5

where A, B, C and D are all (N ×N) matrices and CH is the Hermitian conjugate of

C. The matrices A and B are purely imaginary, diagonal, traceless and depend only on

the radial co-ordinate r. The matrix C is upper-triangular, with non-zero entries only

immediately above the diagonal:

Cj,j+1 = ωj(r)e
iγj(r), (7)

for j = 1, . . . , N − 1. In addition, D is a constant matrix:

D = Diag (N − 1, N − 3, . . . ,−N + 3,−N + 1) . (8)

Here we are interested only in purely magnetic solutions, so we set A ≡ 0. We may also

take B ≡ 0 by a choice of gauge [24]. From now on we will assume that all the ωj(r) are

non-zero (see, for example, [25] for the possibilities in asymptotically flat space if this

assumption does not hold). In this case one of the Yang-Mills equations becomes [24]

γj = 0 ∀j = 1, . . . , N − 1. (9)

Our ansatz for the Yang-Mills potential therefore reduces to

A =
1

2

(

C − CH
)

dθ − i

2

[(

C + CH
)

sin θ +D cos θ
]

dφ, (10)

where the only non-zero entries of the matrix C are

Cj,j+1 = ωj(r). (11)

The gauge field is therefore described by the N − 1 functions ωj(r). We comment that

our ansatz (10) is by no means the only possible choice in su(N) EYM. Techniques for

finding all spherically symmetric su(N) gauge potentials can be found in [26], where all

irreducible models are explicitly listed for N ≤ 6.

With the ansatz (10), there are N−1 non-trivial Yang-Mills equations for the N−1

gauge field functions ωj :

r2µω′′

j +

(

2m− 2r3pθ −
2Λr3

3

)

ω′

j +Wjωj = 0 (12)

for j = 1, . . . , N − 1, where a prime ′ denotes d/dr,

pθ =
1

4r4

N
∑

j=1

[

(

ω2
j − ω2

j−1 −N − 1 + 2j
)2

]

, (13)

Wj = 1 − ω2
j +

1

2

(

ω2
j−1 + ω2

j+1

)

, (14)

and ω0 = ωN = 0. The Einstein equations take the form

m′ = µG+ r2pθ,
S ′

S
=

2G

r
, (15)

where

G =

N−1
∑

j=1

ω′2
j . (16)
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Altogether, then, we have N + 1 ordinary differential equations for the N + 1 unknown

functions m(r), S(r) and ωj(r). The field equations (12,15) are invariant under the

transformation

ωj(r) → −ωj(r) (17)

for each j independently, and also under the substitution:

j → N − j. (18)

2.2. Boundary conditions

We are interested in black hole and soliton solutions of the field equations (12,15).

However, the field equations are singular at the origin r = 0 if we have a regular, soliton

solution, at an event horizon r = rh if there is one, and at infinity r → ∞. Since the

cosmological constant Λ < 0, there is no cosmological horizon. We need to derive the

boundary conditions at each of these singular points. For Λ = 0, local existence of

solutions of the field equations near these singular points has been rigorously proved

[21, 22]. The extension of these results to Λ < 0 will be the focus of Section 3.

2.2.1. Origin The boundary conditions at the origin are the most complicated of the

three singular points. We postpone the detailed derivation of the form of the field

variables near the origin to Section 3.1, and instead here briefly state the results of this

derivation for reference.

We assume that the field variables m(r), S(r) and ωj(r) have regular Taylor series

expansions about r = 0:

m(r) = m0 +m1r +m2r
2 +O(r3);

S(r) = S0 + S1r + S2r
2 +O(r3);

ωj(r) = ωj,0 + ωj,1r + ωj,2r
2 +O(r3); (19)

where the mi, Si and ωj,i are constants. The constant S0 is non-zero in order for the

metric to be regular at the origin, but otherwise arbitrary since the field equations

involve only derivatives of S.

Regularity of the metric and curvature at the origin immediately gives:

m0 = m1 = m2 = 0, S1 = 0, ωj,1 = 0 (20)

and

ωj,0 = ±
√

j(N − j). (21)

Without loss of generality (due to (17)), we take the positive square root in (21).

The expansions (19) are substituted into the field equations (12,15) to determine

the values of the remaining constants in the expansions. The details of this analysis

are presented in Section 3.1, but the upshot is as follows. We define a vector ω(r) =

(ω1(r), ω2(r), . . . , ωN−1(r))
T . It turns out that, in order to have N − 1 independent



su(N) EYM solitons and black holes with Λ < 0 7

parameters to describe the N − 1 gauge field degrees of freedom ωj(r), it is necessary

to expand the ωj(r) to order O(rN). Then the expansions (19) become

m(r) = m3r
3 +O(r4);

S(r) = S0 +O(r2);

ω(r) = ω0 +

N
∑

k=2

zk(r)vkr
k +O(rN+1), (22)

where

ω0 =
(√

N − 1,
√

2(N − 2), . . . ,
√

(N − 1)
)T

. (23)

The functions zk(r), k = 2, . . . , N are determined completely by the arbitrary constants

z̄k = zk(0) for k = 2, . . . , N . Together with Λ, the constants z̄2, . . . , z̄N determine the

constant m3 (see equation (56)). TheN−1 vectors vk are constant and their components

are fixed (see equation (62)). The expansions (22) therefore give the field variables in

terms of the N + 1 parameters z̄2, . . . , z̄N ,Λ and S0.

2.2.2. Event horizon For black hole solutions, we assume that there is a regular, non-

extremal event horizon at r = rh, where µ(r) has a single zero. This fixes the value of

m(rh) to be

2m(rh) = rh −
Λr3

h

3
. (24)

We assume that the field variables ωj(r), m(r) and S(r) have regular Taylor series

expansions about r = rh:

m(r) = m(rh) +m′(rh) (r − rh) +O (r − rh)
2 ;

ωj(r) = ωj(rh) + ω′

j(rh) (r − rh) +O (r − rh)
2 ;

S(r) = S(rh) + S ′(rh) (r − rh) +O (r − rh) . (25)

Setting µ(rh) = 0 in the Yang-Mills equations (12) fixes the derivatives of the gauge

field functions at the horizon:

ω′

j(rh) = − Wj(rh)ωj(rh)

2m(rh) − 2r3
hpθ(rh) − 2Λr3

h

3

. (26)

Therefore the expansions (25) are determined by the N + 1 quantities ωj(rh), rh, S(rh)

for fixed cosmological constant Λ. For the event horizon to be non-extremal, it must be

the case that

2m′(rh) = 2r2
hpθ(rh) < 1 − Λr2

h, (27)

which weakly constrains the possible values of the gauge field functions ωj(rh) at the

event horizon. Since the field equations (12,15) are invariant under the transformation

(17), we may consider ωj(rh) > 0 without loss of generality.



su(N) EYM solitons and black holes with Λ < 0 8

2.2.3. Infinity At infinity, we require that the metric (4) approaches adS, and therefore

the field variables ωj(r), m(r) and S(r) converge to constant values as r → ∞. We

assume that the field variables have regular Taylor series expansions in r−1 near infinity:

m(r) = M +O
(

r−1
)

; S(r) = 1 +O
(

r−1
)

;

ωj(r) = ωj,∞ +O
(

r−1
)

. (28)

If the space-time is asymptotically flat, with Λ = 0, then the values of ωj,∞ are

constrained to be

ωj,∞ = ±
√

j(N − j). (29)

This condition means that the asymptotically flat black holes have no magnetic charge

at infinity, or, in other words, these solutions have no global magnetic charge. Therefore,

at infinity, they are indistinguishable from Schwarzschild black holes. However, if the

cosmological constant is negative, then there are no a priori constraints on the values

of ωj,∞. In general, therefore, the adS black holes will be magnetically charged. The

fact that the boundary conditions at infinity in the Λ < 0 case are less restrictive than

those in the Λ = 0 case leads to the expectation of many more solutions when Λ < 0

compared with Λ = 0.

2.3. Embedded solutions

The field equations (12,15) are non-linear and coupled, but they do have two analytic,

trivial solutions.

Schwarzschild-adS Setting

ωj(r) ≡ ±
√

j(N − j) (30)

for all j gives the Schwarzschild-adS black hole with

m(r) = M = constant (31)

We note that, by setting M = 0, pure adS space is also a solution.

Reissner-Nordström-adS Setting

ωj(r) ≡ 0 (32)

for all j gives the Reissner-Nordström-adS black hole with metric function

µ(r) = 1 − 2M

r
+
Q2

r2
− Λr2

3
, (33)

where the magnetic charge Q is fixed by

Q2 =
1

6
N (N + 1) (N − 1) . (34)

Only for this value of the magnetic charge is the Reissner-Nordström-adS black hole

a solution of the field equations.
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As well as these effectively abelian embedded solutions, there is also a class of

embedded su(2) non-abelian solutions. These will turn out to play an important role in

our proof of the existence of genuinely su(N) solutions in Section 4. The construction of

the embedded su(2) solutions in adS follows from that given in [22] in the asymptotically

flat case. First, we write theN−1 gauge field functions ωj(r) in terms of a single function

ω(r) as follows:

ωj(r) = ±
√

j(N − j)ω(r) ∀j = 1, . . . , N − 1, (35)

then define [22]

λN =

√

1

6
N (N − 1) (N + 1). (36)

Next we rescale the field variables as follows:

R = λ−1
N r; Λ̃ = λ2

NΛ; m̃(R) = λ−1
N m(r);

S̃(R) = S(r); ω̃(R) = ω(r). (37)

Note that we rescale the cosmological constant Λ (this is not necessary in [22] as there

Λ = 0). The field equations satisfied by m̃(R), S̃(R) and ω̃(R) are then

dm̃

dR
= µG̃+R2p̃θ;

1

S̃

dS̃

dR
= − 2G̃

R
;

0 = R2µ
d2ω̃

dR2
+

[

2m̃− 2R3p̃θ −
2Λ̃R3

3

]

dω̃

dR
+

[

1 − ω̃2
]

ω̃; (38)

where we now have

µ = 1 − 2m̃

R
− Λ̃R2

3
, (39)

and

G̃ =

(

dω̃

dR

)2

, p̃θ =
1

2R4

(

1 − ω̃2
)2
. (40)

The equations (38) are precisely the su(2) EYM field equations. Furthermore, the

boundary conditions (22,25,28) also reduce to those for the su(2) case. This is

straightforward to see for the boundary conditions at the horizon (25) or at infinity

(28). At the origin, the su(2) embedded solutions are given by z̄2 6= 0, with

z̄3 = z̄4 = . . . = z̄N = 0. Therefore any su(2), asymptotically adS, EYM soliton

or black hole solution can be embedded into su(N) EYM to give an asymptotically

adS soliton or black hole. Given that the solution space of su(2) EYM solitons and

black holes in adS has been extensively studied [9, 11, 15], we immediately have much

useful information about the space of solutions of su(N) EYM soltions and black holes.

However, our purpose in this paper is to prove the existence of genuinely su(N) (that

is, not embedded) solutions.
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2.4. Properties of the numerical su(N) solutions

The numerical solution of the field equations (12,15) and the properties of the space

of solutions are discussed in detail in [15]. In this section we briefly review the salient

features of the solution space for our purposes here, and illustrate these features with

some figures for the su(3) case.

As in the su(2) case [9, 10], we find solutions in open sets of the parameter

space ( [z̄2, . . . z̄N ] (22) for solitons and [ω1(rh), . . . ωN−1(rh)] for black holes). For all

negative values of the cosmological constant Λ < 0, we find solutions in which all the

gauge field functions have no zeros, in a neighbourhood of the embedded pure adS

(soliton) or Schwarzschild-adS (black hole) solution, although in practice the size of

this neighbourhood decreases rapidly as |Λ| decreases. The existence of such a region

of solutions where all gauge field functions have no zeros is proven in Section 4.3, see

Corollary 10. As |Λ| decreases, the region of phase space where we have soliton or black

hole solutions shrinks and breaks up, eventually becoming discrete points in the limit

|Λ| → 0.

The main interest in this paper is solutions for which the gauge field functions have

no zeros, and particularly the behaviour of the space of solutions for large |Λ|. As |Λ|
increases, the region of phase space where solutions exist expands rapidly, as can be

seen by comparing the size of the regions for Λ = −2 and Λ = −3 in Figures 1 and 2

(for black holes) and Figures 3 and 4 (for solitons). It can also be seen in these figures

that the regions of solutions where at least one gauge field function has at least one zero

shrink as |Λ| increases. For black holes, Figure 10 in [15] shows that there are no black

hole solutions for which at least one gauge field function has at least one zero when

Λ = −5. As |Λ| increases still further, all the solutions which exist are such that all the

gauge field functions have no zeros. In addition, the region of phase space where there

are solutions continues to expand without limit as |Λ| increases. We will show in Section

4.4 that for any point in the phase space, for all sufficiently large |Λ|, this point leads

to a black hole or soliton solution (as applicable) for which all the gauge field functions

have no zeros.

We have su(2) embedded solutions (35) along the lines ω1(rh) = ω2(rh) for black

hole solutions (indicated by a dashed line in Figures 1–2) and z̄3 = 0 for soliton solutions

(not everywhere along the lines, only where the lines are contained within the region of

solutions). The existence of genuinely su(N) solutions in a neighbourhood of embedded

su(2) solutions, seen in Figures 1–4, is shown in Section 4.3.

3. Local existence of solutions

The first part of our proof of the existence of regular soliton and black hole solutions

of the su(N) EYM equations (12,15) is showing that regular solutions exist in

neighbourhoods of the points r = 0, r = rh and r = ∞, where the field equations

are singular.
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Figure 1. Solution space for su(3) black holes with rh = 1 and Λ = −2. The numbers

of zeros of the gauge field functions, n1 and n2, are shown for the various regions

of the solution space. The grey region denotes those areas of the (ω1(rh), ω2(rh))

plane for which the constraint (27) is satisfied, but for which we do not find solutions.

Outside the shaded region the constraint (27) is not satisfied. The dashed line is

ω1(rh) = ω2(rh), along which lie the embedded su(2) solutions.

Figure 2. Solution space for su(3) black holes with rh = 1 and Λ = −3. The numbers

of zeros of the gauge field functions, n1 and n2, are shown for the various regions

of the solution space. The grey region denotes those areas of the (ω1(rh), ω2(rh))

plane for which the constraint (27) is satisfied, but for which we do not find solutions.

Outside the shaded region the constraint (27) is not satisfied. The dashed line is

ω1(rh) = ω2(rh), along which lie the embedded su(2) solutions.
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Figure 3. Solution space for su(3) solitons with Λ = −2. The numbers of zeros of

the gauge field functions, n1 and n2, are shown for the various regions of the solution

space.

Figure 4. Solution space for su(3) black holes with Λ = −3. The numbers of zeros of

the gauge field functions, n1 and n2, are shown for the various regions of the solution

space.
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In each case, our method follows that employed in [17] for asymptotically flat su(2)

EYM, and subsequently generalized in asymptotically flat space to any compact gauge

group in [21]. For su(N) EYM in asymptotically flat space, the paper [22] used a

different approach to prove local existence.

The method we employ here makes use of the following theorem, which is taken

from [17], but which we restate for convenience:

Theorem 1 [17] Consider a system of differential equations for n + m functions

u = (u1, u2, . . . un)T and v = (v1, v2, . . . vm)T of the form

x
dui

dx
= xσifi (x,u,v) ;

x
dvi

dx
= −τivi + xςigi (x,u,v) ; (41)

with constants τi > 0 and integers σi, ςi ≥ 1, and let C be an open subset of R
n such

that the functions fi, i = 1, . . . n and gi, i = 1, . . .m are analytic in a neighbourhood of

x = 0, u = c, v = 0 for all c ∈ C. Then there exists an n-parameter family of solutions

of the system (41) such that

ui(x) = ci +O (xσi) , vi(x) = O (xςi) , (42)

where ui(x), i = 1, . . . n and vi(x), i = 1, . . .m are defined for c ∈ C, for |x| < x0(c)

(for some x0(c) > 0) and are analytic in x and c.

This theorem allows one to parameterize the family of solutions near a singular point

of a set of ordinary differential equations. The key part of the method is putting the

field equations into the form (41) with x = 0 at the singular point, which requires

a change of variables. We need to consider the three singular points r = 0, r = rh

and r → ∞ separately. Once we have the field equations in the relevant form, it is

then straightforward to prove local existence of solutions of the field equations with the

required behaviour (22,25,28). The proof of the local existence of solutions near the

origin is by far the most complicated of the three. The fact that the local solutions are

analytic in the parameters ci as well as the independent variable x will turn out to be

extremely useful in Section 4.

3.1. Local existence of solutions near the origin

The local existence of solutions of the field equations near the origin is technically rather

complicated. Local existence near the origin has been proved in the asymptotically flat

case for su(N) gauge fields in [22], using a method which is different from that employed

here, and for general compact gauge groups in [21], whose method we follow. As might

be expected, the inclusion of a negative cosmological constant Λ does not significantly

change the analysis. However, the analysis is highly involved and in particular it is

important to verify exactly how the cosmological constant appears in the derivation.

For this reason, in this section we have included sufficient detail to make it clear where

our analysis differs from that in [21, 22].
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We begin by following [22] and define

γj = j (N − j) , j = 0, . . . , N. (43)

Then we define new variables uj(r) and qj(r) as follows [22]:

ωj(r) = uj(r)γ
1

2

j ; j = 1, . . . , N − 1;

qj(r) = ω2
j − ω2

j−1 −N − 1 + 2j; j = 1, . . . , N. (44)

Next define a new independent variable x by

x =
r

λN

(45)

where λN is defined in (36). We then write the cosmological constant Λ and metric

function m(r) in terms of new quantities Λ̃ and m̃ as follows:

m(r) = λNm̃(x); Λ =
Λ̃

λ2
N

; (46)

and from now on consider uj(r) = uj(λNx) and S(r) = S(λNx) as functions of x instead

of r. In terms of these variables the field equations become [22]

dm̃

dx
=

1

λ2
N

[

µG̃+ P̃
]

;
dS

dx
=

2SG̃

λ2
Nx

; (47)

0 = x2µ
d2uj

dx2
+

[

2m̃− 2Λ̃x3

3
− 2x

λ2
N

P̃

]

duj

dx
+

1

2
[qj+1 − qj ]uj, (48)

where

G̃ =

N−1
∑

j=1

γj

(

duj

dx

)2

; P̃ =
1

4x2

N
∑

j=1

q2
j . (49)

The remainder of our analysis of the solutions of the field equations near the origin is

split into two parts. Firstly, in Section 3.1.1, we derive the power series expansion (22)

for the field variables near the origin. Secondly, in Section 3.1.2, we prove the local

existence of solutions of the field equations having this form near the origin. In this

section, we will not be using the Einstein summation convention, and all summations

are written explicitly.

3.1.1. Derivation of the power series expansion In this section we seek a power series

expansion for m̃ and uj in a neighbourhood of the origin x = 0, in the form

m̃(x) =
∞

∑

k=0

mkx
k; uj =

∞
∑

k=0

uj,kx
k. (50)

A straightforward analysis of the field equations shows that m0, m1, m2 and uj,1 are all

zero and that uj,0 = 1.

We seek to substitute these power series expansions into the scaled field equations

(47,48). First we require the power series expansions for the quantities qj, G̃ and P̃ in
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terms of the mk and uj,k. These do not depend on Λ̃ and so have the same form as in

[22]:

qj =

∞
∑

k=2

qj,kx
k; G̃ =

∞
∑

k=2

Gkx
k; P̃ =

∞
∑

k=2

Pkx
k; (51)

where

qj,k =

k
∑

ℓ=0

γjuj,ℓuj,k−ℓ − γj−1uj−1,ℓuj−1,k−ℓ;

Gk =
N−1
∑

j=1

k−1
∑

ℓ=1

γj (ℓ+ 1) (k − ℓ+ 1)uj,ℓ+1uj,k−ℓ+1;

Pk =
1

4

N
∑

j=1

k
∑

ℓ=2

qj,ℓqj,k−ℓ+2. (52)

It is also helpful to have a power series expansion for µ:

µ =

∞
∑

k=0

µkx
k, (53)

where

µ0 = 1, µ1 = 0, µ2 = −2m3 −
Λ̃

3
; (54)

and, for k ≥ 3,

µk = −2mk+1. (55)

It is clear that there is a minor difference in this expansion compared with the

asymptotically flat case, due to the dependence of µ2 on Λ̃. It is this small difference

of which we must carefully keep track if we are to verify that the analysis of [22] holds

when Λ̃ 6= 0.

Examining the coefficient of xk in the first equation (47), we find, for k ≥ 2:

mk+1 =
1

λ2
N (k + 1)

[

Pk +
k−2
∑

ℓ=0

µℓGk−ℓ

]

. (56)

Here, Pk depends on qj,2, . . . , qj,k and hence on uj,0, . . . , uj,k; the quantity µℓ (ℓ =

0, . . . , k − 2) depends on m3, . . . , mk−1 and Λ̃, and Gℓ (ℓ = 2, . . . , k) depends

on uj,2, . . . , uj,k. Therefore equation (56) determines mk+1 uniquely in terms of

m3, . . . , mk−1, uj,0, . . . , uj,k and Λ̃. Apart from the dependence on Λ̃, this is exactly

the same situation as in [22].

Next we turn to the more complicated equation (48). After a great deal of algebra,

we obtain, from the coefficient of xk for k ≥ 2, the following equation:

bj,k = 2γjuj,k − k (k − 1)uj,k + γj+1uj+1,k − γj−1uj−1,k ; (57)

for j = 1, . . . , N − 1, where bj,k is a complicated expression which we write as

bj,k = cj,k + c̃j,k, (58)
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where

cj,k = −
k−2
∑

ℓ=2

uj,ℓVk,ℓ;

c̃j,k = − 1

2

k−2
∑

ℓ=2

N−1
∑

i=1

Ai,jui,kui,k−ℓ −
k−2
∑

ℓ=2

N−1
∑

i=1

Ai,jui,kuj,k−ℓ

−
k−2
∑

ℓ=2

k−ℓ−2
∑

p=2

N−1
∑

i=1

Ai,juj,puj,k−ℓ−2−p; (59)

and we have defined further quantities Vk,ℓ and Ai,j as

Vk,ℓ =
Λ̃

3
(k − 2) (k − 1) δℓ,k−2 +

2

λ2
N

ℓPk−ℓ + 2ℓ (ℓ− 2)mk−ℓ+1;

Ai,j = γj [2δi,j − δi+1,j − δi−1,j ] ; (60)

and δi,j is the usual Kronecker δ. Using the (N − 1) × (N − 1) matrix A whose entries

are Ai,j we can write equation (57) as

bj,k =

N−1
∑

i=1

[Ai,j − δi,jk (k − 1)]ui,k. (61)

This is exactly the same as the equation for the corresponding quantities bj,k in the

asymptotically flat case [22]. However, our bj,k is slightly different from that in [22], as

Vj,k contains Λ̃. We have examined the analysis in [22] very carefully, and found that

Vj,k arises only in Lemma 3 in [22], and, even in the proof of Lemma 3, the precise form

of Vj,k is not important. Therefore Theorem 1 in [22] holds also in our case, and we

restate it here for convenience:

Theorem 2 [22] The recurrence relations (56) and (61) determine uniquely all the

coefficients mk and uj,k for k > N once N − 1 arbitrary parameters have been chosen,

one for each equation with k = 2, . . . , N .

We comment that in this section we have taken k = 2, . . . N , whereas in [22], the

parameter k has values k = 1, . . . N − 1, and the quantity uj,k multiplies xk+1 in [22]

rather than xk here. Some care is therefore needed in comparing results in [22] with

those in this section.

The form of the coefficients uj,k for j = 1, . . . , N − 1, k = 2, . . . , N is derived

in exactly the same way as in [22]. The (N − 1) × (N − 1) matrix A (60) has

eigenvalues k (k − 1) for k = 2, 3, . . . , N (proved in [22]) with right-eigenvectors v̄k

and left-eigenvectors σ̄T
k , and we write the components of the vectors v̄k as v̄k,j for

j = 1, . . . , N − 1. The components vk,j are given in terms of Hahn polynomials [22, 27]:

v̄k,j =
N − 1

N − j
3F2 (−k + 1,−j + 1, k; 2,−N + 1; 1) , (62)

where the 3F2 are hypergeometric functions. We find [22]

uj,2 = β̄2v̄2,j , uj,3 = β̄3v̄3,j (63)
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and, for k = 4, . . . , N ,

uj,k = u∗j,k + β̄kv̄k,j. (64)

Here the β̄k, for k = 2, . . . , N , are arbitrary constant parameters, and u∗j,k is a special

solution of (61) fixed by the requirement that

σ̄T
k u,k = dkβ̄k (65)

for k = 2, . . . , N , where [22]

dk = σ̄T
k v̄k =

(N + k − 1)! (N − k)!

(N − 1)! (N − 2)!k (k − 1) (2k − 1)
, (66)

and u,k is the vector with components u1,k, . . . , uN−1,k. The u∗j,k (64) are uniquely

determined by Theorem 2, and the N − 1 arbitrary constants β̄k completely fix the

coefficients uj,k (64).

It is convenient to expand the vector u,k in terms of the eigenvectors of the matrix

A, by expanding the particular solutions u∗j,k in terms of the v̄i and collecting terms:

u,k =
N

∑

ℓ=2

Y ℓ
k v̄ℓ, k = 2, . . . , N. (67)

The analysis of [22] shows that, independent of the form of Vj,k (60),

Y ℓ
k = 0 for ℓ > k, (68)

so that u,k depends only on v̄2, . . . , v̄k. This result is not trivial because it depends on

the properties of the particular solutions u∗j,k. Furthermore, from [22], the particular

solutions u∗j,k depend only on the components of the vectors v̄i for i = 2, . . . , k − 1, so

that

Y k
k = β̄k. (69)

Therefore the first N + 1 terms in the power series for the gauge field functions

u = (u1, . . . , uN−1)
T can be written as

u = u0 +
N

∑

k=2

k
∑

ℓ=2

Y ℓ
k v̄ℓx

k = u0 +
N

∑

k=2

βk(x)x
k; (70)

where u0 = (1, . . . , 1)T ; the Y ℓ
k for ℓ < k are determined by β̄i for i = 2, . . . , k − 1; and

we have defined vector functions βk(x), k = 2, . . . , N , by

βk(x) =
N

∑

ℓ=k

Y k
ℓ x

ℓ−kv̄k = v̄k

[

β̄k + Y k
k+1x+ . . .+ Y k

k+Nx
N−k

]

. (71)

The vectors βk(x) are proportional to v̄k for all values of x, and so are eigenvectors of

the matrix A (60) for every x. The constants β̄k, k = 2, . . . , N in (71) are the same as

those in (64), and are arbitrary, but the constants Y k
k+1, . . . , Y

k
k+N are determined by the

β̄2, . . . β̄N in a complicated way. Returning to the original variables, we find the power
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series expansion for the gauge field functions ωj has the form (22), with the components

of βk(x) determining the functions zk(r) in (22) as follows:

βk,j(x) = zk(r)v̄k,jλ
k
Nγ

−
1

2

j , (72)

where βk(x) = (βk,1, . . . βk,N−1)
T .

The last remaining piece in the power series expansion of the field variables is to

find the expansion for S. First let S = exp δ, so that (47) becomes

dδ

dx
=

2G̃

λ2
Nx

. (73)

From this equation it is clear that δ has a power series expansion of the form

δ = δ0 +
2

λ2
N

∞
∑

k=2

Gk

k
xk; (74)

for some arbitrary constant δ0. This then gives a power series expansion for S of the

form (22).

3.1.2. Local existence To prove the local existence of solutions of the field equations

(12,15) in a neighbourhood of the origin r = 0, with the power series expansions

(22,70,71) derived in the previous sub-section, we follow the analysis of [21] in the

asymptotically flat case, valid for any compact gauge group. As in the previous sub-

section, the inclusion of a negative cosmological constant Λ does not significantly change

the proof, but it is nonetheless important to carefully consider the details of each step.

Proposition 3 There exists an N + 1-parameter family of local solutions of the field

equations (12,15) near r = 0, satisfying the boundary conditions (22), and analytic in

Λ, z̄k, S0 and r.

Proof We begin with the field equations in the form (47,48). Defining a vector

u = (u1, . . . , uN−1)
T , we write the YM equation (48) as a vector equation:

x2µ
d2u

dx2
+

[

2m̃− 2Λ̃x3

3
− 2x

λ2
N

P̃

]

du

dx
+

1

2
W = 0, (75)

where the vector W = (W1, . . . ,WN−1) has components

Wj = (qj+1 − qj−1) uj = 2uj −
N−1
∑

i=1

ujAj,iu
2
i (76)

and the (N − 1) × (N − 1) matrix A is defined in (60).

Our approach is to use the eigenvectors of the (N − 1) × (N − 1) matrix A as a

basis for our N − 1 gauge field functions, instead of using the functions u1, . . . , uN−1.

From the power series derivation in the previous subsection, we are motivated to write

the vector u(x) as a sum over eigenvectors of the matrix A (cf. (70)):

u = u0 +
N

∑

k=2

βk(x)x
k; (77)
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where u0 = (1, . . . , 1)T and the βk(x) are vector functions of x which satisfy

Aβk(x) = k (k − 1)βk(x) for all x. (78)

It should be emphasized that we are making no assumptions about the βk(x) at this

stage. In particular, we are not assuming that βk(x) are regular at the origin, nor that

they have the form (71). Since the N − 1 vectors v̄k are eigenvectors of the matrix

A corresponding to distinct eigenvalues, they constitute a basis of the space of N − 1

vectors. If we write βk(x) = ζ̃k(x)v̄k for some scalar function ζ̃k(x) (which will be a

constant factor times the ζk(x) functions defined below), then we are using the N − 1

independent functions ζ̃k(x), k = 2, . . . , N , instead of the N − 1 independent functions

uj(x), j = 1, . . . , N − 1, to describe our gauge field.

We now multiply both sides of (76) by the left-eigenvectors σ̄T
k of the matrix A:

x2µσ̄T
k

d2u

dx2
+

[

2m̃− 2Λ̃x3

3
− 2x

λ2
N

P̃

]

σ̄T
k

du

dx
+

1

2
σ̄T

k W = 0. (79)

Using the fact that the left- and right-eigenvectors of the matrix A are orthogonal [22]

we have

σ̄T
k1

βk2
= 0 if k1 6= k2, (80)

and defining new functions ζk by

ζk(x) = σ̄T
k βk, (81)

we obtain

0 = x2µ

[

xk d
2ζk
dx2

+ 2kxk−1dζk
dx

+ k (k − 1)xk−2ζk

]

+

[

2m̃− 2Λ̃x3

3
− 2x

λ2
N

P̃

]

[

xk dζk
dx

+ kxk−1ζk

]

+
1

2
σ̄T

k W . (82)

The complicated part of the analysis lies in casting W into a suitable form.

However, the form of W depends only on the structure of the su(N) gauge field, without

any reference to the form of the metric or the cosmological constant. Therefore we may

appeal to the analysis of [21], which is valid for any compact semi-simple gauge group.

The following general result was proved in [21] for any compact semi-simple gauge group

and we have explicitly verified it for su(N):

Lemma 4 [21]

1

2
W = −

N
∑

k=2

k (k − 1)βk(x)x
k +

Z
∑

ℓ=2

τ ℓx
ℓ (83)

for some Z ∈ N and vectors τ ℓ(x) which are regular at x = 0.

The key part of this result is that the expansion of W as a power series about x = 0

starts with terms of O(x2), i.e. there are no ℓ = 0 or ℓ = 1 terms in this expansion. The

precise forms of the vectors τ ℓ are not particularly illuminating so we do not give them

here.
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Using Lemma 4 we have, for k = 2, . . . , N :

1

2
σ̄T

k W = −k (k − 1)xkζk +

Z
∑

ℓ=2

σ̄T
k τ ℓx

ℓ. (84)

To progress further, we need the following result on σ̄T
k τ ℓ, which is proved for general

gauge group in [21], and which we have verified directly for gauge group su(N):

Lemma 5 [21]

σ̄T
k τ ℓ = 0 if ℓ < k + 1. (85)

Using Lemma 5, equation (84) therefore simplifies to

1

2
σ̄T

k W = −k (k − 1)xkζk+1 +
Z

∑

ℓ=k+1

σ̄T
k τ ℓx

ℓ. (86)

The importance of this result will become apparent on returning to (82). Defining a

new variable χk(x) by χk(x) = dζk(x)
dx

, dividing throughout by xk+1µ and rearranging,

we obtain

x
dχk

dx
= − 2kχk − k (k − 1) x−1ζk + k (k − 1) x−1µ−1ζk

− 1

x2µ

[

2m̃− 2Λ̃x3

3
− 2x

λ2
N

P̃

]

[kζk + xχk]

−
Z−k−1
∑

ℓ=0

σ̄T
k τ ℓ+k+1x

ℓ. (87)

Next we turn to the forms of the functions G̃ and P̃ (49). We write β2 as

β2(x) =
[

β̂0 + xβ̂1(x)
]

v̄2 (88)

for some constant β̂0 and scalar function β̂1(x), where v̄2 is a right-eigenvector of the

matrix A, with eigenvalue 2. Once again, we make no assumption about the properties

of β̂1. We can write β̂1 as an analytic function of ζ2 using (81), but this precise expression

is not important here. Using (88) and the properties of the right-eigenvector v̄2, we are

able to write G̃ and P̃ as follows:

G̃ =
2

3
N

(

N2 − 1
)

x2β̂2
0 + x3Ĝ; P̃ =

1

3
N

(

N2 − 1
)

x2β̂2
0 + x3P̂ ; (89)

where Ĝ is an analytic function of x, ζk and χk, and P̂ is an analytic function of x and

the ζk. The differential equation satisfied by m̃ (47) then simplifies to

dm̃

dx
= 2x2β̂2

0 [2µ+ 1] +
x3

λ2
N

[

µĜ+ P̂
]

. (90)

We define yet another new variable α by

α =
1

x3

[

m̃−m3x
3
]

, (91)
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where m3 = 2β̂2
0 , and, after some algebra, we obtain the differential equation satisfied

by α in the form

x
dα

dx
= −3α + xFα, (92)

where Fα is an analytic function in α, x, ζk, χk, and Λ̃.

Returning now to the YM equation (87), we next write

µ−1 = 1 + x2µ̃. (93)

Again, we make no assumptions about µ̃: it can be written as a function of the variables

x and α, and the constants m3 and Λ̃. When we apply Theorem 1 at the end of this

section, we will obtain as a corollary that µ̃ is a regular function of x, at least in a

neighbourhood of x = 0. The YM equation (87) then takes the form

x
dχk

dx
= −2kχk + xF̃χk

+
Z−k−1
∑

ℓ=0

σ̄T
k τ ℓ+k+1x

ℓ, (94)

where F̃χk
is an analytic function of the variables. We make one last change of variables,

defining [21]

χ̃k = χk +
1

2k
σ̄T

k τ k+1. (95)

The precise form of σ̄T
k τ k+1 is not important, suffice to say it is a polynomial in the ζℓ

and does not involve any powers of x.

Then, summarizing, the field equations can be written as:

x
dα

dx
= − 3α+ xFα;

x
dζk
dx

= xFζk
;

x
dχ̃k

dx
= − 2kχ̃k + xFχ̃k

;

x
dS

dx
= xFS;

x
dΛ̃

dx
= 0; (96)

where all the F functions are analytic in x, Λ̃, α, χ̃k and ζk, in a neighbourhood of

α = 0, x = 0. Applying Theorem 1 we then have, in a neighbourhood of the origin

x = 0, solutions of the form

α(x) = O(x); ζk(x) = ζ0,k +O(x); χ̃k = O(x);

S(x) = S0 +O(x), (97)

where ζ0,k and S0 are constants, and α, ζk, χ̃k and S are analytic in x, Λ̃, S0 and ζ0,k.

Returning to the original variables, we have proven the existence of solutions of the form

(22) in a neighbourhood of the origin, which are analytic in r and the parameters z̄k

and S0.
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3.2. Local existence of solutions near the event horizon

As might be anticipated, the inclusion of the cosmological constant Λ does not change

significantly the proof of the local existence of solutions near the event horizon r = rh.

Our choice of variables follows those in [17, 20, 21]. For su(2) EYM black holes in adS,

the following result is stated in [9].

Proposition 6 There exists an N + 2-parameter family of local black hole solutions of

the field equations (12,15) near r = rh > 0, satisfying the boundary conditions (25), and

analytic in rh, Λ, ωj(rh) and r.

Proof We define a new independent variable x by x = r − rh, and new dependent

variables as follows [17, 20, 21]:

ρ = r, λ =
µ

x
, ψj = ωj, ξj =

µω′

j

x
= λω′

j. (98)

The field equations (12,15) then take the form

x
dρ

dx
= x;

x
dλ

dx
= − λ+ xHλ + Fλ;

x
dψj

dx
=
xξj
λ

;

x
dξj
dx

= − ξj + xHξj
+ Fξj

;

x
dS

dx
=

2x

ρ
GS;

x
dΛ

dx
= 0, (99)

where

Fλ =
1

ρ
− Λρ− 2

ρ3
P;

Hλ = − λ

ρ
(1 + 2G) ;

Fξj
= − 1

ρ2
Wjψj;

Hξj
= − 2G

ρ
ξj; (100)

we have defined a quantity P which is a polynomial in the ψj :

P = r4pθ =
1

4

N
∑

j=1

[

(

ψ2
j − ψ2

j−1 −N − 1 + 2j
)2

]

(101)

and pθ, Wj and G are given in (13,14,16) respectively. In particular, G takes the form

G =
1

λ2

N−1
∑

j=1

ξ2
j . (102)
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The functions Fλ, Fξj
, Hλ and Hξj

are therefore polynomials in 1/ρ, 1/λ, ρ, λ, ψj , ξj
and Λ.

The equations (99) are not yet in the required form (41). We require a further

change of variables:

λ̃ = λ− Fλ; ξ̃j = ξj − Fξj
. (103)

The differential equations for these new variables are:

x
dλ̃

dx
= − λ̃+ xGλ;

x
dξ̃j
dx

= − ξ̃j + xGξj
, (104)

where

Gλ = Hλ − dFλ

dx
; Gξj

= Hξj
− dFξj

dx
. (105)

We do not write out here the full forms ofGλ andGξj
, which are rather lengthy. However,

from the forms of Fλ and Fξj
(100), using the differential equations (99), it is clear that

both Gλ and Gξj
are polynomials in 1/ρ, 1/λ, ρ, λ, λ̃, ξ̃j and Λ.

The equations (104) are now in the form (41) required for the application of

Theorem 1. We have, in a neighbourhood of x = 0, solutions of the form

ρ = rh +O(x); λ̃ = O(x); ψj = ωj(rh) +O(x);

ξ̃j = O(x), S = S(rh) +O(x), (106)

with ρ, λ̃, ψj and ξ̃j all analytic in x, rh, ωj(rh), Λ and S(rh). Transforming back to our

original variables, we have proven the existence of solutions of the field equations in a

neighbourhood of a black hole event horizon r = rh, satisfying the boundary conditions

(25), and analytic in r, rh, ωj(rh), Λ and S(rh).

3.3. Local existence of solutions near infinity

For asymptotically flat su(N) solitons and black holes, the fact that the values of the

gauge field functions as r → ∞ are fixed by (29) makes the proof of local existence of

solutions in a neighbourhood of infinity rather complicated. In fact, as shown in [21, 22],

it is necessary to expand the gauge field functions ωj(r) to order r−N+1 in a manner

similar to the analysis in Section 3.1 near r = 0. In the asymptotically adS case, the

fact that the values of the gauge field functions at infinity are not fixed a priori makes

the proof of the local existence of solutions much easier. The result below is stated in

the su(2) case in [9].
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Proposition 7 There exists an 2N-parameter family of local solutions of the field

equations (12,15) near r = ∞, satisfying the boundary conditions (28), and analytic

in Λ, ωj,∞, M and r−1.

Proof In this case our new independent variable is x = r−1, and we define new

dependent variables as follows, following [17, 21]:

λ = 2m = r

(

1 − µ− Λr2

3

)

; ψj = ωj; ξj = r2ω′

j. (107)

Then the field equations (12,15) take the form

x
dλ

dx
= xfλ;

x
dψj

dx
= − xξj;

x
dξj
dx

= xfξj
;

x
dS

dx
= x4fS;

x
dΛ

dx
= 0. (108)

The functions on the right-hand-side of (108) are given by

fλ = − 2

(

x2 − x3λ− Λ

3

) N−1
∑

j=1

ξ2
j + P;

fξj
= − 3

Λ

[

1 − 3x2

Λ
+

3λx3

Λ

]

−1
[

Wjωj − 2xξj + 3λx2ξj − 2x3ξjP
]

;

fS = − 2S
N−1
∑

j=1

ξ2
j ; (109)

where P = x−4pθ is a polynomial in the ψj , defined in equation (101). Immediately

we have that the f ’s are analytic in a neighbourhood of x = 0, so applying Theorem 1

gives, in a neighbourhood of x = 0, solutions of the form

λ = 2M +O(x); ψj = ωj,∞ +O(x); ξj = cj +O(x);

S = S∞ +O(x4); (110)

for constants M , ωj,∞, cj and S∞, and the solutions are analytic in x, Λ, and the

constants. If we fix S∞ = 1 for the space-time to be asymptotically anti-de Sitter,

then the boundary conditions (28) are satisfied, and the field variables are analytic in

r−1, Λ, M , ωj,∞ and cj. We note that we find additional free parameters in this case,

corresponding to the coefficients of terms of O(r−1) in the expansion of ωj near infinity.

These parameters will not be important in our subsequent analysis.
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4. Existence of soliton and hairy black hole solutions

In this section we prove two existence theorems: firstly, the existence of su(N) solutions

in a neighbourhood of any embedded su(2) solution; and secondly the existence of

su(N) solutions for which all the gauge field functions ωj have no zeros provided |Λ| is

sufficiently large.

4.1. Regularity for µ > 0

Our strategy in proving the existence of genuinely su(N) soliton and black hole solutions

of the field equations is to start with a local solution near the origin (in the soliton case)

or black hole event horizon and then extend this solution out to infinity.

The focus of this section is to show that solutions can be extended for larger values

of r provided that µ > 0. This lemma was proved in [17] for su(2) EYM with Λ = 0,

and stated for Λ < 0 in [9]. For su(N) EYM with Λ = 0, the corresponding lemma is

stated in [20]. Our method of proof is exactly the same as in [17], so we only sketch the

details.

Lemma 8 As long as µ > 0 all field variables are regular functions of r.

Proof Consider an interval I = [r1, r2), where r1 < r2 and r1 > 0 in the soliton case,

or r1 > rh in the black hole case. Assume that all field variables are regular on the

interval I and that µ(r) > 0 for all r ∈ Ī = [r1, r2]. We need to show that all other field

variables (i.e. ωj(r), ω
′

j(r) and S(r)) remain regular at r2.

From the fact that µ(r2) > 0 we obtain

r2 −
Λr3

2

3
> 2m(r2). (111)

From (15), since r2pθ is positive, we have

2m(r2) ≥ 2

∫ r2

r1

µ(r)
N−1
∑

j=1

ω′2
j dr. (112)

Now µ(r) must have a minimum in the closed interval Ī, so defining

µmin = min
{

µ(r) : r ∈ Ī
}

> 0; (113)

we find
∫ r2

r1

N−1
∑

j=1

ω′2
j dr <

1

2µmin

(

r2 −
Λr3

2

3

)

. (114)

Direct integration of the second Einstein equation (15) then gives that log S and

therefore S is finite at r2.

Using the Cauchy-Schwarz inequality, we have

N−1
∑

j=1

[ωj(r1) − ωj(r2)]
2 =

N−1
∑

j=1

[
∫ r2

r1

ω′

j dr

]2

≤ (r2 − r1)

∫ r2

r1

N−1
∑

j=1

ω′2
j dr.(115)
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Since the left-hand-side of the above equation is a sum of positive terms, and the right-

hand-side is bounded above, we deduce that each ωj(r2) is finite.

Finally, we need to show that each ω′

j(r2) is finite. To do this, we write the Yang-

Mills equation (12) in the form

(

µω′

j

)

′

+
S ′

S
µω′

j = −Wjωj

r2
. (116)

Integrating this first order differential equation for µω′

j gives

ω′

j(r2) =
1

S(r2)µ(r2)

[

S(r1)µ(r1)ω
′

j(r1) −
∫ r2

r1

SWjωj

r2
dr

]

, (117)

so that ω′

j(r2) is finite and we have shown that all field variables are finite on the closed

interval Ī.

4.2. Asymptotic behaviour as r → ∞

One of the most important reasons for the abundance of solutions of su(2) EYM with

Λ < 0 compared with the asymptotically flat case is the difference in the behaviour

of the Yang-Mills equations as r → ∞. Therefore we next turn to the asymptotic

behaviour of the su(N) Yang-Mills equations (12).

As r → ∞, these take the form

− Λr4

3
ω′′

j − 2Λr3

3
ω′

j +Wjωj = 0. (118)

As in the su(2) case [9], these can be made autonomous by the change of variable

τ =
1

r

√

−Λ

3
, (119)

the Yang-Mills equations becoming

d2ωj

dτ 2
+Wjωj = 0. (120)

The autonomous equations (120) have critical points when

Wjωj =

(

1 − ω2
j +

1

2
ω2

j+1 +
1

2
ω2

j−1

)

ωj = 0. (121)

If all the ωj are non-zero at a critical point, their values are:

ωj = ±
√

j (N − j). (122)

Linearization about the critical points reveals that the critical point at the origin is a

centre, and all other critical points are saddles.

We are in exactly the same situation as in the su(2) case: what is important is not

so much the different critical point structure of the equation (120) compared with the

asymptotically flat case [20], but rather the nature of the variable τ (119). In particular,

when Λ < 0 the variable τ tends to zero as r → ∞, so that if we consider the solutions

of the equations (120) starting at some large value of r = r1 and going all the way out to

infinity, the corresponding values of τ will lie in some small interval τ ∈ [0, τ1]. On the
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other hand, for asymptotically flat solutions, the variable τ̃ which makes the Yang-Mills

equations in flat space autonomous is τ̃ = log r, which will tend to infinity as r → ∞.

Therefore, in the asymptotically flat case, any solution of the Yang-Mills equations must

trace out the whole length of a phase path, whereas in the asymptotically adS case the

solutions will only travel a small, finite distance along any one phase path.

Including a small gravitational perturbation into the Yang-Mills equations (118)

will not change this key property of the variable τ nor the finiteness of the phase paths

taken by the field variables as r → ∞.

4.3. Existence of su(N) solutions in a neighbourhood of embedded su(2) solutions

We now have available all the ingredients we require to show the existence of genuinely

su(N) EYM solitons and black holes. In this subsection we prove our first existence

theorem, namely the existence of su(N) solutions in a neighbourhood of an embedded

su(2) solution. This result relies heavily on the analyticity of the local solutions, proved

in Section 3.

Proposition 9 Suppose there is an embedded su(2) solution of the field equations, with

the gauge field functions all having k zeros. Then, all initial parameters in a sufficiently

small neighbourhood of the initial parameters giving the embedded su(2) solution will

give an su(N) solution of the field equations in which all gauge field functions have k

zeros.

Proof Suppose we have an embedded, non-trivial, su(2) solution of the field equations.

If this is a soliton, the initial conditions at the origin will be given by (22) with z̄2 6= 0

and z̄3 = z̄4 = . . . = z̄N = 0. If this is a black hole, the initial conditions at the event

horizon will be ω1(rh) = ω2(rh) = . . . = ωN−1(rh) 6= 0. From these initial conditions,

we can integrate the field equations (12,15) all the way out to infinity to give a regular

solution. Furthermore, the solution will satisfy the boundary conditions (28) at infinity.

For the rest of this section, we will assume that the magnitude of the cosmological

constant Λ is fixed, and, if we are considering black hole solutions, that the radius of

the event horizon, rh, is also fixed. We also suppose that the gauge field functions each

have k zeros (they will all have the same number of zeros from (35), since this is an

embedded su(2) solution).

From the local existence theorems (Propositions 3 and 6 proved in Sections 3.1 and

3.2 respectively) we know that there are solutions of the field equations locally near the

origin or event horizon as applicable, for any values of the initial parameters z̄2, . . . z̄N

or ω1(rh), . . . ωN−1(rh), and that these solutions are analytic in these initial parameters.

For the embedded su(2) solution, it must be the case that µ(r) > 0 for all r ∈ [r0,∞)

(where r0 = 0 for solitons and r0 = rh for black holes). Therefore, by analyticity, for

initial parameters close to the initial parameters giving the embedded su(2) solution,

the corresponding local solutions will have µ(r) > 0 for all r ∈ [r0, r2] for some r2. By

Lemma 8, these local solutions will also be regular on the interval [r0, r2].
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Now fix some r1 ≫ max{1, r0}, such that |Λ| r2
1 ≫ 1 and such that, for the

embedded su(2) solution, we have m(r1)/r1 ≪ 1. By the analyticity argument above,

provided the initial parameters z̄2, . . . , z̄N or ω1(rh), . . . ωN−1(rh) (as applicable) are in

a sufficiently small neighbourhood of the initial parameters giving the embedded su(2)

solution, the local su(N) solutions whose existence is guaranteed by Propositions 3 and

6 will be regular on the whole interval r ∈ [r0, r1]. That is, in this interval µ > 0 for

all r and the gauge field functions ωj will all have k zeros provided r1 is larger than the

largest zero of the gauge field function ω of the embedded su(2) solution. Furthermore,

at r1, it will still be the case that m(r1)/r1 ≪ 1 for these su(N) solutions as well as the

nearby embedded su(2) solution.

Since r1 ≫ max{1, r0} and m(r1)/r1 ≪ 1 for these su(N) solutions, we can use the

asymptotically adS regime discussed in Section 4.2. Provided r1 is sufficiently large, the

solutions will not move very far along their phase path as r increases from r1 to r → ∞.

In particular, the gauge field functions will have no further zeros, and both the gauge

field functions and their derivatives will not vary very much from their values at r = r1.

This means that m(r)/r will continue to be very small as the solutions move along their

phase path, and the asymptotic adS regime will continue to be valid.

Therefore, we have shown the existence of genuinely su(N) soliton and black hole

solutions in a neighbourhood of any embedded su(2) solution. The gauge field functions

of these su(N) solutions will have the same number of zeros as the gauge field functions

of the embedded su(2) solution. It should be emphasized that these are genuinely su(N)

solutions rather than embedded su(2) solutions because the gauge field functions ωj(r)

will not satisfy (35).

This result can be applied to the embedded Schwarzschild-adS or pure adS solutions

(with initial parameters, ωj(rh) =
√

j (N − j) and z̄j = 0 respectively) to give, for any

negative value of the cosmological constant Λ, genuinely su(N) solutions for which all

the gauge field functions have no zeros.

Corollary 10 For any Λ < 0, there exist su(N) black holes and solitons for which all

the gauge field functions have no zeros.

In practice, the size of this neighbourhood about the embedded pure adS or

Schwarzschild-adS solutions in which we have su(N) soliton and black hole solutions

where the gauge field functions have no zeros is negligibly small unless

|Λ| & 10−1λ2
N =

10−1

6
N(N − 1)(N + 1). (123)

For the su(2) case, this can be seen in Figures 1 and 4 in [15]. The factor of λ2
N arises

from the embedding of the su(2) solutions in su(N) (see Section 2.3), and means that

the size of the neighbourhood decreases as N increases. This is illustrated in Figures 9

and 13 in [15], where the size of the region of parameter space where we have nodeless

black hole solutions with rh = 1 and Λ = −1 can be compared for su(3) and su(4) EYM,

the latter region being significantly smaller than the former.
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4.4. Existence of solutions for sufficiently large |Λ|

In the previous section we have proven the existence of black hole and soliton solutions

of the su(N) EYM field equations, for any negative value of the cosmological constant

Λ, such that all the gauge field functions have no zeros. However, the size of the region

of parameter space where we have these solutions shrinks as N increases, for fixed |Λ|.
In this section we shall consider the behaviour of the solutions for large |Λ|. We shall

prove that, given fixed initial parameters at the origin or black hole event horizon, as

applicable, for sufficiently large |Λ|, the corresponding solutions of the field equations are

such that all the gauge field functions have no zeros. These solutions are of particular

interest because we expect [14] that at least some of them will be linearly stable.

Numerically (see Section 2.4 and [15]), we find that for |Λ| sufficiently large, all

soliton and black hole solutions of the field equations are such that all the gauge field

functions have no zeros. This is not what we are able to prove in this section. Here we

can show that, with fixed initial parameters, there are nodeless solutions for sufficiently

large |Λ|, and it may well be that the magnitude of |Λ| required for the existence of

nodeless solutions varies depending on the values of the initial parameters. We observe

this numerically, for example, comparing Figures 1 and 2 in the su(3) case, we see that

for ω1(rh) = 0.25, ω2(rh) = 1, the corresponding black hole solution is not nodeless

when Λ = −2 but is nodeless when Λ = −3, whereas for ω1(rh) = 0.75, ω2(rh) = 1, the

black hole is nodeless for both these values of Λ.

We need to consider black hole and soliton solutions separately.

4.4.1. Black holes In [9], for su(2) EYM black holes, it is shown that for any fixed

value of the event horizon radius rh and any fixed value of the gauge field function on

the horizon, ω(rh), then for all Λ such that |Λ| is sufficiently large, there is a black hole

solution of the field equations such that the gauge field function ω(r) has no zeros.

The extension of this result to su(N) EYM black holes, as might be expected, is

not difficult so we just briefly sketch the derivation of the following result.

Proposition 11 For fixed rh and any fixed values of the gauge field functions at the

event horizon, ωj(rh), for |Λ| sufficiently large, there exists a black hole solution of the

su(N) EYM field equations such that all the gauge field functions ωj(r) have no zeros.

Proof Firstly, we note that for fixed rh and ωj(rh), the constraint (27) for a regular

event horizon is satisfied for all sufficiently large |Λ|. As in [9], it is helpful to define a

length scale ℓ by ℓ2 = −3/Λ, and then new variables m̂ and µ̂, which will be finite as

|Λ| → ∞, ℓ→ 0 as follows:

m̂ = mℓ2, µ̂ = µℓ2 = ℓ2 − 2m̂

r
+ r2. (124)

The field equations (12,15) then take the form

m̂′ =

(

ℓ2 − 2m̂

r
+ r2

)

G+ ℓ2r2pθ;
S ′

S
=

2G

r
;
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0 = r2

(

ℓ2 − 2m̂

r
+ r2

)

ω′′

j +
[

2m̂− 2ℓ2r3pθ + 2r3
]

ω′

j + ℓ2Wjωj. (125)

In the limit ℓ→ 0, these equations simplify considerably and have the unique solution

m̂(r) = m̂(rh) =
1

2
r3
h; S(r) = 0; ωj(r) = ωj(rh). (126)

We would like to extend these results to small, non-zero values of ℓ by analyticity,

along the lines of the argument used in Section 4.3. The proof of Proposition 6,

specifically contains Λ, however, we may use the straightforward change of variables

(cf. (98)):

λ̂ = ℓ2λ. (127)

Then the equations (99) are unchanged except that we include x dℓ
dx

= 0 instead of

xdΛ
dx

= 0 and have the following equation for xdλ̂
dx

:

x
dλ̂

dx
= −λ̂+ xHλ̂ + Fλ̂; (128)

where

Hλ̂ = − λ̂

ρ
(1 + 2G) ;

Fλ̂ =
ℓ2

ρ
+ 3ρ− 2ℓ2

ρ3
P. (129)

The field equations are then all regular as ℓ → 0, and the local existence result

Proposition 6 carries over to give regular solutions in a neighbourhood of the event

horizon. Furthermore, these solutions will be analytic in rh, ωj(rh) and ℓ.

Once we have the local existence of solutions near the event horizon, exactly the

same argument as used in Section 4.3 shows that we have solutions for ℓ sufficiently

small. In particular, fixing some r1 ≫ rh, and fixing both the radius of the event

horizon and the values of the gauge field functions on the event horizon, and varying

just ℓ, for ℓ sufficiently small we will have local solutions near the event horizon which

are regular for all r ∈ [rh, r1] and for which all the gauge field functions have no zeros

in this interval. Then, provided that r1 is sufficiently large, we may use the asymptotic

regime (see Section 4.2), and find that, as r → ∞, these solutions remain regular and

the gauge field functions will have no zeros.

The results of this section are illustrated in Figures 5 and 6, where we have plotted

example black hole solutions with the same values of the event horizon radius rh and

values of the gauge field functions at the event horizon, ω1(rh) and ω2(rh), but with

Λ = −100 and Λ = −1000 respectively.

The effect of increasing |Λ| by an order of magnitude can be seen by comparing these

two figures. In both cases, the gauge field functions hardly vary at all from their values

at the event horizon, and the difference between their values at the event horizon and at

infinity reduces as |Λ| increases. In both figures log S is a small function, and it decreases

as |Λ| increases. One interesting point is that, although we are considering very large
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Figure 5. Example of an su(3) black hole solution with rh = 1, Λ = −100, ω1(rh) = 2

and ω2(rh) = 1. As r → ∞, the gauge field functions tend to the following limits:

ω1 → 2.0962, ω2 → 0.9625. The function log S is not identically zero: at the horizon

log S = 2.6246× 10−3.

Figure 6. Example of an su(3) black hole solution with rh = 1, Λ = −1000, ω1(rh) = 2

and ω2(rh) = 1. As r → ∞, the gauge field functions tend to the following limits:

ω1 → 2.0091, ω2 → 0.9964. The function log S is not identically zero: at the horizon

log S = 2.3968× 10−5.
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values of |Λ| in both these figures, the geometry is far from being Schwarzschild-adS. This

is shown by the fact that the metric function m(r) is far from being constant, although

the difference between its values on the event horizon and at infinity is decreasing

as |Λ| increases, albeit slowly. Of course, Proposition 11 tells us that m(r) will be

approximately constant only for “sufficiently large” |Λ|, and does not tell us how large

“sufficiently large” is. It is clear that |Λ| will have to be very large indeed for m(r) to

be approximately constant, although the gauge field functions become approximately

constant for much smaller values of |Λ|. However, our main interest in this paper is

proving the existence of solutions, even if in an extreme situation.

4.4.2. Solitons Proving the existence of soliton solutions for any values of the initial

parameters (z̄2, . . . , z̄N) (22), for sufficiently large |Λ|, is much more difficult than the

corresponding result in the black hole case. The reason for this is that, in the black

hole case, there are two length scales: the radius of the event horizon rh and the length

scale ℓ set by the negative cosmological constant (ℓ2 = −3/Λ), and we have r ≥ rh for

the region of space-time outside the event horizon. Therefore, with rh fixed, we can

take ℓ → 0 in a reasonably straightforward way because we know that r−1 is bounded.

However, for soliton solutions, there is only one length scale, namely ℓ, and we need to

consider the whole range of values of r ∈ [0,∞). We therefore have to be very much

more careful in how we take the limit ℓ→ 0.

For solitons, the result corresponding to Proposition 11 is:

Proposition 12 For any fixed values of parameters z̄i, i = 2, . . . , N , which

parameterize the gauge field functions near the origin, for |Λ| sufficiently large, there

exists a soliton solution of the su(N) EYM field equations such that all the gauge field

functions ωj(r) have no zeros.

Proof Firstly, we rescale all the dimensionful quantities as follows:

r = ℓx̂; m(r) = ℓm̂(x̂). (130)

In the limit ℓ→ 0, it is more convenient to write the Yang-Mills equations not in terms

of the gauge field functions ωj (12), but instead to write the gauge field functions in

terms of new functions ζ̂j(r):

ω(r) = ω0 +

N
∑

k=2

ζ̂kvkr
k = ω0 +

N
∑

k=2

ζ̂k(x̂)ℓ
kx̂kvk. (131)

These functions ζ̂k are essentially the same as the ζk in Section 3.1.2, modulo a factor

of
√

j(N − j) and the rescaling of the independent variable x (compare equations (45)

and (130)). As shown in Section 3.1.2, the differential equations satisfied by the ζ̂k(x)

(82) are rather complicated for general N . For N = 3, they are given explicitly in [15].

However, in the limit ℓ → 0, the field equations simplify considerably. The Einstein

equations reduce to

m̂ ≡ 0, S ≡ 1, (132)
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so that µ = 1 + x2, and the differential equations for the ζ̂k(x) (82) decouple:

0 = x
(

1 + x2
) d2ζ̂k
dx2

+ 2
[

k + (k + 1) x2
] dζ̂k
dx

+ xk (k + 1) ζ̂k. (133)

This equation has a solution which is regular at x = 0:

ζ̂k(x) ∝ 2F1

(

1

2
+
k

2
,
k

2
;
1

2
+ k;−x2

)

; (134)

where 2F1 is a hypergeometric function. The constant of proportionality in (134) is

simply z̄k (22). It is straightforward to show, using the properties of hypergeometric

functions, that the boundary conditions at infinity (28) are satisfied. From (131), when

ℓ = 0, all the gauge field functions are constant and given by ωj ≡ ±
√

j(N − j).

However, it is important to find the forms of the ζ̂k functions in the limit ℓ → 0, even

though they are multiplied by powers of ℓ and so do not affect the form of the gauge

field functions in this limit. This is because they are important for small, non-zero ℓ.

The local existence result (Proposition 3) of Section 3.1.2 carries over, with trivial

amendments, using the scaled radial co-ordinate x̂ rather than x. Therefore in a

neighbourhood of the origin, we have local solutions of the field equations which are

analytic in the parameters z̄k and ℓ. The same argument as used in Sections 4.3 and 4.4.1

can then easily be used to show that there are soliton solutions for the field equations for

sufficiently small ℓ (that is, sufficiently large |Λ|) for which all the gauge field functions

have no zeros.

As with the black hole solutions in the previous section, we illustrate this result

with two example soliton solutions in Figures 7 and 8. Comparing these two figures,

it can be seen how m(r) and log S(r) tend to zero as |Λ| increases, and the gauge

field functions ω1,2 approach
√

2 everywhere. The metric function m(r) is decreasing in

size more quickly for solitons as |Λ| increases, compared with the black hole case (cf.

Figures 5 and 6). Our results in this section agree with [28], where it is shown that

stable monopoles (in [28] both monopoles and dyons are considered, but here we have

studied only purely magnetic monopole configurations) in su(2) EYM with Λ < 0 are

approximated by solutions on a pure adS background. There are non-trivial, nodeless,

monopole solutions in pure adS (see Figure 1 in [28]) for the su(2) case, and, as in

Section 2.3, these can be embedded into su(N). In Proposition 12, we have shown the

existence of nodeless su(N) solitons effectively approximated by solitons in pure adS

(because m̂ ≈ 0), but only in the limit of very large |Λ|, in which case the equations

governing the YM degrees of freedom decouple (133).

5. Conclusions

In this paper we have studied the existence of four-dimensional, spherically symmetric,

soliton and black hole solutions of su(N) EYM with a negative cosmological constant.
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Figure 7. Example of an su(3) soliton solution with Λ = −100, z̄2 = −2 and z̄3 = −1.

Figure 8. Example of an su(3) soliton solution with Λ = −1000, z̄2 = −2 and z̄3 = −1.

Numerical solutions forN = 3 and N = 4 were presented in [15], but, of course, numerics

can only find solutions for a small, finite number of values of N . The purpose in this

paper was to prove the existence of four-dimensional, spherically symmetric, soliton

and black hole solutions for any integer value of N . The general approach was briefly

outlined in [14], but in this paper we have presented all the detailed results.

We began, in Section 2.1, by describing the field equations for su(N) EYM with a

negative cosmological constant, the ansatz for the metric and gauge potential and the



su(N) EYM solitons and black holes with Λ < 0 35

boundary conditions at the origin, black hole event horizon (if there is one) and infinity.

We considered only purely magnetic gauge fields, which are described by N − 1 gauge

field functions ωj. We also described how any su(2) EYM soliton or black hole solution

can be embedded to give an su(N) EYM solution for any value of N . The goal of the

paper is to prove the existence of genuinely su(N) solutions, that is, solutions of the

su(N) EYM field equations which are not embedded su(2) solutions.

The field equations for su(N) EYM are singular at the origin, black hole event

horizon and at infinity. In Section 3 we proved local existence of solutions in

neighbourhoods of these singular points, using an approach in [17, 21]. Our key existence

results are in Section 4. Firstly, we are able to prove the existence of genuinely su(N)

solutions in a neighbourhood of an embedded su(2) solution, and, as a corollary, the

existence of su(N) solutions for which all the gauge field functions have no zeros, for

any negative value of the cosmological constant. Secondly, we show that, for any fixed

values of the initial parameters at either the origin or the black hole event horizon,

which fix the local solution in a neighbourhood of the relevant starting point, then for

|Λ| sufficiently large, this local solution can be extended to infinity to give a soliton or

black hole solution for which all the gauge field functions have no zeros. These solutions

when |Λ| is large are of particular interest, because at least some of them are linearly

stable under spherically symmetric perturbations. An outline of this result can be found

in [14], and the details will be presented elsewhere [16].

Our main result is therefore the existence of four-dimensional, spherically

symmetric, asymptotically adS, soliton and black hole solutions of the su(N) EYM

field equations with N − 1 gauge field degrees of freedom. For black holes, this means

that there is no limit on the number of gauge field degrees of freedom (or ‘hair’) with

which the black hole may be endowed. Of course, it is the stability of at least some of

these black holes which is central to their importance for the no-hair conjecture, an issue

to which we shall return [16]. This result raises the interesting question of whether there

are solitons or black holes with an infinite number of gauge field degrees of freedom.

There is some evidence [29] for black hole solutions of su(∞) EYM, but more work is

required in this area.

There are a number of generalizations of the model considered here which would

merit further study. We have not considered topological black holes in adS, although

solutions are known for the su(2) gauge group [23]. For su(2) EYM in adS, static,

axially symmetric soliton [30] and black hole [31] solutions are known: it is likely that

generalizations of these to su(N) EYM exist. Rotating su(2) EYM black holes in adS

have also been found [32], and again one would expect generalizations to the larger gauge

group to exist. However, the numerical challenges in finding such solutions cannot be

underestimated. The stability of these solutions also remains an open question. In

this paper we have restricted our attention to purely magnetic gauge fields. For su(2)

EYM in adS, dyonic regular and black hole solutions exist [10], even though non-trivial

su(2) EYM solutions in asymptotically flat space must be purely magnetic [33]. Since

su(N) solutions in asymptotically flat space may have electric as well as magnetic charge



su(N) EYM solitons and black holes with Λ < 0 36

[25], it would not be surprising to find dyonic su(N) EYM solutions in adS, although

including the electric part of the gauge field will only introduce a single additional

gauge field degree of freedom. The stability of the dyonic solutions, even in the su(2)

case, remains an open question. Next, EYM solitons and black holes in more than

four space-time dimensions have recently received much attention in the literature (see

[34] for a review and references), and analogue higher dimensional solutions of su(N)

EYM would be expected. Finally, one would expect to be able to extend our results to

arbitrary compact gauge group: in [21] local existence theorems are proved for compact

gauge group in asymptotically flat space, and extending these to include a negative

cosmological constant should be possible, leading to existence theorems along the lines

of those proved in Section 4.

Having shown that there is no limit to the amount of hair a black hole in adS

can be given, the natural question arises of the consequences of these black hole

solutions for gravitational physics. Firstly, there is the impact on the status of the

“no-hair” conjecture: these black holes require an unlimited number of parameters to

fully describe their configurations, and therefore are contrary to the “spirit” of the “no-

hair” conjecture, namely that black holes are fundamentally simple objects. The fact

that these black holes with unlimited amounts of hair exist in anti-de Sitter space may be

significant, particularly in view of the adS/CFT (conformal field theory) correspondence

[35]. It has been conjectured [36] that there are observables in the dual (deformed) CFT

which are sensitive to the presence of black hole hair, and an adS/CFT interpretation

of some stable seven-dimensional black holes with so(5) gauge fields is given in [37]

(see also [38] for a discussion of non-abelian solutions in the context of the adS/CFT

correspondence). Black holes with non-abelian gauge fields in supergravity have begun

to attract attention recently [39] and understanding the supersymmetric analogues of

the solutions we have found in this paper will be an important question to which we

plan to return in the near future.
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