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Abstract  

Semantic and traditional databases are vulnerable to Inconsistent or Incomplete Data 
(IID). A data set stored in a traditional or semantic database is queried to retrieve 
record(s) in a tabular format.  Such retrieved records can consist of many rows where 
each row contains an object and the associated fields (columns). However, a large set 
of records retrieved from a noisy data set may be wrongly analysed.  For example, a 
data analyst may ascribe inconsistent data as consistent or incomplete data as 
complete where he did not identify the inconsistency or incompleteness in the data. 
Analysis on a large set of data can be undermined by the presence of IID in that data 
set. Reliance as a result is placed on the data analyst to identify and visualise the IID in 
the data set.  

The IID issues are heightened in open world assumptions as evident in 
semantic or Resource Description Framework (RDF) databases. Unlike the closed 
world assumption in traditional databases where data are assumed to be complete with 
its own issues, in the open world assumption the data might be assumed to be 
unknown and IID has to be tolerated at the outset. Formal Concept Analysis (FCA) can 
be used to deal with IID in such databases. That is because FCA is a mathematical 
method that uses a lattice structure to reveal the associations among objects and 
attributes in a data set. 
 The existing FCA approaches that can be used in dealing with IID in RDF 
databases include fault tolerance, Dau's approach, and CUBIST approaches. The new 
FCA approaches include association rules, semi-automated and automated methods in 
FcaBedrock. These new FCA approaches were developed in the course of this study. 
To underpin this work, a series of empirical studies were carried out based on the 
single case study methodology. The case study, namely the Edinburgh Mouse Atlas 
Gene Expression Database (EMAGE) provided the real-life context according to that 
methodology. The existing and the new FCA approaches were used in identifying and 
visualising the IID in the EMAGE RDF data set. 
 The empirical studies revealed that the existing approaches used in dealing 
with IID in EMAGE are tedious and do not allow the IID to be easily visualised in the 
database. It also revealed that existing FCA approaches for dealing with IID do not 
exclusively visualise the IID in a data set. This is unlike the new FCA approaches, 
notably the semi-automated and automated FcaBedrock that can separate out and 
thus exclusively visualise IID in objects associated with the many value attributes that 
characterise such data sets. The exclusive visualisation of IID in a data set enables the 
data analyst to identify holistically the IID in his or her investigated data set thereby 
avoiding mistaken conclusions. 
 The aim was to discover how effective each FCA approach is in identifying 
and visualising IID, answering the research question: "How can FCA tools and 
techniques be used in identifying and visualising IID in RDF data?" The automated 
FcaBedrock approach emerged to be the best means for visually identifying IID in an 
RDF data set. The CUBIST approaches and the semi-automated approach were 
ranked as 2nd and 3rd, respectively, whilst Dau's approach ranked as 4th. Whilst the 
subject of IID in a semantic technology setting could be explored further, it can be 
concluded that the automated FcaBedrock approach best identifies and visualises the 
IID in an RDF thus semantic data set.  
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Chapter 1: Introduction 

 

1.1 Background to the Research 

This chapter introduces the rationale and objectives of this research. This section 

presents a brief technical background to the research which is focused on the need to 

explore novel ways for dealing with the problem of inconsistent and incomplete data in 

semantic databases. Section 1.2 of the chapter presents the rationale for the research. 

Section 1.3 states the research objectives and section 1.4 concludes with an overview 

of this thesis. 

Semantic technologies are becoming popular and increasingly important for 

storing and processing data. A semantic technology (ST) uses techniques that support 

and exploit the semantics of information, as opposed to syntax and 

structural/schematic issues, to enhance existing information systems (Sheth 2005). 

The semantics of information refers to the meaning associated with information, whilst 

syntax and structural/schematic issues refer to the heterogeneity challenges existing in 

traditional data processing systems. STs allow the meanings of and associations 

between objects and attributes which constitute information in a knowledge base to be 

known and processed at execution time (Sheth and Ramakrishnan 2003). Resource 

Description Framework (RDF) data, for example, are processed in ST setting. The RDF 

is a framework for representing information on the Web. Unlike relational data which 

are stored and processed in a traditional database such as Oracle and MySQL, RDF 

data are stored and processed in a semantic database. The processing of RDF in ST 

setting is explained in details in chapter 3 of this thesis. 

RDF database tolerates IID. It adopts Open World Assumption (OWA) principles 

which implicitly assume that a knowledge base may always be incomplete (Hitzler et 

al., 2011 p.131). For example, consider the following statement about Philip in an OWA 

database: "Philip passed an English test." Under the OWA database, there is 

incomplete knowledge about stored data. Statements such as "Philip failed an English 

test" or "Philip did not take an English test" are allowed to exist in the same database. 

Consequently, contradictory (inconsistent) data can exist in such databases.  

Conversely, a Closed World Assumption (CWA) framework holds that all 

relational statements in a knowledge base are completely listed, so that what is 

currently not known to be true in the sense of not being included in the list is false. 



2 

 

Consequently, an OWA framework is much more likely to generate new statements or 

accommodate new meanings based on the facts in the framework. 

Since RDF adopts OWA principles, it does not prevent anyone from making 

assertions that are nonsensical or inconsistent with other statements or the world as 

people see it (Klyne et al. 2004). Hence, RDF data may always be inconsistent or 

incomplete. Unlike an RDF triple store1, a traditional database can adopt CWA 

principles, which imply that the associated knowledge base is complete. Even so, 

traditional databases may contain IID. CWA and OWA are discussed in details in 

Chapters 2 and 3, respectively.  

As explained further below, this research explores novel ways for dealing with 

Inconsistent or Incomplete Data (IID) in RDF (hence semantic) databases, for which 

there is relatively fewer works compared to research on IID in traditional database 

settings. 

1.2 Rationale for the Research 

The presence of IID in semantic or traditional databases can lead to inaccurate 

inferences or inaccurate conclusions. This results to enormous cost on enterprises. 

Polovina (2013) notes that many enterprises risk business transactions based on 

information systems that are incomplete or misleading, given that 80-85% of all 

corporate information remains outside of the processing scope of such systems. Also, 

the Bloomberg Trading Solutions (undated) note that the complete cost of 

inconsistency is unquantifiable and it can include cost of accounting errors, cost of 

multiple feeds and all required labour to address the inconsistency.  

In traditional databases, missing data is represented by the null and this remains 

a controversial issue as evident in (Lano 2014; Waraporn and Porkaew 2008; Zimányi 

and Pirotte 1997). The use of null to represent missing attribute values from various 

sources can lead to inconsistencies when the data are integrated. An integrated data 

set is evident in databases such as data warehousing, data fusion and data exchange 

systems. Bleiholder and Naumann (2008) identify IID as a problem in an integrated 

data set. Also, Decker and Martinenghi (2011) demonstrate how inconsistencies can 

emerge in a traditional database as a result of violations of integrity constraints. 

Integrity constraints and null are discussed in greater details in chapter 2.  

 Data set stored in a traditional or semantic database is queried to retrieve 

record(s) in a tabular format.  Such retrieved records can contain many rows where 

                                                      
1
 A database that stores RDF data 
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each row contains an object and the associated fields (columns). However, a large set 

of records retrieved from a noisy data set may be wrongly analysed by a data analyst.  

For example, a data analyst may ascribe inconsistent data as consistent or incomplete 

data as complete where he did not identify the inconsistency or incompleteness in the 

data. The data analyst needs to visually identify the IID in such retrieved record set as 

to properly analyse the data. But visually identifying the IID in a large tabular record set 

can be difficult. This is because a record set displayed in a tabular format does not 

enable an easy visualisation of the IID. The data analyst visually compares the different 

rows in the record set to fine contradictory records or records without particular fields. 

There is therefore a need for an easier means to exclusively visualise the IID in a large 

and noisy record set. 

 There is a wide body of work on dealing with IIDs in traditional database 

settings. Among these works are (Decker and Martinenghi 2011; Grant and Hunter 

2011; Bleiholder and Naumann 2008; Cortés-Calabuig et al. 2005; Hunter and 

Konieczny 2005; Ma et al. 2007). However, in semantic database settings there is not 

so much research on dealing with IIDs. Notable among the few existing works are (Dau 

2013a; Dau 2013b; Melo et al. 2013). There is therefore a need to research how IID in 

RDF data can be dealt with. 

The aim of this work is to discover ways by which Formal Concept Analysis 

(FCA) can be used to deal with IID in a semantic technological setting. FCA is a 

semantic analysis technique and has been shown in a recent European Union (EU) 

CUBIST2 project to be useful and appropriate for the analysis of data in RDF triple 

store. It involves a mathematical method which uses a lattice structure to reveal the 

associations among objects and attributes in a data set. It uses the lattice as a 

visualisation framework to explore correlations, similarities, and anomalies in a data set 

(Carpineto and Romano 2004, p.15).  Therefore, it can be used to explore IID in RDF 

data sets. Hence, this work uses an indicative case study to answer the research key 

question:  

 

“How can FCA tools and techniques be used to identify and visualise IID in 

RDF data?”   

The research uses an RDF triple store (Owlim3) and FCA analysis tools such as 

FcaBedrock4, Concept Explorer5 and In-Close6 as its semantic technological setting. It 

                                                      
2
 www.cubist-project.eu 

3
 https://www.ontotext.com/owlim 

http://www.cubist-project.eu/


4 

 

builds on works of Dau (2013a, 2013b) and Melo et al., (2013) which deal with IID in 

RDF data set, in order to develop novel FCA approaches that improve upon some 

inadequacies in the existing ones. In other words, the research explores existing and 

additional approaches in which FCA tools and techniques can be used to deal with IID 

existing in RDF data. The research uses a single case study to evaluate the 

performance of the identified FCA approaches.  

 

1.3 Research Objectives 

The specific objectives of the research are as follows: 

1. To understand IID issues and how they are dealt with in a traditional technology 

setting.  

2. To understand IID issues in ST setting 

3. To investigate existing approaches in dealing with IID in ST setting.  

4. To propose FCA as an appropriate and effective technique for dealing with IID in 

ST setting.  

5. To build on existing FCA approaches and develop better novel approaches.  

6. To apply existing and new FCA approaches to an indicative case study  

7. To compare and evaluate the usefulness and effectiveness of the different FCA 

approaches.   

 

1.4 Overview of this Thesis 

This thesis is presented in 10 chapters. Chapter 1 presents the rationale and objectives 

of the research as stated above. 

Chapter 2 explains what IID is. It describes in more details, the concept of CWA and 

the different types of IID. Null and integrity constraints are among the identified sources 

of IID in traditional database. Also, the use of optional fields in data entry forms is 

                                                                                                                                                            
4
 http://sourceforge.net/projects/FcaBedrock/ 

5
 http://sourceforge.net/projects/conexp/ 

6
 http://sourceforge.net/projects/inclose/ 
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identified as a source of incomplete data. The various approaches used in addressing 

IID in traditional databases are described in this chapter.  

Chapter 3 provides an overview of ST, semantic database, RDF and the concept of 

OWA. IID in semantic database are explained. The chapter also identifies and explains 

existing approaches that are used in dealing with IID in a semantic database setting.  

Chapter 4 describes the classical FCA approach. It explains how formal concepts are 

derived from formal context and how they are displayed in a lattice structure. The 

challenges of classical FCA approach in identifying and visualisation IID are also 

explained.  

Chapter 5 explains the research methodology, including how FCA is used to address 

the issues of IID in an indicative case study - the Edinburgh Mouse Atlas Gene 

Expression Database (EMAGE). The chapter explains case study research with 

emphasis on single case study. The suitability of EMAGE as a case study is explained. 

The chapter also identifies FCA as a research method. The criteria used in selecting 

EMAGE as a case study are also explained. 

Chapter 6 explains in detail the EMAGE, a database of gene expression data in the 

developing mouse embryo, and an accompanying suite of tools to search and analyse 

the data. The chapter particularly explains how the e-Mouse Atlas Project (EMAP) is 

used in EMAGE. In addition, it describes the EMAGE RDF data set.  The causes of IID 

in the EMAGE data set are also identified and explained.  

Chapter 7 explains how the RDF query language (SPARQL) can be used to retrieve IID 

from a semantic database. It provides comprehensive details about existing and new 

FCA approaches to IID in RDF data set. Examples are also used to illustrate how these 

approaches are applied. This prepares the ground for applying the approaches to the 

case study. 

Chapter 8 therefore explains how these FCA approaches are used to identify IID 

existing in an EMAGE data set.  

Chapter 9 compares and evaluates the effectiveness of the FCA approaches.  

Chapter 10 outlines the main contributions of the research to knowledge, concludes 

this thesis, and discusses the challenges of the study and related future works.    
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Chapter 2: Inconsistent and Incomplete Data (IID) Issues in 
Traditional Databases 

 

2.1 Introduction 

This chapter explains what IID in a database is. It specifically discusses IID in 

traditional database. Section 2.2 explains the different types of IID in traditional 

databases. Section 2.3 discusses IID in traditional databases in which CWA is adopted. 

The sources of IID in traditional databases are explained in section 2.4 and the various 

ways of dealing with the IID in a traditional database are explained in section 2.5. 

Section 2.6 concludes the chapter by outlining the key messages and findings. 

IID exists in a database when data do not conform to the rules governing its 

design. A data set in a traditional database can contain objects (G) and associated 

attributes (M) which have many values (W).  Consequently, an object (g    G) that is 

associated with an attribute (m   M), can be inconsistent or incomplete in a traditional 

database. An object can be inconsistent when there is a contradiction in the values of 

the attribute such that w ⊆ W is associated with A and ¬A. An object is incomplete 

when it has some but not all of its required values.  

IID often exist in a traditional (relational) database in which data are integrated 

from different sources. This is because in such integrated databases, different values 

from different sources can be associated with an attribute of an object. Contradictory 

values can be associated with an attribute of an object, while some attributes of an 

object may not have the required values. IID are not restricted to integrated databases. 

A single source data set may also contain IID, for example; syntactic errors, missing 

values, unique value violation, out of range values and functional dependency 

violations are identified as different ways in which IID can exist in single source data 

sets (Fürber and Hepp 2010). Some examples of the different traditional databases 

where IID are likely to exist include; data exchange (Hernich et al. 2011; Afrati and 

Pavlaki 2008; Libkin 2006), data fusion (Khaleghi et al. 2013; Bleiholder and Naumann 

2008; Kumar et al. 2007), and data warehousing (Kimball and Caserta 2004; 

Calvanese et al. 2001; Rahm and Do 2000; Chaudhuri and Dayal 1997). These 

domains where IID thrive in traditional databases are explained in section 2.3 below. 
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2.2 Types of Inconsistent or Incomplete Data (IID) 

IID can occur in traditional database for different reasons; for example, it can occur 

because a value of an attribute is not available or because the value is integrated from 

a data source with a different schema. In this section, the various classifications of IID 

are explained. 

There are different classifications of IID; for example, Codd (1986) classifies 

missing data in a traditional database as either ‘missing and applicable’ or ‘missing and 

inapplicable’. Kim and Seo (1991) classify data conflict in multidimensional databases 

as ‘wrong data’ and ‘different representations for the same data’. Bleiholder and 

Naumann (2008) explain that a data conflict is present in a data set if for the same real-

world object e.g. a student, semantically equivalent attributes from one or more 

sources do not agree on its attribute value; for example source 1 reporting “23” as the 

student’s age, and source 2 reporting “25”. They describe two kinds of data conflict: (a) 

uncertainty about the attribute value, caused by missing information and (b) 

contradictions, caused by different attribute values. Other classifications of missing 

data in traditional databases are presented in works such as (Waraporn and Porkaew 

2008; Zimányi and Pirotte 1997; Codd 1979; Gottlob and Zicari 1988).   

In this work, IID are classified as either binary or analogue.  A binary form of IID 

exists when the same object is associated with attribute values that have opposite 

meanings. An example of attribute values that have opposite meanings is a gene which 

is ‘detected’ and ‘not detected’. An analogue type of IID exists when an object is 

associated with attribute values that are slightly contradictory. An example of attribute 

values that are slightly contradictory is a gene which is associated with weak and 

medium expression levels. Finkelstein (2000) explains that “In many cases 

inconsistencies reflect slips and minor errors or possibly delayed commitments which 

are relatively easy to resolve. Some inconsistencies however reflect serious conflicts 

with substantial knock-on consequences and may involve substantial negotiation.” 

Such minor errors can be attributed to analogue IIDs while serious conflicts can be 

attributed to binary IIDs. Inconsistency in gene expression data is also classified as 

either binary or analogue in McLeod and Burger (2011).  

 

2.3 Close World Assumption (CWA) and Inconsistent or Incomplete Data 

(IID) 

The underlying principles of a database can either prohibit IID such as in CWA or allow 

the existence of IID such as in OWA. This section describes how CWA is adopted in 
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traditional databases and the consequences of such implementation on the stored 

data. 

The CWA expresses the communication agreement that an atom that does not 

appear in the database is false (Cortés-Calabuig et al., 2005, Denecker et al. 2010). It 

works on the principles that a knowledge base has complete information about every 

data in the domain. Even where there is no proof of a positive ground literal, the 

negation of that literal is assumed true (Reiter 1982).  

Traditional databases adhere to the principles of CWA by representing unknown 

or missing values with null and resisting non-conforming data through the use of 

integrity constraints. The works of (Codd 1979) provides a formal treatment of missing 

values by null under the unknown semantics (Gottlob and Zicari 1988). Zimányi and 

Pirotte (1997) explain that null have been most widely used to model incomplete 

information under CWA. But the null is an ambiguous representation of a missing 

value. This is because a missing value can be unknown, not available, not existing, or 

not applicable. The use of the null to represent all these instances in a data set causes 

indefiniteness in the set of data. Consequently, inaccurate results can be drawn from a 

set of data in which nulls are used in representing missing attribute values.  

Null cannot explicitly represent missing values where data from different sources 

are integrated into a data set. Its use in traditional database may result into IID when 

data are integrated from multiple sources. For example, an attribute value of an object 

from source ‘A’ can be assigned the null value. Also, a different value can be assigned 

to the same attribute of the same object in source ‘B’. This will result into an uncertainty 

when these data are integrated into a single database. Such uncertainty in traditional 

database is described in Bleiholder and Naumann (2008) as the conflict between a 

non-null value and one or more null values that are all used to describe the same 

property of an object. This type of conflict can be assessed as analogue IID (see 

section 2.2). Moreover, some partial knowledge available to the data user such as the 

inapplicability of a value in an attribute will be lost when such knowledge is represented 

by null (Gottlob and Zicari 1988). The works of (Waraporn and Porkaew 2008; Gottlob 

and Zicari 1988; Zimányi and Pirotte 1997) explain the lapses in representing missing 

values with null. 

Also, IID can be prohibited from a traditional database through the use of integrity 

constraints. Integrity constraints are statements declared in the database schema 

which express semantic properties that are meant to be invariably satisfied by the 

stored data across state changes (Decker and Martinenghi 2011). The use of integrity 

constraints entail that the traditional database would contain partial information. This is 

because in traditional database, integrity constraints are used to restrict non-
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conforming data from entering into the database. These restrictions imply that the 

traditional database does not guarantee the full correctness or completeness of its data 

with respect to the part of the real world that it models (Grefen 1993; Motro 1998). 

More so, the adoption of CWA and the use of integrity constraints do not efficiently 

apply to all domains.  Cortés-Calabuig et al., (2005) explain that in a context of 

integrated data sources, CWA is inherently inappropriate since the consideration of a 

certain data source as a single and complete representation of the world either 

completely discards the other sources of information or causes contradictions among 

them. Consequently, IID can thrive in databases such as data exchange, data fusion, 

and data warehousing. These databases are briefly described below: 

2.3.1 Data Exchange 

Data exchange is the problem of taking data structured under a schema called the 

source schema, and transforming it into data structured under another schema, called 

the target schema (Kolaitis 2005; Fagin and Kolaitis 2005). It involves materialising the 

source data in a target data set. The importance of data exchange is evident in a 

circumstance where the transfer of data between independently created applications is 

required. Such independently created applications are likely to have different schemas, 

integrity constraints, and data format.  

 IID can thrive in data exchange databases. For example, in data exchange the 

null may be used to represent missing values of source data in the target data set. This 

practice as described in this chapter is likely to lead to IID. Hernich et al. (2011) and 

Libkin (2006) note that when the presence of incomplete information in the target 

source of data exchange setting is ignored then certain answers from the data 

exchange will be wrong. Also, certain answers from the data exchange will be wrong 

where CWA is not enforced (Afrati and Pavlaki 2008; Hernich et al. 2011; Libkin 2006). 

 

2.3.2 Data Fusion 

Data fusion involves the process of fusing multiple records representing the same real-

world object into a single, consistent, and clean representation (Bleiholder and 

Naumann 2008). This involves fusing multiple records from different data sources and 

also resolving associated inconsistencies. The aims, definitions and techniques of data 

fusion vary from domain to domain (Boström et al. 2007) but, in general, data fusion 

faces the challenge of structuring data from multiple schemas into a data set. 

Bleiholder and Naumann (2008) identify the main problems in data fusion as the 
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detection of equivalent schema elements in different sources (schema matching) and 

the detection of equivalent object descriptions (duplicate detection) in different sources 

to integrate data into one single and consistent representation.  

Data fusion systems are widely used in various areas such as sensor networks, 

robotics, video and image processing, and intelligent system design (Khaleghi et al. 

2013). IID are identified in data fusion in works such as in (Khaleghi et al. 2013; 

Bleiholder and Naumann 2008; Kumar et al. 2007).   

 

2.3.3 Data Warehousing 

A Data Warehouse is a set of materialized views over the operational information 

sources of an organization, designed to provide support for data analysis and 

management's decisions (Calvanese et al. 2001). A data warehouse can include data 

from an organisation’s operational information sources which may span over a long 

period. It can involve integrating data from different sources into a database. Such 

database can be subject to changes where new sources are integrated and old 

sources may be deleted.  

Basically, data warehousing involves the Extract, Transform and Load (ETL) 

processes. Data are extracted from identified operational information sources 

(internally or externally), transformed and loaded into the end target file. These 

extracted data can be dirty or noisy such that they are inconsistent, have missing 

values or other anomalies. Consequently, they will be transformed to meet the data 

warehouse requirements such as the integrity constraints in the data warehouse. Also, 

not all the extracted data might be needed for a particular managerial decision, so only 

the required data will be loaded into the target file for a particular analysis.  

Issues of IID are obvious in ETL processes. For instance, data cleaning is an 

important activity in the ETL processes of a data warehouse and it deals with detecting 

and removing errors, missing data and inconsistencies in the data set (Kimball and 

Caserta 2004; Calvanese et al. 2001).  Data cleaning in ETL processes aims at 

ensuring that the data in the data warehouse are correct, consistent and complete. For 

example, Kimball and Joe (2004 p. 166) point out that during the loading phase of the 

ETL processes, it is important to recognise the same dimensional entity across multiple 

source systems and resolve the conflicts in overlapping descriptions.  Works such as 

(Kimball and Caserta 2004; Calvanese et al. 2001; Rahm and Do 2000; Chaudhuri and 

Dayal 1997) identified IID as a challenge in data warehouses. 
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2.4 Sources of IID in Traditional Databases 

This section discusses null, integrity constraints, and optional fields in data entry forms 

as some of the sources of IID in a traditional database. These sources of IID in 

traditional databases are explained as follows:  

2.4.1 Nulls  

Incomplete data contain missing attribute value(s).  The null is used in traditional 

databases to represent missing attribute values as explained above. A missing attribute 

value can be unknown, unavailable, not existing or not applicable. The representation 

of these values with null can be problematic in an integrated data set.  Lano (2014) 

explains how the explicit use of nulls complicates system specification and verification 

by introducing indefiniteness into expressions, encouraging the use of hard-to-verify 

specification styles and complicating the logic used for reasoning about systems and 

models. This is because null can misrepresent the meanings of missing attribute 

values. It can also cause inconsistency in the meaning of missing value when an 

attribute value in a source data is compared to the represented value in an integrated 

data set.  

 

2.4.2 Integrity constraints  

Integrity constraints are statements that must always be true for the stored data and for 

any update to the database. Integrity constraints are usually provided by the Database 

Management System (DBMS). A DBMS can be defined as a program that helps to 

manage your database. A check for null in a primary key is an example of an integrity 

constraint which a DBMS provides. In some instances, third party software applications 

provide such integrity constraints where the constraints are not supported by the DBMS 

(Decker and Martinenghi 2011).   

An application of integrity constraint introduces incompleteness into the traditional 

database.  The database is left with only partial information to answer user’s queries. 

Calì et al., (2013) explain that in a global schema containing integrity constraints, the 

query processing is intimately connected to the notion of querying incomplete 

databases. They note that “when the global schema is expressed in the relational 

model with integrity constraints, even of simple types, the problem of incomplete 

information implicitly arises”. A global schema provides an integrated and virtual view 

of the different sources of data. The application of integrity constraints in traditional 

databases, leads to incomplete information in the database.  
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Furthermore, inconsistencies in a traditional database may emerge as a result of 

violations of integrity constraints. Decker and Martinenghi (2011) explain that integrity 

constraints may be violated when new constraints are added without being checked for 

violations by legacy data. Integrity control of a database may be turned off temporarily 

such as when uploading a backup for which a total check would last too long. The 

integrity of the data in a database may also deteriorate by migrating to the DBMS of a 

different vendor, since the semantics of integrity constraints tends to be proprietary. 

When an integrity constraint in a DBMS is violated, inconsistency prevails in the 

database. Also, properly designed constraints introduce incompleteness in the 

database by not allowing data that may violate it. IID will always exist in a traditional 

database when integrity constraints are applied.  

 

2.4.3 Optional fields in data entry forms  

A data entry form with an optional field can cause IID in a traditional database.  

Chaudhuri and Dayal (1997) identify optional fields in data entry forms as significant 

sources of inconsistent data. A data entry form may contain optional or mandatory 

fields. The asterisk ‘*’ by the side of a field in a data entry form is often used as a 

distinction between optional and mandatory fields where the later is indicated by the 

asterisk.  

An optional field enables the capture of non-mandatory data from a form user. 

There are issues of IID when a data entry form contains optional fields. This is because 

the form user may enter contradictory or even nonsensical values through an optional 

field. He may also leave the optional field blank which will result to missing data at the 

backend of the data entry form. 

There are other possible causes of IID in traditional databases. For example, the 

lack of a consistent vocabulary in traditional database can cause IID in the database. 

Berners-Lee et al. (2001) explain that traditional knowledge representation systems are 

typically centralized, requiring everyone to share exactly the same definition of 

common concepts such as "parent" or "vehicle." A representation system whose data 

are from different sources that do not abide by a common vocabulary is likely to house 

inconsistent data. Also, Denecker et al. (2010) note that ignorance about the domain, 

lack of proper maintenance, incomplete migration, and accidental deletions of tuples 

are some of the reasons for the presence of incomplete knowledge in a database.  

This section has outlined some sources of IID in traditional databases. Even so, 

the traditional database engines such as MySQL and Oracle applications are still used 
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to process both the single sourced and the integrated data sets. Section 2.5 explains 

how IID are dealt with, in such traditional database.  

 

 2.5 Approaches used to Deal with IID in Traditional Databases 

There are several approaches that can be used to deal with the IID in traditional 

databases. These approaches can be classified as follows:  

 

2.5.1 Resolving/Repairing IID  

Resolving IID involves identifying the IID and replacing or repairing the IID. It involves 

applying some minimal change to IID as explained in Wijsen (2006). In data warehouse 

for example, data cleaning provides an avenue to detect and remove errors and 

inconsistencies in a data set (Rahm and Do 2000). Some of the approaches used in 

data cleaning are documented in (Kimball and Caserta 2004; Rahm and Do 2000).  

There are also tools developed for detecting and repairing data which violate 

integrity constraints (Fan et al. 2008; Fazzinga et al., 2006; Raman and Hellerstein 

2001). In addition, the works of (Flesca et al., 2010; Bertossi et al., 2008; Cong et al. 

2007; Bravo and Bertossi 2006) demonstrate how inconsistent data can be identified 

and resolved through the use of relational data queries. Missing attribute values in 

incomplete data are resolved in relational database by either replacing them with null or 

with other meaningful representations. The works of (Waraporn and Porkaew 2008; 

Zimányi and Pirotte 1997; Gottlob and Zicari 1988; Codd 1979) demonstrate how 

missing values in relational databases can be replaced.   

2.5.2 Preventing IID  

The use of integrity constraints (see Section 2.4 above) can prevent certain IID from 

entering the database. For example, the primary keys in most commercial relational 

databases are specified as non-Null constraints by the DBMS. Such an integrity check 

prevents records that have missing data in the field used as the primary key from being 

admitted into the database. Works such as (Grefen 1993; Codd 1979) demonstrate 

how constraints are used to prevent IID.  
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2.5.3 Reasoning with IID    

Sometimes, it is necessary to allow IID into a database.  For example, IID should be 

allowed into a tax database to identify fraudulent data. On such note, Decker and 

Martinenghi (2011) suggest that inconsistencies are often unavoidable or even useful 

such as in diagnosis or mining fraudulent data. They propose ways by which some 

inconsistencies can be tolerated through integrity tolerance check. Hunter and 

Konieczny (2005) explain the importance of tolerating inconsistent data to include the 

avoidance of losing information about some facts in a database. It is therefore 

important to have good reasoning methods for dealing with a database which contains 

IID. An example of a good reasoning technique for retrieving information from a noisy 

database is consistent query answering as evident in (Fuxman et al., 2005; Chomicki et 

al., 2004; and Arenas et al., 1999).   

 

2.6 Key Messages and Findings 

IID may not mainly be resolved, prevented, evaluated or reasoned with. They should 

be managed in accordance with the requirements of the domain7 in which they occur. 

For example, in circumstances in which IID is tolerated, the IID should be reasoned 

with rather than repaired or replaced. Also, it may not be beneficial to use traditional 

database as a data processing engine. A database that adheres to OWA can be more 

effective in dealing with IID. For example, it is acknowledged in (Bonifati et al. 2008; 

Halevy et al. 2003) that designing a database which can adhere to CWA is difficult or 

even impossible to achieve in a Peer to Peer (P2P) database system. Thus, the 

integrated data sets may more effectively be processed by a database system which is 

based on the OWA. Chapter 3 explores the semantic database, its adherence to OWA, 

IID in RDF data, and related concepts.  

This chapter has explained the meanings and types of IID and how the integrity 

constraints and null in traditional databases are used, among others. It also explained 

the sources of IID in traditional database and the ways by which it can be dealt with. 

Related concepts which underpin this study such as CWA versus OWA frameworks 

were reviewed. The chapter noted particularly that IID is an important and challenging 

                                                      
7 Some approaches, for example [Denecker et al. 2010] have different assumptions on 

the domain of the database (Local Closed World Assumptions) while others adhere to 

CWA or OWA. 
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concept in data processing and analysis; hence there is great need to properly manage 

it in order to avoid inaccurate data analysis. This informs the focus of this work in using 

RDF and FCA approaches to deal with IID problems in ST settings, as explored further 

in chapter 3 and 4.  
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Chapter 3: Inconsistent and Incomplete Data (IID) in Semantic 
Technology (ST) Setting 

 

3.1 Background  

This chapter describes how IID in Resource Description Framework (RDF) data are 

processed in a semantic technology (ST) setting. It begins by describing what ST is. 

Section 3.2 explains the OWA principles and IID in RDF triple store. It also explains the 

RDF data and entailment rules. Section 3.3 identifies and explains the different ways 

by which IID in RDF triple store are dealt with in ST settings. The chapter is concluded 

by outlining the key messages and findings in section 3.4. 

The ST plays a huge role in the processing and analysis of RDF data. Hendler 

(2009) describes web 3.0 as semantic web technologies integrated into or powering 

large-scale web applications. He characterised the features of semantic technological 

applications to include applications that can integrate web data resources and have 

increased use of and support for the languages developed in the World Wide 

Consortium (W3C) Semantic Web Activity8. The RDF provides a base for semantic web 

technologies9. In this work, the Owlim RDF triple store, and the FCA tools and 

techniques namely the FcaBedrock, ConExp, and In-Close are considered.  

When an RDF data set containing IID is processed in an RDF triple store, the 

IIDs are not prohibited from the data store unlike in a traditional database (see chapter 

2). This is because an RDF triple store adheres to OWA principles. Also IID can be 

inferred in a triple store through the application of RDF entailment rules. Unlike the 

traditional data representation, RDF enables data from multiple sources to be 

integrated into a data set without jeopardising their meaning. Consequently, IID can be 

meaningfully represented, stored, and processed in RDF database. The use of RDF 

enables the representation of the meaning and associations in resources10. Section 3.2 

below explains the principles behind RDF representations.  

  

                                                      
8
 www.w3.org/2001/sw 

9
 http://semanticweb.org/wiki/Tool 

10
 Resources can be anything which is described 

http://www.w3.org/2001/sw
http://semanticweb.org/wiki/Tool
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3.2 Open World Assumption and IID 

A database which does not assume that its data is complete and which does not use 

integrity constraints to exclude data that do not conform to its schema is said to adhere 

to OWA. This section explores OWA and IID in RDF triple store.  

In OWA, the absence of information is an indication of lack of knowledge. Also, a 

statement cannot be inferred to be false in OWA, even when there is a failure to prove 

it (Sirin and Tao 2009). For example, the storing of the statement "Philip passed an 

English test” does not mean that “Philip failed an English test” is false. This is because 

Philip may have written the English test several times.  

An RDF data can be inconsistent or incomplete.  Unlike the traditional database 

where constraints might ensure the consistency of its data, RDF triple store do not 

prohibit IID as recommended by (Klyne et al., 2004). In addition, RDF data set may 

have issues such as missing schema, and evolving data, as identified in (Scheglmann 

et al. 2013). Nevertheless, IID can be inferred through RDF entailment rules in an RDF 

triple store. The application of entailment rules in a triple store may enable new 

knowledge to be inferred from existing knowledge. Even so, not all the missing data in 

a data set can be inferred by a triple store. A proper understanding of RDF data and 

entailment rules is needed to understand the issues of IID in an RDF triple store. RDF 

data and entailment rules are therefore explained in sections 3.2.1 and 3.2.2 

respectively.  

 

3.2.1 Resource Description Framework (RDF) Data 

RDF is a framework for representing information in the web. Its data (RDF data) are 

statements made about resources in the form of triples. A triple (an RDF statement) 

consists of a subject, predicate (attribute) and an object. Figure 1 shows a graphical 

representation of 2 triples as outlined in Table 1 below.  

 

 

Figure 1: Graphical representation of an RDF data showing 2 triples 
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In Figure 1, a resource such as textual_annotation_6960 and its predicate such as 

in_tissue are depicted. Ideally, a resource in a triple is uniquely represented by the 

Universal Resource Identifier (URI). For example, the resource 

Textual_annotation_6960 can be uniquely identified within the project 

http://www.cubist-project.eu/HWU#. However, this work uses plain words to depict 

resources in a triple. 

Table 1: Triples of the graph in Figure 1 

 

RDF data can contain more than 2 triples. Figure 2 shows an example of an RDF data 

that contains 4 triples. This is depicted in Table 2 below. 

 

 

Figure 2: RDF Graph illustrating RDF data with more than 2 triples 

 

  

 

 

 

Subject Predicate Object 

textual_annotation_6960 in_tissue tissue_EMAP_987 

tissue_EMAP_987 is_part_of tissue_EMAP_990 

http://www.cubist-project.eu/HWU
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Table 2: Triples of the graph in Figure 2 

 

A comparison of Table 1 and Table 2 reveals that the RDF data in Table 1 is 

incomplete. It can be seen that the object tissue_EMAP_987 is only associated to 1 

attribute (predicate) value in Table 1 such that the attribute ‘is_part_of’ is associated to 

the value ‘tissue_EMAP_990’. This is unlike in Table 2 where the attribute ‘is_part_of’ 

of the object tissue_EMAP_987 is associated to tissue_EMAP_990 and 

tissue_EMAP_989. These observations are easier to identify in the associated figures. 

Also it is possible to have an RDF data which has contradictory attribute values such 

as detected and not detected. These are examples of instances of IID in an RDF data 

set. 

RDF is a framework which can be used as a modelling language and also as a 

data representation format. It uses Resource Description Schema (RDFS)11 or Web 

Ontology Language (OWL)12 as its modelling languages. RDFS, for example, provides 

data-modelling vocabulary such as rdfs:Class, rdfs:subClassOf, rdfs:label, and 

rdfs:domain which are used to describe the properties of a subject or an object of a 

triple. Both the RDF data and its metadata (such as RDFS data) can be stored as 

triples in the same data set. An example of how a modelling language can be used in 

an RDF data set is illustrated in Table 3 below. 

 

Table 3: A Triple illustrating how RDFS may be used 

Subject Predicate Object 

Textual_annotation_6960 rdfs:label assay no 6960 

   

In Table 3, the description of textual_annotation_6960 is achieved through the use of 

RDFS construct such as rdfs:label (see Table 3 above). More descriptions can be 

                                                      
11  http://www.w3.org/TR/rdf-schema/ 

12  http://www.w3.org/TR/owl-semantics/ 

Subject Predicate Object 

Textual_annotation_6960 in_tissue tissue_EMAP_987 

tissue_EMAP_987 Is_part_of tissue_EMAP_990 

tissue_EMAP_987 Is_part_of tissue_EMAP_989 

Textual_annotation_6960 has_strength  level_detected 
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added to the data where necessary. This may be achieved through the use of 

rdfs:Class or rdfs:subClassOf constructs in RDFS.  

The use of RDF and its modelling languages (RDFS or OWL) in data 

representation enhances data integration (combining data from different sources). This 

is because RDF uses URI which retains the uniqueness and semantics of the 

represented data even when they are integrated with other data. Also, the use of RDF 

does not result in issues of interoperability of data as evident in Extended Mark-up 

Language (XML), Hyper Text Mark-up Language (HTML) or relational data format 

(Berners-Lee et al., 2001; Bizer et al., 2009). Consequently, RDF data from various 

sources can be integrated into a single data set without losing the semantics.  

RDF is used in representing web data as evident in projects such as DBpedia13 

and CUBIST. However, a fundamental issue with RDF data is its tolerance of IID. An 

object in RDF data can be associated with many attribute values; this can result in IID 

in the data. For instance, there is inconsistency in an object which is associated with 

contradictory attribute values. On the other hand, incompleteness will exist in an object 

which does not have a required value. Nevertheless, RDF triple stores can use the 

entailment rules to infer missing attribute values or deduce inconsistency as a means 

of addressing its IID challenges. Entailment and entailment rules are explained in 

section 3.2.2 below. 

 

3.2.2 Entailment 

A triple store is a semantic technological setting that stores RDF data (triples) and also 

reasons over the stored triples. It can also infer new triples into its RDF data set 

through entailment rule(s). Entailment describes two graphs which are equal in all 

aspects in that every assertion made about one RDF graph may be made with equal 

truth about the other graph (Powers 2003). As explained in Hayes and McBride (2004) 

If A entails B, then any interpretation that makes A true also makes B true, so 

that an assertion of A already contains the same "meaning" as an assertion of 

B; one could say that the meaning of B is somehow contained in, or subsumed 

by, that of A. If A and B entail each other, then they both "mean" the same 

thing, in the sense that asserting either of them makes the same claim about 

the world. 

                                                      
13  http://dbpedia.org/About 
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Table 4 shows an example of an RDFS entailment rule “rdfs11” as outlined in Hayes 

and McBride (2004). 

Table 4: An example of RDFS entailment rule 

Rule Name If E contains: then add: 

rdfs11 uuu rdfs:subClassOf vvv  

vvv  rdfs:subClassOf            xxx  

uuu  rdfs:subClassOf   xxx  

 

A triple store adds an entailed triple to a graph when the graph entails any larger graph. 

This is because a graph entails any larger graph that is obtained by applying entailment 

rule(s) to the original graph. In Table 4, the presence of a graph whose pattern is “uuu 

rdfs:subClassOf vvv” and “vvv  rdfs:subClassOf  xxx” results to the addition of the triple 

“uuu rdfs:subClassOf xxx” to the graph. This provides a rule by which graphs of this 

pattern are entitled. The W3C RDF* recommendations include a list of standard 

entailment rules. For example Hayes and McBride (2004) outline a standard set of 

simple entailment rules for RDFS.  Also, a standard set of entailment rules in OWL is 

outlined in W3C website14. 

RDF triple stores such as Owlim, Jena15, Oracle Semantic database and Sesame 

adhere to OWA. A semantic database provides the semantic technological setting that 

can process the inconsistent or incomplete information in an RDF data set. As 

explained in Klyne et al. (2004), “RDF does not prevent anyone from making assertions 

that are nonsensical or inconsistent with other statements or the world as people see it. 

Designers of applications that use RDF should be aware of this and may design their 

applications to tolerate incomplete or inconsistent sources of information”. Unlike in 

traditional databases (see chapter 2), where data are accepted only if they do not 

violate the integrity constraints, RDF triple stores do not resist IID. Also, the entailment 

rules can be used to tolerate, infer or even identify the IID in RDF database as 

explained in section 3.3 below. Even so, there is still a need to identify other means of 

dealing with the tolerated IID in a triple store. Section 3.3 explores the existing 

approaches for dealing with the IID in a semantic technological setting.  

 

                                                      
14  http://www.w3.org/TR/owl-semantics/rdfs.html 

15 http://jena.sourceforge.net 
 

http://www.w3.org/TR/owl-semantics/rdfs.html
http://jena.sourceforge.net/
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3.3 Existing Approaches to IID in ST Setting 

The existing approaches for dealing with IID in an RDF triple store can involve 

identifying, evaluating, visualising, analysing or reasoning with the IID. These 

measures will empower the information analyst with the accurate knowledge about the 

nature of the IID. This knowledge will enable the information user to avoid inaccurate 

conclusions.  

IID can be identified and measured in an investigated data set. The works of 

(Fürber and Hepp 2010; Melo et al., 2013; Péron et al., 2011; Drumond et al., 2012; 

Sertkaya 2009) explain different ways of using SPARQL to identify IID in RDF data set. 

Also Nwagwu (2013) explains how inconsistent data in RDF data set can be evaluated 

through the use of SPARQL queries. But the identification of IID through SPARQL 

queries involves presenting the results in a table and such presentations may be 

difficult to analyse. In fact, voluminous tables can be difficult to perceive or visualise. 

Nevertheless, Dau 2013a; Dau 2013b; and Andrews and McLeod 2013 present 

approaches that enable the visual analysis of the IIDs in RDF triple store. These works 

uses FCA techniques as a means of dealing with IID in a data set.  

Another means of dealing with IID in a triple store is through the use of rules.  

Hayes and McBride (2004) explain entailment rules as a means of inferring RDF data 

and also identifying its inconsistencies. RDF processing engine such as Owlim uses 

rule based approach to deal with IID (Stoilov and Bishop 2012).  

This section identifies the rule based approach, the query based approach, and 

the combination of the query based approach with FCA techniques as three main 

documented approaches for dealing with IID existing in RDF data. The section below, 

explains these approaches.  

 

3.3.1 Rule Based Approach used to Deal with IID in RDF Data 

A triple store adds an entailed triple to a graph when the graph entails any larger graph. 

RDF data processing engines use entailment rules to deal with IID existing in its data 

set. Stoilov and Bishop (2012) explain how Owlim-SE infers missing data and how it 

identifies inconsistent data through entailment rules.  

In Owlim-SE, entailment rules provide a means of adding triples to an entailed 

graph. Also, entailment rules provide a means of detecting inconsistency in the triple 

store. Rules that are not supposed to add any triple to a graph indicate inconsistency 

when there are triples that conform to the pattern exhibited by the rule. For example, 

whenever there are triples that conform to the pattern exhibited in an Owlim 

http://owlim.ontotext.com/display/~dobri.stoilov
http://owlim.ontotext.com/display/~barry.bishop
http://owlim.ontotext.com/display/~dobri.stoilov
http://owlim.ontotext.com/display/~barry.bishop
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consistency checking rule, an error message is sent to a standard output such as a log 

file (Stoilov and Bishop 2012). Table 5 below, shows a rule that is designed to identify 

inconsistent data.  

 

Table 5: Owlim consistency check 

Rule Name If Entailment rule 

contains: 

Standard output: 

consistency Check x owl:sameAs y 

x owl:differentFrom y 

Error message 

 

 

As depicted in Table 5, whenever the reasoner identifies a graph that contains the 

triples “x  owl:sameAs y” and “x owl:differentFrom y”, an error message is sent to a 

standard output notably an error file.  

Rule based detection approach to IID automatically identifies IID existing in an 

RDF data set but the following lapses can be associated with the approach:  

 The error file will be difficult to visualise where there are many errors.  

 Analysing the IID in the error messages can be difficult especially since the 

identified inconsistent data are mostly stored as log (text) files as explained in 

(Stoilov and Bishop 2012). 

 There are semantic and syntactic differences among data in different data sets. As 

a result, differences exist in the rules of the different data sets for identifying their 

IID. It will be impossible to articulate and stipulate all the rules of all data sets as 

entailment rules in a reasoner. 

  The IID approach in Owlim triple stores demands that inferred data are integrated 

automatically into the data set. Also, inconsistent data are generated as error 

messages in a log file (Stoilov and Bishop 2012). This approach makes the 

identification, visualisation, evaluation and analysis of IID difficult to achieve.   

3.3.2 Query Based Approach used to Deal with IID in RDF Data 

SPARQL is a query language for RDF data. The use of SPARQL can enable the 

retrieval of IID from an RDF triple store. For more details about SPARQL, the works of 

Quilitz and Leser (2008), Power (2003), and DuCharme (2011) are recommended. 

http://owlim.ontotext.com/display/~dobri.stoilov
http://owlim.ontotext.com/display/~barry.bishop
http://owlim.ontotext.com/display/~dobri.stoilov
http://owlim.ontotext.com/display/~barry.bishop
http://owlim.ontotext.com/display/~dobri.stoilov
http://owlim.ontotext.com/display/~barry.bishop
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The query based approach used in dealing with IID provides a means by which 

the information analyst can interact with the data set and address issues of IID such as 

identifying and evaluating the IID in a data set. This approach enables the information 

analyst to creatively analyse the data through SPARQL features and display results in 

a tabular format.  

Abele et al. (2013) explain how SPARQL queries can be used to validate 

Computer Aided Engineering Exchange (CAEX) data set. This validation process 

involves using SPARQL queries to check for inconsistent data in CAEX data set. Quilitz 

and Leser (2008) and Dau (2013a) explain how the optional and the union keywords 

can be used to retrieve IID from an RDF data set.  Fürber and Hepp (2010) explain 

how to identify data quality problems in single source scenarios through SPARQL 

queries. Their focus is on syntactic errors, missing values, unique value violation, out of 

range values and functional dependency violations. Also, Nwagwu (2013) shows how 

SPARQL queries can be used in evaluating the data from an RDF triple store. 

But there are challenges with visually analysing the query results displayed in a 

table, especially where there are many rows and columns. One of such challenges is 

the inability to visualise at a glance, the relationships existing in IID across many rows 

of a table. As a result, identifying and visualising objects with similar contradictions or 

similar incompleteness becomes a difficult task. Also, voluminous tables may be 

difficult to perceive.  

  

3.3.3 Combining Query Based approach with FCA Techniques  

FCA techniques such as fault tolerance and interactive exploration enable the analysis 

and visualisation of the data in a database. These data are retrieved through the use of 

SPARQL queries from the RDF database. However, such data must first be 

transformed into a formal context and subsequently into a formal concept, to visualise 

the inconsistency or incompleteness in it. Formal context and the concept lattice are 

explained in chapter 4.  

Dau (2013a, 2013b) and Melo et al. (2013) provide different approaches that 

involve retrieving a result set through SPARQL queries and visualising IID in the result 

set through FCA tools and techniques. Dau (2013a) explains how to identify and 

visualise IID through the use of his developed SPARQL to formal context tool 

‘SPARQLcontext creator’. Dau (2013b) explains how to reason with a noisy and 

incomplete data set through the application of fault tolerance technique on a retrieved 

result set.  
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Also, the CUBIST project developed many FCA techniques for dealing with IID. 

CUBIST is an acronym for Combining and Uniting Business Intelligence with Semantic 

Technologies. This project was funded by the European Commission under the 7th 

Framework Programme of ICT, Topic 4.3: Intelligent Information Management. It ran 

from 1st October 2010 to 31st September 2013. Among CUBIST’s achievements are 

the development of a tool (CUBIST) and approaches for dealing with inconsistent and 

incomplete RDF data. The CUBIST approach is based on “the querying of ontology 

data which is then converted to a formal context in a process transparent to the user” 

(Melo et al. 2013). Melo et al. (2013) explain the IID processing capabilities of CUBIST. 

CUBIST applies fault tolerance, and interactive exploration techniques when dealing 

with IID in an RDF data set.  

Another FCA technique for identifying incomplete data is attribute exploration. 

Attribute exploration has been ingeniously applied in distinctive areas such as ontology 

completion, security checks, and web data. For example, through attribute exploration, 

the missing data of an incomplete ontology can be deduced by querying the domain 

expert. Sertkaya (2009) explains how attribute exploration is applied by OntoComp 

application to complete ontology attributes. However, Baader et al. (2007) note that 

attribute exploration does not adhere to the semantics of the OWA. Chapter 7 of this 

work examines the attribute exploration in greater details.  

Combining Query based approach with FCA techniques addresses the problems 

associated with the Rule based approach by providing the means to identify and 

visualise IID in an RDF database. The application of FCA techniques as evident in Dau 

(2013a, 2013b) and Melo et al. (2013) empower the data analyst with the ability to 

visualise the IID existing in his investigated data set. But these FCA techniques do not 

separate out the IID from its data set, hence, they do not exclusively visualise IID 

existing in a large data set. Work such as (Hunter and Konieczny 2005; Grant and 

Hunter 2011; Finkelstein 2000; Dau 2013b) demonstrate the need to identify, and 

analyse IID existing in a data set. There is also need to exclusively visualise the IID in a 

data set especially when dealing with a large and noisy data set. This is to avoid 

erroneous conclusions. It is explained in Nwagwu and Orphanides (2015) and Nwagwu 

(2014) that an FCA approach that visualises all the data in a data set might not clearly 

display the IID in the associated lattice. This may hinder the ability of the data analyst 

to visualise the IID in the lattice where the investigated record set is large. 

Consequently, the data analyst may assess an inconsistent data as consistent when he 

did not visualise any contradiction associated with the data. This problem is further 

described with illustrating examples in Chapter 4.  
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3.4 Key Messages and Findings 

RDF is a semantic framework whose data are processed in ST setting. It adopts the 

OWA principles. Unlike traditional data model, RDF preserves the meaning associated 

with its represented data even when the data are integrated from multiple data sources. 

Similar to traditional database, RDF database faces IID challenges.  

This chapter has explored issues of IID in RDF data and how it is presently dealt 

with in a semantic technological setting. It identified the lapses in the current 

approaches used in dealing with IID in ST setting. It identifies that the rule base, query 

based, and the combination of the rule based with FCA approaches are the existing 

methods of dealing with IID in RDF database. It further recognises that combining 

query based approach with FCA techniques provides a more robust approach that can 

be used to deal with IID in RDF database than the rule or query based approaches. 

Nevertheless, combining query based approach with FCA techniques does not 

exclusively identify or visualise the IID in a large and noisy data set.  

Chapter 4 formally introduces the FCA. Also, it further explains the challenges 

associated with the use of FCA in dealing with IID in RDF data set.  
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Chapter 4: Formal Concept Analysis (FCA)  

 

4.1 Introduction 

This chapter introduces Formal Concept Analysis (FCA) which underpins this research. 

Following this introduction, section 4.2 examines the classical FCA approach and its 

challenges in dealing with IID. Examples are used to illustrate the classical FCA 

approach.  

Formal Concept Analysis (FCA) was introduced by Rudolf Wille in (Wille 1982). It 

is a mathematical method which uses the concept lattice as a formalism to explore 

correlations, similarities, refinements, anomalies, or even inconsistencies (Carpineto 

and Romano 2004).   It provides a data processing approach by which data are 

analysed by conceptually clustering objects with respect to a given set of attributes and 

visualising the set of clusters in a lattice structure.   

FCA is used in this work to analyse and visualise IID in RDF data. It provides 

better analysis and visualisation approaches than traditional data analysis techniques 

such as (x, y) plots, linear and bar-charts, histogram, and pie charts. For instance, 

traditional data analysis and visualisation techniques are rendered ineffective when a 

data set contains tens, hundreds or thousands of dimensions and when the data set 

does not have natural mapping to the display space (Keim et al. 2008; Keim 2001).  

This is unlike in FCA which provides data analysis and visualisation approaches for 

exploring correlations, similarities, refinements, anomalies, and inconsistencies.  

FCA presents more advanced data analysis and visualisation techniques which 

have been shown in the CUBIST project to be useful and appropriate for the analysis of 

data in RDF triple store. Also, its tools and techniques can be used to analyse large 

data set. For example, Andrews and Orphanides (2010) describe how the FcaBedrock 

and the In-Close can be used to analyse a formal context which contains more than 

220,000 formal concepts. Stumme et al. (2002) show how the algorithm ‘tatanic’ is 

used in the computation and visualisation of 32,086 formal concepts. The formal 

context and formal concept are explained in section 4.2. FCA tools and techniques 

have been used to identify IID existing in an RDF data set. For example, in (Dau 

2013b; Andrews and McLeod 2013; and Melo et al. 2013), different FCA tools and 

techniques were used to identify and visualise IID existing in RDF data. Even so, it can 

still be challenging to explore IID especially when dealing with a large and noisy data 

set.  
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4.2 The Classical FCA Approach 

FCA begins with a formal context. A formal context can be described as a single-

valued context (G, M, I). G represents a set of objects represented along the rows of a 

table, M is a set of attributes represented along the columns of the same table and I is 

a binary relation between G and M (I ⊆ G × M) represented by a cross on the cell 

intersecting a particular object with its corresponding attribute. The symbols G, M, and I 

are used in this work in accordance with how it is used by Rudolf Wille in (Wille 1982) 

where FCA was first introduced. These symbols are also used in most FCA literatures 

such as (Carpineto and Romano 2004; Wolff 1993; Burmeister and Holzer 2005).  

Table 6 below, describes some gene expressions in some tissues of a mouse. A 

cross in a cell is used to depict a gene expressed in the corresponding tissue of the 

mouse. For example, Otx2 is detected in the node, organ system, neural ectoderm, 

and future brain. The absence of a cross in a cell depicts that the corresponding tissue 

does not express the corresponding gene expression. It can also mean that it is not 

known whether this object has the attribute or not (Wolff 1993; Burmeister and Holzer 

2005). Table 6 describes a set of attributes (Otx2_detected, Otx2_not_detected, 

Hoxb1_detected, and Hoxb1_not_detected) and a set of objects (node, mesoderm, 

organ system, neural ectoderm, future brain and limb).   

 

Table 6: Formal context of gene expressions in tissues 

 Otx2_detected  Otx2_not_detect

ed  

Hoxb1_detected  Hoxb1_not_det

ected 

node  X    

mesoderm     X 

organ system  X  X  

neural ectoderm  X X   

future brain  X    

limb     

 

A formal context as depicted in Table 6 describes a set of objects and a set of 

attributes. If x   A and y   B (where A is a set of objects in a formal context K and B is 

a set of attributes in K) then xIy holds for the objects and attributes in K implying that 

the object x has the attribute y and the attribute y is a feature of the object x. Any of this 

pair (A, B) in a formal context is called formal concept. The set ‘A’ is called the extent 

while the set ‘B’ is called the intent of the formal concept. Ganter et al. (2002) explain 

that “A (formal) concept of a formal context (G, M, I) is a pair (A, B) with A ⊆ G, B ⊆ M, 
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A’ = B and B’ = A. The sets A and B are called the extent and the intent of the formal 

concept (A, B), respectively.” The extent of a formal concept contains all objects that 

have the attributes of the intent while the intent contains all attributes shared by the 

objects of the extent. An example of such a pair in Table 6 is {(mesoderm), 

(Hoxb1_not_detected)}. 

 

Mathematically 

A formal context K  = (G, M, I) 

Where 

G = a set of objects  

M = a set of attributes  

I = a binary relation between G and M   I ⊆ G × M    

 

The extent 'A' (set of objects) and the intent 'B' (set of attributes) of each formal 

concept in a formal context K can be defined as follows: 

(A, B) with A ⊆ G, B ⊆ M, A = B’, and B = A’ where 

A’ = {y   Y | for each x  A then (x, y)   I}, 

B’ = {x   X | for each y  B then (x, y)   I}, 

 

A and B are called the extent and the intent of the formal concept (A, B) and they 

define a formal concept in a formal context. Some of the formal concepts identified 

from Table 6 are as listed below:  

  

a. {(mesoderm), (Hoxb1_not_detected)} 

b. {(neural ectoderm), (Otx2_not_detected, Otx2_detected)} 

c. {(organ system), (Otx2_detected, Hoxb1_detected)} 

d. {(node, organ system, future brain, neural ectoderm,), (Otx2_not_detected)} 

 

When a set of objects are described by a set of attributes, it becomes easy to 

identify which attribute is associated with which object or which object is associated 

with which attribute. On this note, IID can easily be identified by noting the objects 

which are associated with contradictory attributes or the objects which are not 

associated with the set of attributes examined. In Table 6, neural ectoderm is 

associated with contradictory attributes- (Otx2_not_detected, Otx2_detected). The 

tissue ‘limb’ is not associated with any attribute. The neural ectoderm is inconsistent 

while the limb is incomplete.  
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The identification of IID from a large formal context can be easier when the 

concept lattice is built from the formal context. A concept lattice enables the 

visualisation of objects with similar attributes, objects without attributes, and other 

associations such as their hierarchical order. Section 4.2.1 below describes how a 

concept lattice is built from a formal context. 

4.2.1 Building a Concept Lattice from a Formal Context  

A concept lattice is a structured diagram which is composed of one or many nodes. A 

concept lattice can be built from a formal context through the use of FCA tools such as 

ToscanaJ, Toscana, or ConExp. Building a concept lattice involves mining formal 

concepts in a formal context and displaying them hierarchically in a lattice structure.  

As noted above, a concept (A, B) is evident in a formal context when  

 

A ⊆ G, B ⊆ M, A = B’, and B = A’  

 

A and B are called the extent and the intent respectively of the formal concept (A, B). 

For a context (G, M, I), a concept X = (A, B) is less general than a concept Y = (C, D) 

(or X < Y) if A ⊆  C or equivalently, D ⊆  B. i.e X < Y. Also, if there is no other concept 

Z such that Z   X, Z   Y, X < Z < Y, then X is called a lower neighbour (or subconcept) 

of Y, and Y is called an upper neighbour (or superconcept) of X (Kuznetsov and 

Obiedkov 2001). The set of all identified formal concepts of a formal context K existing 

in such a hierarchical order, forms a complete lattice B(K).  

The concept lattice displays objects with similar attributes (concepts) in a lattice 

structure. This enables easier identification and visualisation of such objects with 

similar attributes. Figure 3, (see below) is a concept lattice built from Table 6 (see 

above) through the use of ConExp application. A concept lattice is easy to read. The 

simple reading rule of a concept lattice as described in (Wolff 1993) is that an object g 

has an attribute m if and only if there is an upward leading path from the circle labelled 

by “g” to the circle labelled by “m”. Consequently, it can easily be visualised from 

Figure 3 that Otx2 is detected in organ system, future brain, neural ectoderm and node.  
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Figure 3: Concept lattice showing gene expressions in tissues of a Mouse 

 

FCA enables the visualisation of IID data in a lattice structure. For example, Otx2 

is both detected and not detected in neural ectoderm hence neural ectoderm is 

inconsistent.  The incomplete data can easily be identified in extents which are not 

associated with any attribute or intents which are not associated with any object. 

Incomplete data can be displayed at the bottom or top of the lattice. In Figure 3 above, 

the incomplete datum is displayed at the topmost node. The object limb is incomplete 

because it is not associated with any attribute.  

Concept lattice provides an easy means of identifying IID but there are 

challenges with its readability when it displays concepts from a large formal context. A 

description of such challenges is provided in section 4.2.2 below. Also, a description of 

how data from a many-valued context such as data retrieved from querying a database 

can be transformed to a formal context is provided in the same section.  

 

4.2.2 Conceptual Scaling and Visualisation Challenges  

As earlier noted, FCA begins with a single-valued context (G, M, I) but data can be 

represented as a many-valued context (G, M, W, I) where G is a set of objects, M is a 

set of attributes, W is a set of attribute values, and I is a ternary relation between G, M 

and W. In a many-valued context (g, m, w)   I, the attribute m takes the value w for the 

object g (Messai et al., 2008). Record sets retrieved from a database such as RDF 

databases can often exist as many-valued context. In FCA, a many-valued context is 
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transformed to a single-valued context (formal context) through the use of conceptual 

scaling.  

Conceptual scaling is used to transform a many-valued context (G, M, W, I), to a 

single-valued context (G, M, I).  This is often achieved by replacing every many-valued 

attribute in the recordset by the corresponding attribute-value pairs, with each object 

being described by one attribute-value pair, per many valued attribute (Carpineto and 

Romano 2004; Annoni and Brüggemann 2008). An example of such transformation is 

shown in Figure 4 below. 

 

 

Figure 4: An example of a transformation from many-valued to a single-valued context 

 

Conceptual scaling provides a global view of the object-attribute-value relations in 

a many-valued context by replacing every many-valued attribute in the context with the 

corresponding attribute-value pairs. In Figure 4, the single-valued context is derived by 

describing each object of the many-valued context with the corresponding attribute-

value pair. For example, the attribute Otx2 is associated with the values weak and 

strong in the many-valued context of Figure 4. A transformation of this many-valued 

attribute to single-valued attribute will result to the attribute-value pair ‘Otx2-weak’ and 

‘Otx2-strong’. Conceptual scaling has the advantage of presenting a global view of its 

represented data. However, when conceptual scaling is applied to large data sets, the 

resulting formal contexts are more than often unmanageable. A complex and 

unreadable concept lattice is built when such context is visualised in a lattice structure.  

A many-valued context of only a modest size can result into a formal context 

containing hundreds or even thousands of formal concepts when conceptual scaling is 

applied. The corresponding concept lattice will be difficult to visualise and also 

unreadable.  Figure 5 below, is composed of 27 concepts. A view of the concept lattice 

can help us to understand how unreadable a concept lattice can become, when they 

are built from a large formal context. Figure 5 is very unreadable as compared with 

Figure 3 which has only 6 concepts.  



33 

 

 

 

Figure 5: Formal concept illustrating visualisation issues 

 

Carpineto and Romano (2004 p. 26) and Dau (2013b) note that, an increase in 

the size of formal context could result in an exponential rise in number of formal 

concepts. A concept lattice which has many formal concepts will also have many 

crossing edges. These factors (many formal concepts and many crossing edges) will 

hinder the identification or visualisation of attributes of interest by the data analyst. 

Hence, visualising IID through the use of the classical FCA approach is challenging 

when dealing with a large formal context.  

 

4.3 Key Messages and Findings 

This chapter described the classical FCA approach and how it is used in building a 

concept lattice from a formal context.  A formal context or a single-value context is 

noted as the starting point of FCA and concept lattice can be built through the 

application of context visualisation tool such as ConExp on a formal context. It is 

explained in this chapter that the display of formal concepts of a formal context in a 

concept lattice can enable the identification and visualisation of the IID existing in the 

formal context. Also, most data sets such as the query results from an RDF database 

exist in many-valued form and conceptual scaling is used in transforming such many-

value data set to a formal context. However, the use of conceptual scaling can produce 

a large context from even a modest sized many-valued context. This results to an 

unreadable concept lattice when such many-valued contexts are transformed. 

Consequently, identifying and visualising the IID in the corresponding concept lattice 

can be challenging.  
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 Nevertheless, there are some FCA approaches specifically developed to deal 

with IID. These approaches are classified in this work as the existing and new FCA 

techniques. They are presented in chapter 7. Chapter 5 presents the research methods 

used in this work. 
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Chapter 5: Research Methodology 

 

5.1 Introduction 

Empirical studies were conducted on issues of IID in the Edinburgh Mouse Atlas Gene 

Expression Database (EMAGE). The studies looked into the causes of IID in EMAGE 

and how IID in EMAGE can be dealt with through the use of FCA tools, FCA 

techniques, and Owlim semantic database. The empirical studies were undertaken to 

meet the research objectives which are outlined in section 1.3 of this thesis. These 

research objectives include understanding existing ways by which IID in RDF data set 

are dealt with in a semantic technological setting and proposing novel approaches for 

dealing with IID, among other things. This chapter explores the approaches adopted in 

these studies. It focuses on how the research methods were applied.  

The empirical studies show the existing FCA and semantic database approaches 

for dealing with IID do not exclusively identify or visualise IID existing in an RDF data 

set. This is explained in chapters 3, 4 and 7. An exclusive visualisation of IID in a data 

set is very important especially when dealing with a large and noisy data set. For 

example, when a data set contains thousands of attributes and attribute values, a data 

analyst using a non-exclusive IID visualization approach may ascribe an inconsistent 

data as consistent where he did not visualise the contradictory data. The exclusive 

visualisation of IID involves separating out the IID from the noisy data set and 

visualising it in a concept lattice. This reduces the complexity associated with 

visualising IID when the entire formal concepts from a large data set are depicted in a 

lattice structure. This is because fewer concepts would be presented in the lattice 

unlike when dealing with the whole formal concepts from the noisy data set. Stumme et 

al. (2002) recommend that strategies (other than arbitrarily reducing the context) for 

dealing with large concept lattices should be considered.  

Again, the main research question of this work is “How can FCA tools and 

techniques be used to identify and visualise IID in RDF data?”  Accordingly, FCA 

research approaches are used in this work. Also, in chapters 2 and 3, it is seen that IID 

is more likely to exist in an integrated data set. Consequently, an investigation into how 

IID can be dealt with should focus on an integrated data set. Also, investigating IID in a 

real life context will ensure that genuine issues relating to the IIDs in the investigated 

context are identified. As a result, the Edinburgh Mouse Atlas Gene Expression 

Database (EMAGE) is investigated in this work. It is the only ‘case’ studied in this work. 
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Yin (2009) explains that descriptive or explanatory questions, studying a phenomenon 

within its real-world context and evaluating a phenomenon create relevant opportunities 

for applying the case study method as a research method. The suitability of EMAGE as 

a single case study is explained in section 5.2. The case study and FCA research 

approaches are the different research methods used in this work. The use of these 

methods to examine particular phenomena (IID) produced mixed results sets- 

qualitative and quantitative results. The results from the FCA methods notably the 

automated and semi-automated FcaBedRock methods were validated by verifying 

them through the EMAGE search options. The EMAGE search options are described in 

section 6.4 

The subsequent sections of this chapter explore how these research approaches 

were used in this work. Section 5.2 explores the single case study and the suitability of 

EMAGE as a single case study. Section 5.3 explain the FCA research approach and 

section 5.4 explains some alternatives to the approaches adopted in this work, the 

challenges of the applied research approaches and the various ethics considered in 

this work are discussed. Section 5.5 outlines the key messages and findings of this 

chapter 

 

5.2 The Single Case Study Research Approach 

This section briefly defines the case study research approach and the suitability of 

EMAGE as the single case study for this work.  

A case study research is an empirical enquiry about a contemporary 

phenomenon i.e. a case set within its real world context, especially when the 

boundaries between phenomenon and context are not clearly evident (Yin 2009 p.18). 

Schell (1992) considers case study as the most flexible of all research designs, 

allowing a study to retain the holistic characteristics of real-life events while 

investigating empirical events.  

On the other hand, the case study research approach has been criticised for 

being of less value, impossible to generalise from, being biased by researchers, and so 

on (Runeson and Höst 2009). However, Yin (2009 p.38-39, p.136-141), Runeson and 

Höst (2009), Zainal (2007), Kelliher (2011), and Flyvbjerg (2007) explain that the 

application of proper research methodological practices can enable the validation and 

generalisation of the results from a case study.  Yin (2009 p.38-39, p.136-141) 

identifies analytic generalisation as a useful means of generalising case study findings. 

Zainal (2007) and Kelliher (2011) identify triangulation as a means of confirming the 



37 

 

validity of the single case study process. Flyvbjerg (2007) clarified most of the 

misunderstandings associated with case-study research approach as untrue. The case 

study is used in this work as a means to understand how IID can be dealt with, within a 

semantic technological setting. 

A case study can involve a single or multiple cases. In this work, the EMAGE is 

used as a single case study. The use of a single case study in this work is justified by 

the fact that EMAGE provides the needed data for the critical test of the various novel 

FCA approaches presented in this work. Yin (2009 p. 52) explains that the single case 

is eminently justifiable under certain conditions in which the case represents (a) a 

critical test of existing theory, (b) a rare or unique circumstance, or (c) a representative 

or typical case, where the case serves a (d) revelatory or (e) longitudinal purpose. 

Flyvbjerg (2007) describes a critical case as having strategic importance in relation to 

the general problem. He recommends that when a researcher is looking for critical 

cases, it is a good idea to look for either the ‘most likely’ or ‘least likely’ cases, i.e. 

cases likely to either clearly confirm or irrefutably contradicts propositions and 

hypotheses. An integrated database is an example of a critical case in which IID are 

most likely to exist. Works such as (Fürber and Hepp 2010; Kimball and Caserta 2004; 

Rahm and Do 2000; McLeod and Burger, 2011; McLeod and Burger 2007; Bleiholder 

and Naumann 2008) assess the integrated database as susceptible to IID. EMAGE is 

an integrated database (McLeod and Burger 2011). The data set in EMAGE is 

integrated from unstructured and heterogeneous sources such as journal publications 

that often precede an experiment being published in EMAGE (McLeod and Burger, 

2011). The EMAGE also integrates data from the gene expression database (GXD), 

and laboratory reports among others.  Dau (2013a) and Melo (2013) identified IID in 

EMAGE RDF database. 

Moreover, the use of the EMAGE as a use case is a unique opportunity because 

the CUBIST project used EMAGE as a case study in the investigation and 

development of FCA methods in a platform that combines essential features of 

Semantic Technologies and Business Intelligence. This provides additional resources 

illustrating how FCA tools and techniques are used to deal with IID in RDF data. It also 

provides a platform to compare approaches developed in this work with other FCA 

approaches while using the same data set.  

In summary, the EMAGE is a good representative of an ideal case. It provides a 

context for the investigation of IID and also provides the context for evaluating the 

existing and new IID approaches. In this work, it is used as a single case study to 

address the research question.  
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5.2.1 Case Study Research Methods 

EMAGE is investigated in this work, as a means to answer the research question. This 

was achieved by investigating EMAGE documentary sources, EMAGE RDF data set 

and personal communications with EMAGE researchers.   Yin (2009 p. 101-114) lists 

documentary information and interviews as some of the sources of evidence in a case 

study. Runeson and Höst (2009) note that a case study may contain, elements of other 

research methods such as archival analyses, literature search, and observation. The 

investigations of the EMAGE involved the use of different methods by which evidences 

about the investigated phenomena (IID) were collected. These methods include 

archival analyses, literature search, personal communications, and analysis of EMAGE 

RDF data set. They were used as follows:  

 Archival analyses: EMAGE and CUBIST documentary archives were explored in 

this work. The EMAGE archive16 includes publications which relates to the 

processing of EMAGE gene expressions while CUBIST archive17 includes scientific 

publications on how to semantically process RDF data. These archives are 

scrutinised to identify how IID thrive in EMAGE database, the different ways by 

which FCA can be used to deal with IID in RDF data set and the associated effect 

of such approaches. 

 Literature search: Apart from CUBIST archive, other FCA publications were 

consulted as to understand how FCA can be used to deal with IID in a data set. 

Also, database literatures such as relational and semantic databases were 

explored. The essence is to properly understand how IID can be dealt with, in these 

databases. 

 Personal Communications: They were communications between the researcher 

and other professionals such as CUBIST researchers. These communications held 

intermittently during this case study. For example, electronic mails were used to ask 

questions as to clarify concepts that were not properly understood. CUBIST 

researchers were mostly consulted for such clarifications where necessary. This is 

because CUBIST partnered with Heriot-Watt University to create the RDF version 

of the EMAGE data. This collaboration empowered CUBIST researchers with 

enormous knowledge about EMAGE and the EMAGE RDF data set. Various 

consultations with CUBIST researchers were made by means of telephone enquiry, 

                                                      
16

  http://www.emouseatlas.org/emage/about/publications.html 

17
  http://www.cubist-project.eu/index.php?id=442 

http://www.emouseatlas.org/emage/about/publications.html
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Skype video calls, electronic mails and informal chats in the course of this work. 

Some extracts from the electronic mails shared in the course of this work are 

presented in appendix A.  

 Analysis of EMAGE RDF data set: A copy of EMAGE RDF data set was gotten 

from CUBIST and stored in a triple store. This data set was queried and the 

corresponding result sets were analysed through the use of the new and existing 

FCA approaches. The results of these analyses are depicted in chapter 8. Section 

5.3 explains some FCA research methods used in the analysis of EMAGE RDF 

data set.  

 

 These research methods provided ample evidence about how IID are dealt with 

in EMAGE and how IID in EMAGE can be more effectively dealt with. The results 

(data) obtained from these research methods were used in evaluating the FCA 

approaches as narrated in chapter 8.  

5.3 Formal Concept Analysis (FCA) Research Approaches 

To identify and visualise the IID in an EMAGE RDF data set, an EMAGE RDF data was 

stored in Owlim triple store. This stored data set consists of over a million triples. 

Different SPARQL queries (see Chapter 8) were used to retrieve objects associated 

with many-value attributes from the stored data. The essence of each of the query is to 

retrieve objects whose attributes are many values. Subsequently, the semi-automated 

and automated FcaBedrock approaches (as comprehensively explained in chapter 7) 

were used to identify and visualise the IID in each of the retrieved record set. This 

section explains how the data analysis and visualisation approaches in FCA were used 

to exclusively identify and visualise IID, as evident in the semi-automated and 

automated FcaBedrock approaches.   

5.3.1 Data Analysis and Visualisation Techniques in FCA 

In FCA, conceptual scaling is used to transform a record set which has many-valued 

context to a single-valued context. Certainly, not all objects in a many-valued context 

are consistent or have complete attribute values. Some objects are inconsistent or 

incomplete. If a context is restricted to single, scaled, many-valued attribute, M is the 

set of n attribute values and G is a set of objects that have as a property, the many-

valued attribute from which M is scaled, then the standard binary relation in FCA:  
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 ⊆       can be formed to show which object has which attribute value, giving rise to 

the standard formal context          . 

Given mutually exclusive many valued attributes, the context is defined to be 

consistent if each of its objects has only a single attribute value. If an object has two or 

more attribute values, then the context is inconsistent. 

If the set of possible attribute values               , then let the set of objects 

with value    be    
 and the set of objects with value    be    

 and so on. A consistent 

context can be defined thus: 

               
 
    

    
                                                               (1)  

where ”   implies “then”. 

The context is defined to be complete if every object in G has a value: 

                
    

      
                                                           (2) 

Once such a formal context has been created, the concept lattice visualises 

consistency and completeness in a very clear manner. For example, if              

and                                then examples of consistent and inconsistent 

lattices are shown in Figure 6(a-d). 6a illustrates consistent data, 6b illustrates 

inconsistent data where two objects have two values, 6c illustrates inconsistent data 

where one object has all three values and 6d illustrates incomplete data which are 

clearly labelled at the topmost node of the lattice. For easy identification of IID in a 

concept lattice, it should be noted that an extent is identified by a lower filled semicircle 

labelled below the node while the associated intent is identified by an upper filled 

semicircle in the same node or in an ascending path to the node. Extents which have 

attributes with more than one value are inconsistent and an extent which is not 

associated to an attribute value is incomplete.   

 

Figure 6: Examples of consistent (a), inconsistent (b and c), and incomplete (d) concept lattices 
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Also, objects which have mutually exclusive many-valued attributes can be 

separated out from a noisy context and exclusively visualised in a concept lattice 

through the use of the restrictive functionality in the FcaBedrock. The FcaBedrock 

application is an FCA tool that is used to transform a many valued record set to a 

context file. It was chosen in this research unlike its rivals such as ToscanaJ18 because 

it allows its users to optionally select which attributes to convert to a context file. It is 

used in this research to restrict single value attributes when transforming a many-value 

record set to a formal context. Once the formal context of objects associated with 

mutually exclusive many-value attributes is created, the concept lattice can be built to 

exclusively visualise the IID in the formal context. For example, if M = {a-1, a-2, a-3, a-

4} and G = {o1, o2, o3, o4} then let the set of objects with value     be       and the 

set of objects with value     be       and so on, then examples of inconsistent and 

incomplete lattices are shown in Figure 7(a-d). 7a and 7b illustrates inconsistent and 

incomplete data, 7c illustrates inconsistent data where three objects have contradictory 

values, and 7d illustrates incomplete data where attribute values without an associated 

object are displayed. Again, extents which have attributes with more than one value are 

inconsistent. An intent which is not associated to an object is incomplete.   

 

 

Figure 7: Examples of (a, b) inconsistent and incomplete, (c) inconsistent, and (d) incomplete concept lattices 

 

The semi-automated and the automated FcaBedrock approaches are among the 

novel approaches implemented in this work. These approaches use FcaBedrock 

application to restrict the single-valued attributes as to exclusively visualise IID. The 

semi-automated FcaBedrock approach uses a manual system to restrict the single-

valued attributes while the automated FcaBedrock approach uses an inconsistency 

mode to automatically restrict the single-valued attributes (see chapter 7).  

                                                      
18

 http://toscanaj.sourceforge.net/ 
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The semi-automated FcaBedrock approach semi-automatically restricts single-

valued attributes, when transforming a many-valued file to a formal context file. This is 

achieved by using the FcaBedrock application to manually restrict single-value 

attributes to a context file and subsequently building, visualising and editing concept 

lattice through the ConExp application. However, the approach can be painstaking, 

especially when there are many attributes to be restricted in the FcaBedrock. Hence 

the automated FcaBedrock approach was developed. 

The automated FcaBedrock approach involves automatically transforming objects 

and their associated many-value attributes to a context file. This approach is 

implemented by extending the FcaBedrock application. This extension enables the 

FcaBedrock to automatically transform only objects associated with many valued 

attribute to a context file. The agile software development method was adopted to 

extend the FcaBedrock application. This is made possible through the collaboration 

with the FcaBedrock developer’s team through an agile software development 

approach.  

FCA provides data analysis and visualisation techniques which can be used to 

analyse and exclusively visualise IID in an RDF data set. Through the application of 

data analysis and visualisation techniques such as fault tolerance, interactive 

exploration, and conceptual clustering, among others, the data analyst can discover 

hidden knowledge in a massive data set. Data analysis and visualisation as used in this 

work involve the use of mixed design approach. Onwuegbuzie and Leech (2006) noted 

that “Conducting mixed methods research involves collecting, analyzing, and 

interpreting quantitative and qualitative data in a single study or in a series of studies 

that investigate the same underlying phenomenon.” Both the quantitative and the 

qualitative data were analysed in this study. For example, some of the record sets 

retrieved by querying the stored EMAGE data set contain qualitative and quantitative 

data. Numeric (quantitative) data were retrieved from EMAGE RDF data set during the 

evaluation of the amount of IID present in a record set as evident in chapter 8. Also, 

most of the data collected by interview or archival analysis are descriptive qualitative 

data. Both qualitative and quantitative data can be visualised in a concept lattice.  
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5.4 Alternative Approaches, Challenges and Ethical Considerations 

5.4.1 Alternative Approaches 

A quantitative or qualitative research design could have been used in this work.  But 

quantitative research is criticised as not being comprehensive because it excludes the 

meanings which participants give to events (Becker 1996; Sandelowski 2000). 

Qualitative research on the other hand, is criticised for its subjectivity and lack of 

generalizability (Sandelowski 2000). However, a mixed research design as 

implemented in this work, use quantitative research to reinforce the results from the 

qualitative research.  

Also, a simulated data set could have been used instead of case study research 

data. But a simulated data set will have the short coming of not providing relevant 

documentations that explains the sources or causes of any identified IID.   

 

5.4.2 Challenges  

A challenge faced in this work is the inability to get licences for some of the 

applications which were evaluated. Dau and Melo approaches (see chapter 7 and 8) 

were not experimentally investigated in this work because of the inability to get their 

application licences. Nevertheless, the approaches were assessed by scrutinising their 

functionalities and results in their associated articles.  

  

5.4.3 Ethical Considerations 

This work obtained the consents to include personal communications of the CUBIST 

researchers whose electronic mails are attached in appendix A. The consents are 

included in the appendix A. The consent to include personal communications of the 

FcaBedRock developer whose electronic mails are attached in appendix B is also 

included in appendix B.  Appendix C is the licence for the use of Owlim-SE application. 

This research was done in accordance with the research ethics of Sheffield Hallam 

University (SHU) and it was approved by the ethics committee of the university. 
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5.5 Key Messages and Findings 

This chapter describes the various research methods used in this work. EMAGE is the 

single case study investigated for IID in this work through the use of single case study 

methodology. It is explained that case study methods such as data analysis 

techniques, and literature search were used in investigating the EMAGE. The 

automated FcaBedrock and the semi-automated FcaBedrock approaches are among 

the data analysis techniques used in investigating IID in EMAGE RDF data set. The 

research ethics and challenges encountered during this study are also outlined in this 

chapter.  
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Chapter 6: The Edinburgh Mouse Atlas Gene Expression 

Database (EMAGE) 

 

6.1   Introduction  

The Edinburgh Mouse Atlas Gene Expression Database (EMAGE) is a database of 

gene expression data in the developing mouse embryo and an accompanying suite of 

tools to search and analyse the data19. The EMAGE is a free online database. It 

provides an avenue for biologists to identify genes and their level of expressions in the 

tissues of the different Theiler Stages of the mouse. This knowledge is essential as to 

determine the possible causes of ill health in an organism. A knowledge of the level of 

gene expressions in tissues or organs of an organism at a particular developmental 

stage can help a biologist to determine the cause of ill health (mal-function of the cell, 

tissue or organ) in the organism at that particular stage (McLeod and Burger 2011). 

This can be done by comparing the genes expressed in the cells or tissues of a healthy 

organism with the genes expressed in the cells or tissues of an unhealthy organism at 

the same developmental stage.  

The developmental stages of the house mouse as classified in Theiler (1989) are 

used in EMAGE as a means of storing gene expression data. Theiler (1989) classified 

the house mouse developmental stages into 28 different Theiler Stages (TS) namely 

TS01 to TS28. TS01 to TS26 identify the unborn or developing mouse while TS27 and 

TS28 identify the new born and the postnatal adult mouse respectively. These 

developmental stages are listed in appendix D. EMAGE stores data from TS01 to TS26 

for the developing house mouse.  

The EMAGE database uses resources from the e-Mouse Atlas Project20 (EMAP). 

It also integrates data from various biological experimental reports such as journal 

publications, screening projects, and laboratory reports. Consequently, IID is likely to 

be evident in EMAGE database. Also, EMAGE seeks to identify the gene expressed in 

every tissue of every developmental stage of the mouse. But some methods used in 

EMAGE database such as its annotation and propagation methods can introduce 

inconsistency and incompleteness in the gene expression database.  

                                                      
19

 http://www.eMouseatlas.org/emage/ 

20
 http://www.emouseatlas.org/emap/about/what_is_emap.html#emap 
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Section 6.2 of this chapter, describes the methods used by the EMAP in EMAGE. 

Section 6.3 outlines and explains the causes of IID in EMAGE database.  Section 6.4 

and 6.5 describe the EMAGE search options and the EMAGE RDF data set 

respectively. The chapter is concluded by outlining its key messages and findings in 

section 6.6 

6.2    The EMAP 

The EMAP anatomy ontology and anatomy structures are used in EMAGE to enable 

the visualisation and interpretation of the genes expressed in the various tissues of the 

different Theiler Stages in the EMAGE database. This section explains how this is 

achieved in EMAGE database.   

6.2.1 Visualisation of Gene Expression  

EMAP contains a hierarchically organised ontology of anatomical terms for each 

Theiler Stage in mouse development and a set of 2D and 3D virtual mouse embryo 

models for post implantation stages of Theiler Stage of development. Figure 8 (see 

below) shows a subset of the EMAP Anatomy Ontology of Theiler Stage 11 while a 

mapping of gene expression on an EMAP virtual mouse embryo at Theiler Stage 17 is 

shown in Figure 9 (see below).   

In Figure 8 shows a subset of EMAP anatomy ontology in a tree like structure. 

This arrangement enables an easy visualisation of the tissues and also the 

interpretation of genes expressed in the tissues. The endoderm for example has been 

‘opened’ in Figure 8. This is indicated by the ‘-‘ symbol which reveals its two children 

(primitive endoderm and definitive endoderm). It is therefore easy to visualise that the 

primitive endoderm is part of the endoderm and that the definitive endoderm is part of 

the endoderm. This interpretation can also be applied to any open branch of the tree. 

The extraembryonic component has been ‘closed’ in Figure 8. This is indicated by the 

‘+’ symbol. This indicates that extraembryonic component has children that can be 

viewed should that branch be ‘opened’.  
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Figure 8: A part of the EMAP Anatomy Ontology of Theiler Stage 11 available in 

http://www.eMouseatlas.org/emap/ema/DAOAnatomyJSP/anatomy.html?stage=TS11 last accessed on 24th 

March, 2015 

 

 

 

Figure 9: A whole-mount mapping of spatially annotated Mouse embryo showing the expression of distal-less 

homeobox at TS17 available at http://www.eMouseatlas.org/gxdb/dbImage/segment1/1444/detail_1444.html 

last accessed on 24th March, 2015 

 

http://www.emouseatlas.org/emap/ema/DAOAnatomyJSP/anatomy.html?stage=TS11
http://www.emouseatlas.org/gxdb/dbImage/segment1/1444/detail_1444.html
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In EMAGE, the whole-mount view or 3D embryo model enables spatially 

annotated gene expressions to be visualised. For example, Figure 9 (see above) 

shows a whole-mount view of distal-less homebox expressions in a virtual embryo at 

Theiler Stage 17. The essence of EMAP anatomical ontology or virtual mouse embryo 

is to enable the visualisation and interpretation of the EMAGE stored genes 

expressions. This is made possible either through textual annotation or spatial 

annotation as described in section 6.2.2 below. 

 

6.2.2 Annotation of Gene Expression  

EMAGE gene expressions are gotten from experimental results of journal publications, 

screening projects, and laboratory reports among others. Such gene expressions are 

annotated with terms (standardised ontology) from Gene Ontology21. Gene expressions 

which are stored in EMAGE can be gotten from images that are either an entire mouse 

embryo (whole-mount), or a slice/section of the mouse. They can also include textual 

descriptions of the gene expressions. The images of whole-mount or slice of a mouse 

show the gene expression patterns and the associated tissues. For example, Boyl et 

al., (2001) outline the expression patterns and descriptions of Otx2 in Forebrain and 

midbrain of the developing mouse. His experimental report (Journal publication) 

contains details of his experiment and associated diagram that was analysed. Essential 

details relating to gene expressions for instance, the expression patterns of Otx2 in the 

various investigated tissues, the materials used such as information of the specimen, 

and the procedures, can therefore be annotated and stored in EMAGE database.  

Spatial or textual annotation techniques can be used to retrieve gene expression 

data from different experimental sources and stored in EMAGE.  In spatial annotation, 

gene expressions are mapped to their associated region of space and developmental 

stage (Theiler stage) in the virtual embryos. This is achieved in EMAGE by the use of 

the 2D or 3D EMAP embryonic models (Richardson et al., 2014). As a result, EMAGE 

gene expressions can be stored in 2D or 3D imagery that is also available for query. 

Figure 10 (see above), is an illustration of a spatially annotated mouse embryo which 

shows the expression of the gene ‘distal-less homeobox 5’ at TS17.  

                                                      
21

 http://geneontology.org/ 
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Spatial annotation is performed independently of any text annotation that may 

accompany it in an EMAGE entry22. Basically, EMAGE spatial annotation can involve 

any of the following:  

 Spatial annotation of sectioned and whole-mount stained embryos: This 

involves the mapping of gene expressions in sectioned or whole-mount stained 

embryos on EMAP 2D virtual embryo. The displayed gene expressions are 

usually retrieved from photographs of whole-mount or sectioned stained 

embryo. The investigated image is first read by an EMAGE application such as 

MAPaint, then expression patterns in the image are warped onto a whole-mount 

or sectioned image of one of the standard EMAP model embryos.  

 Spatial annotation of 3D data: 3D gene expressions are retrieved from EMAGE 

data sources through technologies such as high resolution optical Microscopy, 

magnetic resonance microscopy (MRM) or Optical Projection Tomography 

(OPT). EMAGE curators use OPT to capture 3D images of whole-mount 

embryos assayed through colourimetric in situ protocols.  AMIRA, WlzWarp or 

MAPaint programs (EMAGE in-house image warping applications) are 

subsequently used to spatially map the captured OPT data onto stage matched 

models (Richardson et al., 2014).  

 

Textual annotation is performed manually by the EMAGE annotator. Textual 

descriptions in biological reports are annotated and mapped to their associated EMAP 

anatomical terms. Textual annotation involves the manual mapping of genes expressed 

in EMAGE experimental report to their associated EMAP anatomy ontology. Figure 10 

(see below), illustrates the linking of contents of an experimental report to 

corresponding EMAP anatomy ontologies. The textual descriptions written at the right 

side of Figure 10 represents textual explanations about the gene expression of the 

investigated tissue. The picture of the mouse in the right corner of Figure 10 represents 

the whole-mount view of the mouse.  

                                                      
22

 http://www.eMouseatlas.org/emage/ 

http://www.emouseatlas.org/emage/
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Figure 10: A modification of Figure 5 in (McLeod and Burger 2011), illustrating the textual annotation process 

 

 The processes and technologies involved in EMAGE spatial and textual 

annotation are articulated in EMAGE publications23 such as in (Christiansen et al., 

2006; Richardson et al. 2014; Venkataraman et al. 2008).  

 

6.2.3 Propagation of Gene expression 

EMAGE database propagates its gene expressions as to ensure the identification of 

the gene expressions in every gene in every tissue of every Theiler Stage. The 

propagation of gene expression in EMAGE can be understood through the EMAP 

anatomy ontology. A tissue is related to another tissue and is described in EMAP 

anatomy ontology with the is_part_of relationship. For example, it can be seen from 

Figure 9 above, that the heart is_part_of the cardiovascular system, the cardiovascular 

system is_part_of the organ system and the organ system is_part_of the mouse. The 

is_part_of relationship between tissues as depicted in the EMAP hierarchical tree 

structure is used in the propagation of gene expressions in EMAGE.  

In EMAGE, a gene expression can either be propagated up (positively) or down 

(negatively) depending on its expression. In positive propagation, detected gene 

expression levels associated with a lower granularity tissue (child tissue) is assigned to 

                                                      
23

  http://www.emouseatlas.org/emap/about/publications.html 
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related higher granularity tissues.  Cardiovascular system is a lower granularity tissue 

to organ system as shown in Figure 9. If Otx2 is identified as strong in cardiovascular 

system, then a positive propagation will assign strong to Otx2 in organ system.  

In negative propagation, a gene which is not detected in a higher granularity 

tissue is assigned as ‘not detected’ to related lower granularity tissues.  Organ system 

is a higher granularity tissue to the cardiovascular system. It also has an is_part_of 

relationship with cardiovascular system. If Otx2 is not detected in the organ system 

then a negative propagation will assign ‘not detected’ to Otx2 in the cardiovascular 

system. 

 In theory, propagation of gene expression provides an ideal way to complete the 

tissues without an associated gene expression in EMAGE. However, the existence of 

IID prior to propagation of gene expressions in the database, the annotation process, 

and the data integration issues are among the factors that can cause IID when the 

gene expressions are propagated. These are explained in section 6.3 below.  

 

6.3 Causes of IID in EMAGE Gene Expression Database 

This section explains the causes of IID in EMAGE database and how the EMAGE 

search interface can be used to identify and visualise the IIDs existing in EMAGE. The 

following factors are identified in this work as the cause of IID in the EMAGE database. 

6.3.1 Data integration  

EMAGE data includes annotated gene expressions. These gene expressions are from 

different biologist experimental reports. EMAGE curators retrieve details relating to 

gene expressions in these experimental reports and store same in the EMAGE 

database. But the lack of standardised ontology for representing gene expressions in 

the experimental reports which were presented by biologists can affect the consistency 

of the data in EMAGE. For example, a gene expression can be described as weak in a 

biologist’s experiment while the same degree of gene expression may be described as 

moderate in another biologist’s experiment.  

Also, the non-standardised image technology used in capturing the experimental 

reports can affect the consistency and completeness of the data in EMAGE. For 

example, the non-standardisation of technology for photographing biological images 

will result in IID in EMAGE data. More so, different precision microscopes may be used 

by different biologists to capture the analysed image. The retrieved data from the 
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various reports will be incomplete or inconsistent when they are integrated into EMAGE 

database.  

Other sources of IID that results from data integration in EMAGE database can 

include experimental error or variation in experimental conditions which can lead to 

differences in results produced by different biologists on the same test as identified in 

Burger (2007). It is also possible that there is no information about some genes in 

some tissues from a particular stage of the developing mouse.  

 

6.3.2 Propagation 

If there are IID in EMAGE database which may have resulted from the EMAGE data 

integration processes (as explained in section 6.3.1 above), then the propagation of 

gene expressions in EMAGE will cause additional IID in the database.  

 Ideally, propagating gene expressions in EMAGE database should ensure a 

consistent and complete gene expression database. Nevertheless, some inconsistent 

or incomplete gene expression data in the EMAGE database will contradict other 

EMAGE data when the expressions are propagated. For instance, let us assume that 

the gene smad1 is identified at a strong expression level in the cardiovascular system 

in Theiler Stage 11 (see Figure 8 above). The organ system and the mouse will then be 

assigned strong expression level when the EMAGE dataset is positively propagated. 

However, assigning strong expression level to smad1 in the mouse will result in an 

inconsistent expression in EMAGE where smad1 in the cardiovascular system or in the 

mouse is associated with moderate expression level. Also, let us assume a situation 

where in Theiler Stage 11, the gene otx2 is not detected in the neural ectoderm. This 

will imply that otx2 in future spinal cord and in future brain will not be detected because 

future spinal cord and future brain are part of neural ectoderm.  But assigning not 

detected to otx2 in future brain will result in inconsistent expression if another 

experiment has already detected otx2 in future brain in the same Theiler Stage.  

   

6.3.3 Textual Annotation  

Textual descriptions of experimental reports may produce incomplete gene expression 

information in the EMAGE. This is because, the EMAGE annotator will only capture 

whatever information the researcher/biologist wishes to present in his experimental 

report. As explained in (Taylor et al., 2013), textual annotations may be incomplete if 

for instance, the researcher is only interested in the heart then he will not create textual 
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annotations for the brain. If for instance the research is documented at a high 

granularity, the textual annotation will report the gene as being expressed in the heart 

rather than the sub-component in which it is actually found. Also, textual annotation is 

manually processed by the EMAGE annotators and this may result in errors of wrong 

tabulation or slight omissions. 

 

6.3.4 Data Processing Technologies 

Spatial annotation in EMAGE enables the retrieval of gene expressions from images in 

biological reports as explained in section 6.2.2. IID can exist in EMAGE as a result of 

spatial data processing technologies. This is because there are different technologies 

for sourcing spatial data in EMAGE. Software applications such as AMIRA, WlzViewer 

or MAPaint are different programs for producing spatial data in EMAGE.  These 

programs are not automated application and their spatially mapped data can vary 

depending on the proficiency of the program user. Such variations can introduce IID in 

an EMAGE database.  

A summary of the various causes and examples of IID in EMAGE database is 

outlined in Table 7 (see below).  

 

Table 7: Causes and examples of IID in EMAGE 

S/N

o 

Cause of 

IID 

Reason for IID  Example 

1. Data 

integration  

 

 Lack of standardised 

ontology 

 Non-standard image 

capturing technology 

 Experimental errors, and 

different precision 

microscopes  

 Results from multiple 

experiments 

Different precision 

microscopes may be used 

by different biologists to 

capture their analysed 

images, thereby resulting in 

IID when this data is 

integrated in EMAGE 

database 

2. EMAGE 

propagation  
 Propagating existing IID 

Negatively propagating 

not_detected to otx2 in 

future brain where another 
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experiment has already 

detected otx2 as strong in 

future brain.  

 

3. Textual 

annotation 
 Level of granularity, 

wrong tabulation, and 

slight omission 

The annotation of Organ 

system without annotating 

Cardiovascular system 

4. Data 

processing 

technologies 

 Level of proficiency of 

EMAGE program user 

When different people use 

EMAGE application such as 

AMIRA or WlzViewer for the 

same data set, there can be 

variations in their produced 

results.  

 

 

6.4 The EMAGE Search Options 

EMAGE users can access non-spatially mapped data via an EMAGE repository 

which is accessible through the EMAGE website (Stevenson et al. 2011; 

Venkataraman et al. 2008). EMAGE provides its users with search options (interfaces) 

through its website, for the search and analysis of its data. These search options in 

EMAGE website uses key words such as the gene/protein name, symbol or ID as a 

query term, embryonic region as query term, Biomart interface, and the name of an 

anatomical structure, among others. Basically, EMAGE captures a query when its user 

searches for a term through any of the search interface. It processes this query and 

displays the result set in a tabular structure. Each EMAGE entry is associated with the 

details of the search result as shown in Figure 11.  

The EMAGE search options can be used to identify and visualise IID as evident 

in Figure 11.  The result from searching for a key word in EMAGE website can include 

different rows with differences in expression levels for the same gene in the same 

tissue of the same Theiler Stage. IID can be identified in such results when scrolling 

down the web page(s) displayed by the search engine. The colour on the images 

displayed on the web page as evident in Figure 11, provide some indication of the level 

of expression. Two or more different expression levels (different colours) from the 

same gene, of related tissues or the same tissue in the same Theiler Stage will indicate 
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inconsistent expression. This will imply that the corresponding tissues have 

inconsistent gene expression. But such inconsistency is identified by comparing 

different rows in the results displayed by the EMAGE search engine. This process of 

identifying inconsistent gene expression is tedious. A better method for visualising IID 

will enable an easier means of identifying the IID in the results displayed by the search 

engine. 

The EMAGE search options do not separate out the IID from its result set as to 

exclusively visualise the IIDs. Talyor et al. (2013) explain that “EMAGE does not 

provide any visualisation to summarise the expression information across time or 

between multiple genes.” Consequently, the binary or analogue inconsistency in a 

tissue at particular TS cannot be exclusively visualised in the EMAGE website.  There 

is a need to improve the EMAGE search options as to incorporate techniques that can 

exclusively analyse the IID in the EMAGE database.  

 

 
Figure 11: Result of asking where the gene Otx2 is detected in TS11 through the gene/protein search option of 

EMAGE website, available at 

http://www.emouseatlas.org/emagewebapp/pages/emage_general_query_result.jsf, last accessed on the 23rd 

March 2015. 
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6.5 EMAGE RDF Data Set  

The EMAGE database stores the EMAGE data set. An EMAGE user can request for 

the EMAGE data set or a subset of the EMAGE in different formats such as relational 

or XML format through the EMAGE website.  

 The EMAGE RDF dataset is explored in this work. A sub data set of the 

EMAGE data in RDF form was provided by CUBIST project team and analysed for IID 

in this work. The ontology for the EMAGE RDF data set is presented in Dau (2013a) 

and reconstructed in Figure 12 (see below).  

As described in Figure 12, the EMAGE RDF data set contains different classes 

which include Theiler Stage, Tissue, Gene, Strength, and Experiment. These classes 

have properties and derived properties. The relationships among the classes, 

properties and derived properties in the EMAGE RDF data are depicted in Figure 12 

below. For example, the Gene has g_intextual_annotation as its derived property. Also, 

a textual annotation has has_involved_gene and in_tissue as its properties. A textual 

annotation can be associated with different expression levels – strong, moderate, 

weak, or not_detected. Also, detected is the derived property for strong, moderate, or 

weak expressions.  
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Figure 12: The ontology for the EMAGE RDF data set as adapted from Dau (2013a) 

 

 

6.6 Key Messages and Findings 

This chapter has explained the EMAGE, the EMAP, and the causes of IID in EMAGE. It 

explained the various ways by which the EMAGE uses EMAP anatomy ontology and 

anatomy structures. It also described the EMAGE RDF data set. This chapter identified 

that the search options used in EMAGE are unable to exclusively visualise IID existing 

in the database. Consequently, the FCA approaches for dealing with IID in RDF data 

set are explored in chapter 7 below. 
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Chapter 7: FCA Approaches for dealing with IID in RDF Data 

 

7.1 Introduction 

The IID in a data set can be dealt with through the use of FCA approaches such as 

Dau’s approach, CUBIST approaches, fault tolerance approach, attribute exploration, 

the semi-automated FcaBedrock approach or the automated FcaBedrock approach. 

This chapter provides comprehensive details on how these approaches are used in 

dealing with the IID in an RDF data set. 

The FCA approaches for dealing with IID in a data set is divided into two in this 

Chapter namely: the existing FCA approaches and the new FCA approaches. The 

existing FCA approaches contain approaches which were developed by other FCA 

researchers. It includes attribute exploration, fault tolerance, Dau and CUBIST 

approaches. The new FCA approaches are approaches which were developed in the 

course of this work. It includes the association rule, semi-automated and the automated 

FcaBedrock approaches.  

RDF data set tolerates IID as explained in chapters 1 and 3 of this work. Such 

IIDs can exist in record sets retrieved from the RDF database.  In chapter 3, it is noted 

that there is need for robust approaches which can be used to identify and visualise the 

IID existing in RDF database. This will enable the data users to make informed 

decisions or conclusions as explained in chapter 1.  

This chapter begins by briefly explaining in section 7.2, the basic SPARQL 

keywords that can be used in retrieving IID from a noisy data set. Section 7.3 

discusses existing FCA approaches for dealing with IID. Section 7.4 discusses the new 

FCA approaches proposed in the course of this work.  

 

7.2 Retrieving IID with SPARQL  

SPARQL is a query language which is used in retrieving matching subgraphs from an 

RDF triple store. RDF subgraph which have contradictory attribute values (inconsistent 

data) or which do not have some required attribute-values (incomplete data) can be 

retrieved through SPARQL queries.   

A basic graph pattern matches a subgraph of the RDF data when RDF terms 

from that subgraph can be substituted for the variables and the result is an RDF graph 

equivalent to the subgraph (Harris and Seaborne 2013). Some examples of the RDF 
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graphs are presented in Chapter 3 of this work. The optional keyword can be used in 

SPARQL to check for bindings to contradictory attribute values in the data set. Quilitz 

and Leser (2008) explain that in an optional match, either the optional graph pattern 

matches a graph, thereby defining and adding bindings to one or more solutions or it 

leaves a solution unchanged without adding any additional bindings. Similarly, the 

union keyword can be used to combine graph patterns so that one of several 

alternative graph patterns may match (Quilitz and Leser 2008), thereby providing a 

means of retrieving inconsistent data from contradictory graph patterns. Consequently, 

the use of optional or union key words in a SPARQL query can enable a match of 

subgraphs containing IID in the RDF data store. The optional and union keywords are 

the two basic SPARQL keywords for retrieving IID. Dau (2013a) explains how the 

optional and the union keywords are used in retrieving IID from an RDF data set in a 

triple store.   

SPARQL also has other keywords which are relevant to retrieving inconsistent or 

incomplete subgraphs from RDF graphs. These keywords include filter, bind, 

sameTerm, and GroupBy. For more details about writing SPARQL query, this work 

recommends its readers to consult publications such as Quilitz and Leser (2008), 

Power (2003), DuCharme (2011), Dau (2013a) and Nwagwu (2013). These 

documentations provide good examples of how IID can be retrieved from an RDF data 

set in a triple store. 

 

7.3 Existing FCA approaches for dealing with IID in RDF data set 

This work identifies the Dau, CUBIST, fault tolerance and attribute exploration 

approaches as existing techniques for dealing with IID. These approaches are 

discussed in this section.  

7.3.1 Dau’s Approach-SPARQL2context creator  

Dau developed the SPARQL2context creator as documented in (Dau 2013a) where it 

is explained how IID can be retrieved from a triple store and visualised in a lattice 

structure. The SPARQL2context creator is an application that can retrieve and 

transform the result of the SPARQL-query into a formal context. It functions by using 

the names of the query output variables which begins with ‘o’ to generate objects of the 

context. Variables which begin with ‘a’ are used to generate attributes of the formal 

context while other variables have no impact on the generated context. Also, more than 
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one variable that begins with an ‘o’ or an ‘a’ are simply concatenated to generate an 

object or attribute name respectively.  

Dau’s approach involves retrieving a record set that contains IID, transforming 

all the data in the record set to a formal context, and visualising this single-valued 

context in a lattice structure. This is illustrated in Table 8 and Figure 13 below. Table 8 

provides an example of a formal context created from a SPARQL-query result set by 

the SPARQL2Context creator, as reproduced from Dau (2013a).  In the generated 

formal context (see Table 8), there are some rows and columns of cells which do not 

contain any data. Such rows or columns depict incomplete data. Examples of such 

empty row or column of cells are o1, o1-o2, o3, A1, A1-A2, and A2.  

 

Table 8: Transforming SPAQRL-query-results to formal contexts as evident in Dau (2013a) 

 

 

Dau notes that SPARQL query can be written as object restricted, attribute 

restricted, objects unrestricted and attributes unrestricted queries. A query that is 

designed to retrieve a set of attributes and unrestricted objects from a database is likely 

to retrieve a record set containing some empty rows. Similarly, a query that is designed 

to retrieve a set of objects and unrestricted attributes is likely to retrieve a record set 

containing some empty columns. It can therefore be said that a query that is designed 

to retrieve a set of objects and unrestricted attributes, a set of attributes and 

unrestricted objects, or unrestricted objects and unrestricted attributes, is likely to 

contain IID in its result set. 
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Figure 13: Concept lattice built from Table 8 

 

Figure 13 is built from the formal context in Table 8. It is used to illustrate how IID 

can be identified, as suggested in Dau (2013a).  Dau notes that instances of 

contradictory data can be apparent where an object is associated with at least two 

pairs of attributes. As a result, o5-o7 in Figure 13 should be given a closer look to 

check if the attributes A5-A6 and A4 are contradictory. Empty columns and empty rows 

depict incomplete attributes and incomplete objects respectively, as shown in Table 8 

(see above). In Figure 13, o3, o1-o2, and o1 are incomplete objects while A2, A1-A2, 

and A1 are incomplete attributes. Chapter 8 demonstrates the application of Dau’s 

approach on EMAGE data set.  

 

7.3.2 CUBIST Approaches 

A general approach of the CUBIST application is to query a triple store and convert the 

result into a formal context, which can be simplified to make it manageable, before 

visualising it as a concept lattice and associated charts (Melo et al., 2013). CUBIST 

uses a set of pre-defined queries to query the ontology of an RDF data set, which are 

then converted to a formal context. It deals with IID existing in its explored data set 

through utilizing distinct colour, interactive exploration and fault tolerance. 

Data conflict is emphasised in CUBIST by associating distinct colours to the 

inconsistency type. For example, a red colour can be used to indicate that a gene is 

both detected and not detected (binary inconsistency) in the same tissue at the same 

Theiler Stage. CUBIST users can visualise the inconsistency associated to data 

through an interactive exploration of the data. Also, CUBIST applies fault tolerance as 

a means of inferring missing data (fault tolerance is discussed in section 7.3.3 below).  
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Generally, CUBIST combines approaches developed in works such as Andrews 

(2011) and Dau (2013a, 2013b), in order to deal with IID in an RDF data set.  Its 

approaches for dealing with IID in EMAGE data set is further described in Chapter 8.  

 

7.3.3 Fault tolerance 

Fault tolerance is another approach of dealing with IID in RDF data set. It is noted in 

Dau (2013b) that if all the information in the formal context is preserved in a concept 

lattice (G, M, I), the concept lattice might exponentially grow in size such that it has 2max 

{|G|, |M|} many formal concepts; hence the introduction of a fault tolerance approach. 

Fault tolerance in FCA can be described as the substitution of a certain amount of 

missing data as true values during the computation of formal concepts (Andrews and 

McLeod 2013). Generally, the application of fault tolerance in FCA involves the 

introduction of softness (user defined tolerance) to the constraint implemented in FCA. 

Fault tolerance approach as used in FCA, provides a means of reasoning with 

an incomplete and noisy data set. It can enable the visualisation and also enhance the 

readability of the concept lattice from a large data set. When fault tolerance is applied 

on a noisy data set, it produces interesting and manageable lattices which enables the 

inference of missing values as demonstrated in (Andrews and McLeod 2013; Dau 

2013b).  

Table 9 is an illustration of a formal context in binary format. The objects in Table 

9 includes a, b, c, d, and e while the attributes of the context includes 1, 2, 3 and 4. An 

application of fault tolerance can involve allowing a certain amount of missing 

attributes. For example, a tolerance of one will involve changing the “0” value in 

attribute 2 to “1”.   Similarly, a fault tolerance of two will involve changing the two “0”s in 

attribute 1 and 3 to “1”s as explained in Andrews and McLeod (2013). 

  

Table 9: An illustration of a formal context in binary format as adapted from Andrews and McLeod (2013) 
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Also, in Dau (2013b), the incidence relation I in a formal context (G, M, I) is 

extended so that the derived lattice becomes smaller. He achieved this by measuring 

the incidence relations (associating them with numerical values) and applying a 

threshold as a fault tolerance. A total of 6 different ways of measuring the I between g 

and m is presented in (Dau 2013b) namely, global similarity:objects only, global 

similarity: attributes only, global similarity: objets and attributes, local similarity:objects 

only, local similarity:attributes only, and local similarity:objects and attributes. These 

measures are represented with GObj, GAtt, GObj,Att , LObj, LAtt , and LObj,Att 

respectively. Table 10 and Figure 14 (see below) illustrate how the mathematical 

measure of GObj is implemented  

Table 10 is an example of the global object-based measurement (Gobj) derived 

from a formal context.  For a violation of I by exactly 9 objects (o1 to o10), an incidence 

measure of 0.1 is recorded. It should be noted that when the ‘I’ is not associated with 

an ‘X’, it means that a violation has occurred. Also, for a violation by 8 objects, the 

incidence measure of 0.2 is recorded. In Figure 14, a threshold of 1 identifies all the 

information in the formal context. A reduction in the threshold, such as a threshold of 

0.6, and 0.4, presents a concept lattice that tolerates that amount of missing 

information as apparent in the incidence measure. The proof of these derivations is 

presented in Dau (2013b).  

 

 

Table 10: Example of a global object-based measurement (Gobj) incidence measure (right) from a formal context 

(left) as adapted from Dau (2013b) 
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Figure 14: Examples of concept lattices derived from GObj as build from the formal context in Table 10 

 

Figure 14 above, depicts examples of concept lattices derived from GObj as build 

from the formal context in Table 10. The fault tolerance approach can be used to infer 

missing data. For example, in the concept lattice with the threshold of 0.60 (see Figure 

14), the attribute ‘a3’ is inferred for the objects o7 and o4. In the 0.40 threshold of 

Figure 14, a4 is inferred for the objects (o9, o7, o4) while a3 is inferred for the objects 

(o7, o4, o10, o8, o5, o4).   

Fault tolerance is applied in noisy data sets to reduce the combinatorial explosion 

of the number of formal concepts and also to compute interesting result sets. Other 

works on fault tolerance and how it can be used to reason with noisy data set include 

Pensa and Boulicaut (2005a, 2005b). Having noted that fault tolerance as presented in 

(Dau 2013b; Andrews and McLeod 2013) provides a useful means of reasoning with a 

noisy and incomplete data set, there are some challenges associated with this 

approach in this work. The application developed in Dau (2013b) is not publicly 

available. It was not possible to obtain the implemented software in this work. Also, 

there are no publications that show how the 6 different incident measures are used in 

dealing with IID of an EMAGE data set. Consequently, evaluating this approach was 

not realisable. The fault tolerance approach is not evaluated further in subsequent 

chapters of this work.   
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7.3.4 Attribute Exploration  

Attribute exploration is a knowledge acquisition method of FCA that is used to acquire 

complete knowledge about an application domain by asking successive questions to a 

domain expert (Sertkaya 2009). In so doing, missing attributes of objects are identified 

and added to the formal context. Attribute exploration enables the identification of 

incomplete data. It ensures that implications are computed for a given formal context 

(G, M, I). In a formal context, an implication between two subsets of attributes Q and R 

means that if a set of objects is described by the attributes contained in Q then it is 

necessarily described by the attributes contained in R.  This is mathematically 

represented as follows: 

A context (G, M, I) satisfies the implication Q  R, with Q, R ⊂ M, if for all g   G, gIq for 

all q   Q implies gIr for all r  R (Carpineto and Romano 2004 p. 141). 

 

In FCA, attribute exploration enables the computation of implications in which 

objects are confirmed to have all attributes of the implications by a domain expert. The 

objectives of attribute exploration in FCA are to identify all objects that implication rules 

apply to and to provide counter examples where the rules are not applicable as 

identified by a domain expert. The classical method of attribute exploration is explained 

in (Ganter 1999; Ganter 2010 p.322- 340).  It is based on implications and counter 

examples. OntoComP24 and conExp are some of the open source applications that 

implement attribute exploration. Some of the applications of Attribute exploration 

include ontology completion Sertkaya (2009), security checks Obiedkov et al., (2009), 

and web data Jäschke and Rudolph (2013). Nonetheless, the use of attribute 

exploration is not appropriate in every domain.  

In attribute exploration, knowledge is assumed to be completed by the domain 

expert. However, it has been noted that the semantics whereby knowledge is 

completed by a domain expert as adopted by attribute exploration does not agree with 

the semantics of the Open World Assumption (OWA) (Baader et al., 2007). OWA 

follows open world semantics which implicitly assume that a knowledge base may 

always be incomplete (Hitzler et al., 2011 p.131). The OWA is discussed in Chapter 3 

of this work. The open and always incomplete semantic web, RDF(S) and OWL adhere 

to the OWA as discussed in Chapter 3 (see also Hitzler et al., 2011 p.372). As a result, 

attribute exploration is noted in this work as inappropriate for RDF and OWA 

knowledge bases.  

                                                      
24

  http://ontocomp.googlecode.com 

http://ontocomp.googlecode.com/
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7.4 New FCA approaches used to deal with IID in RDF data 

This work also identifies new FCA approaches for identifying and visualising the IID 

existing in an RDF data set. These approaches are proposed in the course of this work 

and explained in this section. They include the association rule, the semi-automated 

and the automated FcaBedrock approaches.  

7.4.1 Association Rule 

The application of the association rule in FCA can provide a means of visualising 

missing or incomplete data when two concept lattices are compared. Stumme et al., 

(2002) explain that an association rule is a pair X Y with X, Y ⊆ M. For X, Y ⊆ M, the 

implication X  Y holds in the context, if each object having all attributes in X also has 

all attributes in Y. An implication can be read directly in the line diagram of a concept 

lattice in which the largest concept have intent M which contains X and Y. For example, 

the implication {Att1-v1, Att1-v2}   {Att4-v2, Att3-v1} holds in Figure 15a. 

The association rule as visualised in concept lattice can be used to identify IID. 

This can be achieved by comparing the association rule in the concept lattice of a 

subunit data set with that of the super or master data set. A master data set refers to a 

dataset that incorporates data from sub units. An example of a master and its subunits 

data sets are the data set held by the central administrative office of an organisation 

and its departmental data sets. In principle, incomplete data in the data set from a 

central administrative office can be identified by comparing the association rule from its 

concept lattice with the departmental data sets.  

The application of the association rule in FCA can provide a means to easily 

visualise missing or incomplete data. Figures 15a and 15b illustrate how IID can be 

visualised given the concept lattices from a sub data set (departmental data set) and 

the master data set. Evidently, the implication {Att1-v1, Att1-v2}   {Att4-v2, Att3-v1} of 

Figure 15a does not hold in Figure 15b. A visual analysis of the implication {Att1-v1, 

Att1-v2}   {Att4-v2, Att3-v1} in Figure 15a and the implication {Att1-v1, Att1-v2}   

{Att3-v1} holding in Figure 15b reveals that Att4-v2 is missing in the central dataset. 

Att4-v2 is identified as the missing attribute while Obj3 is identified as the incomplete 

object. 
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Figure 15: Concept lattice of a formal context from a dummy departmental data set (a) and concept lattice of a 

formal context from a dummy administrative data set (b) 

 

The application of the association rule in identifying incomplete attributes or 

objects as explained in this section is yet to be explored in FCA literature. Unlike 

attribute exploration which depends on the knowledge of the domain expert to identify 

the incomplete data, the association rule approach provides a mechanism for 

comparing different data sets. This process of comparing concept diagrams from the 

master data store with the concept diagrams from the subunit data set is in accordance 

with OWA as there are no claims of the existence of complete data in the investigated 

or central dataset. The association rule will not be considered in subsequent chapters 

of this work because EMAGE do not have a master data set. Nevertheless, this 

approach provides further opportunity to explore how FCA can be used in the 

identification and visualisation of IID existing in a noisy data set.   

Similarly, the In-Close (an FCA tool) will not be used in this work. This is because 

it does not meaningfully deal with the IID existing in a noisy data set. In-Close can be 

used to reduce the number of formal concepts in a context file. It functions by 

requesting from its user, a minimum number of objects and a minimum number of 

attributes. It uses this information to mine for formal concepts that have this minimum 

support. Andrews et al. (2011) demonstrate how In-Close can be applied in a large 

data set. In-Close can be used to produce a manageable number of concepts from a 

large formal context. However, the approach used in In-Close is not considered in this 

work as appropriate to deal with IID. This is because, the approach in In-Close uses a 

trial and error approach where the user inputs any minimum number of objects or 

attributes. Such approach is not considered in this work as a semantic approach of 
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dealing with IID. As a result, it will not be considered in subsequent Chapters of this 

work.  

 

7.4.2 Semi-automated and automated FcaBedrock Approach  

The semi-automated and the automated FcaBedrock approaches are used to identify 

and visualise the IID existing in a noisy data set. They are based on mutually exclusive 

attribute value principle. An object in a data set is inconsistent when it is associated 

with an attribute which has mutually exclusive attribute values. Also, an object is 

incomplete when it is not associated with any of the mutually exclusive attribute values.  

An object can contain many-valued attribute. For example, a tissue (object) can 

be associated with a gene (attribute) which can be detected or not detected (values); a 

person (object) can be addressed with a title (attribute) such as ‘Mr.’, ‘Dr.’, or 

‘Prof’(values); a student (object) has a grade (attribute) which is either a ‘pass’ or a ‘fail’ 

(values). Some of these attribute values are mutually exclusive. For example, pass and 

fail. An object will be described as inconsistent when it is associated with many-valued 

attribute which are mutually exclusive. For example, there is inconsistency in a 

student's result whose grade is assigned a ‘pass’ and a ‘fail’. Also, a tissue is 

inconsistent when it is associated with a gene that is both detected and not detected. 

Such objects will be incomplete when they are not associated with any of the mutually 

exclusive attribute values. This work recalls part of section 5.3.1 in this section for easy 

follow through. Also Figure 6 is depicted here as Figure 16. 

The context of objects whose many-valued attributes are mutually exclusive can 

be defined to be consistent if each of its objects has only a single-value attribute from a 

mutually exclusive attribute values. If an object in such a context has two or more 

attribute values, then the context is inconsistent. For example, if the set of possible 

attribute values               , then let the set of objects with value    be    
 and 

the set of objects with value    be    
 and so on. A consistent context can be defined 

thus: 

                
 
    

    
                                                                     (1)  

where ”   implies “then”. 

Consequently, an object which is associated with more than one value from an attribute 

is inconsistent. 

 

The context is defined to be complete if every object in G has a value: 
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                                                                                                    (2) 

 

An object without an associated attribute value is therefore incomplete. 

 

 A concept lattice can be used to visualise consistency and completeness in a 

very clear manner. For example, if              and 

                               then examples of consistent and inconsistent lattices 

are shown in Figure 16(a-d). 16a illustrates consistent data, 16b illustrates inconsistent 

data where two objects have two values, 16c illustrates inconsistent data where one 

object has all three values and 16d illustrates incomplete data (objects without a value), 

which are clearly labelled at the topmost node of the lattice. For easy identification of 

IID in a concept lattice, it should be noted that an extent is identified by a lower filled 

semicircle labelled below the node, while the associated intent is identified by an upper 

filled semicircle in the same node or in an ascending path to the node. Extents which 

have attributes with more than one value are inconsistent and an extent which is not 

associated with an attribute value is incomplete.   

 

 

Figure 16: Examples of consistent (a), inconsistent (b and c), and incomplete (d) concept lattices 

 

 This work implemented the above concept by using free FCA tools to separate 

out and exclusively visualise IID in objects whose attribute values are mutually 

exclusive. This is implemented through the semi-automated FcaBedrock or the 

automated FcaBedrock approach as explained below.  
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Semi-automated FcaBedrock Approach  

The semi-automated FcaBedrock approach semi-automatically separates out (restricts) 

attributes associated with single-value when transforming a record set to a context file. 

In the semi-automated FcaBedrock approach, IID are identified in a data set through 

the use of FcaBedrock and ConExp. This is done by reading a many-valued attribute 

into an FcaBedrock application and manually changing the ‘y’ to ‘n’ of those attributes 

with one category value in the FcaBedrock’s editing environment. The essence of this 

editing is to restrict single-valued attributes, thereby converting other attributes to a 

formal context. Concept Explorer is subsequently used in building, visualising and also 

editing the concept lattice from the context file. Figure 17 illustrates this approach. 

 

 

Figure 17: An illustration of the semi-automated FcaBedrock approach 

  

 The step 1 of Figure 17 is the corresponding formal context of an FcaBedrock 

input file. Ideally, the context file retrieved from an RDF database is often in a many-

value context but can be converted to a single-value context as described in chapter 4. 

The many-value context is read and processed by the FcaBedrock application. It is 

presented in a single-value context in Figure 17 for easy follow-through. Step 2 is the 

formal context of the output file from the FcaBedrock application. Step 3 informs the 

reader that the ConExp (a context visualisation tool) will be used to further edit the 

output file from the FcaBedrock.  
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 It can be noted that not all the attributes in step 1, are converted to the final 

context in step 2 as depicted in Figure 17. FcaBedrock provides an approach that 

enables the restriction of single-valued attributes when converting a many valued-

record set to a context file. Figure 18 (see below) shows how this was done in 

FcaBedrock. The ‘convert’ attributes of T and Eomes in Figure 18 are changed to ‘n’. 

This change has the effect of not transforming these single-value attributes to a formal 

context. Consequently, single valued attributes are limited from the converted context.  

 

 

Figure 18: Semi-automated FcaBedrock processing approach 
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Figure 19:Concept lattice built from the output file from the semi-automatic FcaBedrock approach 

 

Even so, there is still a need to edit the concept lattice built from the FcaBedrock’s 

output file (see step 3 of Figure 17). This is because not every many-valued attribute is 

inconsistent. In Figure 19, all the objects which are not associated with any attributes 

as depicted at the topmost node are incomplete. It is easy to visualise the incomplete 

data in Figure 19 but the inconsistent datum is not clearly depicted. The data analyst 

therefore, deselects attribute values which do not have contradictory attribute-value. 

Consequently, the data analyst can visualise only the IID in the data set when the 

concept lattice is edited through deselecting the appropriate boxes as shown in the left 

hand side of the ConExp (see Figure 20). Figure 20 presents an exclusive view of IID 

in the investigated data set.   
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Figure 20: Editing a Concept lattice in the ConExp 

 

Similar to the semi-automated FcaBedrock approach is the approach presented 

in (Andrews and Orphanides 2010), where it is shown how a data analyst can use 

FcaBedrock to analyse a data set by restricting the formal context conversion to only 

the data attributes of interest for a particular analysis.  Also, Jiang et al., (2009) used a 

node without a label for its own object in a concept lattice to show anonymous node. 

An ‘anonymous node’ means that an own object label is missing from the node (Jiang 

et al., 2009).  

The use of the semi-automated approach as described in this section is 

painstaking and time consuming. It is implemented by manually excluding single 

attribute values in FcaBedrock and also editing the concept lattice to separate out and 

exclusively visualise the IID in the data set. This approach exclusively identifies IID but 

it might not be appropriate for identifying IID in a large dataset. Hence there is a need 

for an automated FcaBedrock approach. 
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Automated FcaBedrock Approach 

The automated FcaBedrock approach is an IID identification and visualisation 

approach. It involves an automatic transformation of IID from a record set to a context 

file and a subsequent visualisation of the context file through a context visualisation 

tool.  Similar to the semi-automated FcaBedrock approach is the automated 

FcaBedrock approach. The automated FcaBedrock approach is applied to separate out 

and exclusively visualise IID in objects whose attribute values are mutually exclusive. 

Again, this work recalls part of section 5.3.1 in this section for easy follow through. 

Figure 7 is depicted here as Figure 21.  

The automated FcaBedrock approach is implemented by extending the 

FcaBedrock application. This extension enables the FcaBedrock to automatically 

convert only objects and their associated many valued attribute to a context file. As 

explained earlier, a many-valued context containing mutually exclusive attribute-values 

which do not adhere to equation 1 and 2 above is either inconsistent or incomplete. IID 

can be separated out and exclusively visualised from a noisy data set through the use 

of the automated FcaBedrock approach. For example, if M = {a-1, a-2, a-3, a-4} and G 

= {o1, o2, o3, o4}, then let the set of objects with value     be       and the set of 

objects with value     be       and so on. Examples of inconsistent and incomplete 

lattices are shown in Figure 21(a-d). 21a and 21b illustrates inconsistent and 

incomplete data; 21c illustrates inconsistent data where each of the three objects has 

contradictory values; and 21d illustrates incomplete data where attribute values without 

an associated object are displayed. Again, extents which have attributes with more 

than one value are inconsistent. An intent which is not associated with an object is 

incomplete.  

 

 

 

Figure 21: Examples of (a, b) inconsistent and incomplete, (c) inconsistent, and (d) incomplete concept lattices 
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  Figure 22 (see below), illustrates how the automated FcaBedrock approach is 

applied. In Figure 22, the formal context (see step 1) is the corresponding context file of 

a CSV or 3 column file. Again, the context file retrieved from RDF database is usually 

in a many-value context but it is represented with the corresponding single-value 

attribute context for easy follow-through. This file is read and processed by the 

FcaBedrock application. The second formal context (see step 2) is the corresponding 

context of the output file from the FcaBedrock. The context is actualised if the 

inconsistency mode was selected in the FcaBedrock during its many to single context 

conversion process as evident in Figure 23. It can be observed from the step 2 of 

Figure 22, that the object ‘neural ectoderm’ and associated attribute values were 

converted to a formal context. This is because ‘neural ectoderm’ is the only object 

whose attribute is associated with many values. The other objects such as Mesoderm, 

Organ system, Limb, Embrayo, and ectoderm are not associated with a many-value 

attributes. Also, it can be noted that all the attribute-values in the input context are 

transformed to the single-value context.  

 

 

Figure 22: An illustration of the automated FcaBedrock approach 
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Figure 23: Automated FcaBedrock processing approach 

 

Figure 24 shows the concept lattice built from the output file of the FcaBedrock. 

This is done through the use of the ConExp application.  In the concept lattice, all the 

attributes that are not associated with any objects i.e. attributes depicted at the bottom 

node are incomplete while the object associated with contradictory attribute-values is 

inconsistent.  
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Figure 24: Concept lattice in the ConExp application 

 

The automated FcaBedrock approach provides an exclusive view of IID existing 

in a data set. This work collaborated with the FcaBedrock developer’s team to extend 

the FcaBedrock with the inconsistency mode. The pseudocode for this extension is 

depicted in Figure 25 below. This pseudocode was implemented by an FcaBedrock 

developer. 
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Figure 25: Pseudocode for the Inconsistency Mode in FcaBedrock 

 

7.5 Key Messages and Findings 

This chapter explained how a record set containing IID can be retrieved from an RDF 

triple store. It identified attribute exploration, association rule, fault tolerance, Dau, 

CUBIST, the semi-automated FcaBedrock, and the automated FcaBedrock 

approaches as means of dealing with IID. It explained that the use of an attribute 

exploration does not conform to the OWA principles; hence it will not be discussed 

further as an FCA approach for dealing with IID in RDF data set. Fault tolerance 

provides a useful means of reasoning with a noisy and incomplete data set. This work 

could not secure licence of a fault tolerance FCA application. Consequently, fault 

tolerance will not be evaluated further in this work. Similarly, association rule will not be 

evaluated further in this work because there are no master data in the EMAGE use 

case.  

This chapter explained how Dau approach, CUBIST approaches, the semi-

automated FcaBedrock approach and automated FcaBedrock approach are used in 

dealing with IID in an RDF data set.  These approaches were investigated further 

through the use of EMAGE RDF data as documented in chapter 8.  
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Chapter 8: Experiments 

 

8.1 Introduction 

This Chapter presents the results of the different FCA approaches which were used to 

identify and visualise the IID existing in EMAGE RDF data set. An EMAGE RDF data 

set was examined for instances of IID. The FCA approaches that were used in 

investigating the data set include: Dau’s approach (Dau 2013a), CUBIST approaches 

(Melo et al. 2013), the semi-automatic FcaBedrock approach (Nwagwu 2014), and the 

automated FcaBedrock approach (Nwagwu and Orphanides 2015).   

This chapter describes the experiments carried out on EMAGE RDF data set 

under 4 different heading namely, Introduction which describes the approach of the 

experiment; Application which outlines the software application packages used in the 

experiment; Queries and experimental results which presents the queries applied and 

the results obtained; and Summary which provides concluding statements about the 

approach.  The use of Dau’s and CUBIST approaches to visually identify the IID in the 

EMAGE RDF data set are presented in section 8.2 and 8.3 respectively while how the 

semi-automated and the automated FcaBedrock approaches are used in identifying 

and visualising the IID in the EMAGE RDF data set are presented in section 8.4 and 

8.5 respectively. 

 

8.2 Dau’s Approach- SPARQL2context Creator 

8.2.1 Introduction 

Dau’s approaches for dealing with IID are documented in (Dau 2013a; Dau 2013b). 

This section focuses on Dau (2013a) which explains how the SPARQL2Context creator 

tool is used in retrieving IID from EMAGE RDF data set. Dau (2013a) explains how 

optional-clause and union-clause can be used in retrieving IID from a noisy dataset. It 

describes the SPARQL2Context creator tool, the use of the optional and union 

keywords as detailed in chapter 7 of this work.  
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8.2.2 Application 

The applications used in this approach include the SPARQL2Context creator, Owlim-

SE and a concept lattice builder 

8.2.3 Queries and experimental results  

Finding and visualising incomplete data in EMAGE RDF data set 

Table 11 is a SPARQL query used in retrieving from EMAGE RDF data set, record set 

containing incomplete data as documented in Dau (2013a).  

 

Table 11: A reproduction of the query in Table 4 of (Dau 2013a) showing how the union keyword is used in 

identifying IID 

Select Distinct ?obj ?att where { 
{?x1 rdf:type :Tissue ; rdfs:label ?obj . 
?x1:has_theiler_stage :Theiler_stage_TS07 . } 
UNION 
{?x1 rdf:type :Tissue ; rdfs:label ?obj . 
?x1 :has_theiler_stage :Theiler_stage_TS07 . 
?x3 rdf:type :Gene ; rdfs:label ?att . 
?x2 rdf:type :Textual_Annotation . 
?x2 :in_tissue ?x1 . 
?x2 :has_involved_gene ?x3 . 
?x2 :has_strength :level_detected_derived . } 
} 
Order by ?obj ?att 

 

The term level_detected_derived is a derived property from detected, strong, 

moderate, or weak. Any gene expression that is associated with 

level_detected_derived can be detected, strong, or weak. Table 11 lists all the tissues 

with certain attributes such as Theiler Stage 07 and level_detected_derived. It utilises 

the keyword ‘union’ to retrieve its record set from EMAGE data set. The query is an 

example of object-unrestricted query (see section 7.3.1). Figure 26 shows the 

corresponding concept lattice built from EMAGE record set retrieved with the query.  

It can be seen from Figure 26 that the incomplete data are depicted as objects 

without an associated attribute. These objects are displayed at the topmost node of the 

lattice. It should be noted that each of the EMAP:IDs such as EMAP:56, as depicted in 

Figure 26 is a unique tissue in EMAGE data set.   
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Figure 26: Concept lattice of results retrieved by the query in Table 16 as depicted in Figure 5 in (Dau 2013a) 

 

Table 11 can be modified to depict the information about the strength of the 

tissues.  Figure 27 shows the corresponding concept lattice of a record set retrieved 

from the EMAGE data set when the query in Table 11 includes patterns depicting the 

strength of the tissues. Again, the incomplete data in Figure 27 are depicted at the 

topmost node of the lattice, as objects without an associated attribute.  

 

 

Figure 27: Concept lattice showing incomplete data in Tissues and associated gene expressions as depicted in 

Figure 6 in (Dau 2013a) 

 

Finding and visualising contradictions in EMAGE RDF data set 

The query in Table 12 (see below) is used to retrieve a record set which contain 

contradictory data from EMAGE RDF data set.  
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Table 12: A reproduction of the query in Table 7 from Dau (2013a) designed to retrieve contradictory data from 

EMAGE RDF data set 

Select distinct ?o0 ?a0 where { 
  ?x0 rdf:type :Tissue ; rdfs:label ?o0 . 
  ?x1 rdf:type :Tissue ; rdfs:label ?a0 . 
  ?x2 rdf:type :Gene ; rdfs:label ?o1 . 
  ?ta1 :in_tissue ?x0 ; :has_involved_gene ?x2 ; :has_strength :level_detected_derived . 
  ?ta2 :in_tissue ?x1 ; :has_involved_gene ?x2 ; :has_strength :level_not_detected .  
{ 
{?x0 :is_part_of ?x1 . Filter (!sameTerm(?x1, ?x0)) } 
UNION 
{Filter(sameTerm(?x0, ?x1))}}} 

 

The query in Table 12 retrieves pairs of tissues that are limited to particular 

attributes and also have ‘is_part_of’ association. The query propagates the gene 

expressions in tissues. This implies that the retrieved record set may contain tissues 

whose gene expression contradicts its related tissues. Figure 28 below, shows the 

corresponding concept lattice of a record set retrieved from the EMAGE data set when 

the query in Table 12 is applied to EMAGE RDF database.  

In Figure 28, it is easy to visualise the association of related tissues. A tissue 

associated with more than one tissue could possibly imply that the tissues have 

contradictory expression levels. This can be visualised in Figure 29 where the gene 

associated to each tissue is displayed. 

 

 

Figure 28: Concept lattice showing Tissues with contradicting textual annotations as depicted in Figure 7 of (Dau 

2013a) 
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Figure 29: Tissues with contradicting textual annotations including genes as depicted in Figure 8 and 9 in (Dau 

2013a) 

 

Figure 30 shows the genes associated to each tissue and their corresponding 

Theiler Stage. This information enables the data analyst to identify the tissues that 

have contradictory genes in particular Theiler Stage. For example, it can be observed 

from Figure 30 that there is a contradiction between EMAP:1218 and EMAP:1119 in 

TS15 where Pax2 is the contradicting gene. Table 13 shows the corresponding query.  
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Figure 30: A reproduction of the query in Figure 10 of (Dau 2013a) showing concept lattice containing 

contradicting pairs of tissues where genes, tissues, and TS are included in the diagram 

 
 
 

Table 13: A reproduction of the query in Table 8 of (Dau 2013a) showing how the use of the union keyword 

Select distinct ?o0 ?o1 ?a0 where 
{ 
?x0 rdf:type :Tissue ; rdfs:label ?o0 . 
?x2 rdf:type :Gene ; rdfs:label ?o1 . 
{ 
?x1 rdf:type :Tissue ; rdfs:label ?a0 . 
?ta1 :in_tissue ?x0 ; :has_involved_gene ?x2 ; :has_strength 

:level_detected_derived . 
?ta2 :in_tissue ?x1 ; :has_involved_gene ?x2 ; :has_strength :level_not_detected . 
{{?x0 :is_part_of ?x1 . Filter(!sameTerm(?x1, ?x0))} UNION { Filter(sameTerm(?x0, 

?x1))}} 
} 
UNION 
{ 
?x1 rdf:type :Tissue . 
?x1 :has_theiler_stage ?ts1 . 
?ts1 rdfs:label ?a0 . 
?ta1 :in_tissue ?x0 ; :has_involved_gene ?x2 ; :has_strength 

:level_detected_derived . 
?ta2 :in_tissue ?x1 ; :has_involved_gene ?x2 ; :has_strength :level_not_detected . 
{{?x0 :is_part_of ?x1 . Filter(!sameTerm(?x1, ?x0))} UNION { Filter(sameTerm(?x0, 

?x1))}} 
} 
} 
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8.2.4 Summary 

Dau’s approach provides comprehensive details on how the EMAGE RDF data set can 

be queried for data containing IID. It also presents how the retrieved record set can be 

visualised for instances of IID in a concept lattice. However, its concept lattices can be 

bulky and may be difficult to read.  

8.3 CUBIST Approach 

8.3.1 Introduction 

CUBIST integrates elegant approaches in dealing with RDF data. It uses a set of pre-

defined queries to query the ontology of EMAGE RDF data set, which are then 

converted to a formal context and associated chats. CUBIST deals with IID existing in 

its explored EMAGE RDF data set through approaches such as utilizing distinct colour, 

interactive exploration, fault tolerance, and co-occurrence. These approaches have 

been briefly explained in chapter 7. 

 

8.3.2 Application 

The CUBIST is an integrated application. Applications such as the FcaBedrock and the 

In-Close are embedded in CUBIST.  

8.3.3 Queries and Experimental Results  

CUBIST uses a set of pre-defined queries to query the ontology of EMAGE data set. 

These queries are designed to explore the data set according to the user’s interactive 

exploration. CUBIST also has options to display the associated lattice and charts. 

Figure 31 and Figure 32 below depicts a tabular result and the associated charts of 

such exploration as presented in (Melo et al. 2013). 
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Figure 31: Genes, tissues and level of expression in Theiler Stage 9 as depicted in Figure 1 in (Melo et al. 2013) 
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Figure 32: CUBIST user interface displaying the concept lattice for genes, tissues and level of expression in Theiler 

Stage 9 as depicted in Figure 2 in (Melo et al. 2013).  Its main components: 1) Toolbar; 2) Visualisation canvas; 3) 

Dashboard; and 4) Selection 

 
 

Identifying and visualising IID in EMAGE RDF data set 

CUBIST provides its users with options such as co-occurrence tab and filter buttons 

(see Figure 31 and 32 above). These options enable CUBIST user to identify and 

visualise IID in EMAGE data set. Figure 31 depicts CUBIST filter buttons which is used 

to retrieve Genes, tissues and level of expression in Theiler Stage 9. 

In Figure 31, it can be observed that some genes have contradictory values in 

their associated tissues. For example, Arc, Foxa2, Smad2, Otx2, Smad5, and Smad1 

are genes associated with contradictory expression levels (detected, not detected, and 

weak) in the tissue embryo of the Theiler Stage 09. The entire selected objects of the 

figure can be visualised as a concept lattice or chart. Figure 32 depicts the 

corresponding concept lattice and bar chart. 

CUBIST utilises distinct colours to emphasis the data conflict in EMAGE 

according to the inconsistency type (Melo et al. 2013). For example, a red colour can 

be used to indicate that a gene is both detected and not detected (binary 

inconsistency) in the same tissue at the same Theiler Stage.  
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CUBIST also uses its co-occurrence tab (see Figure 32) to select two sets of 

attributes to identify objects that are shared by the two attributes.  The result of such 

exploration is displayed in a concept lattices and also in an associated chart as 

described in a CUBIST YouTube25 presentation. In so doing, contradictory attributes 

can be selected and objects sharing such attributes can be visualised.  

 

Reasoning with IID in EMAGE RDF data set 

CUBIST provides different matrices for reasoning with the incomplete or inconsistent 

EMAGE RDF data. Some of CUBIST reasoning methods include automatically fixing of 

flip-fops and fault tolerance technique. Flip-fops occur in EMAGE when a gene is not 

expressed in Theiler Stage, say K, but expressed in a preceding Theiler Stage say K – 

1 and also in the subsequent Theiler Stage, say K +1. For example, a gene is not 

expressed in the limb in Theiler Stage 15, but it is expressed in the limb in Theiler 

Stage 14 and 16. Flip-flops are indicators of either missing or incorrect data in the 

database (Melo et al. 2013). Such missing data are automatically included in CUBIST. 

CUBIST also applies fault tolerance as a means of inferring missing data so that the 

missing crosses in the formal context can be assumed to exist. This is described in 

(Dau 2013b; Andrews and McLeod 2013). 

8.3.4 Summary  

CUBIST methods were developed by professional researchers over many years. 

Its approaches are principled and provide the basis for other researchers to develop 

further techniques. The CUBIST application provides IID approaches such as the use 

of the co-occurrence tab, use of the filter buttons, the use of distinct colour to depict 

particular type of inconsistence, and the automatic fixing of incomplete data through the 

flip-fops technique.   

8.4 Semi-automated FcaBedrock Approach 

8.4.1 Introduction 

A subset of a non-propagated EMAGE RDF data set was stored in Owlim-SE triple 

store. The data set has 1,216,277 triples. Section 6.5 provides a description of the 

                                                      
25 https://www.youtube.com/watch?v=Kuu756nr1_I  

 

https://www.youtube.com/watch?v=Kuu756nr1_I
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EMAGE RDF data set. SPARQL queries were applied to the stored data set to retrieve 

tissues, associated genes and their corresponding gene expressions of a particular 

Theiler Stage. The applied queries were designed with the aim of retrieving record sets 

whose objects (tissues) have attribute values (genes and associated expressions) 

which are mutually exclusive.  

As discussed in chapters 2 and 7, a binary form of IID exists when the same 

object is associated with attribute values that have opposite meanings. An example of 

attribute values that have opposite meanings in EMAGE is ‘gene-detected’ and ‘gene-

not detected’ where gene is the attribute while ‘detected’ and ‘not detected’ are the 

values. An analogue type of IID exists when the same object is associated with 

attribute values that are slightly contradictory. Examples of attribute values that are 

slightly contradictory in EMAGE are ‘gene-weak_expression’ and ‘gene-

medium_expression’ where gene is the attribute; weak expression and medium 

expression are the values. McLeod and Burger (2011) explain that “there are two 

definitions of inconsistency: binary (expressed versus not expressed) and analogue 

(e.g. strong expression is distinct from weak expression despite both levels suggesting 

a gene is expressed).” Each of these distinct groups of gene expression (binary or 

analogue gene expression) is mutually exclusive. An inconsistency will exist in a tissue 

of a Theiler Stage where its gene is associated with more than one expression level 

from any of the distinct groups of gene expression.  

Each retrieved record set from the EMAGE database is stored as a comma-

separated value (CSV) file and subsequently read by the FcaBedrock application. 

FcaBedrock is used to restrict the single-valued attributes of the CSV file. 

Consequently, the many-valued and the no-valued attributes are converted to a formal 

context file. The ConExp is then used to build, visualise and edit the concept lattice. 

This semi-automated approach is also described in section 7.4.1. The summary of how 

the semi-automated FcaBedrock approach is applied on the EMAGE RDF data set is 

as follows: 

 Each retrieved record set as shown in Figure 33, is stored as a three columns 

CSV file. Figure 33 shows an example of a query result retrieved from the 

Owlim-SE. 
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Figure 33: Example of a retrieved query result from Owlim-SE 

 

 

Figure 34: A semi-automated processing of EMAGE data in FcaBedrock 
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 Each of the stored CSV file is read by FcaBedrock and its single-valued 

attributes are manually restricted as exemplified in Figure 34 above 

 

 The output file from the FcaBedrock is read and visualised through the use of 

the ConExp as exemplified in Figure 35 below 

 

The concept lattice such as Figure 35 is consequently edited to separate out and 

exclusively visualise the IID. This is achieved by deselecting attributes which are not 

contradictory. Consequently, “mesoderm” is the only object with contradictory attribute 

(T-detected and T-not_detected). Also, the ConExp enables the visualisation of the 

incomplete data as evident in Figure 35. These incomplete data are depicted as a list 

of objects with no associated attribute at the topmost node of the concept lattice. This 

work will therefore focus on the visualisation of inconsistent data in subsequent 

concept lattices built by the semi-automated FcaBedrock approach.  

 

 

Figure 35: Visualising the output file of the FcaBedrock application in ConExp 
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8.4.2 Application 

The applications used in this approach are the Owlim-SE, the FcaBedrock and the 

ConExp.  

8.4.3 Queries and experimental results 

Identifying and visualising the binary IID in the non-propagated EMAGE RDF data set 

The SPARQL query in Table 14 is used in retrieving objects with binary gene 

expression from the non-propagated EMAGE RDF data store. The query retrieved 

tissues, associated genes and their corresponding binary expressions existing in 

Theiler Stage 11. Figure 36 depicts the corresponding concept lattice. Figure 36 

depicts that the tissue mesoderm has binary inconsistency in the TS11 when the data 

set is not propagated. 

  

Table 14: SPARQL query for retrieving Objects with binary gene expression from EMAGE dataset 

    SPARQL Query 1 Explanation 

select distinct  ?Obj ?Att ?Val{ 
 

?x1 rdf:type :Textual_Annotation  ; :in_tissue ?z; 
:has_involved_gene ?g   ; :has_strength ?Val . 
?z  :has_theiler_stage :theiler_stage_11 . 
?g rdfs:label ?Att . ?z rdfs:label ?Obj . 

 
Filter(?Val  = :level_detected || ?Val  = 
:level_not_detected ) } 

variables to be returned by query 
 
Subgraph containing genes with 

expressions in tissues from 
Theiler Stage 11 

 
Limit the graph to “detected” or 
“not_detected” expressions 

 

 

Figure 36: Binary inconsistency in non-propagated data set in TS 11 
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Identifying and visualising the analogue IID in the non-propagated EMAGE RDF 

data set 

The SPARQL query in Table 15 (see below), is used in retrieving objects with analogue 

gene expression from the stored EMAGE data in the triple store. It retrieved non-

propagated tissues, associated genes and their corresponding analogue expressions 

existing in Theiler Stage 11 of the stored EMAGE RDF data set. Figure 37 (see below), 

depicts the corresponding concept lattice. Figure 37 show that the tissue neural 

ectoderm has analogue inconsistency in Theiler Stage 11 when the data set is not 

propagated.  

 

Table 15: SPARQL query for retrieving Objects with analogue gene expression from EMAGE dataset 

    SPARQL Query 1 Explanation 

select distinct  ?Obj ?Att ?Val { 
 
 
?x1 rdf:type :Textual_Annotation  ; :in_tissue ?z; 

:has_involved_gene ?g   ; :has_strength ?Val . 
?z  :has_theiler_stage :theiler_stage_11 . 
?g rdfs:label ?Att . ?z rdfs:label ?Obj . 
 
Filter(?Val = :level_strong || ?Val = :level_weak || 

?Val =  :level_moderate) 
 

 

variables to be returned by 
query 
 
Subgraph containing genes 
with expressions in tissues 
from Theiler Stage 11 

 

Limit the graph to 
“detected” or 
“not_detected” expressions 

 

 

 

 

Figure 37: Analogue inconsistency in non-propagated data set in TS 11 
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Identifying and visualising the binary IID in EMAGE RDF data set where the gene 
expressions are negatively propagated 
 
The EMAGE RDF data was propagated on the fly while retrieving tissues, associated 

genes and their corresponding gene expressions. Table 16 depicts the negative 

propagation of EMAGE RDF data and the request for the tissues, associated genes 

and their corresponding binary expressions in Theiler stage 11. Figure 38 (see below), 

depicts the corresponding concept lattice. 

When gene expressions are negatively propagated, a gene which is not detected 

in a higher granularity tissue is assigned to related lower granularity tissues. In Figure 

36 (see above), mesoderm is the only inconsistent tissue in the explored data set. 

When the same data set is negatively propagated, more inconsistent tissues are 

observed. Figure 38 shows all the binary inconsistent tissues where the same data set 

was negatively propagated. There are two additional inconsistent tissues in the data 

set. They include neural ectoderm (Hoxb1-detected and not detected) and primitive 

streak (Eomes- detected and not detected). Evidently, these tissues (neural ectoderm 

and primitive streak) are related lower granularity tissues to mesoderm (see Figure 9 

above). 

 

 

Figure 38: Binary inconsistency in negatively propagated data set in TS 11 
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Table 16: SPARQL query for negatively propagating and retrieving gene expressions from EMAGE dataset 

SPARQL Query 2 Explanation 

select distinct  ?obj ?Att ?Val where  
{ {  
 
 

?x rdf:type :Textual_Annotation  ; :in_tissue ?z; 
:has_involved_gene ?g  ; :has_strength :level_not_detected . 
?z  :has_theiler_stage :theiler_stage_11 . ?g rdfs:label ?Att. 
?k :is_part_of  ?z .  
{bind(?z as ?w).bind(?k as ?w)} 
?w rdfs:label ?obj . 
?x :has_strength ?Val . 
 

 
Filter(?Val = :level_detected || ?Val  = :level_not_detected )  
} 

 
 
 

Union  
 
 

{ ?x1 rdf:type :Textual_Annotation  ; :in_tissue ?k; 
:has_involved_gene ?g   ; :has_strength ?Val . 
?k  :has_theiler_stage :theiler_stage_11 . 
?g rdfs:label ?Att. 
bind(?k as ?w) 
?w rdfs:label ?obj. } 

 
Filter(?Val = :level_detected || ?Val = :level_not_detected )  
} 

variables to be returned 
by query 

 

Subgraph for negatively 
propagating 
“level_not_detected” 
between related tissues 
...pattern 1 

 

 

 

 
limit the subgraphs 
(pattern 1)to “detected” or 
“not_detected” 
expressions 

 

Keyword for Combining 
graph patterns 

 

Subgraphs showing 
gene expressions in non- 
propagated tissues 
...pattern 2 

 

Limit the two 
subgraphs to “detected” 
or “not_detected” 
expressions 

 

 
 
Identifying and visualising the IID in EMAGE RDF data set where the gene 
expressions are positively propagated 
  

Table 17 (see below), depicts the positive propagation of EMAGE RDF data and the 

request for the tissues, associated genes and their corresponding gene expressions 

existing in Theiler stage 11. Figure 39 (see below), depicts the corresponding concept 

lattice. 
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Table 17: SPARQL query for positively propagating and retrieving analogue expressions 

SPARQL Query 3 Explanation 

select distinct  ?Obj ?Att ?Val {  { 
 
 
?x rdf:type :Textual_Annotation  ; :in_tissue ?k ; 

:has_involved_gene ?g  ; :has_strength ?Val . 
?z  :has_theiler_stage :theiler_stage_11 .  
?g rdfs:label ?Att. 
?k :is_part_of  ?z ; rdfs:label ?w . ?z rdfs:label ?e . 
{bind(?w as ?Obj). bind(?e as ?Obj)} } 
 
union  
 
{ 
?x1 rdf:type :Textual_Annotation  ; :in_tissue ?z; 

:has_involved_gene ?g   ; :has_strength ?Val . 
?z  :has_theiler_stage :theiler_stage_11 ; rdfs:label ?n . 

?g rdfs:label ?Att . 
bind(?n as ?Obj) } 
 
Filter(?Val = :level_strong || ?Val = :level_weak || ?Val =  

:level_moderate)  
} 

variables to be 
returned by query 

 
Subgraph for positively 

propagating gene 
expressions between 
related tissues ...pattern 1 

 
 
 

Keyword for Combining 
graph patterns 
 
 

Pattern of gene 
expressions in non- 
propagated tissues 
...pattern 2 

 
Limit pattern 1 and 2 to 

“strong”, “moderate” or 
“weak” expressions 

 

 

 

 

 

 

 

 

 

In positive propagation, detected gene expression levels (strong, moderate, weak 

or possible) associated with a lower granularity tissue (child tissue) are assigned to 

related higher granularity tissues. Evidently, neural ectoderm is of a lower granularity to 

ectoderm (see Figure 9). In Figure 37, it is identified that neural ectoderm is 

 

Figure 39: Analogue inconsistency in positively propagated data set in TS 11 
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inconsistent (contains analogue gene expression). This inconsistency is assigned to 

ectoderm as a consequence of the positive propagation of gene expressions in the 

data set.  

 

Measuring IID in the propagated EMAGE RDF data set  

When dealing with IID, there are some situations when it is necessary to measure the 

level of inconsistency existing in an inconsistent data set (Grant and Hunter 2011). 

Such measures can help one to understand how sound or unsound the investigated 

data set is. A measure of inconsistency in the EMAGE can be achieved by counting the 

number of particular tissues concatenated with an associated gene whose expressions 

are inconsistent. The query in Table 18 (see below) implements such counts and 

Figure 40 (see below) presents the corresponding concept lattice. The concept lattice 

in Figure 40 is an example of a quantitative analysis in this work.  

 

 

 

  

                                                                            

                                                                   

Figure 40 shows that the gene expressions associated with Zic3 was twice identified as 

binary inconsistent in the mouse and embryo. These expressions are identified in 

Theiler Stage 08 (see Table 18 below). 

  

 

Figure 40: Concept lattice diagrams showing Amount of binary inconsistency of the negatively propagated data set 

in TS 08 
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Table 18: SPARQL query for evaluating Objects with binary gene expression from EMAGE dataset 

    SPARQL Query 1 Explanation 

select distinct  (concat (?Obj, " has_gene ", ?Att) as 
?Obj2) (count(?Val) as ?no_of_experiment) ((?Val) as 
?strength)    {  { 

 
?x rdf:type :Textual_Annotation  ; :in_tissue ?k ; 

:has_involved_gene ?g  ; :has_strength ?Val . 
?z  :has_theiler_stage :theiler_stage_08 .  
?g rdfs:label ?Att. 
?k :is_part_of  ?z ; rdfs:label ?w . ?z rdfs:label ?e . 
{bind(?w as ?Obj). bind(?e as ?Obj)} } 
 
union  
{ 
?x1 rdf:type :Textual_Annotation  ; :in_tissue ?z; 

:has_involved_gene ?g   ; :has_strength ?Val . 
?z  :has_theiler_stage :theiler_stage_08 ; rdfs:label 

?n . ?g rdfs:label ?Att . 
bind(?n as ?Obj) } 
 
Filter(?Val = :level_detected || ?Val = 

:level_not_detected )  
 
} 
group by ?Obj ?Att ?Val  

variables to be returned 
by query 

 
 
Subgraph for negatively 

propagating 
“level_not_detected” 
between related tissues 
...pattern 1 

 
 
Keyword for Combining 

graph patterns 
 
Subgraphs showing gene 

expressions in non- 
propagated tissues ...pattern 
2 

 
Limit the two subgraphs 

to “detected” or 
“not_detected” expressions 

 
enable the counting of 

variables 

 

8.4.4 Summary 

The use of the semi-automated FcaBedrock approach provides a means to exclusively 

visualise and identify IID existing in a record set.  Nevertheless, the approach does not 

always permit an exclusive visualisation of IID in its explored set of data, the 

association of mesoderm with Eomes-not_detected is not inconsistent as evident in 

Figure 38 (see above). A comprehensive evaluation of this approach and its 

comparison to other FCA approaches is presented in chapter 9. 

  

8.5 Automated FcaBedrock approach 

8.5.1 Introduction 

The automated FcaBedrock approach is explained in section 7.4.2. Its approach 

follows the same steps as outlined in section 8.4 with the exception that it is 
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automatically processed. A summary of how the automated FcaBedrock approach is 

applied on each record set retrieved from the EMAGE RDF data set are as follows:  

 

 Each stored CSV file is read by the extended FcaBedrock while selecting the 

inconsistency mode dialogue box as exemplified in Figure 41 below 

 

 

Figure 41: Automated processing of EMAGE data in FcaBedrock 

 

 

 The output file from the extended FcaBedrock is read and transformed to a 

context file which is subsequently visualised through the ConExp. This is 

exemplified in Figure 42 below 
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Figure 42: Visualising the output file of the extended FcaBedrock application in ConExp 

 

8.5.2 Application 

The applications used in this approach are the Owlim-SE, an extended FcaBedrock 

and the ConExp 

8.5.3 Queries and experimental results  

This approach was used to investigate the same data set as the semi-automated 

FcaBedrock approach. It also used the same queries and the results from the two 

approaches are almost the same with the exceptions of how their incomplete data are 

displayed and the display of the binary inconsistency in a negatively propagated data 

set. 

Unlike the semi-automated FcaBedrock approach, the incomplete data of the 

automated FcaBedrock approach are depicted at the bottom node of the concept lattice 

as a list of attributes with no associated object (see Figure 42 above). The concept 

lattice showing binary inconsistency in negatively propagated data set (see Figure 43 

below) is slightly different from Figure 38. Figure 43 shows only the binary inconsistent 
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tissues which include neural ectoderm, primitive streak, and mesoderm. This is 

different from Figure 38, which did not exclusively display the inconsistent data in the 

concept lattice.  

 

 

Figure 43: Binary inconsistency in negatively propagated data set 

 

8.5.4 Summary    

The automation process in the automated FcaBedrock approach is a distinctive feature 

of the approach. It has been shown that the automated FcaBedrock approach 

automatically separates out and exclusively visualises the IID in a noisy record set.   
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Chapter 9: Evaluation of IID Approaches 

 

9.1 Introduction   

This chapter evaluates the different FCA approaches for dealing with IID in EMAGE 

RDF data set. These approaches include Dau, CUBIST, Semi-automated FcaBedrock 

and Automated FcaBedrock approaches as explained in chapter 8. The DESMET 

methodology was used in evaluating the approaches with the aim of determining the 

most effective FCA approach to identify and visualise the IID in an RDF data set.  

It is noted that there are many methodologies and tools that can be used in 

evaluating software tools and methods. Works such as (Grau et al. 2004, Kitchenham 

1996; Kichenham et al. 1997, Hlupic and Mann 1995; Mohamed et al. 2004), describe 

such methods. Jadhav and Sonar (2009) provide a systematic review of papers 

published in this domain of study. The review identify among other things, that there is 

a lack of a common list of generic software evaluation criteria and associated meaning. 

This work resorts to evaluating its IID approaches through the guidelines of the 

DESMET methodology.  

The DESMET methodology can be used by an evaluator or an academic 

researcher developing or investigating a new method (Kichenham et al. 1997). It is 

aimed at evaluating specific methods/tools in specific circumstances (Kichenham et al. 

1997).The DESMET methodology (Kitchenham 1996; Kichenham et al. 1997) is used 

in this work to evaluate the various FCA approaches presented in chapter 8. Nine 

evaluation methods which include formal experiments, quantitative case studies, and 

qualitative screening are identified in (Kitchenham 1996; Kichenham et al. 1997). In this 

work, feature analysis based on notable features identified in IID processing 

applications such as in (Fan et al. 2008; Fazzinga et al., 2006; Raman and Hellerstein 

2001) are used. Feature analysis is also known as qualitative screening (Kitchenham 

1996; Kichenham et al. 1997).  

The evaluation assessed the extent to which the examined FCA approaches 

provide features that can enable the identification and visualisation of the IID in an RDF 

data set. Section 9.2 identifies the essential features for approaches that enable the 

visual identification of IID.  Section 9.3 explores the evaluation features in each of the 

applied IID approach. A grade is assigned to each of the FCA approaches in section 

9.3. The key messages and finding of this chapter are presented in section 9.4. 
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9.2 Essential Features for Approaches that Enable the Visual 

Identification of IID  

The research question, “How can FCA tools and techniques be used to identify and 

visualise IID in RDF data?” was considered in choosing the essential features that 

should exist in the approaches that deal with IID in RDF data set. An application that is 

designed to enable the visual identification of IID should have the capability to identify 

IID, automate the processing of IID, enable the exclusive visualisation of the identified 

IID and should also be applicable to different data sets. These attributes are further 

expatiated upon below. 

This work also considers that an FCA application for dealing with IID should have 

some level of automation. This will enable such approach to be applied in a large RDF 

data set. Such FCA application will have an automatically processing system. This 

study considers the level of automation, as one of the factors in evaluating FCA 

applications that is designed to identify and visualise IID.  

 An exclusive visualisation of IID is another essential attribute of an FCA 

application that can effectively process IID. Given that there is an exponential growth of 

formal concepts and crossing edges in a concept lattice, relative to the context file (Dau 

2013b), there is therefore the necessity to exclusively visualise IID if it is to be 

completely identified from a large and noisy data set. For example, it will be 

incomprehensible to build a concept lattice that visualises all the 100,000 formal 

concepts of a data set when dealing with 5 records whose data are inconsistent. IID in 

such lattice will be difficult to identify. FCA applications that process IID should be able 

to exclusively visualise the IID to identify the IID. 

 In addition, FCA applications used in the processing of IID should be capable of 

dealing with different data sets from different contexts. Consequently, the approach/tool 

should have some generalizability. This is necessary to eliminate the threats of external 

credibility.  External credibility pertains to the conformability and transferability of 

findings and conclusions (Onwuegbuzie and Leech 2007).  

9.3 An Assessment of FCA Approaches used in Dealing with IID in RDF 

Data 

9.3.2 An Assessment of Dau’s Approach 

Dau’s approach is documented in (Dau 2013a) and also explained in section 8.2. It is 

an automated approach and can be used to identify and visualise IID. Dau’s approach 

can be applied on any other record set retrieved from a triple store when visually 

identifying IID in an RDF data set. This implies that it is generalizable. It also provides 



104 

 

an automated system of processing a record set to a formal context file. For instance, 

through the SPARQL2Context creator, queries can be issued to retrieve a record set 

which is saved as a context file through a few clicks of some buttons.   

However, the concept lattice built from the context file as produced by Dau’s tool 

(SPARQL2Context creator) is bulky when dealing with IID in a large data set. This is 

because the SPARQL2Context creator unlike the FcaBedrock, does not have a means 

to restrict attribute-values in the investigated data set. As a result, the consistent data 

and the IID are all converted to a context file. Such context file from a large data set 

usually results to a bulky and unreadable concept lattice. Dau’s approach do not 

exclusively visualise IID in its investigated data set. Figure 29 and 30 depicts a bulky 

concept lattice produced from Dau’s approach. Table 19 (see below), summarizes the 

capability of Dau’s approach in dealing with IID.   

9.3.1 An assessment of CUBIST approaches  

CUBIST can identify inconsistent data as explained in section 8.3. It can identify 

incomplete data through representing such objects at the topmost node of the lattice or 

through the representation of attributes without an associated object at the bottom of 

the lattice. It also uses distinct colour to represent particular type of inconsistency 

thereby enabling the identification of the type of IID.   

However, some techniques used in CUBIST cannot be applied to other data set 

without some corresponding scaling. Examples of such techniques as discussed in 

section 8.3 include the automatic fixing of incomplete data through the flip-fops 

technique and the use of distinct colour to represent particular type of inconsistency. 

These techniques can be used on another data set but with some corresponding 

scaling of the data. This may also require customising the CUBIST application to suit 

the investigated data set. Melo et al. (2013) assert that “Although most of the 

functionalities in CUBIST can be used with other data than EMAGE (with the 

corresponding scaling of data), as future work we will extend our experiments to other 

genes expression data sets like cancer and brain development.”  

 CUBIST can be used to exclusively visualise all the IID in an investigated data 

set but this will involve the CUBIST user to manually select each dialogue box 

associated with contradictory attributes (see Figure 32 above), before visualising the 

associated concept lattice. Such an approach will be tedious when there are many 

rows retrieved from EMAGE data set. The co-occurrence tab in CUBIST can be used 

to identify and visualise the IID in EMAGE data set by exploring for the presence of 

objects in selected contradictory attributes pair. But the use of the co-occurrence tab 
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will only explore all the objects associated with the pair of contradictory attributes 

without visualising other associated inconsistencies or incompleteness. Table 19 (see 

below), provides a summary of CUBIST capability to deal with IID.   

 

9.3.3 An Assessment of Semi-automated FcaBedrock Approach  

The semi-automated FcaBedrock approach is explained in section 8.4. It is used to 

identify and visualise IID in a data set whose attribute-values are mutually exclusive. 

The semi-automated FcaBedrock approach can enable its users to exclusively 

visualise all the IID in objects associated with mutually exclusive attribute-values, 

where the contradictory attribute-values are distinctively associated to their object(s) 

and where the data set is stored in CSV format.  

However, for data sets which have more complex associations such as where 

there are contradictory attribute-values which are not distinctively associated to 

particular objects, the semi-automated FcaBedrock approach will not exclusively depict 

the IID existing in such data sets.  In Figure 38 for example, the attribute-value Eomes-

not_detected is not distinctively associated with primitive streak. It is associated with 

both mesoderm and primitive streak. Its association with primitive streak is 

contradictory but its association with mesoderm is not contradictory because 

mesoderm is not associated with Eomes-detected.  

The semi-automated FcaBedrock approach is not an automated FCA approach. 

It is also a difficult and painstaking approach when it is used on a large data set. In 

addition, there are IIDs which do not exist in the realm of mutually exclusive attribute-

values e.g. typographical errors. This approach will not be able to identify such 

inconsistencies. Table 19 (see below), summarizes the capability of the semi-

automated FcaBedrock approach in dealing with IID 

9.3.2 An Assessment of Automated FcaBedrock Approach  

The automated FcaBedrock approach is explained in section 8.5 of this work. It can be 

used to identify and visualise IID in a data set whose attribute-values are mutually 

exclusive and where the data is stored in CSV format. It can enable its users to 

exclusively visualise all the IID in a record set whose attribute-values are mutually 

exclusive. It is an automated process and it presents concept lattices which are very 

readable when compared to other FCA approaches understudied in Chapter 8.   

Similar to the semi-automated FcaBedrock approach, the automated FcaBedrock 

approach will not be able to identify IIDs that are not associated with mutually exclusive 
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attribute-values. Table 19 (see below), summarizes the capability of the automated 

FcaBedrock approach in dealing with IID 

 

Table 19: A summary of attributes in IID processing tool/approaches 

s/no Automated 

FcaBedrock 

approach 

1
st

  

CUBIST 

approaches 

 

2
nd

  

Semi-automated 

FcaBedrock 

approach 

3
rd

  

Dau’s approach 

 

 

4th 

Identification of 

IID 

Yes  Yes Yes  Yes 

Level of 

automation for 

identifying of 

IID 

automated  the co-occurrence 

tab is automated 

while the use of filter 

options are Semi-

automated  

semi-automated automated 

Exclusive view Yes  To a certain extent To a certain extent  No 

Generalizability 

of approach 

Generalizable approaches are 

customized for 

CUBIST case study 

Generalizable Generalizable 

 

 

9.4 Key Messages and Findings 

Dau’s approach does not enable its users to exclusively visualise IID existing in their 

investigated data set. Although it is generalizable, it provides almost the basic 

processes in the classical FCA approach (see chapter 4). Consequently, it produces 

bulky and unreadable concept lattices when used on a large data set. 

 Dau and other FCA approaches such as the fault tolerance approach were 

refined and integrated in CUBIST application. This provided CUBIST with robust 

techniques to deal with IID in EMAGE data set. The CUBIST application provides good 

visualisation of its explored data and visualisation options such as charts and graphs 

but most of its approaches are not FCA based nor are they designed to exclusively 

identify and visualise IID in a data set. Also some of its features or approaches which 

can be used to identify or visualise IID in EMAGE such as the use of distinct colour to 

represent particular type of inconsistency are not generalizable without some 

corresponding scaling.  

This work assessed Dau’s approach as the least appropriate of the four IID 

approaches understudied. It assessed CUBIST approaches and the semi-automated 
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approach as the 2rd and 3nd most suitable IID approaches, respectively.  The 

automated FcaBedrock approach is assessed as the best IID processing approach. 

The factors identified in this work (see Table 19) are the basis by which these FCA 

approaches are evaluated. These understudied FCA tools/approaches may be 

assessed by other researchers differently but given the examined factors, IID in RDF 

data set is best processed by the automated FcaBedrock approach. The automated 

FcaBedrock approach provides all the essential features needed to identify and 

visualise IID. It exclusively identifies and visualises the IID existing in objects 

associated with many-value attribute in an RDF data set. Its approach can be used in 

data sets from other contexts. It is also an automated FCA approach. More examples 

of results from the automated FcaBedrock approach are depicted in appendix E.  
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Chapter 10: Conclusion and Future work 

 

This study sets out to explore how IID in an RDF data set can be dealt with through the 

use of FCA and Owlim SE. IID presents some challenges in data analysis as explained 

in this work. Such challenges include loss of information, inaccurate analysis and cost 

of correcting the analysis. These challenges are evident in both the traditional and 

semantic databases. This study identified the CWA and OWA as the basic principles 

underpinning the existence of IID in traditional and semantic databases respectively. In 

semantic databases, inconsistent data are allowed and the information in such 

databases is never assumed to be complete. This is unlike in the traditional databases 

where inconsistent data can be removed or replaced and where there is an assumption 

of completeness in the information stored in the database. The factors that contribute 

to the presence of IID in both the traditional and semantic databases are explained in 

chapters 2 and 3.  

Actually, removing an inconsistent data from a database will only increase the 

incompleteness of the database thereby introducing inaccuracy in the analysis of the 

data from the database. For example, if 100 people voted in an election and 10 votes 

were inconsistent such that the voters ticked more than one candidate as preferred 

candidate or filled in wrong personal details, deleting the bad votes may lead to 

incomplete number of votes and inaccurate analysis. Consequently, analysis such as 

60% of the voters voted candidate ‘A’ and 40% of the voters voted for candidate ‘B’ will 

be wrong when the bad votes are excluded. Such an assertion is misleading and 

incomplete. It is demonstrated in this study that IID should be identified, evaluated, 

analysed, and even reasoned with, as to provide a sound analysis to the data set user.   

IID may constitute a small percentage of an entire data set and identifying such a 

small proportion in a large data set may be difficult. It is shown in this work how FCA 

tools and techniques were used to identify and visualise the IID existing in EMAGE 

RDF data set. This is to answer the research question “How can FCA tools and 

techniques be used to identify and visualise IID in RDF data?” This work explored the 

capabilities of association rule, fault tolerance, attribute exploration, CUBIST, Dau, 

semi-automated FcaBedrock and automated FcaBedrock approaches in dealing with 

IID in RDF data set. It noted that not all its identified FCA approaches can enable the 

identification and visualisation of the IID in RDF data. Consequently, the study 

evaluated Dau, CUBIST, semi-automated FcaBedrock and automated FcaBedrock 

approaches.  
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This chapter provides a review of all the chapters in this thesis in section 10.1. 

The main results of this work with relation to the research objectives are presented in 

section 10.2. Section 10.3 briefly explains the contributions of this work to knowledge. 

The challenges encountered in this work are outlined in section 10.4. This chapter is 

concluded by outlining the anticipated future work in section 10.5.   

 

10.1  A Review of the Various Chapters in this Thesis  

Chapter 1 presented the rationale and objectives of the work. 

Chapter 2 explained the meaning, the types, the causes, the sources and the 

prevention of IID in the traditional databases where the CWA is adopted. It noted that 

IID is an important concept in data processing and that there is great need to properly 

analysis it in order to avoid inaccurate data analysis.  

An overview of ST, semantic databases and RDF are presented in Chapter 3. 

The chapter also identified and classified existing approaches to dealing with IID in a 

semantic database notably the rule based, the query based and the combination of 

FCA techniques with query based approaches. It noted that these approaches do not 

allow its users to exclusively visualise IID in an RDF database. It explained that the 

essence of exclusively visualising IID is to ensure a holistic identification of IID when 

dealing with a large and noisy data set.  

Chapter 4 described the classical FCA approach. It explained how formal 

concepts are derived from formal context and how they are displayed in a lattice 

structure. Also, it is explained that the classical FCA approach does not enable an 

exclusive identification and visualisation of the IID when dealing with a large and noisy 

data set.  

Chapter 5 explained the research method used to developing the automated and 

semi-automated FcaBedrock approaches. It also explained the case study with 

emphasis on the single case study and the research method used in validating the 

results obtained in this work. The research ethics and the challenges encountered in 

the course of this work were also outlined. 

Chapter 6 explained the EMAGE which is the case studied in this work. It 

explained how the e-Mouse Atlas Project (EMAP) is used in EMAGE. In addition, it 

described the sources of IID in the EMAGE and the EMAGE RDF data set.  

Chapter 7 described how the RDF query language (SPARQL) can be used to 

retrieve IID from a semantic database. It provided comprehensive details about existing 

and new FCA approaches used in dealing with the IID in a data set.  
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Chapter 8 explained how Dau, the CUBIST, the semi-automated FcaBedrock 

and the automated FcaBedrock approaches were used to identify and visualise IID 

existing in the EMAGE RDF data set.  

Chapter 9 compared and evaluated the effectiveness of the FCA approaches 

which were used in investigating the EMAGE RDF data set with respect to their 

capability to identify and visualise IID in an RDF data set.  

This chapter (chapter 10) provides a brief review of all the chapters in this work. 

It explains the main contributions of this work to knowledge, the challenges 

encountered and the future work.  

 

10.2 Main Results of the Research by Research Objectives 

This work accomplished the objectives listed in section 1.3 of this thesis. This section 

explores where and how these objectives were addressed in this work as follows:  

 

1. To understand IID issues and how they are dealt with in a traditional technology 

setting (Obj.1) 

This work investigated the traditional and semantic database literature as to 

understand IID issues and how they are dealt with in a traditional technology setting. 

Chapter 2 identified the CWA as the underpinning principle of IID in traditional 

databases.  It also identified the null, integrity constraints and the use of optional fields 

as the major sources of IID in traditional databases. Binary and analogue 

inconsistencies were identified as types of IID in traditional and semantic databases. It 

was also outlined in the chapter, several approaches through which IID can be dealt 

with in traditional databases. Such approaches include resolving/repairing IID, 

preventing IID, and reasoning with IID. 

2. To understand IID issues in ST setting and also investigate existing approaches 

used in dealing with IID in a ST setting (Obj. 2 and 3) 

The semantic database literatures were investigated to understand IID issues in ST 

and the available approaches that are used in dealing with the anomaly. Chapter 3 

described how IID in RDF data are processed in a ST setting. It explained how the 

OWA principles underpin the existence of IID in RDF triple store. RDF data, entailment 

rules and the different ways by which IID in RDF triple stores are dealt with in ST 

settings were also explained. These approaches include the rule based approach 

(entailment), the query based approach, and the combination of query based approach 

with FCA techniques. The combination of FCA with query based approaches was 
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further investigated in chapter 7, 8 and 9. The lapses of these approaches were also 

identified.  

3. To propose FCA as an appropriate and effective technique for dealing with IID in ST 

setting (Obj. 4)  

The works of Andrews and McLeod (2011), Dau (2013a and 2013b) and Melo et al. 

(2013), were great sources of information in this study. These works demonstrated how 

FCA can be used in dealing with IID. The use of FCA to deal with IID provides a 

comprehensive means of addressing the issues in IID as documented in chapters 4, 7, 

8 and 9. Also, the new FCA approaches used in dealing with IID are identified, 

explained and used in this work as documented in chapters 7, 8 and 9.  

4. To build on existing FCA approaches and develop better novel approaches (Obj. 5) 

The approaches proposed in (Andrews and McLeod 2011; Dau 2013a; Melo et al. 

2013) involve the use of the FcaBedrock or a similar tool such as the 

SPARQL2Context creator (Dau 2013a), to convert an investigated data to a formal 

context file which is subsequently visualised as a concept lattice. This work built on 

these existing FCA approaches by creatively using the FcaBedrock tool as evident in 

the semi-automated FcaBedrock approach. It also modified the FcaBedrock tool to 

exclusively identify IID in an RDF data set as evident in the automated FcaBedrock 

approach.  These approaches are presented in chapter 7, implemented in chapter 8 

and evaluated in chapter 9.  Chapter 9 depicted that the best performing FCA approach 

for processing IID in an RDF data set is the automated FcaBedrock approach.  

5. To apply existing and new FCA approaches to an indicative case study (Obj. 6) 

This study explained in chapters 8 how the existing and new FCA approaches were 

applied on the EMAGE RDF database.  The use of the EMAGE as a use case in a 

case study research is described in chapters 5. Also, a detailed description of EMAGE 

is provided in chapter 6.  

6. To compare and evaluate the usefulness and effectiveness of the different 

approaches (Obj. 7)  

A comparison of the identified FCA approaches that were used in this work to deal with 

IID in EMAGE RDF data set was presented in Chapter 9. It was also shown in the 

chapter how the new and existing FCA approaches were assessed and the result of 

the assessment.   
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10.3  Contributions of the Research to Knowledge 

The key contributions of this work to knowledge are as follows: 

1. This work has increased the available documentations on dealing with IID in 

semantic databases. 

 One of the rationales for doing this research as explained in chapter 1 is to 

increase the documentation on semantic database. It is shown in chapter 2 that 

there are ample documentations on how IID can be dealt with in traditional 

databases. This is unlike in semantic databases as evident in chapter 3. In this 

work, the various ways by which IID can be dealt with in a semantic database and 

the use of FCA approaches in dealing with IID are explained. This thesis and 

publications derived from this work such as (Nwagwu and Orphanides 2015; 

Nwagwu 2014; Nwagwu 2013),  have increased the amount of documentations on 

semantic databases, particularly the documentations on dealing with IID existing in 

an RDF data set through the use of FCA approaches. 

 

2. This work identified that existing FCA approaches do not enable the exclusive 

visualisation of the IID existing in its investigated data set.  

 This is the first academic work to identify that the existing FCA approaches do not 

exclusively visualise the IID in their investigated data set. An unreadable concept 

lattice will be produced when a large data set is holistically visualised. A better 

approach to identifying IID in a large data set is to separate out and exclusively 

visualise the IID as a concept lattice. This will enable an easier identification and 

better visualisation of the IID in the data set. Unlike the new FCA approaches, it 

was identified that the existing approaches used in dealing with IID do not 

exclusively visualise the IID in RDF data set (see chapters 3, 5, and 7).  

 

3. This study evaluated the different FCA approaches used in dealing with IID in RDF 

data set.  

The study presents comprehensive details about the different FCA approaches 

used in dealing with IID in an RDF data set. Each of the identified FCA approach 

that can be used in visually identifying IID in an RDF data set was applied on the 

EMAGE data set as presented in chapter 8 of this work. This made it possible to 

evaluate their effectiveness in identifying and visualising IID in an RDF data set 

(see chapter 9).  This evaluation will provide a direction to researchers coming into 

this area of study. It will also enable them to understand what has been done and 

what is yet to be done.  
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4. This work compared the different FCA approaches used in dealing with IID in RDF 

data set. 

The FCA approaches which were used to identify IID in EMAGE RDF data set (see 

chapter 8) were also compared as documented in chapter 9. This was done by 

comparing their effectiveness and efficiencies in identifying and visualising the IID 

in the EMAGE RDF data set. Such comparisons will provide a direction to data 

analysts that will adopt any of the FCA approaches. It will enable the data analyst 

to understand the limitation of his chosen approach.  

 

10.4  Challenges of this Work  

There are undoubtedly challenges to every empirical research and this research was 

not an exception. This study developed novel approaches which include semi-

automated and automated FcaBedrock approaches. These novel approaches only 

consider the inconsistencies in objects associated to mutually exclusive attribute 

values. It should be noted that inconsistency in a data set does not only result from 

contradictory values in mutually exclusive attribute values as considered in these new 

approaches developed. The new approaches implemented in this work do not have the 

capability to identify inconsistencies such as typographical errors. There is need to 

consider other novel approaches that can be used to identify other types of IID that can 

exist in an RDF data set. 

Also, Dau and CUBIST approaches were theoretically evaluated unlike the 

automated and semi-automated FcaBedrock approaches. This is because the licences 

for Dau and CUBIST tools could not be obtained for this work. This challenge was 

overcome by theoretically assessing these tools and approaches based on their 

associated publications. Although the evaluated publications were based on the 

analysis of the same data set, the analyses in such publications were not done in this 

work. Consequently, the validity of the results from such publications will depend on the 

accuracy of the explanations in the articles.      

10.5  Future Work 

 

Aspects of this study have been described in (Nwagwu and Orphanides 2015; Nwagwu 

2014; Nwagwu 2013), and further publications are planned. This further work includes 

applying the identified approaches to other real life cases. One plan is to examine the 



114 

 

DBpedia knowledge base26. The DBpedia knowledge base is a good example of an 

OWA database. IID will be evident in this database because it integrates data from 

different sources. It will be interesting to explore how the IID in the database is dealt 

with and how the process can be improved. Also, FCA approaches for identifying, 

reasoning with and evaluating the IID in a database can be applied to the DBpedia 

knowledge base. 

Another plan is to investigate how FCA can be used to identify IID in a spatial 

database. That avenue would explore how IID can be identified in data from remote 

sensing and the spatial databases in Geographical Information Systems (GIS) , which 

is absent from the EMAGE case study. The association rule approach for identifying IID 

described in chapter 7, section 7.4.1 can be used in identifying and visualising IID in 

the spatial data. For example, a picture of a geographical location can be stored as 

master data set in a spatial database. Subsequent pictures of the same geographical 

location can be analysed as a sub unit of the master data set to identify distortions, 

inconsistencies or incompleteness through the use of the association rule approach, as 

explained in section 7.4.1.  Issues of inaccuracy and incompleteness exist in GIS data 

as identified in Devillers and Jeansoulin (2006 p. 17- 29, 184-207). The use of 

association rule to deal with IID was not fully explored in this work which provides an 

opportunity for a future work on this aspect of using FCA to deal with IID. 

The automated FcaBedRock approach applies mutually exclusive attribute 

principle when dealing with IID in a noisy data set. It can convert data in CSV format to 

formal context before visualising the formal context with a context visualisation tool. It 

can be improved by integrating the FcaBedRock tool with a context visualisation tool 

and other methods of dealing with IID such as the association rule. This measure will 

enrich the ability of the approach to deal with IID existing in an RDF data set and can 

be explored further in the future. 

Conclusively, this work has demonstrated that IID in RDF data set should be 

identified and visualised as to avoid inaccurate analysis. It has been shown that FCA 

tools and techniques have the capabilities to effectively and efficiently identify, reason 

with, evaluate, and visualise the IID existing in an RDF data set. Data scientists 

involved with the analysis of noisy and large data sets are therefore advised to read, 

employ, develop and dissimilate the various approaches presented in this work.  

                                                      
26

 http://wiki.dbpedia.org/Datasets2014 
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APPENDIX E  

 

 

 

  

Figure 44: A part of the EMAP Anatomy Ontology of Theiler Stage 10 available in 

http://www.eMouseatlas.org/emap/ema/DAOAnatomyJSP/anatomy.html?stage=TS10 

Last viewed on 12
th

 May 2015 
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Figure 46: Analogue IID in positively propagated data set in TS 10 

 

Figure 45: Analogue incompleteness in non-propagated data 

set in TS 11 
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Figure 47: Binary IID in positively propagated data set in TS 10 
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Figure 48: Binary incompleteness in non-propagated data set in TS 10 


