

Through connectivity in applied computer systems – ADMOS and MARWIN projects

RODRIGUES, Marcos http://orcid.org/0000-0002-6083-1303 and KORMANN, Mariza

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/10292/

This document is the Presentation

Citation:

RODRIGUES, Marcos and KORMANN, Mariza (2015). Through connectivity in applied computer systems – ADMOS and MARWIN projects. In: 5th Annual International Scientific Conference on Education, Science, Innovations ESI 2015, Pernik, Bulgaria, June 10-11, 2015. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Through Connectivity in Applied Computer Systems – ADMOS and MARWIN Projects

Marcos Rodrigues

The GMPR 3D scanning technologies 3D with single image

Each light plane is uniquely detected by original algorithms

The MARWIN Project FP7 Research for the Benefit of SMEs

Sheffield Hallam Universit

MARWIN: SHU work on various tasks Marcos Rodrigues, Mariza Kormann

3D Scanner Development Registration and fusion of 3D models Translating 3D welding sequence from CAD to scanned model Dissemination

GMPR scanner design A beam splitter allows for visible and nearinfrared cameras to be fitted

The prototype shown uses a MicroVision PicoP laser projector and an IDS CMOS camera (1280x1024)

Full design integrated into a robotic arm The actual robotic cell

▶ > < 0

• 🖬 🌣 You 🕅

Scanning a part

Marwin Project - Computer vision based welding robot

Scanning a part with the robot As the robot moves the part is assembled

Automatic registration with CAD models Scanned patches are fused and registered

Registration goal is to estimate R,t:

$$F(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{m} \sum_{j=1}^{Ni} p_{i,j} d^{2}(\mathbf{R}p_{i,j} + \mathbf{t}, S_{k}) + \sum_{k=1}^{n} \sum_{l=1}^{Nk} q_{k,l} d^{2}(\mathbf{R}^{T} p_{k,l}^{'} - \mathbf{R}^{T} \mathbf{t}, S_{i})$$

Least squares minimisation:

$$f(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{R}\mathbf{p}_i + \mathbf{t}, \mathbf{q}_i||^2$$

Welding sequence Translated from CAD to scanned models

The ADMOS Project Gender classification and age estimation

ADMOS: SHU work on various tasks Marcos Rodrigues, Mariza Kormann

Privacy Regulations Modelling and System Design Hardware and Electronics Design Client Side Software Development: tracking, gender and age estimation Dissemination

Hardware and Electronics Design Optics and lighting

Optical lens and filters to ensure performance within various illuminating conditions

Client Side Software Development Firmware and control s/w development

Real time processing:

- 1. face detection and tracking
- 2. eye tracking
- 3. other feature tracking (mouth, nose)
- 4. cropping the various face-ROI
- 5. gender classification
- 6. age estimation
- 7. save statistical info to an xml file
- 8. transmit to server at periodic intervals

Binary patterns LBP, CT and MCT

MCT is similar to CT, except that it uses the average intensity of the kernel window as the intensity of the centre pixel.

Applying binary patterns to face images Visualizing the differences on images

LBP 3×3

Modified Census 3×3

Census 5×5

Census 3×3

Modified Census 5×5

LBP processing Features are defined by the histogram

ROI sensitivity analysis

Male subjects tend to be classified with higher accuracy.

This agrees with all results reported in the literature.

No explanation for this behaviour is offered at this stage.

 TABLE I

 COMPARATIVE ANALYSIS OF IMAGE REGIONS

Image ROI	Gender	Classification results
ROI1	Male Female	92% 79%
ROI2	Male	83% 83%
ROI3	Male Female	88% 88%
ROI4	Male Female	88% 71%
ROI5	Male Female	$<\!$

Comparative analysis of binary patterns DCT-Discrete Cosine Transform

Decomposes a signal and defines it as a sum of cosines at different frequencies

$$y(k) = w(k) \sum_{n=1}^{N} z(n) \cos(\frac{\pi(2n-1)(k-1)}{2N})$$

$$k = 1, 2, \dots N$$

$$w(k) = \begin{cases} 1/\sqrt{N} & \text{ for } k = 1, \\ \sqrt{2/N} & \text{ for } 2 \le k \le N. \end{cases}$$

The length of coefficients y is the same size as the original signal z.

Comparative analysis of binary patterns DWT-Discrete Wavelet Transform

$$x(n) h(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

$$y(n) = \sum_{k=-\infty}^{\infty} h(k) x(2n-k)$$

$$y_{\text{high}} = \sum_{n} x(n) g(2k-n)$$

$$y_{\text{low}} = \sum_{n} x(n) h(2k-n)$$

$$x(n) = \sum_{k=-\infty}^{\infty} (y_{\text{high}}(k).g(-n+2k)) (y_{\text{low}}(k).h(-n+2k))$$

Comparative analysis of binary patterns

Raw histograms Transformed histograms by DCT Transformed histograms by DWT

Tested on public databases FEI, AT&T, Sheffield-UMIST, and color FERET

Classification results Average for 4 Regions of Interest

	LBP	СТ	MCT	LBP CT	LBP MCT
FEI Database					
LBP&Census	87.9	87.6	79.0	86.3	85.2
DWT	85.2	84.4	79.0	86.3	84.1
DCT	86.8	89.8	81.2	87.4	85.7
AT&T					
LBP&Census	66.4	65.3	50.0	77.9	50.0
DWT	59.1	50.0	50.0	69.6	50.0
DCT	84.2	87.0	90.1	83.2	80.3
Sheffield-UMIST					
LBP&Census	81.6	82.8	67.8	78.7	68.4
DWT	77.2	78.0	73.2	75.8	83.6
DCT	84.6	84.3	83.0	86.5	85.2
Color FERET					
LBP&Census	69.5	68.1	70.3	67.9	70.6
DWT	71.5	72.0	67.1	72.4	69.6
DCT	71.9	68.8	70.9	73.1	73.6

Real time and privacy requirements Define and track anonymous tags

Conclusions

LBP + Eigenvector decomposition: top half of the face most significant

<u>Binary patterns + SVM</u>: LBP is slightly superior to CT/MCT <u>Binary patterns + DCT + SVM</u>: CT is clearly the superior technique Also, bias towards male subjects is removed CT has the smallest standard deviation of all techniques <u>Real-time performance</u>: enabled by multiple threads using multi-level queues Testing in shopping malls in Hungary and UK in June and July 2015

