Ammonia removal from water using sodium hydroxide modified zeolite mordenite

SOETARDJI, Jennifer Pieter, CLAUDIA, Jeannete Cindy, JU, Yi-Hsu, HRILJAC, Joseph A., CHEN, Tzu-Yu, SOETAREDJO, Felycia Edi, SANTOSO, Shella Permatasari, KURNIAWAN, Alfin and ISMADJI, Suryadi (2015). Ammonia removal from water using sodium hydroxide modified zeolite mordenite. RSC Advances, 5 (102), 83689-83699.

[img] PDF
Chen-AmmoniaRemovalFromWater(VoR).pdf - Published Version
Restricted to Repository staff only
All rights reserved.

Download (1MB)
[img]
Preview
PDF
Chen-AmmoniaRemovalFromWater(AM).pdf - Accepted Version
All rights reserved.

Download (2MB) | Preview
Official URL: http://pubs.rsc.org/en/Content/ArticleLanding/2015...
Link to published version:: https://doi.org/10.1039/C5RA15419G

Abstract

Natural and modified mordenite zeolites were used to remove ammonium ions from aqueous solution and Koi pond water. The zeolite modification was conducted using sodium hydroxide solutions of different strengths at 75 degreeC for 24 h. Langmuir{,} Freundlich{,} Sips{,} and Toth equations with their temperature dependent forms were used to represent the adsorption equilibria data. The Langmuir and its temperature dependent forms could represent the data better than the other models. The pseudo-first order model has better performance than the pseudo-second order model in correlating the adsorption kinetic data. The controlling mechanism of the adsorption of NH4+ from aqueous solution onto the natural zeolite and the one treated with 6 M sodium hydroxide solution was dominated by physical adsorption. The competition with other ions occurred through different reaction mechanisms so it decreases the removal efficiency of ammonium ions by the zeolites. For the treated zeolite{,} the removal efficiency decreased from 81% to 66.9%. A Thomas model can represent the experimental data for both adsorption of ammonia from aqueous solution or from Koi pond water.

Item Type: Article
Identification Number: https://doi.org/10.1039/C5RA15419G
Page Range: 83689-83699
Depositing User: Tzu-Yu Chen
Date Deposited: 21 Jun 2018 11:40
Last Modified: 18 Mar 2021 11:40
URI: https://shura.shu.ac.uk/id/eprint/21636

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics