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I thought to myself, "Look, I have grown and increased in wisdom more 
than anyone who has ruled over Jerusalem before me; I have experienced 
much o f  wisdom and knowledge." Then I applied m yself to the 
understanding o f wisdom, and also o f madness and folly, but I learned 
that this, too, is a chasing after the wind. For with much wisdom comes 
much sorrow; the more knowledge, the more grief.

King Solomon, Book of Ecclesiastes 1:16-18, The Bible

Man’s greatest asset is the unsettled mind.
Isaac Asimov



Abstract

This Thesis is dedicated to computer simulation investigations of the phase be­

haviour of binary and ternary liquid crystals mixtures represented using the Lebwohl- 

Lasher lattice model. The binary mixture is studied in the Canonical and Semi 

Grand Canonical Ensembles over a comprehensive set of temperatures, concentra­

tions and the relative coupling constants. The ternary mixture is studied in the 

Canonical Ensemble only, over a comprehensive set of temperatures and concentra­

tions and single set of coupling constants.

In order to determine the boundaries between different phase regions in the Canoni­

cal Ensemble, the thermal and concentration dependencies of three different observ­

ables are used. The first observable is the potential energy of the system, the second 

is the second rank orientational order parameter and the third is the short-range 

radial distribution function. The long-range radial distribution function and the 

system snapshots are used as auxiliary observables.

In order to determine the phase boundaries in the Semi Grand Canonical Ensemble, 

the concentration dependence of the chemical potential is used. The order parameter 

is also used as an auxiliary observable in order to establish the symmetries of the 

phases on each side of the various coexistence regions encountered.

Some features of the phase diagram (e.g. phase re-entrance) are shown to be difficult 

to determine in the Canonical Ensemble, whereas other features (e.g. the boundary 

between two phase coexistence regions) are difficult to determine in the Semi Grand 

Canonical Ensemble. The remaining data from both ensembles are found to be in 

good agreement.

As well as homogeneous nematic (N) and isotropic (I) phases, regions of N+I and 

N+N phase coexistence are identified. For mixtures of similar particle types, two 

distinct coexistence regions are found, but as the particle types are made increasingly 

dissimilar, these two regions are found to coalesce. This leads to a distortion of the 

I-N transition temperature curve away from the behaviour predicted by classical 

ideal mixing rules.
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The ternary mixture results show further departures from ideal mixing behaviour, 

while maintaining consistency with the data obtained from the equivalent binary 

systems. Also, unexpectedly, the cooperative ordering and phase separating of the 

intermediate particle type takes place at the same temperature for all concentrations 

considered. Overall, the results from ternary mixtures provide a focus for future work 

into the phase behaviour of multi-component and poly-disperse mesogenic systems.
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Chapter 1

Introduction

In this chapter, we give a brief outline of this thesis. The work described in this 

thesis relates to computer simulations performed with the aim of promoting greater 

understanding of the mechanisms responsible for ordering and phase separation in 

liquid crystal (LC) mixtures, since no single theoretical model has completely de­

scribed these processes satisfactorily. Specifically, attention has been focussed on the 

phase behaviour of the Lebwohl-Lasher [1] lattice model, which has been modified 

to simulate binary and ternary mixtures.

Aside from this introduction, this thesis is organised as follows. A brief introduction 

to LCs and a description of the main types of LC and their properties follows in 

Section 1.1. In Chapter 2, a background to theoretical and experimental approaches 

is given, including various methods of measuring the order parameter and structural 

behaviour of LC systems. Next, in Chapter 3 we give a background to the simulation 

development. Here, Monte Carlo techniques and the Lebwohl-Lasher lattice model 

are introduced. This is followed in Chapter 4, by a detailed description of the model 

used to generate the results presented in this Thesis. Here, the implementation of 

Canonical and Semi-Grand Canonical Ensemble simulation are discussed, along with 

other simulation details, such as the calculation of relevant observables. In Chapter 

5 we present the results from the first systems of interest. These are binary mixtures 

of mesogenic particles studied in the Canonical Ensemble. We present data from 

these simulations, and use the same to construct phase diagrams, before discussing 

the results. In Chapter 6  we present simulation results from the same set of binary 

mixtures of mesogenic particles, but this time studied in the Semi-Grand Canonical

1



C H APTER 1. INTRO DU CTIO N

Ensemble. In Chapter 7 we present the last systems of interest - ternary mixtures 

of mesogenic particles. In Chapters 5-7 we adopt the following structure when 

presenting the results. The original data are presented first, followed by a discussion 

of the presented results. The discussion for each chapter builds on those of the 

previous chapters. In Chapter 8 we summarize, briefly, all of the results presented 

and discussed in previous chapters and suggest possible future developments and 

research. Two appendices and a bibliography are also included.

1.1 Liquid Crystals

LCs are organic materials which exhibit an intermediate phase (a mesophase) be­

tween the isotropic liquid and crystalline solid states. Most of the mechanical prop­

erties exhibited by LCs are found in other liquids, the difference being tha t the 

properties of LCs are anisotropic, tha t is, they vary according to the direction in 

which they are measured. In addition, in ordered fluid phases, LCs exhibit long range 

orientational order. Long range translational order may also be present, in LCs, but 

they do not exhibit the full three-dimensional order of ordinary solid crystals. Owing

Figure 1.1: Structure of 5CB, a typical mesogen.

to their ability to form mesophases, LCs are often called mesogens. Mesogens are 

classified into two distinct categories: thermotropic and lyotropic. Thermotropic 

LCs form different mesophases due to changes of tem perature, whereas lyotropic 

LCs do so with a change in concentration. Thermotropic mesogens are called enan- 

tiotropic if the process of moving from one mesophase to another is reversible; where 

the reverse process does not return the material into its original mesophase, they
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CH APTER 1. INTRODUCTION

are known as monotropic. Thermotropic mesophases have been found to be pro­

duced by two distinct types of molecular shape. The first of these is rod-like; LCs 

of this type are called calamatic (K a\a/io^  - ‘reed’ or ‘straw’ in Greek) [2], and were 

discovered by Vorlander [3] at the beginning of the twentieth century. The second 

type, which are disk-like, are called discotic LCs (Sia^oq - ‘disk’ or ‘p la te’ in Greek) 

and were discovered only relatively recently [4]. The molecular structure of 5CB, a 

typical calamatic, is presented in (Figure 1.1).

(a) lb) (c)

Figure 1.2: Isotropic (a), nematic (b) and smectic (c) phases of LC [5]

There are two main types of LC phase (Fig.1.2): nematic (vs/jarcx; - ‘th read’, ‘web’) 

and smectic - ‘soap’, and a/j,r]K,TLKO<; - ‘tha t which is used for cleaning’).

In the nematic phase there is orientational order, such tha t the long axes of the 

molecules are aligned in a preferential direction, but there is no translational order. 

In the smectic phases, the molecules are arranged in regularly spaced layers, such 

tha t there is a density wave running through the material, but the molecules have 

only short range positional order within these layers. Other phases formed are 

simply derivatives of these two main phases with additional properties - for example: 

cholesterics, chiral nematics, ferroelectric LCs, epitropic LCs [6] and so on.

1.1.1 Nem atic Liquid Crystals

Of all LC phases, the nematic has the highest symmetry [7,8]. As was mentioned 

earlier, a nematic LC has long range orientational order, but no long range transla­

tional order. Thus it differs from the isotropic liquid (Fig. 1.2) in th a t its molecules
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CHAPTER 1. INTRODUCTION

are spontaneously oriented with their long axes approximately parallel to the direc­

tor. The director is the preferred orientation of the molecules. The director usually 

varies from point to point in the medium, but a uniformly aligned specimen is opti­

cally uniaxial, positive and strongly birefringent. The mesophase owes its fluidity to 

the ease with which the molecules slide along one another while still retaining their 

mutual alignment.

i
Y

Figure 1.3: Uniaxial (a) and biaxial (b) symmetries

In order to avoid confusion concerning the terminology used to describe nematic 

mesophases, let us begin by clarifying the definitions of the various types of symme­

try. We call an object uniaxial if it possesses cylindrical symmetry. Thus rotation 

about the Z  axis by any angle translates the object into itself and its orientation is 

explicitly defined by only one axis Z  (Figure 1.3(a)). Biaxial objects, on the other 

hand, are affected by rotation around the Z  axis and their orientation requires two 

axes, Z  and Y,  to be defined (Figure 1.3(b)).

Another difference in symmetry relates to polarity. If an object is indifferent to 

the inversion through a point (or mirror reflection in the plane perpendicular to the 

Z  axis), so that ‘head’ and ‘tail’ prove to be interchangeable, then such an object 

is called apolar (Fig.l.4(a)). If however, such an inversion (reflection) does not 

translate an object into itself then the object is polar (Fig.l.4(b)).
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C H A P T E R 1. INTRODUCTION

111Saw
111 **>. ' tew
i §l i i i
iii

a

Figure 1.4: apolar (a) and polar (b) symmetries

Another consideration is the distinction between two types of symmetry: that of 

the mesogen and that of the mesophase. Biaxial mesogens may form a uniaxial 

mesophase, and polar mesogens may give an apolar mesophase, but uniaxial particles 

very rarely form biaxial phases and apolar mesogens do not form polar phases. One 

of the usual cases is that of a rod-like LC with longitudinal quadrupoles, which can 

yield chiral phases. In practice, however, the symmetry of the mesophase is almost 

always the same as or higher than that of the mesogens which form it, unless an 

external force (field, pressure, confinement) is applied to lower the symmetry of the 

mesophase.

5



CHAPTER 1. INTRODUCTION

1.1.2 Ordering In LC

Most phases differ with respect to their symmetry; they may be, for example, 

isotropic (spherical) or nematic (cylindrical). The transition between different phases 

usually corresponds to the breaking of a particular symmetry and can be described 

in terms of an order parameter Q. In general, the order parameter characterising 

the transition between the isotropic and nematic phases must satisfy the following 

requirements:

• Q = 0  in the less ordered, isotropic phase (higher symmetry), and

• Q ^  0  in the more ordered, nematic phase (lower symmetry).

There are two approaches to measuring or defining the order parameter in LC: 

microscopic (mainly theoretical) and macroscopic (mainly experimental).

Microscopic order parameters are functions that give a description of the system on 

the intermolecular scale. They are constructed in relation to a specific molecular 

model and, by definition, may contain information above that which relates to the 

symmetry of the phase. It is convenient to present the microscopic order parameters 

of various LC mesophases as expansion coefficients of the singlet distribution function 

p, which depends on orientational (Q) and positional (f ) coordinates [9-11]:

p ( f , fi) = E  E  (21 + )> (1.1)
G hm yn

The functions D lmn(D) are the Wigner rotation matrices, the angular brackets rep­

resent an ensemble average and G is the set of reciprocal lattice vectors of the 

crystalline phase [12]. Equation (1.1) can be rewritten as

p ( f , fi) = A , £ E  (1-2)
q  l,m,n

where Qimn{G) is a set of order parameters. These are logically divided into three 

sub-categories:

• Qooo(G0  are positional order parameters for a monoatomic lattice,

•  Qimn(O) (or Lm,n) are the orientational order parameters and

• Qm{G)  are the mixed (orientational-positional) order parameters.
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CHAPTER 1. INTRODUCTION

1.1.3 The Nem atic Order Parameter

The most fundamental characteristic of LCs is their property of long range orienta­

tional order. From Equation(1.2), all orientational order parameters read:

Qimn(0) = (21 +  1 ) « „ )  =  (Ĥ±i) Idrdttp(r,Cl)D^n(a) (1.3)

The orientation of a molecule can be described by the Euler angles (0,7 , ^ ). In 

the apolar nematic mesophase, only terms with even I can contribute to Equation 

(1.3). In addition, if one assumes that the mesogenic molecules possess cylindrical 

symmetry then n must be equal to zero. Finally, if the coordinate system is chosen 

such that the director coincides with the Z  axis, then m  must also equal zero. Thus, 

the orientational order parameter Q;oo(0) depends on only one of the Euler angles 

(9) - the angle between the long axis of each molecule and the director:

Qioo(0) = (Pi(cos9)) (1.4)

where (Pi(cos6)) is an ensemble average of an even Legendre polynomial, and the 

angular brackets denote an average over all molecules in the system. Legendre 

polynomials are a convenient tool for use in this situation, since they were designed 

to deal with problems of broken spherical symmetry.

Higher rank Legendre polynomials (I = 4 ,6 ,8 ,...) are seldom used, owing to their 

relatively insignificant contribution to p in Equation (1 .2 ). Only after the 1970s did 

the measuring of P4 become possible experimentally [13]. Ranks six and higher are 

still hard to obtain experimentally [14] owing to the fluctuations in the systems. 

Usually, only the second rank Legendre polynomial P2 is used to define uniaxial 

nematic order parameter S', as was first proposed by Tsvetkov in 1942 [15]:

S  =  (P2(cos 9)) = i( (3  cos2 9 -  1 )) (1.5)

In most cases, the microscopic order parameters, as described above, provide an 

adequate description of real mesogenic systems. However, in some experimental sit­

uations, this is not readily accessible and some other means must be found to specify 

the order parameter. A significant difference between the isotropic and liquid crys­

talline phases is observed in the measurements of all macroscopic tensor properties 

(diamagnetic susceptibility, refractive index, etc); these properties can, therefore, be

7



CHAPTER 1. INTRODUCTION

used to identify the macroscopic order parameter. One of the macroscopic properties 

of an LC which has been measured experimentally [8] is the diamagnetic suscepti­

bility x- The relationship between x  and molecular properties is relatively well 

understood when compared with other macroscopic properties. The relationship 

between the value of an applied field H  and the magnetic moment M  reads as:

Mi =  XijHj (1.6)

where z, j  are the x , ?/, z indices of x- The tensor x  is symmetric in the case of static 

FT, and its diagonal elements in the case of the isotropic (I) and uniaxial nematic 

(UN)  phases read as:

(  X 0 0 ^ (  X L 0 0 ^

X ( I )  = 0 X o- X(UN) = 0 x ± 0

1 ° 0 X ) 1 0 0 XII )

where X|| and X± are die susceptibility components, respectively, parallel and per­

pendicular to the Z  axis. To determine Q from the diamagnetic susceptibility, the 

requirement

- | ( X | |  — X-l ) 0 0 ^

Q i j  =  - U r ~ , o r  ®  ~  A y —  0 —f ( X | | - X ± )  0‘-^A.max A m ax
o 0 —|(X-L -  X||) /

(1.8)

is imposed where AX m ax  is the maximum anisotropy which would be observed for a 

perfectly ordered mesophase, chosen as normalization.

1.1.4 Radial Distribution Function

From Equation. (1.2), all positional order parameters Qooo^) read:

Qooo(G) = I f  d r d Q p i r ^ e - ^  (1.9)

Positional order parameters for a monoatomic lattice are characterized by the set of 

reciprocal lattice vectors G. Therefore this function does not contain information 

about molecular orientations. Often, the radial distribution function is denoted
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g(r). g(r) provides structural information about the system. It is defined as the 

probability of finding a pair of molecules separated by distance r, relative to the 

probability expected for a completely random distribution at the same density.

A further extension of the radial distribution function is its use in defining the 

degree of positional order in mixtures. In this case Equation (1.9) is rewritten to 

calculate the probability of finding a pair of like (gAA(r ), 9BB(r)) or unlike (9ab{t )) 

molecules at distance r. In our simulations, the distribution function 9ab{^) is used 

to measure the positional correlations of unlike spins on the lattice employed. The 

like distribution functions, 9aa(t) and Qbb(^) are found to adopt very similar shapes, 

the only difference being their amplitudes which depend on the concentration ratio 

of the compounds. It is also the case that gABM  =  9 b a {r)- However, this identity 

does not hold for real systems, where these functions can be used to characterise 

transitions between liquid and solid crystal phases as well as different mesophases 

(nematic, smectic, etc).

1.1.5 Second-Rank Orientational Correlation Function

Using Equation (1.2), orientational-positional order parameters are given by:

Qm(G) = J d f d a P( f t n )e - i^ P , ( c o s e )  (1.10)

In the present work only the second-rank (I =  2) orientational correlation function 

is used, this being denoted <72 M- This correlation function can be looked on as 

being the orientational order parameter for molecules separated by distance r  and 

allows for independent evaluation of short range and long range orientational order 

correlations.

The value of 0 2  M  levels off at large separations r  and can be related to the usual 

nematic order parameter via:

S  =  V#2(r >  1) (1.11)

In small systems, such as those investigated in this thesis, short range orienta­

9



CHAPTER 1. INTRODUCTION

tional correlations become significant when calculating the average order parameter 

(P2(cos0)). Also, the value of (P2(cos&)) fluctuates considerably in the vicinity of 

the isotropic-nematic transition, which makes it difficult to detect the exact tem­

perature of the transition. Because of this, both g2(r) and (P2(cosO)) were used 

to calculate the orientational order parameter of the system. The method used to 

obtain the g2(r) function is described in Section 4.4.3.

1.2 LC Mixtures

The use of LC mixtures is now widespread, each application having its own set of 

requirements. These requirements can be met by using specially designed mixtures 

of various compounds. LC mixtures can be divided into two main categories:

• Mesogen-mesogen [16]. These are either mixtures that include LCs which are 

of the same type, but have different properties (elastic constants, I-N transition 

point, etc), such as, a nematic-nematic mixture; or mixtures that include LCs 

of different types, for example, smectic-nematic, discotic-calamatic, etc.

•  Mesogen-non-mesogen [17]. These are mixtures that include isotropic materi­

als, polymers and other non-mesogens, for example, LC-isotropic mixture, LC 

and chiral dopant, LC and dye molecules, PDLC, PNLC, etc.

In addition, mixtures can be either bi-dispersed (binary) or poly-dispersed (ternary, 

quaternary, etc). Most theoretical and simulation studies have been devoted to 

the former. However, real LC mixtures are almost always poly-dispersed, owing to 

the technological difficulty of obtaining 100% pure material. Binary LC systems 

have been widely exploited in contemporary technology because of the facility with 

which they change their physical parameters in response to changes in composition 

[18,19]. For example, mixing LCs that have different phase transition temperatures 

Ttr usually results in a lower transition temperature for the mixture (Figure 1.5) 

than that of the pure component with the higher Ttr [20], while the Freedericksz 

transition point for the critical field may either remain at the level of one of the 

components or change in either direction [21-24].

10
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T i

TIN

I
IT
Ta in

100%( B) % 100%(a )

Figure 1.5: Isotropic-nematic transition tem perature of a generic binary mixture 
[7,8].

Theoretical studies of binary mixtures predict rather more complicated phase be­

haviour than tha t presented in Figure 1.5. In such studies, the coexistence region 

in the vicinity of the isotropic-nematic phase transition not only becomes narrower 

near to the region of high concentration, but also deviates from having approxi­

mately linear dependence on the concentration; this was predicted by Maier-Saupe 

theory, which was later extended by Humphries et al [25]. Subsequently, Palffy- 

Muhoray et al [26] developed another theory designed to investigate the properties 

of binary mixtures. These investigations have led to the following conclusions:

• For certain values of the parameters, it is possible to have a nematic-nematic 

coexistence region. Coexisting nematic phases have been observed in mixtures 

of LC polymers [27], other low molecular mass LCs [28], and in mixtures of 

rod-shaped and disc-shaped nematogens [29].

11
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• The order parameter of the mixture and its variation with temperature agree 

with the Maier-Saupe universal curve. However, the order parameter of the 

individual components of the mixture may differ from each other significantly

[30].

In theory, it is possible to obtain a mixture with virtually any combination of required 

characteristics. In practice, however, certain difficulties can arise, such as phase 

separation between the various components under certain conditions. Therefore 

the investigation of mixtures, and particularly of their phase behaviour and their 

dependence on the parameters of each LC involved (weight percentage, coupling 

constants, elastic constants, etc.), has attracted major interest. Further progress 

in the study of LC mixtures depends on better understanding of the processes and 

theoretical background, since the physical properties of LCs change non-trivially 

when other compounds are added.

12



Chapter 2

Experim ental Approaches And  

Theory

For a considerable period after their discovery in the late nineteenth century by the 

Austrian botanist Reinitzer [31], LCs were the subject of very few studies [32-36]. 

The earliest of these involved, essentially, optical observation through a polarizing 

microscope [32]. Some attempts were made to synthesize mesogens [3,37-39] and 

to understand the structure of their phases [35,36]. In the early twentieth century, 

nematic, cholesteric and smectic A mesophases were observed and their structures 

clarified by Friedel [32]. Thereafter, interest in mesogenic materials seemed to di­

minish; there were a few publications in the 1930s [40-42] on the discovery of the 

electro-optical effect in LC [40], in the 1940s [15,43,44] on the high magnetic bire­

fringence of LCs, and in the 1960s on the Kerr effect in LCs [45], along with studies 

of LC mixtures [22,46]. Only in the 1970s was the importance of potential ap­

plications to thermography and electro-optic devices realized, and this gave a new 

impetus to the investigation of the properties of LCs, employing such experimen­

tal techniques as switching measurements [47-49], dielectric spectroscopy [50-53], 

electro-optic spectroscopy [54,55] and pyroelectric measurements [56]. Recent de­

velopments in experimental techniques such as scanning probe microscopy have been 

developed mainly in relation to the behaviour of LCs near the surface.

13



CHAPTER 2. EXPERIM ENTAL APPROACHES AND THEORY

2.1 Order Parameters

Let us consider the properties of mesogenic materials in the isotropic and nematic 

phases. One of the signs of an I-N phase transition is a change in the order parameter 

S. Experimental observations using various techniques show that the order param­

eter decreases monotonically as the temperature is raised in the mesophase range, 

and drops suddenly to zero at the transition temperature T /T tr =  1 (Figure 2.1). 

The fact that the I-N transition is first order leads to large pretransitional changes 

in other thermodynamic properties (which can be measured experimentally), such 

as the specific heat. However, the I-N transition is a weak first-order transition. The 

changes in entropy and volume associated with this transition are typically only a 

few percent of the corresponding values for the solid-nematic transition. For exam­

ple, the energetic barrier between the equilibrium states of the isotropic and nematic 

phases at the transition temperature Ttr is only of the order lk j/m ol.

U)

9809400.92
1 1 1

c

Figure 2.1: Orientational nematic order parameter [57]. Notation Tc used in [57] is 
equivalent to Ttr.
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A  number of different techniques have been employed to determine the second- 

rank orientational order parameter: optical birefringence experiments [31,38] and 

magnetic susceptibility measurements [8] as well as the conventional X-ray diffraction 

[58-61] technique (which found its application in the shear flow studies of LC [59,62- 

64]), etc. However, the usefulness of these techniques is limited because microscopic 

order parameters calculated from measured macroscopic properties are based on 

assumptions about molecular properties such as, for these examples, the magnetic 

polarizability and the optical polarizability.

0.6

P,2
0 .4

0.2

0 .92  0.94 0 .96  0 .98 1.021

Figure 2.2: Second Rank Orientational Order Parameters: obtained from SANS 
(open circles) and NMR (filled circles) experiments. The solid line shows the pre­
diction of the Maier-Saupe theory. [14]

Other methods which study the molecular orientational ordering in the nematic 

phase, and which have been widely used recently, are the various spectroscopic 

techniques such as nuclear magnetic resonance (NMR) [65-77], electron spin res­

onance (ESR) [78-80], fluorescence depolarization [81] and polarized Raman spec­

troscopy [82-84], etc. Most of these techniques can provide results for order param­

eters up to rank four.

Spectroscopic techniques have also been used in measurements of LC mixtures. Bur­

nell et al [76] investigated the temperature dependence of the NMR spectra of the
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solutes. Measured order parameters were related to the intermolecular forces of 

mean field theory. In [66] the anisotropic intermolecular forces that are responsible 

for the orientational ordering in LC were studied by comparing computer simulations 

of hard ellipsoids with experimental NMR results for solutes in a nematic LC. All 

long range interactions were ‘minimized’ with a special LC mixture. The short range 

interactions calculated from the NMR experimental solute order parameters were in 

good agreement with the simulation results. In [70] NMR was used to determine 

the degree of order of the solute and solvent molecules of a nematic LC in a zero 

gradient electric field. The comparison indicated that for a variety of molecules dif­

fering in size, shape and flexibility, the degree of order could be described by a single 

orientation mechanism. This mechanism was found to be adequately modelled by a 

simple phenomenological mean field model based on the size and shape anisotropy 

of the dissolved species. The use of zero field gradient in mixtures, in combination 

with this mean field model, allowed the prediction of solute order parameters to an 

accuracy of approximately 10%.

In the 1990s, small angle neutron scattering (SANS) was employed to study the 

long range orientational order in LCs [14]. The advantage of this method is that the 

diffraction does not depend on the properties of a certain rank and, according to [85], 

can be used to obtain a virtually complete set of orientational order parameters. 

In [14], however, it was found that in practice a significant statistical contribution 

could be made only to the second- and fourth-rank terms in the expansion of the 

single molecule scattering, which means that only the second- and fourth-rank order 

parameters could be obtained. These order parameters were obtained from the 

anisotropic single molecule scattering, isolated at small scattering angles. The results 

for the orientational order parameters were compared with those obtained by NMR, 

and with those predicted by the Maier-Saupe theory. For the studied nematogen, the 

Maier-Saupe theory was found to underestimate the second-rank order parameter 

and its dependence on the reduced temperature T jT ^ j .  However, the measured 

values of the fourth-rank order parameter were in very good agreement with the 

theory. For the same materials, order parameters obtained by NMR were found to 

be slightly lower than those determined by the SANS experiment (Fig.2.2).

A number of approaches such as Raman spectroscopy [84], neutron scattering ex­

periments [86] and others [87] have been adopted in the study of orientational order 

and radial distribution functions, using the so-called Guest-Host technique. In [86],
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the orientational distribution function in an LC was studied. Isotropically labelled 

guest molecules were inserted into a host-LC environment and studied by means 

of the neutron scattering technique. A very similar approach was used in both in­

frared linear dichroism experiments on nematic solutions [87], designed to investigate 

the orientation of guest molecules in nematic hosts, and in FT-Raman polarization 

spectroscopy of non-mesogenic guest molecules oriented in nematic LC solvents [84]. 

Attempts were made to obtain an orientational distribution function from the in­

version of the wide angle scattering data [8 8 ].

2.2 Phase Transition

The early experimental determination of the critical-like behaviour of the I-N phase 

transition employed a light scattering technique [89-91]. Later, the Kerr effect [92], 

the Cotton-Mouton effect [93-96] and the non-linear dielectric effect [97-101] were 

used. Differential scanning calorimetry (DSC) [102-104] was also used in locating 

phase transitions. All of these studies showed a pretransitional anomaly in the 

isotropic phase of nematogens. Nematic LCs have long range correlations even well 

away from critical points or hydrodynamic instabilities [105]. The results of early 

investigations [106-108] of the heat capacity anomaly near the I-N transition were 

so contradictory that at times they did not allow even a qualitative interpretation. 

Anisimov et al [109] measured the temperature dependence of the specific heat for 

MBBA near the I-N transition, and analysis of this dependence showed that fluctu­

ations of the order parameter were not inconsiderable at the phase transition point. 

Recently, Rzoska et al [98,99] discussed the critical behaviour of the dielectric per­

mittivity in the isotropic phase of nematogens, and showed that the near the I-N 

transition the dielectric permittivity follows the same pattern found in binary so­

lutions at critical points. Subsequently, high-pressure studies [100] were made of 

the pretransitional effects of the I-N transition of MBBA, and of the low-frequency 

non-linear dielectric effect in the isotropic phase of the mesogen. This investiga­

tion also showed the close relationship between the pretransitional behaviour in the 

isotropic phase of nematogens and that in the homogeneous phase of solutions at 

critical temperatures. All of these studies of fluctuation phenomena near to weakly 

first-order phase transitions contributed to an understanding of the physical reasons 

for their ‘closeness’ to the second order.
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Figure 2.3: Phase diagrams (filled symbols) of mixtures (a) s-SCLCP and £ 4 4 , (b) 
s-SCLCP and £ 4 3  [20]. Solid lines represent theoretical prediction based on FH-MS 
theory with relative strength of the cross-nematic interaction to that of the pure 
mesogens taken to be (a) c=0.95. (b) c=0.945.
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Mixed liquid crystal formation has been extensively studied by Dave and Vasanth 

[46], Yu and Labes [110], and Gupta and Vora [16], and their work has provided 

a foundation for studies of systems consisting of both mesogens and non-mesogens. 

Binary [111], ternary [112] and quaternary [113] mixtures of both enantiotropic and 

monotropic LC were studied by Naoum et al [114]. Unfortunately, the materials 

they used exhibited not a nematic, but a smectic, phase. However, the behaviour of 

the isotropic - liquid crystalline curve on the phase diagrams from [1 1 1 ] may have 

some relevance to our simulation results for the I-N curve for binary mixtures.

Also, nematic mixtures (mainly binary) which contain polymers have been exten­

sively studied experimentally with a view to informing the design of novel devices 

(PDLC [115], PNLC [116], etc. [117]). In such mixtures of LCs and polymers 

(isotropic or mesogenic), miscibility and phase separation boundaries are of great 

importance in photopolymerization [118] and other processes [119]. Recently, many 

experimental studies have been devoted to this problem [2 0 , 1 2 0 - 1 2 2 ]. As will be 

shown shortly, there are two main mechanisms whereby phase separation may occur 

in the mixture: immiscibility driven separation (leading to liquid-liquid phase co­

existence) and nematic order driven separation (leading to nematic-nematic phase 

coexistence). With regard to the former, it was found that the most significant 

characteristic of LC-polymer mixtures was the molecular mass of the compound 

containing a polymer; whereas the latter was largely controlled by the difference in 

I-N transition temperatures for the pure compounds.

Experimental investigation of such mixtures was conducted and reported in 1998 

[20]. Using the methods of light scattering and optical microscopy, two different 

systems were studied. For both systems, the mixtures used contained both LC 

polymer (s-SCLCP [20]) and another compound, this being a low molecular mass 

mesogen which was different for each system ( £ 4 4  and £ 4 3  [20]). The main difference 

between the two systems was the I-N transition temperature of the two types of 

LC component. Photo pictures of both samples at various temperatures, which 

explicitly showed droplet formations and phase separation, were used to construct 

phase diagrams of the experimental mixtures (Figure 2.3(a),(b)). The results were 

compared in the context of a combination of the Flory-Huggins theory for isotropic 

mixing and the Maier-Saupe theory of nematic ordering [123]. These phase diagrams 

revealed the existence of liquid-liquid as well as Afi — N2 coexistence phases in 

one of the mixtures (Fig. 2.3(b)), while in another, the system formed a single
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nematic phase instead of Ni — N2, which is indicative of miscibility (Fig. 2.3(a)). A 

similar phase diagram was reported in 1982 by Finkelmann and co-workers [120] for 

a different LC-polymer mixture.

In another study, an LC - isotropic polymer mixture was studied using light scatter­

ing, optical microscopy and DSC techniques [1 2 1 ]. The resultant phase behaviour 

was found to be influenced by the molecular mass of the polymer. In such mixtures, 

liquid-liquid coexistence was present when there was a high molecular mass isotropic 

polymer. As the molecular mass of the polymer was decreased, however, the liquid- 

liquid coexistence region disappeared. The results were compared with other studies 

of such mixtures [1 2 2 ], with the Flory-Huggins theory for isotropic mixing and with 

the Maier-Saupe theory of nematic ordering.
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Figure 2.4: Phase diagram of LC and PLC with larger (filled square) and smaller 
(open square) chain size [104] obtained from the experiment. Dashed and solid lines 
respectively represent theoretical calculations for different lengths of the polymer 
chain.

However, the molecular mass of the polymer compound of the mixture is not always 

the main factor in the phase behaviour of the system. Experimental data from [104] 

show only a slight dependence of the I-N transition curve and miscibility regions 

on the molecular mass of the polymer chain in the solution. Such a mixture of
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two mesogens (LC and polymer LC each having low molecular mass molecules) was 

investigated by Benmouda et al using DSC and optical microscopy [104]. The exper­

imental technique they used allowed them to obtain thermograms with errors in the 

range of less than 1 °C. Studies were concentrated on the phase separation and mis­

cibility of the solution. A phase diagram (Fig.2.4) obtained from the experimental 

data was compared with the Maier-Saupe and Flory-Huggins theories.

According to the rule of Arnold and Sackman [124], a mixture consisting of types 

of mesogens with the same mesomorphic structure should be miscible over a wider 

range of concentrations than was found to be the case in this experiment (Figure 

2.4). The miscibility region starts at a very low concentration of the polymer com­

pound and continues up to a concentration of 50%. In spite of the lack of data at 

concentrations lower than 1 0 %, there is strong evidence from other experimental 

data [20], that one might expect no changes in that region. In the area of higher 

polymer concentrations, the binodal is virtually a horizontal line coinciding with 

the nematic-isotropic transition of the monomer rich phase. The demixing is in­

duced by the nematic order. While the polymer and the monomer are miscible in 

the isotropic state, they demix as soon as the nematic order appears. The authors 

of [104] concluded that the mixture of the polymer LC and its low molecular mass 

equivalent exhibit an extended miscibility gap and an increase in the I-N transition 

temperature, which were due to the influence of the polymer backbone.

2.3 Theoretical Background

Theoretical understanding of the nematic phase both at and in the vicinity of its 

phase transitions has been developed in several directions. A density-functional 

theory by Onsager [125] minimizes the grand potential Q = F  — [iN with respect 

to variations of the single-particle density; this theory is based on the fact that the 

isotropic-nematic transition occurs at low density for highly elongated molecules. 

Another approach uses the theory of Landau and de Gennes [126,127], in which 

the Helmholtz free energy is expressed in powers of the order parameter and its 

gradients. Yet another approach, developed by Faber [128], treats the nematic phase 

as a continuum, in which a set of modes involving periodic distortion of an initially 

uniform director field is thermally excited. All orientational order is assumed to
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be due to mode excitation. Unfortunately, this theory works well only near the 

solid-nematic transition and fails close to the isotropic-nematic transition. Maier- 

Saupe theory [129] attributes the formation of the ordered phase to the anisotropic 

attractive interactions only. This theory describes nematic ordering, while Flory- 

Huggins theory for example, describes isotropic mixing and ignores orientational 

properties of the particles. In many theories of the van der Waals type [130-132], 

both anisotropic repulsions and attractions are included. These latter types of theory 

are physically more precise than of Maier and Saupe; however, the main difficulty 

attending them is that they require precise knowledge of intermolecular interactions.

Different approximations are used for describing different phenomena and different 

properties of the system. As described in Section 1 .1 .2 , long range order vanishes 

abruptly at Ti n . However, certain anomalous effects in the isotropic phase reveal 

that a significant degree of quasi-nematic short range order persists above the tran­

sition point. The most direct evidence of this is the very high value of the mag­

netic birefringence, which in the neighbourhood of Tin  may be of the order of 1 0 2 

as compared with an ordinary organic liquid [42,43]. Similar anomalies are seen 

in the flow birefringence [44], the Kerr effect [45] and the nuclear spin lattice re­

laxation [133], and this confirms the existence of strong orientational correlations 

between the molecules. Foex observed in 1933 that the magnetic birefringence ex­

hibits behaviour similar to that of a ferromagnet above the Curie temperature [41]. 

More recently, de Gennes proposed a phenomenological description of these pretran­

sitional effects - the Landau-de Gennes (LDG) theory [126,134]. The LDG theory is 

based on Landau’s general description of phase transitions [127] which was further 

developed by de Gennes [126]. The strengths of the LDG theory are its simplicity 

and its ability to encapsulate the most important elements of the phase transition. 

Landau’s original theory was restricted to second-order phase transitions. The rea­

son for this limitation lies in the continuity of the change of state in a second order 

phase transition, as a result of which the order parameters show continuous values 

near the transition point. Mathematically it is simpler than the mean field theory. 

The inclusion of the spatial variation of the order parameters gives it an additional 

dimension not found in mean field theory. More detailed analysis can be found 

in [126,127].
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Simulation Approach

It is well known that theory is often a crude projection of the true processes that 

operate in the real world. Nevertheless, theoretical approximations and models have 

served well in furthering an understanding of nature and in applying, in numerous 

ways, the knowledge thus gathered. Only relatively recently, through advances in 

the mathematical apparatus of statistical mechanics, has it become possible, for ex­

ample, to solve analytically the two-dimensional Ising model. A number of problems 

in many-body models are, however, insoluble.

On the other hand, experimental measurements are the only way in which science can 

make contact with nature; and here too there are many problems. A large number of 

these flow from our inability to create ideal conditions for experiments: inability to 

switch off heat transfer in the isothermal bath, for example, or to avoid mechanical 

vibration in obtaining an interference picture. In other cases, the impossibility of 

studying the system directly is due to the fact that the very process of trying to 

measure it changes its state. The list of problems, including financial ones, could be 

extended indefinitely.

A middle way or a bridge between theory and experiment may, perhaps, be found in 

simulation. Simulation plays an important role in providing essentially exact results 

for problems in statistical mechanics without too frequent a use of approximation. 

Simulation experiments (as they are sometimes called) allow one to verify theories in 

an accurate way without producing undesirable effects. Simulation as a recognised 

science started in the twentieth century. Morrell and Hildebrand [135] represented 

molecules as large gelatinous balls, packed in a three-dimensional volume. The BZ
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Reaction, discovered in 1951 [136] by Belousov and later studied by Zhabotinskiy 

in 1958 [137], was analogous to many systems occurring in nature, such as the 

growth pattern of fungi, the fibrillation of heart tissue and circadian rhythms [138]. 

Biochemists, biophysicists and mathematicians therefore used the BZ reaction as a 

model for their studies. Mathematicians also saw the oscillatory nature of the BZ 

reaction as arising from problems of differential equations yet to be explored, while 

biologists found that the chemical model furthered their understanding of of the 

reason behind malfunctioning heart tissue.

Along with physical and chemical models, a number of mathematical or computer 

models were also being developed. However, owing to the limited processing power 

(or complete absence) of computers, mathematical or computer simulations started 

to develop only in the late twentieth century. The problems involved in physical 

simulations (the influence of gravity on a model consisting of metal balls, for exam­

ple), as well as the increasing power of computers, made it logical to move towards 

to mathematical, rather than physical, models.

It is now almost half a century since the first computer simulation of liquids was 

performed, on the most powerful computer of that time, by Metropolis et al [139]. 

Computer simulation is both a test of the underlying model being used, and an 

aid to interpretation of new experimental results. Computer simulations are also 

often designed to check the accuracy of a particular approximation employed in the 

analytical treatment of a model. Opinions vary concerning the role of simulation 

relative to other methods. Allen and Tildesley, in their book on computer simula­

tion, give one view when they assert the dual role of simulation, as a bridge between 

models and theoretical predictions on the one hand, and between models and ex­

perimental results on the other [140]. Computer simulation is a direct link between 

the microscopic scale of the system and the macroscopic details of the experiment.

The simulation technique used to obtain the dynamic properties of many-particle 

systems is called Molecular Dynamics (MD). It is based on the solving the classical 

equations of motion for a set of molecules. This was first accomplished, for a system 

of hard spheres, by Alder and Wainwright [141,142], but it was several years before 

a successful attempt was made to solve the equation of motion for a set of Lennard- 

Jones particles [143]. Unlike those performed using MD, a simulation which employs 

the Monte Carlo (MC) method does not operate with true dynamics, but rather uses
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an abstract mathematical-statistical approach which achieves averaged results in 

agreement with the correct statistical mechanics ensemble. The MC method can be 

used in various guises and can even be used in combination with MD. In other words, 

the MC method can be defined in general as the branch of experimental mathematics 

which is concerned with experiments which employ random numbers [144].

In liquid physics, the term MC is now universally reserved for the technique devised 

by Metropolis et al [145] to evaluate statistical averages. If we consider a system with 

known potential energy U, then in the Canonical Ensemble (constant N,V,T)  any 

time-independent configurational property of interest can be written as the average 

weighted with the Boltzmann factor e~@u, where ft = The system evolves

through a series of trial moves generated using random numbers. If a subsequently 

generated random number (usually this number is distributed uniformly between 0  

and 1 ) is less than a certain value, the move is accepted and the system changes its 

configuration; otherwise, the move is rejected and the system remains in its original 

configuration. This value is given by e~ ^Uo~Un̂  where UQ and Un are the total 

energies of the system before and after the trial move, respectively. The procedure is 

then repeated hundreds or thousands of times. It should be noted that the processes 

involved in proceeding along the MC trajectory have no relationship with real time. 

A crucial difference between the MC and MD techniques is, therefore, that in MD 

the true dynamics are followed whereas in MC all that can be said is that the process 

leads eventually to equilibrium, in the sense that configurations will occur with a 

frequency proportional to their Boltzmann factors.

As mentioned earlier in this section, it is possible to use not only different techniques 

(MC or MD), but also different models to describe a given system of interest. Various 

different potentials between particles can be used: the Lennard-Jones potential, the 

Gay-Berne potential, the hard particle potential, the Maier-Saupe potential etc. In 

our work we have used the Lebwohl-Lasher lattice model, based on the simple Maier- 

Saupe pair potential [129,146,147]. We have used the MC technique to perform 

the simulations. This technique and model are described further in the following 

sections.
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3.1 M onte Carlo Technique

If a system is ergodic, then an observable can be calculated either as an average 

measured during a time interval £ —> oo, or as an ensemble average of n trials where 

n —y oo. In a MD simulation, the total energy E  and the total linear momentum P  

are constants of motion. Motion involves time in the calculations. Therefore, MD 

must measure time averages in an ensemble for which the thermodynamic constants 

are TV, V, E , and the momentum P.  MC simulations often operate in the Canonical 

Ensemble, where the number of particles TV, the system volume V, and the temper­

ature T  are constants. Depending on the model used and the observables measured, 

however, alternative ensembles can be used. For MC, the range of ensembles is very 

wide: the isobaric-isothermal (TV, P, T)  [148], the constant-stress-isothermal [149], 

the grand-canonical (//, V, T)  [150], the microcanonical (TV, V, E)  [151], and the 

so-called Gibbs-ensemble [152,153] have all been successfully implemented. In the 

present work, MC simulations have been conducted using the Canonical and the 

Semi Grand-Canonical Ensembles. The Canonical Ensemble is the most appropri­

ate ensemble to work with, taking into account the Lebwohl-Lasher model and the 

observables to be measured, there being no pressure or momentum involved. The 

weakness of this ensemble, when applied to a lattice model of a binary mixture, is 

that phase coexistence can be found at some state points. For this reason, the Semi 

Grand-Canonical Ensemble was also used so as to clarify various phase boundaries.

Let us consider first a system where the number of particles, the temperature and 

the volume are constant. The partition function for the Canonical Ensemble is:

Q(N, V, T) = J  drtldpN exp  [~pH ( A  P*)] (3-1)

The kinetic (momentum dependent) part of the integral (3.1), called the partition 

function for an ideal gas Q(TV, V, T)td, can be solved analytically, leaving only the 

potential part of 'H under the integral:

Q{N,V,T)  = xstS ttt/(ir'v e x p [ - / M r ' v )] =  v "3n~n” f  drN e x p [-/3U(rN)] =
(3.2)

=  Q(N, V, T) idV~N f  drN exp [-pU(rN)\ =  Q(N, V, T ) idQ(N, V, T )ex

where A =  y/h2/(27rmkBT) is the thermal de Broglie wavelength. The use of the V N 

factor is essential in making Q(TV, V, T )ex dimensionless, and so the thermodynamic
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function of the Canonical Ensemble (the Helmholtz free energy) can be written as:

^ - h g - U W )  (33)

From this point onward, only the excess part of the partition function will be consid­

ered. Moreover, in numerical calculations, the V N factor can be set to unity, since 

it is constant throughout the simulation. This is a common device - the use of the 

configurational integral Z(N, V,T)  instead of Q (N,VJT )ex (Equation 3.4):

Z ( N , V , T ) =  J  drN exp [-fiU(rN)} (3.4)

The partition function provides information about probability distribution - that is, 

about the probability of finding any configuration of the system at a given energy. 

If all momenta and all coordinates (locations and orientations) of the system are 

written as components of a generalised ‘hyper-vector’ T, then any of the set of 

states can be represented by a point in ‘hyper-space’. The probability of finding a 

configuration can then be represented as a density distribution within this ‘hyper­

space’ :

Af(T) oc exp [—(37-L(T)] (3.5)

On the lattice, T has potentially only 6N  dimensions, since there are no momenta 

involved (N  being the total number of particles). For the systems considered in this

thesis, another N  dimensions disappear owing to the cylindrical symmetry of the

particles, leaving only 5iV dimensions for T. Thus, the average value of the order 

parameter (S'), described in Section 1 .1 .2 , can be written as an integral over all 

states T, normalised with the configurational integral Z (N ,V ,T )  (3.1):

<5> =  Z{n ]v ,T)  /  dT exp (3.6)

The application of MC in equilibrium statistical mechanics consists in approximat­

ing equation (3.6) initially by replacing integrals with sums over all possible states 

r{ri,r2, ...}. Equation3.4 can be rewritten as :

Z(N,  V, T) =  £  exp [-/3t/(r)] (3.7)
T

Let us consider the average value of an observable A. The average A  is:

<^(r)> =  z {n ;v ; T ) E  exp (3-8)
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However, to make calculations covering all possible states of the system would be 

immensely time-consuming; but by employing the Monte Carlo method, an accept­

able calculation of this sum is achieved through the use of random numbers. Instead 

of calculating the contribution from all possible states T, effort is concentrated on 

those states with greatest significance. The sum over these states must then be nor­

malised, yielding a result with an accuracy proportional to the number of random 

trials. Simple random sampling is not efficient in practice because random states 

(points on a surface) are not chosen according to their importance. In fact, nothing 

is gained by visiting states that make a zero contribution to the average, and the 

exclusion of these requires the use of importance sampling.

In the simple sampling, each successive state does not depend on its predecessor 

- each is chosen independently of what went before it. In 1953, Metropolis et al 

[139] introduced the Markov process into the sampling procedure, such that each 

state Tj+i is derived from the previous state T* via a suitable transition probability. 

Therefore each step in the Markov chain depended solely on the preceding state of 

the system but remained independent of all previous states. In an ergodic system, 

two more conditions must be satisfied. The first is that it must eventually be possible 

for all states to be accessible as the system moves along the chain. The second is 

that in transition probabilities from state Tn to state Tm a detailed balance must be 

satisfied (Equation (3.9)).

P(rnj'̂ nm — p{P rn)'Kmn (̂ *̂ )

Here, the matrix 7r contains information about the probabilities of transition from 

state to state and p(Tm) is the probability of the state Tm (Equation (3.10)):

/>(rm) =  Q(N, V, T ) - 1 exp [-/JW(rm)] (3.10)

Under the Metropolis scheme, an element 7rnm of the transition matrix 7r is given 

by:
Otnrn p{Pm) P. p{Lri) n m
a n m  p(rm) < p(Tn) n ^ m  (3.11)
1 — \  'tt n — m

where a  is a symmetrical stochastic matrix, often called the underlying matrix of 

the Markov chain (a nm =  amn).

In a biased MC simulation, a  can be made non-symmetrical. In the present work, 

symmetrical a  are used and in the calculation of Equation (3.11) all of its elements
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are set to 1. The sum of probabilities for transitions from state Tn to all states of T 

must necessarily return 1:
r

I > » i  =  1 (3-12)
i

In the Canonical Ensemble we wish to sample the distribution (3.5). This can be 

done using the following scheme:

1. Select a particle (either at random or according to a predetermined pattern) 

and calculate the potential energy of the current configuration of the system 

Ucurr. In this work, a chess board pattern was used to select particles for trial 

moves. This technique is described in Section 4.3.

2 . Give the chosen particle a random deviation. The energy for the next config­

uration is denoted as Unext-

3. Depending on energy difference AU =  Unext — Ucurr and a randomly generated 

number, decide whether to accept the move. A key role in making this decision 

is played by pcurr and p nexu  probabilities respectively of the current (rcurr) 
and the next (Tnext) states or configurations of the system. Therefore the 

probability of the transition from Tcurr to Vnext is given by

Pnext _  Q(N ’V’T)  1 eXP [-PUnext] ( 3  13)
Pcurr Q{N, V,T)~l exp [-/3UCUTr] ? 1 P ' ( ' ’

In accepting a move with a probability of exp [—/3AU], a random number x  is 

generated uniformly on the interval (0,1). If this random number is less than 

the calculated Boltzmann factor, then the move is accepted:

x  < exp [—/3AC/] (3.14)

3.2 The Lebwohl-Lasher Lattice Model

The history of the development of computer simulation techniques began about fifty 

years ago, when the first computer simulation of a liquid was carried out. This 

very earliest work [139] laid the foundations of modern MC methods. The original 

models were highly idealized representations of molecules, such as hard spheres, but
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within a few years MC simulations were carried out using the Lennard-Jones [154] 

interaction potential [155]. Such potentials were used in early chemical models of 

mesogens, where the individual molecule was approximated to a set of soft Lennard- 

Jones particles representing atoms [156]. The concept of the soft potential with both 

attractive and repulsive parts was also exploited by Berne and coworkers [157], who 

devised a series of anisotropic single site potentials.

|

Figure 3.1: Schematic view of the Lebwohl-Lasher lattice model for a two component 
mixture.

In a crystal, molecular translation is restricted, while rotational motion may still 

occur (plastic crystal). A simplified model of this situation may be devised, in which 

the molecular centres of mass are fixed at their equilibrium crystal lattice sites, and 

the potential energy is written as a function of molecular orientations. The model 

may be further simplified in tha t interactions may be restricted to nearest neighbours 

only. This is exactly what Lebwohl and Lasher proposed in 1972. Their model for 

a liquid crystal consisted of particles with cylindrical symmetry located on the sites 

of a simple cubic lattice (Figure 3.1). The interactions are restricted to nearest 

neighbours and for these the intermolecular potential takes a purely anisotropic 

form [1]. Basically, the Lebwohl-Lasher model is the lattice version of the Maier- 

Saupe model [129] of an anisotropic liquid. Thus, the system energy is defined by 

the sum of interaction potentials, full details of which are given in Section 4.2.

30



CHAPTER 3. SIMULATION APPROACH

The Lebwohl-Lasher model neglects the coupling between translational variables 

and orientational variables which is present in a real nematogen. It is, therefore, 

an approximate model for orientational ordering in a solid, which neglects several 

important properties of liquid crystals. Nevertheless, it is believed that this model 

is capable of revealing some of the essential properties of a LC near the nematic- 

isotropic phase transition.

It may be deemed unwise to use a model of a LC in which the molecules are con­

strained on lattice sites, since one of the characteristics of a nematic LC is that 

orientational order coexists with transitional freedom. However, this objection may 

be countered by pointing out that in choosing a lattice model the aim is not to 

seek to reproduce the properties of a real LC; such an aim would be somewhat over- 

ambitious. Rather, the main reason for studying a lattice model lies in its simplicity, 

which makes it capable of being studied to greater precision or for a larger number 

of particles than would otherwise be possible.

In the Lebwohl and Lasher model [1] particles are allowed to rotate on their sites 

around their centres of mass, interacting via a simple pair potential. In other words, 

molecules are represented by centres of interaction located at the sites of a simple 

cubic lattice and interacting with an anisotropic pair potential:

Uij = -£i jP2(cos faj) (3.15)

where is a positive coupling constant for neighbouring sites i and j . (pij is the 

relative orientation of particles i and j  and P2(x) is the second Legendre polynomial.

The model works remarkably well even for a relatively small number of particles, 

compared to real life LC. In fact, experimental measurements of the order param­

eter dependence on temperature on cyanobiphenyl nematics [158,159] were consis­

tent with the simulation studies of the model by Pasini et al [160]. A particle in 

the Lebwohl-Lasher model is usually thought to represent a closely packed group of 

molecules. This domain of mesogens maintains its local structure at various tem­

peratures across the nematic-isotropic phase transition [161]. According to Zannoni 

et al [162], these domains seem to include a few tens of particles.

To investigate LC behaviour near its orientational phase transition, Fabbri and Zan­

noni in 1986 performed an extensive study of the Lebwohl-Lasher model. Their
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system consisted of a cubic lattice of size 30x30x30 [163], to which they applied 

periodic boundary conditions. This was continuation of the work published in [11], 

where the phase transition of the model was located by monitoring, as a function of 

temperature, the constant volume specific heat. In [163], the authors also increased 

significantly the number of runs near the transition to allow a more precise deter­

mination of the orientational transition temperature. The transition temperature 

was found to be UsT/e^ = 1.1232 ±  0.0006, refining previous estimates. Orienta­

tional order parameters (P2), {Pa) were also calculated and a new algorithm was 

proposed for the computation of {Pa). Particular attention was devoted to pre­

transitional properties. Pair correlation functions gzif) and ^ ( r ) ,  as well as the 

second-rank g2-factor were reported. g2 was found to diverge at a temperature 

kBT/sij =  1.1201 ±0.0006 and to fit the Landau-de Gennes behaviour except in the 

proximity of the transition. These results indicated that the Lebwohl-Lasher model 

can show the small difference between the nematic-isotropic transition temperature 

and the isotropic phase limiting instability temperature without the introduction of 

additional terms in the potential. Later, Pasini et al [164] determined transition by 

solving an integral equation, since the smoothing required at times by the numerical 

differentiation, made the transition impossible to identify. Apart from investigating 

the heat capacity [11,163,164] and orientational order parameters [160,165], these 

and other authors also investigated the orientational correlation functions [166,167] 

as well as working on generalisations of the model [160,165,168,169] and its further 

development [170-172] to investigate other aspects of LC, not covered in this thesis.

The studies of Zhang et al in 1992 revealed more detail concerning the nature of the 

orientational phase transition. Using the three-dimensional Lebwohl-Lasher model, 

along with reweighting techniques and finite-size scaling analysis, they calculated 

the ordering susceptibility and energy distribution function. From this, they found 

the transition temperature to be ksT /s i j  =  1.1232 db 0.0001 [173]

In 1997 Gonin and Windle described structural aspects of the nematic-isotropic 

transition in a LC [174]. Using the Lebwohl-Lasher model, they calculated an order 

parameter, which supplied information about the average director structure. They 

also calculated the angular pair correlation function #2 (7"), so as form a picture 

of orientational order as a function of distance between the sites. The <72 M  results 

were limited by the size of the lattice. Preliminary studies of the model were made 

below the transition temperature in order to investigate the influence of boundary
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conditions. A structural description of the transition was used, based on molecular 

director maps and the identification of more ordered and less ordered regions. This 

was achieved by dividing the distribution of local energies into two sub-distributions 

with widths in accord with the mean values of their energies. The existence of 

such a double-well structure of the free energy had already been found by Zhang 

and Zuckermann in 1993 [175]. As the transition was approached from above, the 

isotropic melt structure was seen to contain nematic nuclei which increased in volume 

fraction as the temperature was decreased. It was shown that, at the transition, 

these nuclei appeared to join in the network to produce a percolating phase having 

a single orientation across the whole system. As the temperature was decreased 

within the nematic region, isolated regions of disorder were continuously reduced, 

with a corresponding increase in the overall order parameter.

The situation becomes even more complicated with simulations of mixtures. The 

first testing of the validity of the molecular field approximation in the Humphries- 

James-Luckhurst theory of liquid crystalline mixtures was performed by Hashim 

et al in 1985 [176]. They used the standard cubic lattice model described previously, 

but with the extension to three pair potentials, each with a particular interaction 

parameter eaai and They further assumed that could be ignored, owing to 

the low concentration of the more anisotropic particles b which they used. Because 

the concentration of particles b was very small, these were referred to as a solute, 

while particles a were referred to as a solvent. It is important to note that the 

solute was placed at random on the lattice sites (with the additional constraint that 

no two 6-particles were allowed to be nearest neighbours) and that this random 

distribution remained unchanged during the simulation so that phase separation 

could not occur. Hashim et al showed that the results did not depend on the 

particular random distribution used. They obtained results for the heat capacity 

and ascertained the transition temperature for the mixture. The results for the 

second-rank order parameter for both the solvent and the solute yielded the expected 

behaviour; the order parameter for the solute was considerably larger than that for 

the solvent.

In 1990 same authors improved their model, making it capable of phase separation. 

They now used a mixture of which one component was a nematic LC, the other 

consisting of isotropic particles. The model chosen for the nematogenic solvent was, 

once again, that proposed by Lebwohl and Lasher. This choice enabled them, as
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they point out in their paper [177], to construct a phase diagram for the mixture of 

cylindrical and spherical particles predicted by the Humphries-Luckhurst molecular 

field theory, and also to devise a test of that theory for spherical solutes. It should 

be noted that the isotropic particles were represented as vacancies on the simple 

cubic lattice and the cylindrical particles were allowed to move onto vacant sites. 

The simulation results which were obtained confirmed the existence of the biphasic 

regions predicted by molecular field theory for such mixtures.

In 1997 Poison and Burnell, in an investigation into the phase behaviour of a 

Lebwohl-Lasher binary LC mixture, calculated the nematic-isotropic phase coex­

istence region and the orientational order parameters for the two mesogens along 

the phase boundaries. For a system with equal concentrations of the two types of 

mesogen, they found that the free-energy barrier between the two minima at the 

I-N transition increased monotonically with lattice size, and, since it varied with 

the square of the lattice size, they were able to deduce the first-order nature of the 

phase transition. They also found deviations from the results predicted by mean 

field theory. In particular, they found that an increase in the difference between the 

isotropic components of the pair potential of the two species comprising the mixture 

resulted in a broadening of the coexistence region [178].

When this section was written, Bates published a simulation study on a LC-isotropic 

fluid mixture performed using a Lebwohl-Lasher type model [179]. In this he used 

a modified interaction potential in the Semi-Grand Canonical Ensemble. He ex­

tended the model by adding an isotropic term to the interaction potential, achieving 

the isotropic-isotropic coexistence (termed isotropic-vapor in [179]). He found that 

depending on the strength of the isotropic term, the model exhibits either a di­

agram containing isotropic fluid and nematic phases or distinct isotropic-isotropic 

coexistence in addition to the orientationally ordered nematic. More on this will be 

discussed in Chapter 6 where our own Semi-Grand Canonical Ensemble results are 

presented for binary LC mixtures.
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Chapter 4

M odel Basis And Details

As was mentioned earlier, it is possible to use not only different simulation ap­

proaches (MC or MD), but also different models to study a system of interest. In 

the present work the Lebwohl-Lasher model is used to study ordering and phase 

behaviour in a liquid crystalline system, particularly in the region of the I-N tran­

sition. The model is based on a cubic lattice, each site of which contains a vector 

representing the net orientation of a liquid crystalline domain (henceforward called 

a particle). No empty sites are present in the model and the ‘density5 distribution 

of the particles on the lattice is uniform in all directions irrespective of the director. 

The energy of each particle is determined by the relative orientations of its six near­

est neighbours, and the probability of a vector being rotated to another, randomly 

chosen, orientation depends on the Boltzmann factor of the difference between the 

current and new energies (Equation (4.2)). All simulations were performed using 

an importance MC technique similar to that described in [177] (Section 4.3). To 

simulate the bulk properties of the system Periodic Boundary Conditions (PBC) 

were applied [180]. Polydispersity (i.e. binary and ternary systems) in the system 

was simulated by introducing the notion of an ‘identity5 for each particle. The inter­

action potential between two neighbouring sites were then made to depend on the 

‘identities5 of the sites (Section 4.2). In the simulation, a number of global observ­

ables were obtained, such as the order parameter, heat capacity, radial distribution 

function, etc.
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4.1 General Details - NcVT, NAfiVT Ensembles

In the simulation, the bulk properties of the model are of great interest. Unfortu­

nately, the power of the computer does not allow operations with N  = 1023 particles. 

Usually, computer simulations are performed on a relatively small number of par­

ticles N  < 104. The size of the system is limited mainly by the speed and the 

memory capacity of the computer. It will be shown later in this chapter that many 

of the calculations performed in a simulation are proportional to N 2. Therefore, it 

is necessary to keep the number of particles in the system relatively low. On the 

other hand, in a cubic lattice model with a size of, say N  =  16 x 16 x 16 =  4096, the 

number of particles which appear on the surface is 1536. This means that 37.5% of 

the particles experience forces very different from those that obtain in the bulk. In 

such system, the contribution of the particles on and near the surface is immense. 

Thus, for bulk property studies one must employ approximations which reduce this 

surface effect; here it was effectively avoided by implementation of PBC [181]. As 

an aid to picturing PBC in 3D space, let us first consider a simpler example - a 

2 D lattice whose opposite edges are connected to each other (Figure 4.1), so that 

the 2D lattice forms a toroidal topology in 3D space. As is shown in Figure 4.1, a 

site sn+i,m+i next to the site on the edge snj7n is an ‘imaginary’ site which, in fact, 

corresponds to s^i owing to the way in which the edges are connected to each other. 

In such a system there are no particles at the surface, because there is no surface as 

such, even though the system is finite.

Owing to the finite size of the system, there remain, in spite of the approximation 

of PBC, some limitations. One is that for such parameters as radial distribution 

functions it is possible to calculate correct data only for distances r < rcutof f ,  where 

rcu toff  relates to the system size as:

£
r  cutoff — ~2 ( )

Here C is the size of the smallest side of the simulation box (if the sizes of the

sides differ). In this way, the minimum image convention can be satisfied. This 

means that in PBC only the closest distance between particles is considered and 

particles cannot be counted twice. Another effect of the system size is the long

range orientational correlation it imposes between the mesogenic particles, which

increase the transition temperatures of the system; finite size scaling can be applied
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in order to correct for this effect. The running of large-scale MC simulations requires 

the generation of a uniform distribution of non-correlated random variables. R A N 2  

is a random generator based on [182], the repeat period of which is virtually infinite. 

It provides random numbers x between 0 and 1 with precision of seven digits after 

the floating point for use in the definition of new rotation angles (4.15 ) and for 

acceptance (4.2), etc.

Figure 4.1: The Periodic Boundary Conditions in 2D lattice.

4.1.1 Canonical Ensemble

In MC simulation, the decision regarding acceptance and rejection of a move is based 

on the calculation of the energy of the system (Equation (4.2)). To be more precise, 

it is based on the energy difference A E  between the present state of the system and 

the state to which it is attem pting to transform (see Section 3.1). So the general 

acceptance/rejection condition (3.14) reads as:

accept if x  < exp(—/3AE)  (4.2)
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where x *s a random number between 0 and 1 and p = l / k s T .  In Section 3.1 the 

partition function for the Canonical Ensemble was introduced and the distribution 

sampling scheme of relation (3.5) was explained. The probability of a transition 

from any state Tcurr to a new configuration Tnext was presented in Equation (3.13). 

The general acceptance condition (3.14) is then applied to the system. In the lattice 

model used here only one site was changed at a time, so that it was not necessary to 

calculate the energy difference of the entire system. Rather A E  in this model was 

given by the local energy change ( E f ^ r — E[£.xt) between the current and the next 

local configuration respectively.

6

k T  = Y , u T  (4-3)
j=1

The local energies Ef™r and E™*1 in Equation 4.3 are the sums over the six in­

teraction potentials Uij between particle i (in the current (curr) and prospective 

(next) orientations) and its six neighbouring particles j  (which remain unchanged

in both the curr and next  local configurations). The analytical view of interaction

potentials will be given in Section 4.2.

4.1.2 Semi-Grand Canonical Ensemble

At the end of Chapter 5 and the beginning of Chapter 6 , it will be suggested that it 

is much more convenient to carry out simulations in a Grand Canonical Ensemble 

when dealing with sharp thermal dependencies of the phase boundaries. Owing to 

the ‘incompressibility’ of the lattice model used in our simulations it was appropriate 

to use a Semi-Grand Canonical Ensemble (N A f i V T ) in which the total number of 

particles (N  = N a +  N b ) and the difference in chemical potential A /i are constant, 

while the concentration c (Na - N b ratio) is subject to variation. The partition 

function for this ensemble is:

Qsa  =  E  exp(/3(A£ +  A/tA N))  (4.4)
r

where A N  = N a — N b and can be A N  = —N...0... -f N.  A/i is the chemical 

potential difference between the two species and A E  is the difference between the

6
rpcurr \  ^ t  rcurr 
^loc ~  2_> Uij 

J=1
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total energy of the system before and after the move. As in the Canonical Ensemble 

simulations, AE  was calculated as the difference in local energies (see Equation 4.3), 

since attempts to exchange particles with those of an unlike type were performed 

singly, and involved only one particle at a time ( A N  = ±2). The acceptance rule for 

such a move is then easily formulated by modifying that of the Canonical Ensemble 

to incorporate an additional term into the Boltzmann factor:

A E ± ± A f i A N '
Pacc =  min 1, exp

kT
(4.5)

The sign before the A f iA N  term depends on whether a particle of type A is being 

exchanged with one of type B or vice versa; and a |  is introduced for convenience.

4.2 Interaction Potentials

The energy difference AE, used in formulating acceptance rules for both ensembles 

used is calculated from the interaction potential between neighbouring particles 

(Equation 4.3). The interaction potential describes how particles interact in the 

system. The interaction potential used in the simulation is presented in Equation 

4.6 and is that proposed by Lebwohl and Lasher [1 ]. The anisotropic interaction 

potential between two particles, then, is given as:

Uij = - £ ijP2(cos(j>ij ) (4.6)

where Sij is a positive coupling constant for neighbouring sites % and j .  The relative 

orientation of two particles is denoted by the angle In the model, only the 

interactions between nearest neighbours are taken into account, which means that 

the local energy minimum of each particle is defined by its six neighbouring particles 

only. This allows a relatively rapid simulation timescale. In the case of a single 

component system, =  e is a positive scalar value which is normally set to 1 . 

However, for binary and ternary mixtures the coupling constant in the interaction 

potential (Equation 4.6) needs to be modified. For the sake of clarity, the value of 

£ij is selected from a n x n  symmetric matrix of positive scalar values (Definition 

4.7). Here, n  is the number of components in the mixture and ci, c2, c n are values 

used in determining the coupling (Ca$). Ci value selects the ‘identity’ of the particle 

from the various types present in the mixture.
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Cl C2 Cn

C l Cn C12 Cln
C =  c* C21 C22 c 2n

Cn Cnl Cn 2 Cnn

Each individual element Catp of the matrix C  denotes the coupling between two 

different types of particle, where a, (I =  l...n. If particles i and j  have identities 

C\ and cn respectively, then e^  =  C\n. The identities C(i...n ), in fact, represent 

the magnitude of anisotropy for the particles and range between 0  and 1 , so that 

the two extremes ( 0  and 1 ) represent a sphere-like and a strongly rod-like particle 

respectively. The presentation of as an array of elements is convenient when 

further modifications to the interaction potential are needed. For example, in our 

simulations we used a simple relation between the identity of the particles and the 

coupling constant:

C C a * C/3 (4.8)

and this relation can be changed to satisfy more sophisticated relations between 

particles, such as, for example, the addition of a further interaction coefficient for 

interactions of like particles:

P — C  — Ca ’ CP ^  (A CP

Thus, following from Equation (4.8), in the case of the binary system the difference 

in coupling between particles is expressed as a product of identities, Ci=l (for type 

1 , henceforward referred to as type A) and C2 = 0 . 5  (for type 2 , also referred to as 

type B). Eij for the binary system with the parameters described above reads:

e^  =  1 A — A interaction Cl C2

e^  = 0.5 A — B interaction <= Cl 1.00 0.50 (4-10)

e^  = 0.25 B — B interaction C2 0.50 0.25

For the sake of convenience, the identity (or magnitude of anisotropy) of type A 

particles is always set to 1 , so the coupling between particles can be defined by 

only one value of e =  C2 . Thus, depending on the types of both particles involved, 

Equation (4.6) appears as:

Uij = —P2(cos(/>ij) A — A interaction (4-11)
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Uij = — £P2 (cos (f>ij) A — B interaction 

Uij = — e2P2 (cos faj) B — B interaction

(4.12)

(4.13)

Therefore, the interaction potentials (Equations (4.11), (4.12), (4.13)) depend on 

the identities of both interacting particles. Similarly, as a third type of particle (C) 

is introduced, more values of eij are calculated, based on Equation (4.8).

There are three types of move in the simulation: rotation of a particle; exchange 

of location of two neighbouring unlike particles (swap); and change of particle type 

or identity (NA/iVT Ensemble only). Each of the moves requires the generation 

of random numbers. Two numbers were needed for obtaining random angles for 

the rotation move; four numbers for the swap move (random location of the site 

(x, y , z) and random choice of one of the six neighbours with which the original site 

is exchanged); and three numbers for the change of particle type. In addition, further 

random numbers were needed to assess the relevant acceptance criteria. There now 

follows a detailed description of the algorithms involved in making each of these 

moves.

The rotation move involves a random deviation from the original orientation of 

the particle. On the one hand, the trial rotation move will frequently be rejected 

if the maximum deviation angle 9max is set too high. On the other hand, when 

the maximum deviation angle 9max is very small, the move will virtually always be 

accepted but phase-space exploration will be limited. In both cases, the system is 

likely to reach equilibrium after a very large number of simulation steps. In order to 

set 9max to the optimal value, a number of equilibration runs can be performed at the 

beginning of the simulation, until the percentage of attempted moves being accepted 

falls in the interval of 40%-60%. No calculation of observables is attempted at the 

time of the equilibration runs. After this procedure, 9max needs to be held constant 

during the entire simulation run. The procedure is repeated for every simulation 

in which any of the parameters change, such as temperature, chemical potential 

difference, etc. The trial rotation moves, limited by 9max: must always satisfy the 

following conditions:

4.3 Moves
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• Two angles, 9 and <£>, which fully determine the orientational deviation of the 

uniaxial particle from its current position ucurr, must be selected randomly.

• The set of randomly chosen orientations of the particles must form the uniform 

distribution of the points made on the surface £ of the imaginary partial sphere 

that is embraced by 6max.

Equation 4.14 ensures the uniform distribution of points on the surface f . All values 

from fd are generated by random number x  and are homogeneously distributed on 

surface £, which is limited by the angle 0max. x  ranges uniformly in the interval 

[0...1]. In this way the local density of points does not depend on 6 and is constant 

across surface £.

f d  = x (  I - c o s 9 max) (4.14)

Using distribution fd for cos 9 and uniform distribution for ip, random values of cos 9, 

sin# and cos ip, sin ip can be derived (Equation (4.15)).

cos 9 = 1 -  f d 

sin 9 = \ / l  — cos2 9
(4.15)

COS ip =  COS (x27r)

sin ip =  sin (x27r)

Equation 4.15 ensures angle ranges 0 < ip < 2tt and 0 < 9 < t t / 2 . These values form 

the transponent rotation matrix R T (Equation (4.16)).

cos 9 cos ip cos 9 sin ip — sin 9 

R T (x) — — sin</? cos ip 0  (4-16)

sin 9 cos ip sin 9 sin ip cos 9

R T denotes the random deviation of the particle from its current orientation ucurr. 

The relationship between ucurr and a new unext orientation is given by Equation 

(4.17). These two vectors are then used in Equations (4.3) and (4.6) and in condition

(4.2), which determines the acceptability of the trial move. In the case of a successful 

move, ucurr is set to unext whereas when the move is rejected, the present orientation 

of the particle ucurr is preserved. In successive runs this operation is repeated for 

every particle in the system.

Lnext — P  (x) ^ 
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For the rotation move, each successive site must be chosen in a way that it is un­

correlated with the location of the site visited previously. This is due to possible 

commensurabilities, which might interfere with the equilibration process in the sys­

tem. One way of solving this problem is to pick sites randomly. We, however, have 

chosen a different route, which is a chess-board order. The locations in the 3D lattice 

were designated as notional ‘black’ and ‘white’ sites, as on a chess board. Next, for 

each particle on a ‘white’ site the rotation move is attempted according to step 2  

as set out in Section 3.1. The acceptance decision was made according to Equation 

(3.13), given in step 3, and the operation repeated for all particles on ‘white’ sites 

one by one in any order. After this, the particles on ‘black’ sites were treated in 

exactly the same manner. It is important to note, however, that when the peri­

odic boundary conditions are applied, the size of the lattice must always be of even 

number, so that the chess-board pattern is continuously propagated throughout the 

periodic boundaries without neighbouring sites being marked in the same colour. It 

should be noted, however, that for the swapping move the chess-board pattern was 

not used; instead, each particle was chosen randomly. After rotation trials had been 

performed on all particles, 2 0 % of them were chosen randomly and an attem pt made 

to swap their identities with those of neighbouring particles.

For calculation of the order parameter and the correlation function, the angular coor­

dinates of the particles must be noted in the global system of coordinates. However, 

the rotation move of the particle vector involves random angles used with respect 

to the orientation of a particle within its local system of coordinates. Therefore, the 

standard geometrical formula of a rotational matrix was applied so as to transform 

the coordinates of the particles from their local to the global system of coordinates 

and vice versa. Since the number of rotation moves made during the simulation run 

exceeded the number of calculations that used global coordinates, only the rotational 

matrixes of the particles were stored.

The next step is to allow particles to move within the simulation box (swap). 

This adds an extra degree of freedom (translational) and allows new phenomena 

to emerge. The swapping of particles was kept as simple as possible, the main 

points being as follows:

• Since there were no empty sites in the lattice, the move was implemented by 

attempting to swap neighbouring sites that had different identities. It should
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be noted that only particles of different types were considered. For example 

if, of a site’s six neighbours only m  were different from it in type, then the 

probabilities of a successful move were ^  for each of the m  unlike particles 

and 0 for the other (like), particles. It worth noting, however, that in some 

circumstances, such a method does not satisfy the accepted rule of microscopic 

reversibility [140,144,180]. Justification for this approach follows in Section 

6.5.5.

• Moving the entire particle (both its identity and orientation) is a disruptive 

procedure, as most moves are likely to be rejected. Thus, the orientations 

of the particles were kept unchanged and only the identities were exchanged. 

This is based on the assumption that the local energy associated with the 

orientation is already minimized.

• The local current E f ^ r and prospective Epoecxt energies of the two particles 

considered have to be calculated in a different way from that used in the case 

of the rotation trial move (Equation (4.3)), since this kind of move involves a 

configurational change in not one, but two sites. Therefore, in the calculation 

of local energies, integration with the nearest neighbours of both particles must 

be taken into account.

In order for the notation for local energies to be consistent with that used in Equation

(4.3), let us then write local energies (E™crry  and (EJ1̂ ) '  for the two particles which 

are to be swapped. These will contribute to the local energies { E f^ r) and (E[£xt) 

from Equation (4.3). Current and prospective local energies for particle A, whose 

identity is changed, are denoted as:
6 6

( A K c r r y =E  u r =E  * » )  (4-ig)
j = i j = i

6 6

( a k ? y = E  w xt =  E  -4- (̂c°s t n )  (4.i9)
3=1  3=1

And for particle B, current and prospective energies are denoted as:
6 6

(b £ £ T ) ' =  E  rr = E  - e« ^ (c o s  M  (4.20)
1 = 1  1 = 1

(■b k t y  =  E  u k ‘ xt =  E  - Wees m  (4.2i)
i=i i=i
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Here and are the coupling constants chosen from matrix C , but each corre­

sponds to a different element of the matrix, since the identity of particle A  in the 

curr and next configurations is different. The same situation applies to particle B  

and the coupling constants Ski and e'kl. i is the index of the particle (particle A), 

the identity of which is to be exchanged with one of its neighbouring particles of 

a different type (particle B), the indexing of which is denoted by k in Equations 

(4.20,4.21). j  and I are indices for particles that neighbour the particle of type A 

and type B respectively.

Therefore, the local energy ( E f ^ r) (Equation (4.22)) used in the definition of AE  

comprises the sum of (E™™)1 of both particles, A  and B.

6 6
E curr =  { A E c « r r y + {B E c u r r y = £  _£. .p2(cos f a )  +  £  _ejupa(cos f a )  (4.22)

3= 1 1=1

Following an analogous procedure, the local energy (Ez”®xt) (Equation (4.23)) com­

prises the sum of (E™*1)1 of particles A  and B.

6 6

K T  = (A K T ) ’ +  i B K T ) '  = E  -4^(cos <j>n) + E  -4^2(cosm  (4.23)
j = 1 1=1

So the full equation for the energy change reads:

6 6

A E  = ^ - ^ P 2 ( c o s ^ )  +  ^ - 4 zP2(cos (t>ki)
3=1  1=1

6 6

-  ~ £i3P'2 (C0S <fe) “  ~ £klP2 (COS (j)ki) (4.24)
j = 1 /=1

The value of the coupling constant for the interaction between particles A  and B  

is the same before and after the move, =  ski = e\j =  e’kl, as is the relative 

orientation between particles. Thus, this part of the sum does not contribute to the 

local energy difference. In addition, owing to the fact that the coupling constant is 

constructed via the simple product of two numbers (identities), there is no need to 

recalculate the potentials in the sum fully, since all the neighbouring particles (j and 

/) remain unchanged. Therefore, in the case of the binary mixture being modelled, 

where e%j is denoted only as a product of the identities of two interacting particles, 

further simplification of Equation (4.24) is possible. Let us therefore, rewrite the 

coupling constants for this specific case as a product of the two constants, which
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£ij
s'..c-ij CaCp

£kl =  cac7

£ kl -- Cq C'y

make up each element in matrix C:

where a = a(A), and p  =  fi(j) 

where a = a(B), and ft = fi(j) ^

where a = a ( B ), and 7  =  7 (/) 

where a  =  ct(A), and 7  =  7 (/)

Here, a  is the index corresponding to the identity of particle A or B, depending 

on whether the system is in its current or prospective configuration, p  is the index 

corresponding to the identities of all the neighbouring particles. ca can possess only 

two values ca and cB, which are the identities of particles A  and B  respectively. 

Equation (4.24) for this case is rewritten in the following way:

6 6

A E  =  -{cBCp)P2{cos( i) i j ) +  - { c A C j ) P 2{cos(f)ki) -

j=l,j^6k 1=1,1
6 6

-  - { c Acp)P2{ c o s f a j ) -  ~ ( c Bc7)P 2(cos(j)ki) =
j=l,jzfik 1=1,

= - c B I -  ^ 2  c7P2( c o s ^ ) +  ^ 2  cpP2(cos4>ij ) I -  (4.26)
\  l=l,ljLi j=l,jjLk J

(  6 6
-  cA I ̂ 2  c7P2( c o s ( M -  ^ 2  t y f y c o s f c j )  j =

\l=l,ljLi j=l,jjLk /

( 6 6

y ]  CyP2{cOS (f)ki) — ^ 2  cPp 2(cos (f>ij)

1=1,tyi j=l,j^k

Mathematically this is may seem an insignificant simplification, but in a system with 

over 4,000 particles, 20% of which are processed at each of the 20,000 to 100,000

sweeps comprising a typical simulation, it is a useful improvement.

4.4 Calculation of Microscopic Parameters

4.4.1 The Director And The Orientational Order Param eter

The orientation of the uniaxial particle i is defined by unit vector ê , which in turn 

is defined by the three components in the cubic system of coordinates. We rewrite 

Equation 1.5 for the nematic order parameter in terms of the‘direct vector product’
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Ei , where the x —, y — and z— components of e; in the global coordinate system are 

used instead of angles:

N

1= 1

Ei
a0 2 ^

(4.27)

Here Ei is obtained according to Equation (4.28), a  and f3 are the coordinates of Ei 

and N is the number of unit vectors (particles) in the system.

Ei =

(  a p 1 2 3 ^

1 x  • x x  • y x - z

2  y - x  y - y  y - z

3 z - x z  • y z  • z J

(4.28)

The Q tensor has three eigenvectors ni, n2 and n 3 . The next step is to determine 

which of these represents the director of the system n. For this purpose, the Q tensor 

is diagonalised using the Jacobian Transformation [182]. The trace of Q is equal to

0. The highest eigenvalue of the diagonalised matrix Qa (% =  1,2,3), relates to the 

second-rank order parameter of the apolar uniaxial mesophase as:

5  =  (P2) = Qu (4.29)

The eigenvector corresponding to this highest value of Qa is, in fact, the director of 

the mesophase of the system ft It should be noted that this eigenvector denotes the 

true director of the apolar uniaxial mesophase, since the signs of % have disappeared 

in (E).

4.4.2 Radial Distribution Function Calculations

In a lattice model where all the sites are occupied, the g(r) function is fixed and 

does not yield useful information. However, in a system of two or more components, 

which can move within the simulation box, the distribution functions of the like 

(e.g. gAA^)) and unlike (e.g. gAB(r)) particles can yield information on the phase 

behaviour and micro-structure of the system. As was explained in Section 1.1.4,
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the generic function g(r) can be described as the average probability of finding 

a particle at distance r from another particle, the result being normalized by the 

random uniform distribution. However, owing to the discretisation of a lattice model, 

the distribution of the particles is normalized not by the probability expected for a 

completely random distribution at the same density, but by the ‘density’ expected for 

a 100% distribution in that lattice at a given radius r. This normalization function, 

77(7"), is constant and determined by the nature of the (cubic) lattice used in the 

model. In the simulation of the binary system, the calculation of the distribution 

functions of the like and unlike particles was performed according to the following 

steps:

1. Select a particle %. Calculate gAA(r), which is the distribution of all particles 

having the same identity as the selected particle z, normalized by rj(r). g(r) 

represents the total number of particles at a radius r = 1, y/2,2, \/5 ...rcutoff .

9 ? A ( r )  = S  <5(Ci’ c i> (4'3°)

Here, 5(ci,Cj) is the Kroneker symbol, which equals one if the identities of 

particles i and j  are the same, and is zero otherwise. The information carried 

by gAA{r) about the distribution of like particles at various distances r  relates 

to particle i only.

2. In a manner similar to Step 1, calculate the distribution of unlike particles 

( 9 t B{r ) f°r the binary and gAC(r), g f c (r) for the ternary mixture). The 

analytical view of unlike distribution functions for particle i is similar to that 

shown in Equation (4.30), except that the term under the sum returns one if 

the identities of particles i and j  are different, and zero otherwise.

3. Visit all particles in the system one by one repeating steps 1 and 2, calculating 

like and unlike distributions.

4. Calculate the averages of all N  single-particle radial distribution functions 

gi(r) (like and unlike), following the general rule in Equation (4.31) (suffices 

are omitted for simplicity):

(4.31)
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5. Repeat steps 1-4 with appropriate frequency during the simulation run, to 

ensure that the resulting average functions have acceptable accuracy (a satis­

factory number of repetitions for the system of size N  =  16x16x16 was found 

to be 77 =  10,000). The distribution functions are then given by the following 

general equation, angular brackets denoting an ensemble average (NcVT or 

NA/iVT):

g(r) = {g(r)) =  ^  g(r) (4.32)

For the system size mentioned above, the calculation of distribution functions in step 

3 would require N 2 i f - statements. The final result, obtained from step 5 requires 

U N 2 i f - statements, which is equal to 1.67721 • 1011.

4.4.3 Orientational Correlation Function Calculations

As was shown in Section 1.1.5, p2(r) in general describes a second-rank order param­

eter of the particles separated by distance r. Like the radial distribution function, 

the orientational correlation function p2(r) is subject to normalization by the to­

tal number of sites present at each discrete radius r, i.e. the normalization factor 

rj(r). Thus, for the calculation of <72(7~), we further develop the algorithm of the 

calculation of g(r). Briefly, the total ^ ( r )  function was normalized by the same 

r)(r) factor as was used for g(r), but the #2(r) function when calculated separately 

for each individual type of particle, was normalized by the number of particles of 

the same type present at each radius r, this being the distribution function of like 

particles, gzCa(r) (g£“(r) =  { g fA(r), g f B(r), g f c {r)}). Thus, in the general case of 

the n-dispersed system (binary, ternary, etc), the calculation of the orientational 

correlation functions of the total (#2(r)) and subsystems g^r)  where the identities 

c =  {ci, c2, ..., cn} was performed according to the following steps:

1. Select a particle i and note its identity ca (a = 1,2, ...n). Calculate <?fQ(r) for 

particle i (using the procedure Step 1 in Section 4.4.2). Using the method de­

scribed in Section 4.4.1, calculate the sum of the second Legendre polynomials 

P2C'*ij)(r ) f°r particle i and all like particles j  (i.e. those of identity ca) at radius 

r. Finally normalize the result with ^c“ (r):

j  9°i“ (0

W  = (4-33)
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2. Repeat Step 1 for all N  particles in the system. This results in N  functions, 

the analytical view of which is g^  (r).

3. Average all g%fa(r) functions with the same ca. It should be noted that al­

though the sum in Equation (4.34) is over all N  functions, only the functions 

which correspond to particles of the same identity actually contribute.

5 2 =  (4-34)
2

Here, the normalization is equal to the number of particles which have appro­

priate identity, hence (xa • N),  where x a is the concentration of particles in 

the system with identity ca. The result is n  functions, g2*(r), eac^ °f which 

represents the orientational correlation between particles of like type (identity 

ca). For binary and ternary mixtures n =  2 and n = 3, respectively.

4. Average the p2(i)(r ) functions over all N  particles, irrespective of their identities 

cQ, to obtain the total orientational correlation function of the system.

«(r) (4.35)
i=l Q = 1

This yields a function that ignores particle identity, i.e. the total second-rank 

orientational correlation function <72 Note that the orientational correlation 

function is already normalized here (see Equation (4.33)).

5. Perform Steps 1 and 4 with satisfactory periodicity throughout the simula­

tion to gain the necessary accuracy (a satisfactory number of repetitions for 

a system of size N  = 1 6 x  16x  16 was found to be 7̂ . =  10, 000). Thus the 

correlation functions <72 M  and 92° (r ) (c — {ci> c2, • ••> cn}) are given by the 
following equations:

92 (r) S  {gc2a (r)) = ^ - J 2  &  (r) (4-36)

92{ r ) s  (g?(r)) = ^ J 2 g 2(r) (4.37)

As was mentioned earlier, for N  particles in the system the calculation of the g(r) 

function is a process of N 2 steps. In the calculation of #2 (7"), however, this scaling 

increases to at least N 4, since the calculation of the order parameter itself is a process
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of N 2. For this reason, the Fast Fourier Transform (FFT) procedure was used [182] 

instead for the majority of the <72 M  calculations. FFT reduces the scaling of the

to yield the same results.

4.4.4 Histogram Re-weighting Technique

The histogram re-weighting technique was introduced in 1988 [183], and then mod-

generate ‘continuous’ thermodynamic functions across a chosen region of parameter 

space. The technique has been found to be useful when the behaviour of the system 

displays sharp peaks, as for example near phase transitions, and it has proven to be 

a useful tool for determining the nature of various transitions.

The histogram re-weighting technique allows one to reproduce an energy histogram 

for a new set of input parameters using an existing one, obtained with a relatively 

close set of input parameters. This means, for example, that it becomes possible 

to determine the many histograms that represent the state of the system at differ­

ent temperatures, using data from a single long simulation run performed at one 

fixed temperature. The concept behind this technique is fairly simple. Histograms 

are obtained from equilibrium statistical mechanics calculations. The form of the 

partition function is:

By calculating a distribution at a particular temperature, pressure, density, etc. that 

part of the partition function which is significant for those constant parameters is 

sampled. Let us consider an example of two histograms {Vp and Vp>) obtained at a 

slightly different values of the input parameter ft = 1 /ksT.

calculation time to N 2. Both direct and FFT techniques were compared and found

ernised 1993 [175]. It allows data obtained from a single simulation to be used to

(4.38)
r

(4.39)

(4.40)

The partition function Z  is unchanged in both cases, since it is a sum over all states. 

More accurately, only the sum over limited range of —a* is used, which is sufficient

51



CHAPTER 4. MODEL BASIS AND DETAILS

for Equations 4.39 and 4.40, providing that p  and P' are close. Thus

'PpiPi) _  'Pp'jvi) 
exp ( - < )  exp {-(JiP')

(4.41)

Thus, if the difference in value between P and P' is sufficiently small, the region of 

Z  sampled in the calculations at p  can also be used to calculate a new histogram at 

P'. Following this notion through more formally, it can be shown that [175]

V„ fa) 7>„fa) (exp (_ ai(/3 _ m / j  ( • )

In theory, this method could be used to cover a large parameter space. In practice, 

however, the original histogram is sampled with finite statistics; energy values cq 

are approximated by discrete bins and the distribution function itself, ^(cq), is not 

continuous and, as a result, is truncated at both sides of Oi axis. For this reason, 

care has to be taken when extrapolating too far from the original simulation point.

4.4.5 Estim ating Errors

As with real life experiments, computer simulations are subject to systematic and 

statistical errors. Sources of systematic error include size-dependence, the possible 

effects of poor random number generators, non-equilibration, etc. Another signifi­

cant cause of statistical error in the calculated mean values is the finite length of 

a simulation run. The general approach to estimating statistical error is based on 

finding the mean {A)T and the variance cj2((A)t ) of the measured values A i , where 

r  is the length of the simulation run. In simulation, r  is a discrete value and usually 

represents the number of measurements taken.

(A)T = - Y j Ai (4.43)
T  t —i=1

g2((A)t ) = T̂, where (SA2)T = i  ^  (A% — (A )r )2 (4.44)
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We assume that A  is a Gaussian process, such that (<L42)r is essentially given by 

the sum of a large number of ‘random’ quantities. Eventually, when r  —>■ oo, (A)T 

gives a true value of A.  However, for finite r , (A )T almost always differs from 

A.  In addition, the data points from which (A)T is calculated may not be truly 

independent; they may have been stored sufficiently frequently that they are highly 

correlated with one another. Therefore the r  measurements that were taken during 

simulation cannot necessarily be treated as being the ‘true’ simulation length in 

Equation 4.44. The correct number of measurements is actually the number that 

were taken from configurations of the system that were totally independent of each 

other. In this case the error of evaluation of {A)T can be estimated as:

o{(A)r) = \J \ (& A2)r (4.45)

Here the correlation length £, due to Friedberg and Cameron [184], is defined as 

being the limiting ratio of the observed variance of an average to the limit expected 

on the assumption of uncorrelated Gaussian statistics (Eq.4.46).

£ = li m Z ^ M l )  (4.46)
r6—> oo a2 (A)

This ratio can be determined on the computer as follows. Take a data set of length 

r  and divide it into blocks each of length rb: to give nb =  — blocks. Calculate the7~b
mean value of A  for each block, following Equation 4.43. This gives nb mean values 

(A)b, one for each block b. These values for all the blocks can be further used to 

estimate the variance
fib

° 2^ ) n ) =  -  £  ( (^ ) t -  {A)n f  (4.47)
b 6=1

Then change the length of the block and recalculate the variance. The dependence 

of this variance on the reciprocal length (or number) of data blocks can then be

plotted and £ obtained by extrapolating to the limit in 4.46. £ also can be used as

an indicator of inefficiency in the simulation. More accurate data are obtained when 

£ is small, so various algorithms can be tested objectively by finding which has most 

efficient value for £.

Having said this, for most of our simulations we used a run length r  of only 20,000 

steps per particle plus 5,000 steps for equilibration, whilst for our system the cor­
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relation length f  calculated from total energy data was found to be between 1,500 

and 5,000 steps depending on the temperature. Thus, in the worst case scenario, 

effectively we obtained and used only 4 independent values to estimate the mean 

energy value for each point on the phase diagram. Below follows a justification for 

such a choice.

The data for the P2 values presented in the next chapter were calculated using run 

lengths of at least 200,000 steps per particle plus 15,000 steps for equilibration. Here, 

each successive simulation run was performed with a different value of T, starting 

from the previous configuration, with AT =  0.1. It was later discovered that by 

decreasing AT to 0.005, we could significantly reduce r , yet obtain similar results. 

The values of P2 calculated using long runs and the large temperature step matched 

those calculated using short runs and tiny temperature step. In both methods the 

previous configuration was used to start the next simulation. In addition, a num­

ber of long run simulations were performed at different temperatures, each starting 

from the same, random or isotropic configuration. The results obtained from this 

were also consistent with those obtained from the other two methods. Also, the 

consistency of the mean values for P2 and U at neighbouring temperatures indi­

cates small error bars. Finally, the same observable dependencies on T, obtained 

using both decreasing and increasing temperature cycles did not yield a hysteresis 

loop. The calculations of the energy histograms at 3,000,000 steps per particle in 

the area of phase transition were also consistent with the values obtained from short 

simulation runs. In conclusion to all this, we would like to point to the work of 

Cleaver and Allen [185], published on the single component Lebwohl-Lasher model, 

which used the simulation lengths of a similar magnitude, 50,000 steps. Values for 

t  of a similar magnitude were also used for simulations of binary mixtures using the 

Lebwohl-Lasher model the in works of Bates [179] and Luckhurst [177]. The long 

correlation length in our simulations, could be explained by the fact that we used 

the total energy to estimate f, while in [185] the primary observables, the elastic 

constants, were used. Also, the introduction of binary mixture might have increased 

the value of f  in our simulations.

Thus, for calculations of U and g(r) we used AT =  0.005 and r  =  20,000. The 

reason for using such a small AT value was the desire to identify, to high resolution, 

the location of any phase transition exhibited by the simulated system.
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Chapter 5

Results And Discussion. 

Bi-Dispersed System . N cVT

In this chapter we present and discuss the results for the phase behaviour of binary 

system, based on the Lebwohl-Lasher lattice model. The results were obtained 

by performing Monte Carlo simulations in the Canonical Ensemble (NcVT). The 

model basis was described in Chapter 4. For most calculations we used a system 

in which the cubic simulation box consisted of sixteen sites on each side of the box 

(i.e. a system size of 16x16x16 particles). All results presented in this chapter were 

obtained using this unless otherwise stated. The correlation length of runs for the 

given system was estimated around 5,000 run steps. Therefore, for such observables 

as average energy function (E ( T ) ) n cv t , and the average radial distribution function 

(gAB(x — 15 T)) runs with 20,000 steps per point were performed, with an additional 

5,000 steps included for equilibration. At low temperatures these run-lengths were 

doubled. For the calculation of the energy histograms number of steps per point 

was increased to 3,000,000. For the calculation of the second rank order parameter 

(P2( T ) ) NcVt  we used from 50,000 to 200,000 steps per point. The temperature 

step for all (E ( T ) ) Ncv t  and (gAB(r  =  1,T)) data was AT =  0.005. The largest 

temperature step used for calculation of (P2(T))ncv t  was AT =  0.1. The energy 

histograms were only calculated for a few specific temperatures, normally in the 

vicinity of the transition.

In Section 5.1 we present a set of results for six binary systems with coupling con­

stants e = 0.9,0.6,0.45,0.3,0.1,0.0. The lower the coupling constant e, the less
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anisotropic is one of the components of the binary mixture in the system. The set of 

results for each system is divided into four main parts. In the first part, we present 

calculations of the average internal energy of the system (E )^cv t  and its depen­

dence on temperature T  and concentration c, { E ( T , c ) ) n cv t -  The energy of the 

system was calculated using the Hamiltonian of the system described in Section 4.2 

of Chapter 4. In the second part we present results of the second rank orientational 

order parameter (P2)NcVT and its dependence on temperature T  and concentration 

c, (P2{T,c))ncVT- We used the second rank correlation function <72 M  to calculate 

the value of (T^jvcvr- More on gzir) is covered in Section 4.4.1 of Chapter 4. The 

second rank orientational order parameter indicates the level of orientational order 

in the system of anisotropic particles, hence the symmetry of the system or phase. 

When (P2) = 0 - or, in the case of the finite system we investigated, when (P2 ) ~  0 

- then the system exhibits an isotropic phase. When (P2) 7  ̂ 0 (or (P2) > 0 in 

case of the investigated system) then the system exhibits an anisotropic phase. In 

addition we present the results of the second rank orientational order parameter 

calculated for each component of the binary system separately. In the third part, 

we present the results of the radial distribution function of unlike particles gAB(r). 

Owing to the specifics of the model, the all-particle radial distribution function has 

static periodicity and hence gives no information. However, the properties of the 

model considered here allow us to calculate the radial distribution functions of the 

like and unlike particles. The method of calculation of gAB(r) in the binary lattice 

system was described in Section 4.4.2 of Chapter 4. The results in this part are 

organised into two categories - results for the short range and the long range radial 

distribution function. These functions show how well the system was mixed and 

indicate any structural changes. In the fourth and last part of each set of results we 

present a phase diagram based on the results presented previously.

In Section 5.3 of this chapter we present an alternative view of these phase diagrams 

by considering three slices with fixed concentrations c =  0.2,0.5,0.7. The difference 

between phase diagrams presented in this section and those presented in Section 5.1 

is that the former show the phase behaviour of the system in a phase space plane 

perpendicular to that considered in the latter - coupling constant versus temperature.

In Section 5.4 of this chapter we discuss the results presented in Sections 5.1-5.3 and 

present additional results to clarify some particular characteristics of the behaviour 

of the system. The discussion in Section 5.4 proceeds in the following order. Firstly,
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we examine the results of the energy dependencies and discuss energy histograms. 

Then we consider the dependencies of the order parameter, the radial distribution 

function and their correlation with the results of the internal energy and with each 

other. After that, we move on to explain phase diagrams and compare with our pre­

dictions and expectations. This is followed by an explanation of certain anomalous 

phase behaviour in the light of further results and the existing literature.

Since all observables presented in this chapter were obtained at constant NcVT,  

we omit the index (NcVT)  in our notation. In this chapter, the more anisotropic 

particles are indexed as particles A and the less anisotropic particles, as particles B. 

In all the systems covered in this chapter, only e, the anisotropy of particles B, is 

subject to change.

5.1 Results for system s with varying e

5.1.1 System  with e  — 0.9

The first system investigated is the binary system with coupling constant e = 0.9. 

Of all the systems presented here, this system has the smallest difference between 

the anisotropies of its two components. Thus this system is the closest to its single 

component counterpart. The first observable of the system that we present is the 

average internal energy of the system (E). Figure 5.1 shows the dependencies of the 

energy (E(T))  on temperature for various concentrations c. For all concentrations 

the energy decreases with decreasing temperature. Apart from this anticipated 

behaviour, we observe a deviation from the characteristic curve at temperatures 

Ttr(c) on the (E ( T )) curves for the entire concentration range. Numerical differential 

of (E(T))  (heat capacity) reveals peak at Ttr(c). Thus we consider this temperature 

as a point of discontinuity of (E ( T )) and, thus, a transition of the system. At first, 

the energy (E ) has a low negative value at high temperatures. Then it decreases 

slowly with the lowering of temperature until at T  «  Ttr (c) it decreases quite rapidly. 

The internal energy (E ( T )) then decreases continuously, but with a changed slope, 

until it reaches temperature T =  0. The temperature of the maximum gradient 

Ttr(c) is unique for each concentration in the given system with e =  0.9. The values 

of such temperatures Ttr(c) are presented in Table 5.1. From the Table it is clear 

that Ttr(c) increases monotonically with increase in concentration c. The tendency
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Figure 5.1: Dependence of the average internal energy on the tem perature, (E(T)) .  
Each curve represents (E ( T )) dependence for the unique concentration c.

for all (E(T))  curves is tha t the entire curve displaces down in energy with a decrease 

in the concentration c of the more anisotropic particles (A). All (E { T )) curves seem 

to be ‘parallel’ to each other for the region of the tem peratures below Ttr{c). At 

tem peratures above Ttr(c), they approach a common point (E,T -* oo). Equal 

steps of concentration change shift the (E { T )) curve in equal steps of energy value 

throughout the entire concentration range.

The next observable we present for the system with e — 0.9 is the second rank 

orientational order parameter (S  = {Pi))- Both in experiment and theory, there are a 

number of approaches to calculating {Pi). We obtain results for the order param eter 

from the pair correlation function gi(r) (Sec. 4.4.1,4.4.3). gi(r) shows how well the 

orientation of the anisotropic particles is correlated throughout the bulk. In Fig.5.2

58



CHAPTER 5. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM . N C VT

concentration c Temperature Ttr(c)
0.0 0.93 ±0.01
0.1 0.95 ±0.01
0.2 0.98 ±  0.01
0.3 1.00 ±0.01
0.4 1.02 ±0.01
0.5 1.04 ±0.01
0.6 1.06 ±0.01
0.7 1.08 ±0.01
0.8 1.11 ±0.01
0.9 1.13 ±0.01
1.0 1.15 ±0.01

Table 5.1: Table of Temperatures Ttr(c) obtained from (E(T))  data. Ttr(c) were 
derived as a point where the tangent of (E(T))  is the steepest. System with e = 0.9.

we present the dependence of the orientational correlation on distance 0 2 O") for the 

system with e = 0.9 and concentration c = 0.5. Each <72 M  curve represents the pair 

correlation function taken at a different temperature. From Fig.5.2 it is clear that at 

short range (r < 3) there is a higher orientational correlation between particles than 

at the long range (r »  3) at most temperatures. At high temperature, g2(r ,$ 3) 

grows with the reduction of T, while the long range correlation function g2(r »  3) 

remains unchanged and is equal to ^  0. Then, as temperature decreases further, 

at Ttr(c) the long range correlation function starts to increase rapidly, catching up 

with the value of the correlation function at the short range. As the temperature 

decreases, the difference between the short range and long range correlations becomes 

smaller. Eventually, it becomes the same for all values of r  as T  —> 0. Figure 5.3 

shows how the value of the pair correlation function at long range g2(r »  3) 

changes with temperature T  in the system with s = 0.9. The value on the vertical 

axis, (P2(T)), relates to the g2(r »  3) as a square root of the latter (Eq.1.11). Let 

us study the graphs in Fig. 5.3, starting from the highest concentration and moving 

down.

With the concentration of more anisotropic particles c =  1.0 the system is pure 

or single-component (e =  1.0). For such a system, the order parameter exhibits 

a transition from the isotropic to nematic phase at the temperature Tin  ~  1-18 

(See Table 5.2). When the concentration c is reduced to c — 0.9 (Fig.5.3) the
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Figure 5.2: The pair correlation function, g2(r) for the system with e =  0.9, c =  
0.5. Dependence on r2. Different curves represent the function taken at different 
temperatures.

system undergoes isotropic-nematic (I-N) transition at a lower temperature. Moving 

down the concentration we find the system exhibiting similar behaviour. Let us 

consider the system with c =  0.5 in Fig. 5.3 and refer to Fig.5.2. Starting from 

T  = 1.2 > >  Ttr(c =  0.5), the value of (P2) remains unchanged and equal to «  0, 

which corresponds to the value of g2(r »  3) in Figure 5.2. Then, at Ttr(c) «  1.08, 

(P2) starts to increase rapidly with increasing temperature and levels off to the 

value of (P2) —> 1.0 at T  -* 0. As the concentration of the mixture decreases, the 

transition temperature reduces, until c—> 0.0. As c->0.0 the transition temperature 

of the mixture approaches the transition temperature of the pure system Ttr(c = 

0.0) =  0.96 with all the particles of type B (See Table 5.2 and discussion in Section 

5.4).
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Figure 5.3: Dependence of the second rank orientational order param eter on tem ­
perature, (P2(T)).  Different curves represent different concentrations c in the binary 
mixture with £ =  0.90.

Table 5.2 shows the values of Ttr(c) for the full set of concentrations. From the 

Table we see tha t the I-N transition tem perature Ttr(c) decreases with reduction of 

concentration c. These values of Ttr(c) are found to be in good agreement with the 

values of Ttr(c) obtained from the energy calculations, presented earlier (Table 5.1). 

Note, Ttr(c) in Table 5.2 was determined as point of inflection of the (P2(T))  curve 

projected on T axis. This is different from the usually used notion of Ttr(c) being at 

the point of {P2{T)) 0.3, which partially explains higher values of Ttr(c) compared

to the energy data.

61



C H APTER 5. RESULTS AND  DISCUSSION. BI-DISPERSED SYSTEM . N C V T

0.9

H
0.7

0.6

0.5

0.2 c=0.1

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Temperature, T

Figure 5.4: Dependence of the second rank orientational order param eter on tem ­
perature, (P2(T)), individually for particles A and B.

For the e = 0.9 system, the shape of the (P2) curve does not seem to change 

significantly with concentration. In general, here, the (P2(T)) curves are simply su­

perpositions of the order parameter curves of each individual component. Therefore, 

separate consideration of the results of (P2(T)) curves for the more anisotropic (A) 

and for less anisotropic (B) components might give us more insight into the nature of 

phase transition. One of the advantages of simulation is tha t in the binary m ixture 

it is straightforward to calculate such observables separately for each component. 

In Figure 5.4 we present separately the results of the order param eter for the more 

(Pj}(T)) and less (P2B(T)) anisotropic particles. From this Figure we see th a t though 

the transition occurs at the same tem perature for both types of particle, the shapes 

of the order parameter functions for the two species vary slightly. B particles tend 

to align in a less orderly manner than A particles. However, the values of (P2(T)) 

for both particles approach the same value at T  —>• 0.
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concentration c Temperature Ttr(c)
0.0 0.96 ±0.05
0.1 0.98 ±  0.05
0.2 1.00 ±0.05
0.3 1.02 ±0.05
0.4 1.06 ±0.05
0.5 1.08 ±0.05
0.6 1.10 ±0.05
0.7 1.12 ±0.05
0.8 1.14 ±0.05
0.9 1.16 ±0.05
1.0 1.18 ±0.05

Table 5.2: Table of Temperatures Ttr(c) obtained from {P2(T)) data. Ttr(c) were 
derived as a point where the tangent of (P2(T)) is the steepest.

The next observable we present is the radial distribution function of the unlike 

particles (gAB[f)). In Figure 5.5 we present typical radial distribution functions 

(QAB{t )) f°r the unlike particles of the binary mixture for the system with e — 0.90 

and c =  0.5. The curves represent gAB(r) taken at different temperatures. As 

is the case for the results for the correlation function, the value of gAB(r) varies 

with distance r. At the highest temperature starting from the maximum radius 

the distribution of the unlike particles roughly equals 0.5. Please note that the 

maximum radius available to the system is r  =  8, owing to the size of the system 

investigated (163). The value of the distribution function gAB(r) remains virtually 

unchanged as the distance r decreases, until at a very short range of r < 3 it goes 

down slightly. With decrease in temperature, the value of the distribution function 

at short range gAB(r <  3) starts to decrease further, while its value at the long 

range gAB(r »  3) remains virtually unchanged. In Section 5.1.3 we will show 

that although, for systems with smaller e changes at long range of gAB(r) are more 

significant, the short-range behaviour of gAB(r) still reflects all the changes that 

happen at long range. For the rest of this chapter (except Section 5.1.3), therefore, 

we will present results only from the short range part of the function and omit graphs 

similar to that shown in Figure 5.5.
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Figure 5.5: Radial Distribution Function gAB(r) for e = 0.90 and c =  0.5. Different 
curves represent gAB(r) taken at different temperatures.

The thermal dependence of the radial distribution function at short range gAB{r = 

1,T) should be able to indicate both slight changes in the structure of the mixture 

as well as the more significant changes which result from demixing. In Figure 5.6 

we present gAB(r =  1,T) for the set of concentrations c.

From this Figure the following features can be seen. Firstly, for all concentrations, 

we see no significant changes happening with the reduction of temperature, except 

for a slight decline (Figure 5.7(a)), until a low temperature of the order Ta(c) ~  0.05 

is reached, at which the value of gAB(r = 1, T) decreases markedly (Fig. 5.7(a)). 

The temperature T^(c), at which the large discontinuity in gAB(r =  1,T) occurs, 

varies only slightly with concentration c. Table 5.3 presents values of Td(c) for each 

concentration. This temperature of discontinuity is highest at a concentration of 

approximately 0.5 and equals «  0.04 (Table 5.3). The criterion used to set Td(c) 

was taken to be a 10% decrease of the gAB(r =  1,T) value.
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Figure 5.6: Dependence of the radial distribution function gAB(r =  1) on tem pera­
ture, T. Different curves represent different concentration c. System with e =  0.90.

Figure 5.7(b) illustrates graphs of gAB(r = 1 ,T ) from Figure 5.6 for concentrations 

c = 0.4, 0.6 in high tem perature region, but at a greater resolution. The value of 

gAB(r = 1,T) drops sharply, but by a relatively small value at Ttr(c). Then it con­

tinues to fall slowly until the marked fall described earlier. The tem perature of the 

discontinuity Ttr(c) decreases slightly as the concentration in the system decreases. 

In Table 5.3 the values of Ttr(c) are presented for the entire set of concentrations.
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Criterion for Ttr(c) was also taken to be a 10% decrease in the value of gAB(r = 1, T).  

The results are consistent with the data obtained from energy (Table 5.1) and order 

param eter (Table 5.2) calculations, though these values are overestimated.

The last feature of the gAB(r =  1, T) graphs is the ratio of the decreases in gAB(r = 

1, T) tha t happen at tem peratures Ttr(c) and T^(c). This ratio is roughly the same 

for the entire set of concentrations studied with e =  0.9 and approximately equals 

0 .01 .
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Figure 5.7: Magnified graph of the radial distribution function gAB(r = 1) presented 
in Fig. 5.6. Different curves represent different concentrations c.

Having presented results for various observables calculated for the system with cou­

pling constant e = 0.9 and the set of concentrations c, we are now going to use them 

to produce a phase diagram. In Figure 5.8 we show an example of the contribution of 

various observables, presented above, to the phase diagram. The graphs in the Figure 

were juxtaposed and Temperature-Energy, Tem perature-(i^CO ), and Temperature-
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concentration c Temperature Ttr(c) Temperature Td(c)
0.0 N /A N /A
0.1 0.95 ±  0.02 0.01 ±  0.02
0.2 0.98 ±  0.02 0.02 ±  0.02
0.3 1.00 ±0.02 0.02 ±  0.02
0.4 1.03 ±0.02 0.04 ±  0.02
0.5 1.06 ±0.02 0.04 ±0.02
0.6 1.08 ±0.02 0.03 ±0.02
0.7 1.10 ±0.02 0.02 ±  0.02
0.8 1.13 ±0.02 0.02 ±  0.02
0.9 1.16 ±0.02 0.01 ±0.02
1.0 N /A N /A

Table 5.3: Table of Temperatures based on results obtained from gAB(r = 1,T) 
data.

g(r) ordinates-abscissae were transposed for the sake of clarity. As shown in Figure 

5.8 the temperatures of discontinuity in the gradient of the energy value on graph 

(a) and (P2 CO) on graph (c) were used to estimate isotropic-nematic boundaries on 

the phase diagram in the middle graph (b). The short range gAB(r =  1) function 

(d) was mainly used to determine the boundaries of the demixing region, shown in 

blue on the diagram in the middle graph (b). As we see in Figure 5.9, this allowed 

us to produce a phase diagram. Owing to the finite resolution on the concentration 

scale, the finite temperature step and the difficulties mentioned in Section 4.4.5 of 

Chapter 4, the phase diagram in Figure 5.9 is presented as a set of finite points in 

temperature-concentration space.
Each point on the phase diagram is displayed in a particular colour which relates 

to the corresponding phase and structure of the system with e = 0.9. Thus, black 

points represent the isotropic phase; red points, the nematic phase; blue points, 

the nematic-nematic phase coexistence. For some sets of input parameters we were 

unable to determine unambiguously the phase of the system or resolve the values of 

the observables measured. These are represented as green points on the diagram.

Let us comment on the isotropic-nematic boundary first (Tjn(c)  curve). At both 

ends of the concentration axis (c =  0.0 and c =  1.0), the system exhibits an I-N 

transition at the temperatures of its pure components T/^(c =  0.0) =  0.93 and 

Ti n (c = 1.0) =  1.15 respectively. At concentrations between c =  0.0 and c = 1.0, 

the Ti n (c) curve follows a simple linear dependence. The system undergoes an I-N
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Figure 5.8: Constructing of the phase diagram from (E { T )), (P2(T))  and gAB(r = 1) 
data for the system with e =  0.9.

transition at all concentrations. The radial distribution functions indicate the system 

to be homogeneous at tem peratures above and below the transition throughout the 

entire concentration range. In other words, different particles of the system are 

well mixed in both phases the isotropic (black area) and the nematic (red area) 

(Fig. 5.9). However, at considerably lower tem peratures we observe another phase 

envelope, coloured blue on the diagram. This corresponds to the demixed system in 

which two nematic phases, each rich in one of the two components of the mixture, 

coexist. This area of the phase diagram occupies a very small part of it in the region 

of T  <  0.1.

The nematic mixed phase occupies most of the phase space considered. Note tha t, 

owing to the specifics of the model, the isotropic phase extends to infinity on the
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Figure 5.9: Phase diagram for the system with e =  0.9.

tem perature scale rather than going into a gas phase, etc. However, we restricted the 

upper limit in the diagram to T  = 1.2 in the interests of convenience in presenting 

and discussing the results. Further discussion of the results presented so far follows 

in Section 5.4.

5.1.2 System  with e  =  0.6

The next system to be presented is the mixture with e =  0.6. This system differs 

from the former only by virtue of the coupling constant e, which indicates th a t 

particles of type B are less anisotropic than their equivalents in the system with 

e =  0.9.
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Following the same procedure as tha t adopted in the previous section, we consider 

first the average energy of the system (E).  In Figure 5.10 we present the dependence 

of the energy (E ) on tem perature for various concentrations c. The (E ( T )) curves 

for the system do not differ significantly from those observed in the system with 

e =  0.9 apart from one feature th a t was not previously seen.
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Figure 5.10: Dependence of the average energy (E(T))  on the tem perature, for the 
system with e = 0.6. Various curves represent (.E ( T )), at different concentrations c.

Starting from the highest tem perature on the graph, we initially observe the same 

kind of behaviour as in the previous system. At tem peratures Ttr(c) the (E(T) )  

curves show gradient discontinuities for all concentrations c. Ttr(c) is unique for each 

concentration and occurs roughly at equal tem perature intervals for equal differences
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concentration c Temperature Ttr(c) Temperature Td(c)
0.0 0.41 ±0.01 N /A
0.1 0.47 ±0.01 0.13 ±0.01
0.2 0.52 ±0.01 0.16 ±0.01
0.3 0.61 ±0.01 0.17 ±0.01
0.4 0.70 ±0.01 0.17 ±0.01
0.5 0.76 ±  0.01 0.17 ±0.01
0.6 0.84 ±0.01 0.16 ±0.01
0.7 0.92 ±0.01 0.16 ±0.01
0.8 1.01 ±0.01 0.15 ±0.01
0.9 1.08 ±0.01 0.12 ±0.01
1.0 1.15 ±0.01 N /A

Table 5.4: Table of Temperatures Ttr(c) and T^(c) based on results from the thermal 
dependence of the energy, (E(T)}. Ttr(c) were derived as a point where the tangent 
of {E(T))  is the steepest.

in the concentration. As the temperature continues to go down, the energy (E) 

decreases in a manner similar to that seen in the system with e =  0.9, until it 

reaches another discontinuity temperature, Td(c). The second deviation, however, is 

much weaker than the first and the temperature at which it occurs, Td(c), changes 

only slightly with the concentration of the system. In Table 5.4 we present the values 

of both temperatures, Ttr(c) and Td(c) for the set of concentrations. We omit the 

graph of the correlation function g2 (r) for the current system, as it adds little to the 

data presented earlier for the system with e =  0.90 (Fig.5.2).

The dependence of the order parameter on temperature ((P2 P 1))) for the binary 

mixture with coupling constant e = 0.60 is shown in Fig.5.11. From the Figure we see 

that the system undergoes the isotropic-nematic transition at a temperature Ttr(c), 

which varies with the concentration of the system. The temperature of the transition 

decreases as the concentration c decreases (Fig.5.11). The value of Ttr(c = 1.0) is, of 

course, the same - 1.18 - as in the previous system, and when the concentration c —>• 

0.0, the transition temperature of the mixture approaches the transition temperature 

of the pure system where all the particles are of type B (TfN = £2T^N = 0.36 • 1.18). 

Table 5.5 shows the value of Ttr(c) for the full set of concentrations. These values are 

in good agreement with the values of Ttr{c) obtained from the energy measurements.
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Figure 5.11: The second rank orientational order parameter, (P2(T)).  Different set 
of curves represent different concentrations c. System with e = 0.60.

The dependence of (P2 P 1)) taken separately for the two components of the m ixture 

reveals a slight difference in the shape of the two order param eter functions {P2(T) )A 

and (P2( T ))B, as was the case in the system with e = 0.90; and indeed, all the 

features of the order parameter for A and B components are similar to those in the 

previous system.

The isotropic-nematic transition occurs at the same tem perature for both species, 

but the shape of (P2(T)) for the two components varies. The order param eter for 

particles A is always higher than tha t for particles B at any given tem perature in the
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nematic phase. This difference in order parameters for particles A and B is greater, 

however, than tha t found for particles A and B for the system with e — 0.90.
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Figure 5.12: The second rank orientational order param eter shown individually for 
components A and B. Dependence on the tem perature. Different curves represent 
different concentrations c. System with e =  0.60.

The next observable is the radial distribution function. In Figures 5.13, 5.14 we 

present the dependence of the short range radial distribution function on tem pera­

ture gAB(r =  1,T) for the set of concentrations.

Starting from T  «  1.3, the value of gAB(r = 1) slowly and monotonically decreases 

as the tem perature falls. This is true for all concentrations. At a tem perature

73



CHAPTER 5. RESULTS AND DISCUSSION BI-DISPERSED SYSTEM. NC VT

concentration c Temperature Ttr(c)
0.0 0.42 ±  0.05
0.1 0.50 ±0.05
0.2 0.59 ±0.05
0.3 0.69 ±  0.05
0.4 0.75 ±  0.05
0.5 0.82 ±  0.05
0.6 0.90 ±0.05
0.7 0.98 ±0.05
0.8 1.05 ±  0.05
0.9 1.12 ±0.05
1.0 1.18 ±0.05

Table 5.5: Table of Temperatures Ttr(c) based on results obtained from (P2)-

Ttr(c), the gAB(r =  1,T) curve decreases rapidly by a relatively small value, and 

this is followed by another slow decline. As in the previous system (e =  0.90), the 

value of Ttr(c) varies with concentration. From the Figure we see that the function’s 

discontinuity behaviour at Ttr(c) is stronger here than it was in the system with 

e =  0.90. The slope of the curve after the temperature of discontinuity, T  < Ttr(c), 

appears steeper than it was for e = 0.90.

As the temperature falls still further, the curve continues to decline monotonically 

after Ttr(c), until it reaches another discontinuity in the gradient at a temperature 

Td(c). This time the curve decreases sharply to a significantly lower value. The 

temperature Td(c) is slightly different for each concentration. Td(c) is highest at 

concentrations around 0.4 > c > 0.6. These temperatures follow the same pattern 

as in the system with e =  0.90; however, the system with e = 0.60 exhibits more 

dramatic behaviour, in that Td(c) varies more markedly with the concentration. The 

values of Ttr(c) and Td(c) for the system with e = 0.60 for the set of concentrations 

are presented in Table 5.6. These values are in good agreement with those presented 

in Table 5.5. They are slightly overestimated in the region of low concentrations 

and underestimated in the region of high concentrations. Both tables present values 

higher than that from Table 5.4. The ratio of the values of the decreases in gAB(r = 

1 , T) which happen at Ttr(c) and Td(c) equals 0.11, for the system with e = 0.60. 

This is an order of magnitude higher than that of e = 0.90.
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Figure 5.13: The short range radial distribution function dependence on the tem ­
perature, gAB(r = 1). Different curves represent different c. System with e =  0.60.

From the data presented in this section, we have constructed a phase diagram for 

the system with coupling constant e = 0.6; this is presented in Figure 5.15. As 

previously explained, the phase diagram is based on a two-dimensional set of points 

of different colours. Each colour represents a different phase or structure of the 

system, the exception being green, which represents phase points at which we were 

not able unambiguously to determine the phase of the system.
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Figure 5.14: Magnified graph of the radial distribution function gAB(r — 1) pre­
sented in Fig. 5.13. Different curves represent different concentrations c.

concentration c Temperature Ttr(c) Temperature T^(c)
0.0 N / A N / A
0.1 0.55 ± 0 .02 0.15 ± 0 .0 2
0.2 0.62 ± 0 .02 0.19 ± 0 .0 2
0.3 0.67 ± 0 .02 0.24 ± 0 .0 2
0.4 0.74 ±  0.02 0.25 ± 0 .0 2
0.5 0.79 ± 0 .02 0.25 ± 0 .0 2
0.6 0.88 ± 0 .02 0.25 ± 0 .0 2
0.7 0.95 ± 0 .02 0.22 ± 0 .0 2
0.8 1.05 ± 0 .02 0.19 ± 0 .0 2
0.9 1.10 ± 0 .02 0.14 ± 0 .0 2
1.0 N / A N / A

Table 5.6: Table of tem peratures Ttr{c) and T^(c) based on the results obtained from 
gAB(r =  1,T), e = 0.60.

76



CH APTER 5. RESULTS A N D  DISCUSSION. BI-DISPERSED SYSTEM . N C V T

0.0 0.2 0.4 0.6 0.8 1.0
1 .2 - d r  1-------1-------*-------1-------*-------1-------1------- 1------- ' J - r  1.2

1 . 0 - =

| 0.8
1U
|  0.6
0)

H

0 .4 - =

0 . 2 - =

0.0 4=  =  =  =  =  =  =  =  = 1- 0.0
T 1-------1

- 1.0

- 0.8

0.6

40.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0
Concentration, c

Figure 5.15: The phase diagram for the system with 5  =  0.6.

As in the case of the previous system (e =  0.9), the diagram comprises three areas. 

The top area, shown in black, represents the isotropic phase. In the region of low 

concentration this area has extended into the lower tem perature region, as compared 

to the system with e = 0.9. However, the nematic mixed phase (red) still occupies 

most of the area of the diagram (Fig. 5.15).

The boundary between the isotropic and the nematic phases (henceforth Tj^{c)  

curve) is very narrow and cannot be resolved using the measured observables. At 

both ends of the concentration axis the system orders at the I-N transition tem per­

atures of its pure components. As the concentration changes from one extreme to
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the other, the Tj^(c) curve changes linearly, to a reasonable approximation.

The region at the bottom of the phase diagram, shown in blue, is the area of nematic- 

nematic phase coexistence. It is highest at concentrations around c «  0.5 ±  0.1 and 

narrows down to vanishing on both sides of the concentration axis. The entire 

coexistence envelope appears to be asymmetric. It reaches higher values of T  in the 

region of concentrations 0.0 < c < 0.5, on the left of the diagram (Fig. 5.15).

The behaviour of the system with e = 0.60 is consistent with that of the system 

with e — 0.90. There is a difference, however, in the slope of the XLv(c) curve and 

in the size of the demixing envelope of N-N coexistence. The asymmetry of the 

demixing envelope was not seen in the system with e = 0.90, perhaps due to the 

much smaller area of N-N phase coexistence. Further discussion of these results will 

follow in Section 5.4.

5.1.3 System  with e  =  0.45

The next system has a coupling constant e = 0.45 and exhibits phenomena not 

seen in previous systems. Thus, as this section progresses, we will introduce new 

parameters and focus on slightly different aspects of the observables introduced 

previously.

The first observable to be considered in this system is the average energy and its 

variation with the temperature. In Figure 5.16 we present these data, the various 

curves in the Figure representing different concentrations c.

Let us start with the highest concentration on the graph, c =  0.9, which is repre­

sented by the bottom curve (Fig. 5.16). At the highest temperature, the energy 

(E(T)} has a low negative value, which decreases slowly as the temperature falls, 

until at T  «  Ttr(c) it decreases quite rapidly. The energy value then continues to 

decrease with temperature until it exhibits a second discontinuity at a temperature 

Td(c). After this, (E(T))  decreases steadily as T  —> 0. This pattern is the same as 

that seen in the previous two cases of e = 0.6 and e =  0.6.

When the concentration is decreased to 0.8, however, (E(T))  shows three weak but 

distinct discontinuities which we denote Ttr(c), T^(c) and T/r (c). Note that T/r (c)

78



C H APTER 5. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM . N C V T

- 0 .5 -

-1.0-
h'w' c=0.1

c=0.2
c=0.3
c=0.4
c=0.5
c=0.6
c=0.7
c=0.8
c=0.9

W

H? -1 .5 -
aw
60
2  -2.0 -<L>>

-2 .5 -

Ttr(c=0.3)
-3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Temperature, T

Figure 5.16: The dependence of the average energy on the temperature, (E ( T )). 
Different curves represent {E(T))  for different concentrations c.

always appears below T^(c) in Figure 5.16 (see the phase diagram for this system in 

Figure 5.27). In Figure 5.16, the value of T(r(c) appears to be around 0.23 and is 

visible clearly only in differentiated (E [ T )) (Figure 5.18).

Although two of these three deviations on this curve are weak, such observations 

were not present at all in the first two systems. Neither is it present at any other 

concentrations for this system, except for a faint indication in the next two concen­

trations, c = 0.7 and c = 0.6. These were revealed by the derivatives of (F'(T)), but 

are not seen on original {E(T))  curves. The energy dependence for other concentra­

tions (c < 0.6) exhibits only two discontinuities in the gradient of (E ( T )) - Ttr(c) 

(which, as we shall show, coincides with T^(c)) and T[r{c).
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Figure 5.17: The dependence of the average energy on the tem perature, (E { T )). 
Different curves represent (E ( T )) for different concentrations 0 <  c < 0.1.

The highest discontinuity tem perature Tir(c), decreases with a reduction in concen­

tration c. Ttr(c) is unique for each concentration of the system and takes values 

which are different from those of the two previous systems for the same concentra­

tion. The tem perature of the last discontinuity T/r (c) seems not to depend at all 

on concentration, although the shape of both deviations Ttr(c) and T/r (c) becomes 

sharper as the concentration of the system decreases.

Reduction of the concentration causes Ttr(c) to move closer to T[r (c). However, these 

temperatures do not meet at c = 0.1. Thus, in Figure 5.17 we present results for the 

energy dependence (E(T)) ,  but at concentrations c < 0.1. From this Figure one can 

see tha t the sharp decrease of (E { T )) to a very low value still occurs at the same 

tem perature T/r (c). The discontinuity which occurred at Ttr(c) in Figure 5.16 follows
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Figure 5.18: The numerical differential of average energy on the temperature, 
{E(T)).  Different curves represent (E ( T )) for different concentrations 0 < c < 0.1.

the same pattern. The decrease in Ttr(c) is virtually linear as the concentration of 

the system decreases from c = 0.1 to c =  0.04. At c =  0.03 discontinuities Ttr(c) 

and T/r (c) merge and seem to stay that way as concentration decreases further till 

c —>• 0.0. In other words, the difference between Ttr(c) and T/r (c) disappears and 

the single transition temperature represents the boundary between mixed isotropic 

and mixed nematic phases, similar to Ttr(c) for high concentrations (Figure 5.27). 

Figure 5.17(a), magnified and placed with no scale, gives more detailed picture of the 

behaviour of the (E ( T )) curve in the region of temperatures Ttr(c) and T/r (c). The 

derivatives of (E(T))  curves from the numerical differentiation for concentrations 

c < 0.1 reveal that Ttr(c) continues to decrease after c =  0.03 as concentration 

decreases , while T/r (c) remains unchanged (Figure 5.18). At concentrations above
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concentration c Temperature Ttr(c) Temperature T^(c) Temperature T/r (c)
0.0 0.23 ±0.01 N /A N /A

0.01 0.23 ±  0.01 0.13 ±0.01 0.23 ±0.01
0.02 0.23 ±  0.01 0.16 ±0.01 0.23 ±  0.01
0.03 0.23 ±  0.04 0.3 ±  0.04 0.23 ±  0.01
0.04 0.30 ±0.01 0.30 ±0.01 0.23 ±  0.01
0.05 0.32 ±  0.01 0.32 ±  0.01 0.23 ±0.01
0.06 0.33 ±  0.01 0.33 ±  0.01 0.23 ±0.01
0.07 0.35 ±  0.01 0.35 ±0.01 0.23 ±0.01
0.08 0.36 ±0.01 0.36 ±0.01 0.23 ±0.01
0.09 0.37 ±0.01 0.37 ±0.01 0.23 ±  0.01
0.1 0.38 ±0.01 0.38 ±0.01 0.23 ±  0.01
0.2 0.49 ±  0.01 0.49 ±  0.01 0.23 ±  0.01
0.3 0.54 ±  0.01 0.54 ±0.01 0.23 ±  0.01
0.4 0.65 ±  0.01 0.65 ±  0.01 0.23 ±0.01
0.5 0.68 ±  0.01 0.55 ±  0.01 0.23 ±0.01
0.6 0.80 ±  0.01 0.49 ±  0.01 0.23 ±  0.01
0.7 0.88 ±0.01 0.43 ±  0.01 0.23 ±  0.01
0.8 0.96 ±0.01 0.38 ±0.01 0.23 ±  0.01
0.9 1.07 ±0.01 0.24 ±0.01 0.23 ±0.01
1.0 1.15 ±0.01 N /A N / A

Table 5.7: Table of temperatures Ttr(c), Td{c) and T/r (c) obtained from the results of 
(E(T)). Ttr(c) were derived as a point where the tangent of {E(T))  is the steepest.

c =  0.03, Ttr(c) is clearly higher than T/r (c) (Figure 5.18.(c)). At the concentration 

c = 0.03, the value of Ttr(c) is approximately equal to the value of T/r (c) and the 

derivative of (E(T ,c  = 0.03)) does not show two resolvable peaks corresponding 

to these two discontinuity temperatures (Figure 5.18.(b)). As the concentration 

passes c =  0.03 approaching zero, the discontinuity temperature that we previously 

denoted Ttr(c) decreases to a value lower than that of T/r (c) (Figure 5.18.(a)). Note, 

that for reasons that will be clear later, we mark this discontinuity as Td(c) in the 

region of concentrations 0 < c < 0.03. At this stage let us just assert tha t for 

concentrations 0.03 < c < 0.6, Ttr(c) ~  Td(c) but for lower concentrations Td(c) 

continues to decrease while Ttr(c) «  T/r (c).

Let us look now at the thermal dependence of the second rank orientational order 

parameter (P2(T)), obtained from g2(r »  3) for the system with e =  0.45. As
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previously noted the value of the function projected on the ordinate, (P2 ), relates 

to the long range pair correlation function as a square root of g2(r > >  3) (Eq.1.11). 

At the highest tem perature, the order param eter is close to zero; then, at Ttr(c), 

it increases rapidly. Then, unlike (P2(T)) of the systems with e = 0.90 and
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Figure 5.19: The dependence of the second rank orientational order param eter on 
the tem perature, (P2(T)).  Different curves represent different concentrations c in 
the binary system with £=0.45.

e =  0.60, its gradient does not decrease monotonically as the tem perature decreases, 

approaching the value of 0. Instead, < P2(T) > approaches a value of «  0.6 as 

the tem perature decreases until, at T[r(c), it rapidly increases again, approaching 

< P2(T) > —> 1. This effect is seen at most concentrations, however it is strongest 

at concentrations around 0.5. The value of T/r (c) does not seem to vary significantly
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Figure 5.20: The dependence of the second rank orientational order param eter on 
the tem perature, (P2(T)), individually for particles A and B. £=0.45.

with concentration and equals 0.2...0.3. Table 5.8 shows the values for Ttr(c) obtained 

from the order parameter data for the full concentration range. These values of Ttr(c) 

in Table 5.8 agree with those obtained from the energy calculations, presented earlier 

in this section (Table 5.7).

The shape of (P2(T))  differs significantly from the shape of the order param eter 

of the systems with e =  0.90 and £ =  0.60. This deviation of (P2(T))  from the 

conventional behaviour is strongest when the two components of the system are in 

more or less equal proportions.

Let us, therefore, examine individually the order parameters of the components A 

((P2)a ) and B ((P2)B) (Fig.5.20). Though the transition tem perature is the same in
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concentration c Temperature Ttr(c)
0.0 0.24 ±0.05
0.1 0.35 ±  0.05
0.2 0.48 ±0.05
0.3 0.55 ±  0.05
0.4 0.68 ±0.05
0.5 0.72 ±  0.05
0.6 0.83 ±  0.05
0.7 0.92 ±  0.05
0.8 1.01 ±0.05
0.9 1.12 ±0.05
1.0 1.18 ±0.05

Table 5.8: Table of Temperatures Ttr(c) based on results obtained from (±2 ), £=0.45.

each case, the shapes of the (P2(T)) curves differ significantly. The increase in the 

value of (P2)b with reduction in temperature is not as rapid as that of (P2)A. For the 

temperature T  ^  0.5, the difference in (P2(T)) between the two components reaches 

more than 0.3 for concentration c = 0.5. This is the greatest difference observed 

so far in the three systems investigated. The order parameter of both components 

reaches 1, as the temperature approaches zero. Figure 5.20 shows that the total 

value of the order parameter is not simply a superposition of the order parameters 

of the two components. We will discuss this further in Section 5.4.

The next observable is the radial distribution function (gAB(r)). In Figure 5.5 we 

presented typical behaviour of the radial distribution function (gAB(r)) for the unlike 

particles for the system with e = 0.9.

As was the case for the results for the system with e = 0.9, the value of gAB(r) for 

e = 0.45 varies with distance r. However, for this lower e value, changes in gAB(r) 

extend to greater distances r, as the temperature is decreased. Eventually, when 

the temperature is low enough, both the short and long range values of the radial 

distribution function start to decrease (Fig. 5.21).

In Figure 5.22 we present the dependencies of the function on temperature at short 

(r2 =  1) and long (r2 =  64) ranges for the system with e =  0.45 and c = 0.5. 

From the Figure we see a feature which is common to both graphs, namely values of 

gAB(r) at both ranges sharply change their gradient at similar temperature T^(c =  

0.5) «  0.67 (See Fig. 5.22 and Table 5.9). The short range value of the radial
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Figure 5.21: Radial Distribution Function gAB(r) for e =  0.45 and c =  0.5. Different 
curves represent gAB(r) taken at different temperatures.

distribution function experiences a marked decrease while the long range function 

decreases slightly. Overall, the temperature, at which the value of the function at 

short range drops by approximately 10% correlates with the temperature at which 

the long-range function starts to decrease.

Thus, the changes that occur at long range gAB(r) can also be inferred from those 

that happen at sort range. This is also true for all other systems presented in this 

chapter. For the rest of this section, therefore, we will present results only from the 

short range part of the function and omit graphs similar to those shown in Figures 

5.21 and 5.22.
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In Figure 5.23 we present gAB(r = 1,T)  for the set of concentrations. At con­

centration c =  0.9, variations in gAB(r =  1, T) in response to tem perature change 

are negligible at high temperatures. The function seems to have very steady slope 

throughout a wide region of tem peratures until T^(c) «  0.25 is reached, when it 

decreases sharply. Magnification of the graph in the region of high temperatures, 

however, reveals the presence of a small deviation at Ttr(c) «  1.08 (Figure 5.24(a)). 

This kind of discontinuity, hardly seen in Figure 5.23(c =  0.9), is more clearly
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Figure 5.22: Dependence of the radial distribution function gAB(r) on tem perature, 
T, for the system with e — 0.45 and c = 0.5. Different curves represent long and 
short range. The tem perature of 10% decrease of gAB(r = 1) correlates to the 
tem perature, at which the long range gAB(r) starts to decrease.

present for lower concentrations (compare c =  0.8 and c =  0.7 in Figures 5.23 and 

5.24(b),(c)). As we move down in concentration these deviations s tart to emerge. 

At c — 0.8 the value of gAB(r =  1,T) seems initially to remain unchanged as the 

tem perature decreases, until it reaches Ttr(c) «  1.0, when it starts to decline more 

steeply (Figure 5.24(b)). This decline continues at fairly steady rate as the tem ­
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perature continues to decrease, but becomes still more pronounced at Td(c) «  0.4 

(Figure 5.23). After this, the function levels off to its minimum value as T  —>• 0, 

but not without a slight deviation at T/r (c) «  0.24, which is hardly seen for this 

concentration (Figure 5.23). Figure 5.23(a) shows an unsealed magnified picture 

of such tem perature region. The deviation at T/r (c) becomes more pronounced as 

concentration decreases. From the Figure 5.23 it is clear tha t gAB(r = 1 ,T ) for
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0 .25 -

0 .2 0 -
H
■f' 0 .15 -
'50 

*  0 . 1 0 -

c=0.5
c=0.4
c=0.3
c=0.2
c=0.1

i-H

L
0 .05 -

ao
(j u.uw
§  0.25b

0  0.20 -

0 .15 -
Q

0 . 1 0 -

0 .05-
Tt(cF0.7j

0.00
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Temperature, T

Figure 5.23: The short range radial distribution function dependence on the tem ­
perature, gAB(r = 1). Different curves represent different c. System with s =  0.45.

other concentrations exhibits similar behaviour. As the concentration decreases, 

temperatures Ttr(c) and Td(c) move closer together until, at c «  0.5, they meet. As 

they converge, the slope in the region between Ttr(c) and Td(c) becomes steeper and
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eventually vanishes at c «  0.5. At all concentrations lower than c «  0.5 there are 

only two discontinuities present on the gAB(r =  1, T) function: Ttr(c) (which is the 

same as 7h(c)) and T'tr(c). Also, when the concentration c in the system decreases, 

the deviation which occurs at T/r (c) becomes stronger and Ttr(c) moves closer to

w

0.090 0.160 0.21

0.155- 0 .2 0 -0.088 -
/'“S
h 0.150-u 0.19-0.086 -

0.145-
0.18-

0.084-
0.140-

0.17-
C 0.082 -
o

‘—i

§ 0.080- 
Ph

0 0.078 -

0.135-
0.16-

0.130-

0.15-
0.125-

0.14-
0 .120 -

0.076-
0.13-

0.115 -
0.074 -

-303 0.1 2 -0 . 1 1 0 -

0.072- Tfr(c=0.7)0.11  -0.105 -

0.070 0.100 0.10I ' M  I _!—I 1 I 1 I "
0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2

(a) (b) (c)
Temperature, T

Figure 5.24: Radial D istribution Function gAB(r). Some of the curves from Fig. 
5.23 are magnified to show Ttr(c).

Figure 5.25 shows the behaviour of gAB(r = 1 ,T ) in the range of concentrations 

0.01 ^  c ^  0.10. Similar to the results of the thermal behaviour of the average 

energy, the value of Th(0.03 < c < 0.6) 7^(0.03 < c <  0.6)) is higher than th a t

of T'tr(c). However, as concentration becomes lower than 0.03, the value of T(i(c) 

decreases to be lower than the value of T/r (c), while Ttr(c) ^  T'tr(c). In Figure 5.25, 

the behaviour of gAB(r = 1 ,T ) for concentrations higher than 0.03 is similar to
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tha t of the rest of the concentration region, where Ttr(c) «  Ta(c). The behaviour of 

gAB(r = 1 ,T ) for concentrations lower than 0.03 is similar to th a t of the region of 

high concentrations (0.6 < c < 1.0), where Ttr(c) precedes Td(c) as the tem perature 

decreases. The behaviour of gAB(r = 1 ,T) in the vicinity of c «  0.03 is unclear. 

As the tem perature decreases, gAB(r = 1,T) curve at c =  0.03 decreases sharply 

at T  «  0.28. Then, at T  «  0.24 it increases sharply, almost regaining its original 

value, shortly after which it falls again at T  «  0.19. Further discussion on this will 

follow in Section 5.4. The values of all such tem peratures are noted in Table 5.9. 

The values from the Table are overestimated by the order of 0.1 in the region of 

c = 0.5 as compared to those in Table 5.7 but consistent with them. Discussion of 

the hump on gAB(r = 1, T) at T/r (c) will follow in Section 5.4.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Temperature, T

Figure 5.25: Radial Distribution Function gAB(r)* in the range of 0.01 <  c <  0.10. 
Different curves represent different concentrations c. The values of gAB(r)* were 
normalised to the value gAB(r =  1, T  =  1.3, c =  0.10) for better clarity.
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concentration c Temperature Ttr{c) Temperature Td(c) Temperature T[r{c)
0.0 N / A N / A N / A
0.01 0.24 ±  0.02 0.13 ±0.02 0.24 ±  0.02
0.02 0.24 ±0.02 0.16 ±0.02 0.24 ±0.02
0.03 0.24 ±0.05 0.24 ±0.05 0.24 ±0.02
0.04 0.31 ±0.02 0.31 ±0.02 0.24 ±0.02
0.05 0.33 ±  0.02 0.33 ±  0.02 0.24 ±0.02
0.06 0.34 ±0.02 0.34 ±0.02 0.24 ±0.02
0.07 0.35 ±  0.02 0.35 ±  0.02 0.24 ±  0.02
0.08 0.36 ±0.02 0.36 ±  0.02 0.24 ±  0.02
0.09 0.37 ±0.02 0.37 ±0.02 0.24 ±  0.02
0.1 0.38 ±  0.02 0.38 ±0.02 0.24 ±  0.02
0.2 0.47 ±0.02 0.47 ±0.02 0.24 ±  0.02
0.3 0.55 ±0.02 0.55 ±0.02 0.24 ±0.02
0.4 0.60 ±  0.02 0.60 ±0.02 0.24 ±0.02
0.5 0.67 ±0.02 0.67 ±0.02 0.24 ±0.02
0.6 0.78 ±  0.02 0.53 ±  0.02 0.24 ±  0.02
0.7 0.89 ±0.02 0.48 ±0.02 0.24 ±  0.02
0.8 0.97 ±0.02 0.38 ±0.02 0.24 ±0.02
0.9 1.08 ±0.02 0.25 ±  0.02 0.24 ±0.02
1.0 N / A N / A N / A

Table 5.9: Table of temperatures Ttr(c), Td(c) and T/r (c) based on results obtained 
from gAB(r = 1,T).

We come now to the phase diagram for the system with e = 0.45, based on the 

results presented above. Figure 5.26 shows qualitatively how various observables 

contributed to the phase diagram. The feature on gAB(r = 1 ,T)  at the temperature 

T/r (c) was especially helpful in identifying the area at the bottom of the phase dia­

gram. To identify the boundary between N and I+N regions we used gAB(r — 1 ,T ) 

and (P2(T))a , (P2(T))b data, not shown in the Figure in order to not overcrowd 

it. As previously stated, the phase diagram is based on a set of points of different 

colours each of which represents a different phase or structure of the system. The 

green area, however, represents ‘coordinates7 at which we were not able unambigu­

ously to determine the phase of the system.

Three phase areas which were present on the diagrams of previous systems ( e =  0.9 

and e =  0.6) also appear on the current diagram (e = 0.45). However, the system 

with £ — 0.45 also exhibits a new region, not present in the other systems described 

earlier. This region is shown as magenta and represents the isotropic-nematic coex­
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istence of the system. This region occupies the area which would otherwise belong 

to the demixed nematic-nematic coexistence. More precisely, it occupies the top 

part of the area and pushes the latter down the tem perature axis. Due to the steep 

slope of the boundary between the isotropic and the nematic phase, the isotropic 

phase occupies more of the diagram, as compared with the systems with e = 0.9 

and e = 0.6. Thus, the nematic phase (marked in red) becomes even smaller and 

no longer occupies the greater part of the phase area (Fig. 5.27). Moreover, the 

nematic-nematic demixing envelope (blue) along with a new, isotropic-nematic co­

existence region, separates two distinct regions of mixed nematic.

Energy, E Concentration, c Distribution function, g(r=l)

c=0.8

Figure 5.26: Constructing of the phase diagram (b) from (E(T))  (a) and gAB(r = 
1, T) (c and d) for the system with e = 0.45
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Figure 5.27: Phase diagram .s =  0.45

Let us consider the boundaries between the various phases, starting with the bound­

ary between the isotropic and the nematic phases. At both ends of the concentration 

axis, the system undergoes I-N transition at the tem peratures of I-N transition of 

its pure components. As the concentration changes from one extreme to the other, 

the T i n (c) curve changes linearly within the limits of approximation in the region 

of concentrations 0.1 <  c < 1.0. In the region of concentrations 0.0 <  c <  0.1,
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the boundary deviates at cx «  0.04, owing to the crossover with the boundary that 

separates the new, demixed isotropic-nematic coexistence envelope (magenta) and 

the demixed nematic-nematic coexistence region (blue). Depending on the concen­

tration, a reduction in the temperature may result in the system changing from the 

isotropic phase to the nematic phase (on intervals 0.0 < c < cx and 0.6 < c < 1.0); 

or to the region of isotropic-nematic coexistence (cx < c < 0.5); or indeed to the 

region of nematic-nematic coexistence (in the vicinity of cx).

The boundary between the isotropic-nematic coexistence (magenta) and the nematic- 

nematic coexistence (blue) regions is practically a straight horizontal line, which ap­

pears to lie at the same temperature as the isotropic-nematic transition for c = 0.0, 

T  «  0.24. However, the location of the boundary has a large uncertainty for most 

of the concentrations (Fig. 5.27).

On decreasing the coupling constant e from 0.6 to 0.45, therefore, the demixing en­

velope has been found to spread significantly from the bottom of the phase diagram. 

In addition, the slope of the boundary between the isotropic and nematic phases 

has decreased in the region of low concentrations (Figures 5.9, 5.15, 5.27). This has 

lead to the development of a new region of phase space - the isotropic-nematic coex­

istence region (Figure 5.27). The asymmetry of the demixing envelope is difficult to 

quantify, owing to its merger with the boundary between the isotropic and nematic 

phases.

Other than this, the behaviour of the system with e — 0.45 is consistent with those 

of the systems with e = 0.90 and e =  0.60. Further discussion of these results will 

be given in Section 5.4.

5.1.4 System  with e  =  0.3

The next system to be considered is the mixture with e =  0.3. The first observable 

of this system to be examined is the average energy of the system (E ). In Figure 

5.28 we present the dependencies of the energy (E) on temperature for various 

concentrations c.
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The behaviour of the {E(T))  curves for the system does not differ significantly from 

tha t of the system with e = 0.45. In Figure 5.28 we present the measured (E(T))  

behaviour for a series of systems with different concentrations c. Starting from
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Figure 5.28: The dependence of the average energy on tem perature, (E(T)) .  e = 0.3.

the highest concentration on the graph, c =  0.9 (bottom  curve in Fig. 5.28), we 

observe tha t from the point of highest tem perature, the energy (E ( T )) decreases 

slowly with reduction of tem perature until at T  «  Ttr(c) it starts to decrease more 

rapidly. The energy then continues to decrease; however, the gradient flattens out 

as the tem perature continues to reduce, so tha t eventually the original slope is 

restored. As this happens, (E(T))  has another gradient discontinuity a t Td(c), after 

which (E ( T )) decreases steadily down to T  —>■ 0. The discontinuity a t T/r (c) for
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concentration c Temperature Ttr(c) Temperature Td(c) Temperature T/r (c)
0.0 0.10 ±0.01 N /A 0.10 ±0.01
0.1 0.38 ±0.01 0.38 ±0.01 0.10 ±0.01
0.2 0.48 ±  0.01 0.48 ±  0.01 0.10 ±0.01
0.3 0.55 ±0.01 0.55 ±0.01 0.10 ±0.01
0.4 0.61 ±0.01 0.61 ±0.01 0.10 ±0.01
0.5 0.68 ±0.01 0.68 ±0.01 0.10 ±0.01
0.6 0.72 ±  0.01 0.68 ±  0.04 0.10 ±0.01
0.7 0.85 ±0.01 0.63 ±0.01 0.10 ±0.01
0.8 0.94 ±  0.01 0.60 ±  0.01 0.10 ±0.01
0.9 1.06 ±0.01 0.49 ±0.01 0.10 ±0.01
1.0 1.15 ±0.01 N /A N /A

Table 5.10: Table of Temperatures Ttr(c), 7d(c) and T/r (c) based on the results of 
(E(T)).  Ttr{c) were derived as a point where the tangent of (E ( T )) is the steepest.

this concentration is not noticeable in Figure 5.28, but is seen on the derivative of 

(E(T)).  This pattern was seen previously for e = 0.45 system.

When the concentration is decreased to 0.8 the high-temperature value of (E(T))  

increases slightly, but remains negative. This value decreases slowly with reduction 

of temperature in the same manner as that which was noted for the concentration 

0.9. The curve has deviation at Ttr(c) and Ta(c). Energy then continues to decrease, 

but the slope changes continuously as the temperature reduces, until it has a third 

discontinuity at T/r (c). This phenomenon, where three discontinuities occur on the 

same curve, was observed in the system with e = 0.45, and, as found previously, 

the phenomenon becomes weaker with decrease in concentration. In addition, T^(c) 

moves closer to Ttr(c) and the two coincide for c < 0.6. The energy dependence for 

the rest of the concentrations (c < 0.6) therefore exhibits only two discontinuities 

in the gradient of (E ( T )) at temperatures Ttr(c) and T/r (c). The temperature Ttr(c) 

decreases with reduction of the concentration c. The value of Ttr(c) is unique for 

each concentration of the system and so is the value of 7d(c), whereas the value of 

T/r (c) seems to remain unchanged for the entire concentration range at around 0.1. 

However, the shape of the feature at T/r (c) becomes sharper as the concentration of 

the system decreases. This is also true for the discontinuity of (E(T))  at Ttr(c). All 

of the temperatures described above are given in Table 5.10.
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Figure 5.29: The thermal dependence of the second rank orientational order param­
eter, (P2(T)). Different curves represent different concentration c in the mixture 
with £=0.3.

Let us turn next to the thermal dependence of the second rank orientational order 

parameter (P2(T)), obtained from g2(r >> 3) for the system with e = 0.30 and con­

centration c =  0.5 (Figure 5.29). At the highest temperature, the order parameter is 

close to zero; then, at Ttr{c), it increases rapidly. But unlike (P2(T)) in the systems 

with e — 0.90 and s = 0.60, it does not, as the temperature decreases, increase with 

monotonic gradient and approach the value of 1.

97



CH APTER 5. RESULTS AND  DISCUSSION. BI-DISPERSED SYSTEM . N C V T

0.9

B(e =0.30)r-s
H 0 . 7 -

53- 0.6-

£ 0 . 5 -

I  0 . 4 -

u °'3 " 
|  0.2-

0  0.1-

0.48

c=0.6

0.0
0.0  0.1 0.2 0.3 0 .4  0.5 0.6 0 .7  0.8 0 .9  1.0

Temperature, T

0 . 9 -
H

«  0.8 -

C  0 . 7 -
0
£  0.6-
1
§
u 0 .4  A
Q

S  0 . 3 -  
O

0.2-

B(e =0.30)

=0.41

c=0.4

0.1-

0.0
0.0 0.1 0.2 0.3 0 .4  0.5 0 .6  0 .7  0 .8  0 .9  1.0 1.1 1.2 1.3

Temperature, T

Figure 5.30: Second rank orientational order param eter for A and B separately. 
Dependence on temperature. Different curves represent different concentration c 
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ordinate (P2(^n))-
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concentration c Temperature Ttr(c) Temperature T/r (c)
0.0 0.11 ±0.05 0.15 ±0.05
0.1 0.35 ±  0.05 0.15 ±0.05
0.2 0.42 ±  0.05 0.15 ±0.05
0.3 0.55 ±0.05 0.15 ±0.05
0.4 0.62 ±  0.05 0.15 ±0.05
0.5 0.70 ±0.05 0.15 ±0.05
0.6 0.80 ±0.05 0.15 ±0.05
0.7 0.91 ±0.05 0.15 ±0.05
0.8 1.00 ±0.05 0.15 ±0.05
0.9 1.10 ±0.05 0.15 ±0.05
1.0 1.18 ±0.05 N / A

Table 5.11: Table of Temperatures Ttr(c) and T/r (c) based on results obtained from 
(P2), (p2)A and (P2)b • System with e = 0.30.

Instead, it approaches < P2(T) > ~  0.35 as the temperature decreases until, at 

T/r (c), it rapidly increases again, approaching < P 2 (T) >—> 1. This effect is seen at 

most concentrations and was also observed in the system with e =  0.45. However, 

the value of (P2(T)} has never previously decreased with the reduction of the tem­

perature (see (P2(T)) for c =  0.4 in Figure 5.29). As in the system with e =  0.45, the 

value of T/r (c) does not seem to vary significantly with the concentration and equals 

0.1...0.2. Table 5.11 shows values for Ttr(c) and T/r (c) for the set of concentrations. 

These values of Ttr(c) in Table 5.11 agree with the values of Ttr(c) obtained from 

the energy calculations presented earlier in this section (Table 5.10).

Let us now examine individually the order parameters of the components A ((P2)A) 

and B ((P2)B) (Fig.5.30). Though the temperature at which (P2(T)) becomes non­

zero is the same in each case, the shapes of the growth of (P2(T)) differ significantly. 

The initial increase in the value of (P2(T))B with the reduction of the temperature is 

not as great as for {P2(T))A and in some cases it does not resemble the typical shape 

of a second rank order parameter at all. For the temperature T  «  0.2, the difference 

in (P2(T)) between the two components reaches a value «  0.77 for concentration 

c =  0.1. As concentration increases the difference becomes smaller, but still remains 

significant. These differences in the values of the order parameter are greater than 

that seen in the other three systems investigated. If we look closely at (P2)A and
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(P2)B for concentration c = 0.5, we notice tha t in the region of tem peratures 0.2 < 

T  < 0.4 the value of the total order param eter is lower than (i^ ) '4 or (P2)B. At 

other temperatures, it is somewhere between the values of the order parameters of 

the two components. The order param eter of both components reaches 1, as the 

tem perature approaches zero.
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Figure 5.31: The short range radial distribution function dependence on the tem­
perature, gAB(r = 1). Different curves represent different c. System with e =  0.30.

The next observable to be considered is the radial distribution function (gAB(r)). In 

Figure 5.31 we present gAB(r = 1,T) for the set of concentrations. At concentration 

c = 0.9, gAB(r =  1,T) decreases slowly as the tem perature falls. Then, at Ttr(c) «  

1.04, there occurs a slight discontinuity in the gradient. W ith further decrease in 

temperature, gAB(r =  1,T) maintains a constant slope throughout a wide region
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concentration c Temperature Ttr(c) Temperature Td(c)
0.0 N / A N / A
0.1 0.38 ±0.02 0.38 ±  0.02
0.2 0.48 ±0.02 0.48 ±  0.02
0.3 0.55 ±  0.02 0.55 ±  0.02
0.4 0.61 ±  0.02 0.61 ±  0.02
0.5 0.68 ±  0.02 0.68 ±0.02
0.6 0.75 ±  0.02 0.70 ±  0.05
0.7 0.85 ±  0.02 0.65 ±0.02
0.8 0.96 ±0.02 0.61 ±  0.02
0.9 1.07 ±0.02 0.51 ±  0.02
1.0 N / A N / A

Table 5.12: Table of Temperatures based on results obtained from gAB(r = 1,T). 
System with e =  0.30.

of temperatures until Td(c) «  0.51 is reached, when it steepens sharply. At c =  

0.8 the value of gAB(r = 1, T) remains unchanged as the temperature decreases, 

until it reaches Ttr(c) «  0.96, when it starts to decline with a steeper slope. The 

slope remains fairly steady as the temperature continues to decrease. Then, at 

Td(c) «  0.61 the slope of gAB(r =  1,T) becomes suddenly steeper. After that, the 

function levels off to its minimum value as T  —> 0, displaying some nonlinearity at 

T[r(c) «  0.20 (Fig. 5.31).

From the Figure it is clear that gAB{r = 1 ,T) for other concentrations exhibits 

similar behaviour. As concentration decreases, temperatures Ttr{c) and Td(c) move 

closer together until at c m  0.5 they converge.

At all concentrations lower than c m 0.5 there are only two discontinuities present on 

the gAB(r =  1,T) function: Ttr(c) and T/r (c). Also, when the concentration c in the 

system decreases, the deviation which occurs at Ttr(c) (= Td(c)) becomes sharper. 

The values of all such temperatures are noted in Table 5.12.

The next part of this section looks at the phase diagram for the system with e =  0.30, 

based on the results presented above. All four phase areas that were present on the 

diagram of the previous system ( e =  0.45) are also present on the current diagram 

(s =  0.30), although, there are some changes in the relative size or area of various 

regions. The isotropic-nematic coexistence region (magenta), as it has increased 

in size, has pushed the demixed nematic-nematic coexistence further down (Fig.
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5.32). In addition, the isotropic-nematic coexistence region has broadened slightly 

and pushed both of the nematic regions (red) aside. The size of the region occupied 

by the isotropic phase shows no significant variation from th a t in the system with 

£ =  0.45.
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Figure 5.32: Phase diagram.^ =  0.3

Let us consider the boundaries between the various phases. The highest boundary 

on the tem perature scale is tha t between the isotropic and the nematic phases. The 

slope of the boundary in the region of concentrations 0.1 <  c < 1.0 is virtually 

constant. We were unable to resolve the value of cx\ however, the data  from the 

previous system suggests its presence somewhere in the concentration region 0.0 <
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cx < 0.1. The interpolation of the existing data for the system e =  0.3 suggests 

cx «  0.02. Depending on the concentration, a reduction in temperature may result 

in the system changing from the isotropic phase to the nematic phase (on intervals 

0.0 < c < cx and 0.6 < c < 1.0); or to the region of isotropic-nematic coexistence 

{cx < c < 0.5); or indeed to the region of nematic-nematic coexistence (in the 

vicinity of cx).

The boundary between isotropic-nematic coexistence (magenta) and the nematic- 

nematic coexistence (blue) phases is practically a straight horizontal line, which 

appears to be at the same value T  as the isotropic-nematic transition for c =  0.0, T  «  

0.1. However, the boundary is very indistinct for most concentrations, compared to 

that of the previous system (Fig. 5.32).

Referring to the phase diagrams presented earlier, as the coupling constant increases 

from e =  0.9 to e = 0.6, the demixing envelope spreads from the bottom of the phase 

diagram, displacing other phase regions. Then, somewhere between 0.6 < e < 0.45, 

the change in the slope of the boundary between the isotropic and nematic phases 

was halted and remained constant as e was decreased to the value of 0.3 (Figures 

5.27, 5.32).

Other than this, the behaviour of the system with e = 0.30 is similar to that of 

the system with e = 0.45. Overall, the behaviour of the system with e = 0.30 is 

consistent with the behaviour of the systems with e =  0.90 and e = 0.60. Discussion 

of the results presented above will follow in Section 5.4.

5.1.5 System  with e  =  0.1

The next system simulated was that with coupling constant e =  0.1. Let us consider 

the first observable of this system, average energy (E ). The behaviour of the (E(T))  

curves for this system does not differ significantly from those for the systems with 

e = 0.45 and =  0.30. In Figure 5.33 we present the dependence of the energy on the 

temperature (E ( T )) for different concentrations c.
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Figure 5.33: Average Energy dependence on tem perature, (E ( T )) for the system 
with e =  0.10.

We begin with the highest concentration on the graph, c = 0.9 (bottom  curve in 

Fig. 5.33). The energy (E(T))  decreases slowly with reduction of tem perature until 

at T  ^  Ttr(c) it decreases rapidly. The energy then continues to decrease gradually, 

reducing in steepness as the tem perature continues to reduce, until eventually it 

returns to the original slope. Then at Td(c), (E [ T )) decreases sharply again. After 

this, (E ( T )) decreases steadily down to T  —» 0. As with the previous system, the 

discontinuity which occurs at Td(c) eventually fades with decreasing concentration. 

At the same time, Td(c) moves closer to Ttr(c) and the two coincide a t c ~  0.6. 

At low concentrations we observe a sharper decrease of (E(T))  a t Ttr(c) compared 

to tha t of high concentrations. The sharpness of the discontinuity at T/r (c) also 

increases as the concentration decreases. The value of T/r (c) is very low and seems
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to be the same for all concentrations. This discontinuity, virtually unnoticeable in 

Figure 5.33 is clearly seen from the numerical differentiation of the {E(T))  curves. 

The peak of d<"Ed̂  at T/r (c) does not depend on concentration and is highest at 

c = 0.1. Figure 5.34 shows th a t T'tr{c) «  0.01. All the tem peratures described above 

are given in Table 5.13.

8 Derivative of (E(c=0.1,T)) 
15 Point Smoothing

7
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0
0.0 0.2 0.3 0.4 0.50.1 0.6 0.7

Temperature, T

Figure 5.34: The derivative of the average energy function for the concentration 
c = 0.1.

Let us now consider the thermal dependence of the second rank orientational order 

param eter (P2(T)), obtained from g2{r >> 3) for the system with & =  0.10 (Figure 

5.35). For most concentrations, starting from the highest tem perature, the order 

param eter is close to zero. Then, at Ttr(c), the value of (P2(T)) increases rapidly 

and seems to approach, as T  —>■ 0.1, a value between 0 and 1, which is unique 

for each concentration. At tem peratures lower than 0.1 (P2( T )) suddenly increases 

rapidly again, this time approaching 1 as T  —>• 0.0. This behaviour is similar to th a t 

seen in the two previous systems ( 5  =  0.45 and e =  0.30). The tem perature of the 

second increase in (P2[T)), T/r (c), does not seem to depend on concentration, again 

as was observed for the systems with e =  0.45 and e = 0.30.
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concentration c Temperature Ttr(c) Temperature Td(c) Temperature T'tr(c)
0.0 0.01 ±0.01 N /A 0.01 ±0.01
0.1 0.38 ±0.01 0.38 ±0 .01 0.01 ±0 .01
0.2 0.48 ±0 .01 0.48 ±0 .01 0.01 ±0 .01
0.3 0.54 ±0 .01 0.54 ±0 .01 0.01 ±0 .01
0.4 0.59 ±0 .01 0.59 ±0 .01 0.01 ±0 .01
0.5 0.64 ±0.01 0.64 ± 0 .02 0.01 ±0 .01
0.6 0.70 ±0 .01 0.69 ± 0 .02 0.01 ±0 .01
0.7 0.82 ±0.01 0.77 ± 0 .05 0.01 ±0 .01
0.8 0.92 ±0 .01 0.65 ±0 .01 0.01 ±0 .01
0.9 1.03 ±0 .01 0.56 ±0.01 0.01 ±0 .01
1.0 1.15 ±0.01 N /A N /A

Table 5.13: Table of Temperatures Ttr(c). Ttr(c) were derived as a point where the 
tangent of (E { T )) is the steepest.
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Temperature, T
Figure 5.35: Second rank orientational order parameter. Dependence on tem per­
ature. Different curves represent different concentration c in the binary mixture. 
£ = 0 .10 .
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Figure 5.36: Second rank orientational order param eter for component A (red curve) 
and B (blue curve) separately. Black curve - the order param eter of the whole system. 
Dependence on tem perature for the system with 5=0.10 and c =  0.9.

The shape of (P2 (T)) differs significantly from the shapes of the order param eter 

curves of the systems with e = 0.90 and e =  0.60 resembling, instead, the shapes of 

the order parameter curves for the systems with 5 =  0.45 and e = 0.30. As in the 

case of the systems with s = 0.45 and e = 0.30, the deviation of (P2(T))  from the 

conventional behaviour is strongest when the two components of the system are in 

more or less equal proportions.

Let us now look individually at the order parameters of the components A (( /^ (T )) '4) 

and B ((P2(T))B) (Fig.5.36). The order param eter for component A does not exhibit 

any unusual behaviour, except slight deviations of (P2(T))A in the region of tem per-
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concentration c Temperature Ttr(c) Temperature T/r (c)
0.0 0.02 ±  0.05 0.04 ±  0.05
0.1 0.40 ±  0.05 0.04 ±0.05
0.2 0.48 ±  0.05 0.04 ±  0.05
0.3 0.56 ±0.05 0.04 ±0.05
0.4 0.64 ±0.05 0.04 ±  0.05
0.5 0.70 ±  0.05 0.04 ±0.05
0.6 0.79 ±  0.05 0.04 ±  0.05
0.7 0.90 ±0.05 0.04 ±  0.05
0.8 0.98 ±0.05 0.04 ±  0.05
0.9 1.10 ±0.05 0.04 ±  0.05
1.0 1.18 ±0.05 0.04 ±0.05

Table 5.14: Table of Temperatures Ttr(c) based on results obtained from (P2), 
£ = 0 .10 .

atures T  < Ttr(c). As the temperature reaches Tfr(c), (P2{T))A increases rapidly and 

saturates slowly to the value of 1 as temperature approaches zero. The (P2(T)}B 

curves for most concentrations, however stay roughly at zero as the temperature 

passes Ttr(c) and increase rapidly when it reaches T/r (c). In other words, particles B 

remain in the isotropic phase whilst particles A form a nematic phase. Explanation 

and discussion of this will follow in the Section 5.4. Table 5.14 shows the values 

for Ttr{c) and T/r (c) for the set of concentrations, obtained from the results of the 

orientational order parameter. These values (Table 5.14) agree with the values of 

Ttr{c) obtained from the energy calculations, presented earlier in this section (Table 

5.13).

The next observable is the radial distribution function (gAB(r)). In Figure 5.37 we 

present gAB(r = 1, T) for the full set of concentrations. At the concentration c =  0.9 

gAB(r = 1,T) decreases slowly as temperature decreases. Then, at Ttr{c) «  1.09, 

it exhibits a slight discontinuity in the gradient. Further decrease in the tempera­

ture causes gAB(r = 1,T) to decrease slightly faster, but it maintains its gradient 

until Td{c) «  0.58 is reached, when it decreases quite sharply. At temperatures 

below Td(c) the function asymptotically approaches a non zero value. At c = 0.8, 

gAB(r =  1,T) starts off from a higher value than it does for c = 0.9. At high tem­

peratures it remains unchanged as the temperature decreases until, at Ttr(c) «  0.93, 

it starts to decline with a steady slope. This decline continues at a steady rate as 

the temperature falls, but becomes suddenly steeper at Td(c) «  0.68. After this, the
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function levels off as T  —» 0. From the Figure, it is clear th a t gAB(r =  1,T) for 

other concentrations exhibits similar behaviour. As the concentration is decreased, 

the tem peratures Ttr(c) and Ta(c) move closer together until, at c «  0.6, they meet. 

The slope in the region between Ttr(c) and Td(c) at concentrations c >  0.6 becomes 

steeper with decreasing c and eventually vanishes at c «  0.6, as Ttr(c) and Td(c) meet. 

At all concentrations lower than c ~  0.6 there is only one discontinuity present in 

the gradient of gAB{r = 1, T), at Ttr(c). The values of all such tem peratures are 

noted in Table 5.15.
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Figure 5.37: The short range radial distribution function dependence on the tem ­
perature, gAB(r = 1). Different curves represent different c. System with e =  0.10.
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concentration c Temperature Ttr(c) Temperature Td{c)
0.0 N /A N /A
0.1 0.39 ±0.02 0.39 ±  0.02
0.2 0.49 ±  0.02 0.49 ±  0.02
0.3 0.56 ±0.02 0.56 ±0.02
0.4 0.61 ±0.02 0.61 ±0.02
0.5 0.67 ±0.02 0.67 ±0.02
0.6 0.73 ±  0.02 0.69 ±  0.04
0.7 0.83 ±0.02 0.78 ±  0.05
0.8 0.93 ±  0.02 0.68 ±  0.02
0.9 1.09 ±0.02 0.58 ±0.02
1.0 N /A N /A

Table 5.15: Table of Temperatures based on results obtained from gAB(r = 1,T). 
System with e =  0.10.

Next we will consider the phase diagram for the system with e = 0.10, based on the 

results presented above. All four phase areas which were present on the diagrams of 

the two previous systems ( £ = 0.45 and e =  0.30) are also present on the current 

phase diagram (e = 0.10). However, the areas occupied by each individual region 

have been changed compared to those of previous systems. Enlargement of the 

isotropic-nematic coexistence region (magenta) has pushed the demixed nematic- 

nematic coexistence (blue) still further down (Fig. 5.38) to make it a very narrow 

strip at the bottom of the diagram. In addition, the isotropic-nematic coexistence 

region (magenta) has broadened slightly and encroached on the nematic region (red) 

on the right-hand side. The small nematic region on the left of the diagram has 

virtually disappeared. The isotropic phase displays no significant variation in size, 

as compared with those in the systems with e = 0.45 and e = 0.30.

Let us now consider the boundaries between the various phases, starting with the 

boundary which separates the isotropic from the nematic phase. The slope of the 

boundary in the region of concentrations 0.1 < c < 1.0 is virtually constant. De­

pending on the concentration, a reduction in temperature may result in the isotropic 

phase changing to the nematic phase (in the vicinity of c =  0.0 and on the interval 

0.7 < c < 1.0); to the region of isotropic-nematic coexistence (0.0 < c < 0.6); or 

immediately into the nematic-nematic coexistence region.
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The boundary between the isotropic-nematic coexistence (magenta) and the nematic- 

nematic coexistence (blue) regions is a straight horizontal line, which appears to be 

at the same tem perature as the isotropic-nematic transition for c =  0.0, which is 

T  < 0.02. However, the boundary is not very distinct for most concentrations, espe­

cially in the region of high concentrations (note the large number of green points in 

Figure 5.38). In other ways, the behaviour of the system with e =  0.10 is similar to 

tha t of the system with e — 0.45 and e = 0.30. Overall, the behaviour of the system 

with e =  0.10 is consistent with the behaviour of the all systems presented in this 

chapter. Discussion of these results will follow in Section 5.4.
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Figure 5.38: Phase diagram .e =  0.1
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5.1.6 System  with e  = 0.0

The next and last system to be covered in this chapter has 6 =  0.00. This sys­

tem differs significantly from all systems presented previously. The particles B are 

absolutely isotropic, which means that they possess spherical symmetry, while the 

symmetry of particles A is cylindrical. This implies that the orientational order 

parameter for the B component is always zero. Thus, for example, the highest total 

order parameter of the perfectly ordered system for the concentration c = 0.5 will 

be equal to 0.5. Bearing this in mind, let us now look at the results, starting from 

the thermal dependence of the energy for the system (E(T)} (Fig. 5.39).
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Figure 5.39: Average Energy dependence on temperature, (E(T))  for the system 
with e = 0.00.
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concentration c Temperature Ttr(c) Temperature Td(c)
0.0 0.00 ±  0.01 N /A
0.1 0.38 ±  0.01 0.38 ±0.01
0.2 0.48 ±  0.01 0.48 ±0.01
0.3 0.54 ±0.01 0.54 ±0.01
0.4 0.59 ±0.01 0.59 ±0.01
0.5 0.64 ±0.01 0.64 ±0.01
0.6 0.67 ±0.01 0.65 ±0.02
0.7 0.79 ±0.01 0.74 ±0.05
0.8 0.92 ±0.01 0.65 ±0.01
0.9 1.04 ±0.01 0.56 ±0.01
1.0 1.15 ±0.01 N /A

Table 5.16: Table of Temperatures Ttr(c) and Td(c). Ttr(c) were derived as a point 
where the tangent of (E ( T )) is the steepest.

On the bottom curve (c =  0.9) we observe two discontinuities in the gradient of 

(E(T))  at temperatures Ttr(c) and Td(c). With a decrease in the concentration, 

Ttr(c) and Td(c) move closer and eventually meet at c «  0.7 As in the previous 

systems, the discontinuity which occurs at Td(c) eventually fades with decreasing 

concentration, vanishing at c «  0.7 as the temperatures of both deviations move 

closer. In addition, the sharpness of the deviation which occurs at Ttr{c) increases 

as the concentration decreases. As the temperature falls below T^(c), in the cases of 

C £  0-7, the curve gradually returns to its original slope (i.e. that which it displayed 

at the highest temperatures). In the case of c < 0.7, the original slope is seen again 

after the temperature passes below Ttr(c). The table of all of the temperatures 

described above is shown in Table 5.13.

From the Table it is clear that Ttr{c) decreases monotonically with decrease in con­

centration c. Starting from c =  0.9, as the concentration decreases the entire curve 

moves up the energy axis. Also, the shape of the curve changes, being fairly steep at 

c = 0.9 and becoming virtually horizontal as c —>■ 0. At temperatures above Ttr(c), 

all curves approach a single point ((E),T  —>• oo).
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Figure 5.40: Second rank orientational order parameter. Dependence on tem per­
ature. Different curves represent different concentration c in the binary mixture. 
5=0.00.

Figure 5.40 shows the dependence of the order param eter on tem perature (( /^ (T ))) 

for the binary mixture with coupling constant 5 =  0.00. From the Figure we see 

tha t the system undergoes an isotropic-nematic transition at tem perature Ttr(c), 

which varies with concentration. From being approximately equal to zero a t high 

temperatures, the function increases rapidly at Ttr(c), approaching the value of 

the order param eter 0.5 as the tem perature approaches zero (for c = 0.5). For 

other concentrations, (P2(T)) reaches different values as T  -> 0.0. At c = 0.0 

the value of the order parameter necessarily remains at zero throughout the entire 

tem perature region. As the concentration increases, the value of (P2{T)) increases 

monotonically and reaches 1 as c —>• 1.0 for T  —>■ 0.0. No discontinuities in the 

curves are observed at temperatures lower than Ttr(c). As the tem perature falls
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concentration c Temperature Ttr{c)
0.0 0.00 ±0.05
0.1 0.40 ±  0.05
0.2 0.48 ±  0.05
0.3 0.55 ±0.05
0.4 0.62 ±0.05
0.5 0.70 ±  0.05
0.6 0.79 ±  0.05
0.7 0.86 ±  0.05
0.8 1.00 ±0.05
0.9 1.11 ±0.05
1.0 1.18 ±0.05

Table 5.17: Table of Temperatures Ttr(c) based on results obtained from (i^)-

below Ttr(c), the order parameter starts to increase rapidly and levels off at non­

zero value. The temperature of the transition decreases as the concentration c 

decreases (Fig.5.40). The value of Ttr(c = 1.0) is the same as in all of the previous 

systems, 1.18, and so when the concentration c 0.0, the transition temperature 

of the mixture approaches zero and vanishes at c =  0.0. Table 5.17 shows the value 

of Ttr(c) for the set of concentrations. These values are in good agreement with 

the values of Ttr(c) obtained from the energy measurements. For the binary system 

with e = 0.00, the dependence of Ttr(c) on concentration is the only characteristic 

observed from the order parameter function.

The next observable to be considered is the radial distribution function (gAB{r)). 

In Figure 5.41 we present gAB(r = 1,T) for the full set of concentrations. At 

concentration c =  0.9, gAB(r = 1,T) decreases slowly as the temperature decreases. 

Then, at Ttr(c) «  1.07, the slope changes. With further decrease in temperature, 

gAB(r = 1, T) decreases almost linearly until at Ta(c) ~  0.58 it decreases sharply, 

levelling off to a constant value at T  < 0.25. At c =  0.8, the value of gAB(r = 1,T) 

decreases slowly as the temperature decreases until it reaches Ttr(c) «  0.93, when it 

starts to decline more steeply. The slope remains fairly steady as the temperature 

continues to fall; then, at Td(c) «  0.68 it suddenly becomes steeper. Subsequently, 

the function levels off to its minimum value as T  —> 0. From the Figure it is clear that
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gAB(r =  1,T) exhibits similar behaviour at other concentrations. As concentration 

decreases, the temperatures Ttr(c) and Td(c) move closer, and as they do so the 

slope in the region between them becomes steeper until at c «  0.6, they meet. At 

all concentrations lower than c «  0.6, there is only one discontinuity present on 

the gAB(r =  1, T) function; that at Ttr(c). When the concentration of the system 

decreases, this discontinuity becomes sharper. The values of all the temperatures 

studied are presented in Table 5.18. The results are consistent with the data obtained 

from the energy (Table 5.16) and order parameter (Table 5.17) calculations.
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Figure 5.41: Short range radial distribution function gAB(r) for e = 0.0 system.
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concentration c Temperature Ttr(c) Temperature Ttr(c)
0.0 N /A N /A
0.1 0.40 ±  0.02 0.39 ±  0.02
0.2 0.50 dt 0.02 0.49 ±  0.02
0.3 0.56 ±0.02 0.56 ±0.02
0.4 0.61 ±0.02 0.61 ±  0.02
0.5 0.67 ±0.02 0.67 ±0.02
0.6 0.73 ±  0.04 0.73 ±  0.04
0.7 0.83 ±0.02 0.78 ±  0.05
0.8 0.93 ±0.02 0.68 ±  0.02
0.9 1.07 ±0.02 0.58 ±0.02
1.0 N / A N /A

Table 5.18: Table of Temperatures based on results obtained from gAB(r =  1,T).

Let us now look at the phase diagram obtained from the results just discussed (Fig. 

6.31). Two regions which were present on the phase diagrams for the three previous 

systems (those with e = 0.45, e =  0.30 and e =  0.10) do not appear on the phase 

diagram for the system with e = 0.00. These are nematic-nematic coexistence region 

(marked in blue) and the small nematic region on the left of the diagram (red). It 

has already been observed, in analysing earlier phase diagrams, that these regions 

diminished in size as the coupling constant was decreased; the system with e =  0.00 

cannot exhibit these phases at all. The size of the isotropic phase region did not 

change significantly from that for the previous three systems.

Let us consider the boundaries between the various phases, starting with the bound­

ary which separates the isotropic from the demixed isotropic-nematic coexistence 

envelope. The slope of the boundary in the region of concentrations 0.1 < c <  1.0 

shows hardly any change. Depending on the concentration, with a reduction in tem­

perature the system can change from the isotropic phase to the nematic phase (on 

the interval 0.7 < c < 1.0) or to the phase of isotropic-nematic coexistence (for all 

other concentrations).

In all other ways, the behaviour of the system with e =  0.00 is similar to that of 

the systems with e =  0.45, e =  0.30 and e =  0.10. Overall, the behaviour of the 

system with e — 0.00 is consistent with the behaviour of the systems with e =  0.90 

to e =  0.60. Discussion of the results presented above will follow in Section 5.4.
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Figure 5.42: Phase diagram, e — 0.0. Solid lines represent theoretical calculations of 
the phase boundaries for this system [177] (see also Figure 6.31 and Section 6.5.1).

5.2 Phase Diagram Visualizer

Having presented a series of T  — c phase diagrams from N c V T  Ensemble results, 

and realizing the amount of data to be reviewed by the reader, we have constructed 

an interactive computer application that allows one to view the changing form of 

the phase diagram dynamically, as e changes (Appendix A). To do this, the data 

presented in this chapter were used to construct phase diagrams for values of e = 

0.0,0.1,0.3,0.45,0.6,0.9. Data for other values of e were then generated using an 

animation morphing technique. The horizontal slide bar at the bottom of the viewing
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panel provides for a smooth change of e. Tick boxes on the bottom right allow the 

user to toggle various phase regions in and out of invisible mode. The, button 

located on the bottom left, provides two scalings for the temperature and 

T,c coordinates on the bottom right reflect the position of the pointer on the phase 

diagram. The application allows the viewer to concentrate on a particular area of 

study without being distracted by changing focus from one figure to another. The 

only computer requirement for the application is an installed browser which includes 

a Flash plug-in or Flash viewer application. Most modern PCs have this installed.

5.3 Results for system s with varying c

In Section 5.1 we presented the results for the binary systems in the form of phase 

diagrams showing concentration versus temperature (Figures 5.9, 5.15, 5.27, 5.32, 

5.38 and 6.31). From these Figures we have seen that phase boundaries are altered as 

the coupling constant e changes. We now present the corresponding phase diagrams 

viewed from the alternative constant concentration perspective.

5.3.1 System  with c  =  0.7.

In the system with c =  0.7, the more anisotropic particles (A) are predominant 

(Fig. 5.43). The isotropic-nematic transition temperature in such a system decreases 

monotonically as e decreases, the isotropic phase occupying the top left corner of the 

diagram. Ttr(c) reaches T  «  0.82 when the value of the coupling constant reaches 

zero.

The boundary which separates mixed phases from demixed ones increases its T  

value as e decreases and levels off to T  «  0.68 as e —>■ 0. However, since this 

value is close to the isotropic-nematic boundary in this region of e, it is difficult to 

determine whether these two boundaries meet (green points). On the left hand side 

of the diagram (e < 0.45), there is another boundary separating the two demixed 

phases, the isotropic-nematic coexistence and the nematic-nematic coexistence. This 

boundary is highest in the centre of the diagram and decreases monotonically as e 

decreases, eventually vanishing at e =  0.0.
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Figure 5.43: Phase diagram.c =  0.7

5.3.2 System  with c  =  0.5.

In the next system (c =  0.5), there are equal numbers of particles A and particles 

B ( Fig. 5.44). The behaviour of the isotropic-nematic transition temperature in 

this system is similar to the that in previous system (c =  0.7). The temperature 

decreases monotonically as e decreases, the isotropic phase again residing in the top 

left corner. However, the region occupied by the isotropic phase is larger than that 

in the system with c = 0.7. This is because the boundary levels off to the lower value 

T  & 0.64 as the value of the coupling constant reaches zero. The isotropic phase 

expands at the expense of phases which are beneath it. As a result, the nematic
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region phase decreases and the isotropic-nematic boundary line joins with another 

line at e «  0.45; this second line is the boundary which separates mixed phases 

from demixed ones. Both boundaries move closer to a third line, which separates 

isotropic-nematic from nematic-nematic coexistence and which has not changed from 

the previous case.

0.0 0.2 0.4 0.6 0.8 1.0
1 2  i i 1 i 1 i 1 i 1------ i— -J-3-1.2

1.0

© 0.8

1 u
a  0 .6 -
a<L>

0.4

0 .2 -

0.0

Coupling Constant, e

1.0

T ' 1-------1-------1-------'-------1-------'-------1-------1-------1
0.0 0.2 0.4 0.6 0.8 1.0

- 0.8

0.6

0.4

- 0.2

LO.O

Figure 5.44: Phase diagram .c = 0.5

5.3.3 System  with c  =  0.2

In the next system (c =  0.2) particles B outnumber particles A ( Fig. 5.45). The 

behaviour of the isotropic-nematic transition temperature in this system repeats 

that of the previous one. The temperature decreases monotonically as e decreases
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and approaches T  «  0.48 as e 0.0. The isotropic phase now occupies even 

more space on the phase diagram and has the largest area on it. The isotropic- 

nematic boundary line joins with another line at e «  0.45. The boundary which 

separates mixed phases from demixed ones has not changed. Both isotropic-nematic 

and mixed-demixed boundaries have moved closer to the third line which separates 

isotropic-nematic from nematic-nematic coexistence. As concentration changes, the 

isotropic phase grows depressing other phases. The boundary which separates mixed 

phases from demixed is not influenced to any great extent by the isotropic-nematic 

boundary in the region e >  0.45. The isotropic-nematic boundary also has no effect 

on the third line.

0.0 0.2 0.4 0.6 0.8 1.0
1.2 1.2

1 . 0 - = - 1.0

- 0.8

- 0.6

0 . 4 - = -0 .4

0 . 2 - = - 0.2

i — • i ■ i • i 1 i • r
0.0 0.2 0.4 0.6 0.8 1.0

Coupling Constant, e

1-0.0

Figure 5.45: Phase diagram .c = 0.2
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5.4 Interpretation and Discussion

In nature, most processes happen, and their observables are measured, at constant 

temperature and pressure averaged over a period of time. However, in any statistical 

ensemble such as the canonical ensemble, it must be clearly understood what the 

measured observables represent and what is the thermodynamic potential of the 

given ensemble.

T = U - T S  (5.1)

The thermodynamic potential of the NcVT - Ensemble (canonical) is the Helmholtz 

free energy T  (Equation 5.1). Thus, statistics for all the values of this ensemble 

must be taken in the vicinity of the minimum of the Helmholtz free energy, known 

as the equilibrium state of the system. To obtain the free energy-like function we 

have used energy probability histograms V ( E ), calculated by the method mentioned 

in Chapter 4. These same energy histograms, averaged in the NcVT-Ensemble, give 

the average values of the energy in the system, the results of which were presented in 

Section 5.1. The distribution of the maximum in V(E)  is known to be Gaussian [186] 

if the system is in equilibrium and not close to any phase transition.

We will show that the temperature and the nature of the transition can be related 

to the deviation of the (E ( T )) curves, presented in Section 5.1, which correlate with 

the positions of the corresponding maxima of V(E).  We will compare and discuss 

these in the light of other results from Section 5.1 such as (P2(T)), g(r) etc.

We start this section, therefore, with an overview of the thermal dependence of the 

average energy of the system. Let us look at some of the energy histograms for the 

system with various coupling constants and concentrations. One can deduce from 

the interaction potentials (Section 4.2, Equation 4.6) that a reduction of temperature 

in the system will reduce the position of the maximum of the V(E)  function from a 

higher value of energy corresponding to the disordered (isotropic) phase to a lower 

value in the ordered (nematic) phase. From the average energy graphs (Figures 5.1, 

5.10, 5.16, 5.28, 5.33, 5.39) it is clear that the reduction of temperature moves the 

maximum of the energy distribution to lower values. The value of the average energy 

represents the position of the peak of V(E)  when far from the transition. Equation
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5.1 shows that if temperature is reduced, then so is the effect of entropy. This means 

that the free energy minimum moves to a lower energy value, closer to the potential 

energy value.
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Figure 5.46: Energy dependence on e for T=0.3 and T = l .l .  Dependencies are shown 
for concentrations c{0.1;0.3;0.5;0.9}.

On the other hand, the results also show that reduction of the coupling constant 

moves the maximum to a higher energy value for the same values of T and c. In 

Figure 5.46, as an example, we assemble a few (E(e)) graphs taken at different T 

and c.

This behaviour can be explained by the form of the interaction potential (Equation 

4.10) and its contribution to the Boltzmann factor in Equation 4.2. From the ana­

lytical view of the interaction potential we can deduce that the increase in e moves 

the energy to a lower value.
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Moreover, for the unlike interactions the contribution of the temperature and the 

coupling constant in the exponent of the Boltzmann factor is ~  eT-1, which is 

effectively one constant. This means that if all interactions are linearly dependent 

on s, then reducing e has the same effect as increasing T.

The movement of the position of the V(E)  maximum to a lower energy value is also

seen when the concentration of the mixture c is increased, at constant T and e (Figure

5.47, and Figures 5.1, 5.10, 5.16, 5.28, 5.33, 5.39). The higher the concentration

of more anisotropic particles A in the system, the more frequent the coupling of

particles with coefficient 1 (rather than e or e2). Thus, the negative contribution of

the interaction potential to the total energy is more significant, and it is this which

makes the energy peak move to the region of lower energy values. In Figure 5.47

we deliberately selected such T and e as would ensure that the system exhibited the

same phase at all values of c. In a case such as this, the dependence of the position

of the (V(E)) maximum on concentration appears to be linear; more generally, it is
2

proportional to ~  in such regions.

However, the dependence of the average energy value (E(T))  on temperature T  

cannot be described analytically for all values of the ‘coordinates’. As we showed in 

Section 5.1, the energy function displays a number of discontinuities in its gradient. 

Several factors play significant roles in governing the behaviour of (E ( T )). Firstly, 

as discussed above, the coupling constant e contributes to the total energy as the 

direct coefficient in the interaction potential (Eq. 4.6).

Secondly, the value of the second term in Equation 4.6, namely P2(cos<^J) is also 

related to the free energy through the entropy in Equation 5.1. e influences accep­

tance of the moves, and this leads to changes in the orientations of particles, with 

a consequent change the value of the P2(cos<^zj) term in the interaction potential. 

Also, however, the ordering of the particles decreases entropy. All of this affects the 

free energy minimum. Usually there is only one minimum of free energy for each 

value of the temperature. But sometimes, in very narrow regions of T, the energy 

changes abruptly, owing to the value of the free energy being equal for two phases of 

different symmetry - disordered and ordered orientationally. This is the transition 

temperature, Ttr(c). The transition temperature also changes with change of e at 

constant c (Figures 5.43-5.45).
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Figure 5.47: Energy dependence on c for various T{0.1; 0.3; 1.1; 1.2} and ^{0.0; 0.6}.

Thirdly, the system consists of two types of particle which are allowed to move 

within the simulation box. The long and the short range distribution functions 

of the system, which are dictated by the interaction potential, indicate entropic 

changes to the free energy. We can illustrate this by a simple example. The local 

energy for some interactions depends linearly on e (A-B interaction), for some on 

e2 (B-B interaction), or for others does not depend on e at all, as is the case for 

A-A interactions. Therefore, the total energy of the system is different in the cases 

of homogeneous and demixed configurations. Thus the system’s tendency to phase 

separate increases as the U term in Equation 5.1 becomes more significant. As is 

shown in Figures 5.10, 5.16, 5.28, 5.33, 5.39, at temperatures above and below T(/(c) 

the system exhibits homogeneous and demixed configurations respectively. In these 

two regimes the slope of (E ( T )) is different.
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Fourthly, at certain values of e and c we observed competition (or co-operation) of 

other effects - the nematic-isotropic transition and the demixing. We will presently 

argue that this phenomenon is due to nematic-order-driven phase separation. The 

results for (P2(^)) and gAB(r) show that for certain e and c, the system undergoes the 

nematic-isotropic transition at the same temperature as it demixes (Ttr{c) =  Td(c)). 

This may result in the system moving from the homogeneous isotropic phase to the 

coexistence either of two nematic phases or of the nematic and isotropic phases, 

depending on the concentration c.

When the system has moved into the coexistence region of demixed isotropic and ne­

matic phases, the isotropic part undergoes the I-N transition at T/r (c) when the tem­

perature is decreased further. The gAB(r) data reveal that the coexisting isotropic 

and nematic phases consist mostly of components (B) and (A) respectively. This 

can be treated as a perturbation of the usual isotropic-nematic transition for a sin­

gle component system of component B. The perturbation arises from the additional 

factor that the preferred orientation of the particles in the B-rich phase is influenced 

by the orientation at the interface separating it from the A-rich phase. The results 

from P A(T) and P B{T) show that when there is a high concentration of B particles, 

the transition temperature T[r(c) approaches that of the single component system 

analogue.

As a result of the processes described above, the system exhibits six ‘transitions’ 

from one phase region to another. These are:

/=©=>• N  =©=^ N  +  N

/= (T)=>- N  =©=/* I  N  :A©=>- N  +  N

/=©=>-1 N  =&=> N  +  N

!=©=>> N  +  N

The arrows represent decreasing temperature. As we have shown in this Chapter, 

all sharp changes in the energy of the system occur at one of the three temperatures 

Ttr{c), Td(c) and T/r (c). We turn now to consideration of the behaviour of the system 

in the vicinity of these temperatures; the discussion will cover the isotropic-nematic 

transition of the homogeneous system ( © ); the two-component demixing ( ©  © ); 

the nematic order-driven demixing ( © © ) ;  and the isotropic-nematic transition of 

particles B (©) .
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5.4.1 The isotropic-nem atic transition of the homogeneous 

system  at T*r(c).

As the temperature of the isotropic homogeneous system decreases, the first tem­

perature of discontinuity which occurs in the system is always the isotropic-nematic 

transition temperature Ttr(c). This transition can be seen throughout the entire 

range of e. In systems with e > 0.6 it appears as a single first-order transition, 

not coupled with any other processes such as demixing, throughout the entire con­

centration range; in systems with e < 0.6, it occurs at high concentrations. Thus 

we begin with discussion of such homogeneous transitions (Q). Let us look at the 

average energy dependence on the temperature in the vicinity of Ttr(c) (0 ). The 

slopes of the {E(T)) curves below (T < Ttr(c)) and above (T > Ttr(c)) the transition 

are different. The results of the order parameter for all systems investigated relate 

this discontinuity temperature in the gradient of (E(T)} to the change in the orien­

tational order p 2(T). At Ttr(c) the system moves from the isotropic phase (spherical 

symmetry) to the nematic phase (cylindrical symmetry) as the temperature falls. 

The radial distribution function does not show any changes at long range, but minor 

restructuring occurs at short range as Ttr(c) is reached (Figures 5.7, 5.13, 5.23, 5.31, 

5.37, 5.41). In Section 5.4.5 we consider further the short range structural reorgani­

sation and its influence on Ttr(c). All of this indicates a first-order transition. Thus, 

according to [7,8,186] we expect to see two minima on the energy histograms V(E).

For this purpose we will discuss two concentrations representing two systems with 

very different behaviour, namely c =  1.0 and c = 0.5. Initially, we will look at the 

single component system in order to exclude any effects due to the mixture and, 

thus, be able to examine the behaviour of V(E)  due to the transition alone. We will 

then consider the system with e = 0.8 at c =  0.5 and discuss how the introduction 

of another anisotropic component affects the shape of the distribution.

Let us look first at V{E)  for the single component system (c =  1.0) in the vicinity 

of the isotropic-nematic transition (Figure 5.48). The distributions T  =  1.123 and 

T  =  1.126 were measured from long runs (r  =  3,000,000) in the vicinity of the 

isotropic-nematic transition. The rest were calculated using the histogram reweight­

ing technique [175,183] to obtain V(E)  at temperature T  =  1.1244 (see Section 

4.4.4). At the highest temperature in the Figure, which is some distance from the
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transition, the distribution of V ( E )  seems to be Gaussian. In this case the projection 

of the peak on the energy axis corresponds to the value {E(T)). As the temperature 

decreases, the shape of ( V ( E ) ) n cv t  deviates from its Gaussian form and the average 

energy value is lower compared to the projection of the peak-point of (V(E))n cv t  on 

the E-axis (Figure 5.48). As a result, we observe a dramatic decrease in the (E ( T )) 

curve in the vicinity of Ttr(c) as the temperature decreases.

— T=1.128 
T=1.127

— T=1.126 
T=1.125

— T=1.1244
— T=1.124
— T=1.123

1.10 - 1.00-1.05 -0.95 -0.90 -0.85 -0.80 -0.75

Energy, E

Figure 5.48: Energy histograms taken at a set of temperatures close to I-N transition. 
Single component system, size 243.

The distortion of the distribution from the Gaussian is caused by the development 

of another maximum. As we look at the distribution (V(E))ncvt we find that the 

decrease in E  projected from the peak of the distribution slows down with decrease 

in temperature. As this peak slows down, a second peak emerges with a lower energy 

value than that of the first. Then, the magnitude of both peaks changes quickly as
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the temperature decreases. As the original peak diminishes, the new peak starts to 

move more quickly to lower values as the temperature decreases. However, as we see 

from Figures 5.1, 5.10, 5.16, 5.28, 5.33, 5.39, for most values of e and c the second 

peak (that which correlates with (E(T))),  continues to decrease relatively quickly 

with decrease in temperature, as the transition region is left.

Binary Mixture 
T=0.918 
e=0.8 I  \  
c=0.5 I  \  '

r\
*

Single Component 
T=1.1244
£=1.0 /  \

1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65

Energy, E

Figure 5.49: Energy histograms for mixture and single component system in the 
vicinity of I-N transition (black curves). Each histogram was fitted with two Gaus- 
sians that represent isotropic (red curves) and nematic (blue curves) phases.

The presence of two maxima in the system at c =  1.0 indicates a first-order tran­

sition. The results from Figures 5.1, 5.10, 5.16, 5.28, 5.33, 5.39 and previously 

acquired knowledge all indicate that this should also be the case for the binary mix­

ture (i.e. 0.0 < c < 1.0). In Figure 5.49 we present V(E)  for both, c =  1.0 and
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c =  0.5 (system with e =  0.8). As can be seen from the Figure, the energy and the 

temperature at which both maxima are seen (transition temperature) are different in 

the case of c =  1.0 and c = 0.5. At c =  1.0 the shape of the distribution unambigu­

ously suggests the presence of multiple maxima (black curve in Fig.5.49). Further 

analysis of the distribution allows resolution of two maxima, one for the isotropic 

phase with a higher energy value (red curve) and one for the nematic phase with a 

lower energy value (blue curve). At c = 0.5, while it is still possible to identify both 

maxima numerically, they are located closer to each other, so that their presence is 

not obvious to the casual observer.

Owing to the lower e in the system with c =  0.5, the entire picture shifts to less neg­

ative energy values. This rescales the energy values of the distributions and, hence, 

the distance between the peaks. However, even after this rescaling the distance be­

tween the peaks in the system with c =  0.5 is approximately half that found with 

c — 1.0. The average energy for the system with c =  1.0 is (jE7(T)c=1-°) «  —0.93 and 

for that with c = 0.5, (E(T)°~°-5) «  —0.74. In the case of a well mixed system the 

relation between these values is as follows:

(E(T)C=0-5) «  (E(T)c=1-°) • e = «  -0.93 • 0.8 «  -0 .74

In the case of a demixed system, the relation between these values reads as:

where Osurf aCe, Hie energy at the interface, is assumed negligible. From the radial 

distribution function we conclude that system should be well mixed in both of I-N 

transitions considered here, thus the rescaling coefficient should be 0.8. In fact, the 

energy differences between the two peaks of V(E, c = 1.0) and V(E, c = 0.5) are 0.08 

and 0.03 respectively. Rescaling those suggests that the difference between the two 

peaks for c =  0.5 should be around 0.064, more than twice the measured value, 0.03. 

We found no evidence from the literature that the addition of a solvent to a mesogen 

would change the order of the phase transition; nor does previous knowledge of the 

phase transition point to such a conclusion. The presence of two peaks shows that 

the transition is still first order; however, it is becoming weaker. Thus the binary 

mixture should, perhaps, be viewed in terms of impurities and their effect on the 

strength of the transition.
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5.4.2 Two component demixing at T (̂c)

Let us move now to another significant temperature, Td(c) - the temperature of sep­

aration of the two types of particle ( © © ) .  In Figures 5.1 and 5.10, the separation 

at Td{c) occurs throughout the entire range of concentrations c (see also phase di­

agrams, Figures 5.9, 5.15). However, as the coupling constant decreases (e < 0.6), 

Td(c) and Ttr(c) meet in a region of concentrations that is specific for each system 

with a different value of e (Figures 5.16, 5.28, 5.33, 5.39). Thus, demixing, not 

induced by other processes, occurs only within a certain range of c. For example, in 

the system with e = 0.45 it occurs at concentrations c > 0.6 and c < 0.04 (Figure 

5.16). Here we will concentrate on such processes ( © © ) .

The results from the radial distribution function of the unlike particles show that, 

at temperatures below Ttr(c) for the concentrations c and coupling constants e de­

scribed above, we observe a homogeneous phase (Figure 5.6). It is only at signif­

icantly low temperatures (Td(c)) that the system undergoes demixing, separating 

into two phases. The order parameters for particles A and particles B, considered 

separately, both show that at the temperatures immediately below Ttr(c) the ho­

mogeneous system exhibits a nematic phase. As the temperature reaches T^(c), the 

phase-separated system exists either as two coexisting nematic phases or as coex­

isting isotropic (particle B rich) and nematic (particle A rich) phases. The latter 

occurs only in systems for which the Ttr(c) and T<*(c) lines meet (i.e. those with 

e < 0.6).

The results for the average energy dependencies on temperature for most values 

of e show a change in the slope at Td(c) (systems with e = 0.6; 0.45; 0.3; 0.1; 00 

in Figures 5.10, 5.16, 5.28, 5.33, 5.39). From the appearance of the interaction 

potential of the binary mixture it is clear that the energy of the interaction between 

identical, more anisotropic, particles is more negative than that of unlike particles 

as the order parameter approaches 1.0. Thus the system separates particles A from 

particles B in order to maximize the number of these strong interactions. So, as the 

temperature in the system decreases, the entropy term yields to the potential energy 

in the system (Eq. 5.1) and the system starts to demix at Td(c). This results in a 

steeper change in (E ( T )) at temperatures lower than Td(c).
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When the difference in anisotropy of the particles is small (for example, the system 

with e =  0.9), the average energy dependencies do not exhibit dramatic changes 

(Figure 5.1). However, the radial distribution function results do still show demix­

ing at very low temperatures, of the order 0.02 (Table 5.3). As the difference in 

anisotropic coupling of the two components increases, the relevant potential energy- 

term becomes increasingly significant and, as various results show, the Td{c) tem­

perature increases as e decreases.

5.4.3 Cooperative ordering and demixing.

First let us explain the title of this section. In the case of the processes involved in 

this discussion, it is difficult to say which induces which. Let us consider the system 

at a temperature just above Ttr(c) at any concentration and with any coupling con­

stant within the region of nematic order-driven demixing. On the one hand, e is low 

enough for the system to prefer the demixed configuration to the homogeneous one, 

but on the other, the iV term  in the interaction potential is close to zero. As soon 

as the order parameter of the system increases (at the isotropic-nematic transition) 

the system phase separates to a preferred configuration, in which a subset of the 

particles yield a significant P2-term thus the term ‘nematic order-driven demixing’ 

could be used. On the other hand, if demixing were not allowed, the transition 

temperature Ttr(c) would decrease linearly with concentration c (Equation 5.2), and 

would, thus, occur at a much lower temperature than Ttr(c). Therefore, we might 

just as appropriately have called the process ‘demixing induced isotropic-nematic 

transition’, since it is the free energy which ultimately drives all processes. How­

ever, a practical expedient has been adopted regarding terminology, leaving to the 

realm of metaphysics the question of who drives the free energy. Let us concentrate 

now on the particular characteristics of systems which undergo nematic induced 

demixing.

As Ttr(c) meets Td(c), we observe a sharpening of the discontinuity in the gradient 

of (E(T)).  At certain concentrations it is much sharper than that of the isotropic- 

nematic transition of the single component system. This might appear inconsistent 

with the observation made earlier, namely that the introduction of another compo­

nent to the pure system weakens the strength of the transition; thus, the disconti­

nuity in the gradient of (E ( T )) ought to be less sharp, as was the case for all the
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non-induced isotropic-nematic transitions discussed earlier. Instead, results from 

the energy histograms show a sharp jump in the peak of the distribution as the tem­

perature passes Ttr(c). From the fact that we were not able to find the temperature 

at which both peaks could be seen, we conclude that there is a large free energy 

barrier between them which does not allow the system to jump from one configura­

tion to another within the lifetime of the simulation. This suggests the possibility 

of hysteresis effects, although, none were found in practice.

On the other hand, results for the (P2) data of the individual components show 

that as the system undergoes an induced transition at Ttr(c), the order parameter of 

particles A increases sharply, whilst that of particles B increases less dramatically for 

some systems (Figures 5.20, 5.30) and remains close to zero for others (Figure 5.36). 

The radial distribution functions at all ranges for these systems show a dramatic 

change at 2]r (c), which demonstrates the phase separation. We will discuss this 

issue further in Section 5.4.5. Let us just note that the reason for the sharpening 

of the discontinuity must lie in the co-operation of the two processes, orientational 

ordering and demixing.

5.4.4 Entering N + N  coexistence at T/r(c)

The effect seen at the final transition temperature, T/r (c), is present only in systems 

with e < 0.45. It is observed in the (E{T)) dependencies and in the (P2(T)) and 

gAB(r =  1,T) functions and varies with both concentration c and coupling constant 

e. This temperature relates to the transition of the B-rich isotropic phase to the 

B-rich nematic phase. In other words, T/r (c) defines the boundary between isotropic- 

nematic coexistence and nematic-nematic coexistence regions on the phase diagram.

Let us look first at the thermal dependence of the average energy of the system 

{E(T)) (Figures 5.16, 5.28, 5.33). The striking evidence that T/r (c) is practically 

independent of c indicates that the transition happens in what is virtually a single 

component subsystem. This must be so, because otherwise the influence of the 

component A would change with c. The thermal behaviour of the gAB(r 1 ,T) 

function shows that the system is equally well demixed before and after T/r (c). 

However, the sharpness of the discontinuity becomes weaker as the concentration 

increases, and practically disappears as the concentration approaches a value close
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to 1.0 The results for the order parameters for the two components individually reveal 

that the subsystem containing particles B exhibits the isotropic-nematic transition 

at temperature T(r(c). The energy distribution histograms reveal a widening of 

the distribution as it moves towards the transition, similar to that on Figures 5.48 

and 5.49. The concentration changes the effective system size of the particle-B-rich 

subsystem. For the reasons presented earlier in the discussion, we therefore expect 

the two peaks on the histogram to merge, and this is in fact exactly what happens, 

as the concentration increases. To comment further on this, let us discuss the results 

obtained for the order parameter.

In systems with a high value of e, the order parameter rapidly increases and continues 

to increase with a steady gradient until, on approaching zero temperature, it levels 

off to the value of 1.0. However, in a situation where part of the system stays 

in the isotropic phase after Ttr(c), the order parameter should approach a value 

different from that of the homogeneous system or, at least, distorted behaviour of 

the function should be seen. In Figure 5.19 some non-monotonic behaviour of the 

order parameter gradient is observed. As in the case of the homogeneous system, 

the transition temperature Ttr(c) changes with concentration c, and P2 CO rapidly 

increases below Ttr(c). However, at lower temperatures, unusual deviation of the 

shape of the curve is seen. This deviation is strongest at c^0.4 (for the system with 

£=0.45). The second rapid increase of ^ ( T )  is induced by the isotropic-nematic 

transition of the B rich phase as we have seen in Figure 5.20.

This also explains the change in the steepness of the discontinuity of the (E(T))  

curve with the change in concentration, discussed earlier. At low concentrations, 

the droplet of particles-B-rich phase is large and the contribution of the particles 

at the edge of the drop is negligible compared to that of the bulk. Therefore, the 

isotropic-nematic transition at T/r (c) is similar, in terms of energetic behaviour, to 

that seen in the homogeneous system at Ttr(c). It differs only by virtue of the 

energetic ‘noise’ produced by the rest of the bulk outside the isotropic drop (which 

is in a nematic phase and continuously reduces its energy as the temperature falls). 

This explains the similarity in steepness between this transition and that of the 

homogeneous system. However, as the concentration increases, the size of the droplet 

of the isotropic, B-rich, phase decreases. Similarly, the relative contribution of the 

particles on the surface of the drop increases, making it more difficult to determine 

the transition temperature T/r (c) at large c. However, this is not the only obstacle to
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accurate calculation of T(r(c). The transition temperature for the pure B particles 

of e = 0.45 is TPn (s =  0.45) «  0.23. Figure 5.20 clearly shows, however, that 

T/r (c) is higher than this at high concentrations. We believe that the explanation 

for this is that the ordering of the less anisotropic particles (B) is induced by the 

‘field’ of the more anisotropic particles (A) on the interface of the particles-B-rich 

drop and vice versa. As the diameter of the isotropic droplet comes close to the 

orientational correlation length of the particles in the drop, while at the same time 

the configuration of the rest of the system before and after the transition remains 

unchanged, the order parameter of the B particles starts to increase continuously 

and this reduces the discontinuity in the gradient of the (E ( T )) curve at T^r(c). 

Thus the size of the ambiguous green area on the phase diagram which relates to 

this transition, increases in the region of high concentrations (Figures 5.27, 5.32, 

5.38).

As we have seen previously, the behaviour of (P2(T)) becomes even more dramatic 

in systems with £ < 0.45 (Figures 5.29, 5.30 for e =  0.30; Figures 5.35, 5.36 for 

e = 0.10;). In the system with e — 0.30, for some concentrations the order parameter 

even decreases slightly as the temperature decreases (c =  0.4, Fig.5.29). The smaller 

the value of e, the greater the effect of the B-rich isotropic drop on the ordering of the 

particle-A-rich nematic bulk. At temperatures close to T/r (c), the order parameter 

for particles A exhibits a slight deviation from its conventional behaviour; this could 

be the result of two competing processes. On the one hand, the nematic ordering of 

the particles A induces para-nematic ordering in the isotropic B-rich drop; while on 

the other, the isotropic particles B perturb the orientational order of the particles A, 

decreasing their order parameter. After the transition, however, both phases possess 

nematic symmetry, which enhances the order parameter of both components.

However, the problem of the configuration of the drop in a bulk with a different 

orientational symmetry (isotropic drop in a nematic bulk or vice versa) is similar to 

the problem of anisotropic particles in slab geometry. This kind of configuration has 

always been known to reduce the strength of the transition, not to enhance it. The 

possible explanation follows from the results of the radial distribution function of 

the unlike particles at distance r — 1. The short range function is known to reveal 

structural changes on the smaller scale, which are unnoticeable at long range. In the 

part of e-c-T space under consideration, the g(r = 1 )AB(T) curve at temperatures 

close to T{r(c) exhibits a slight, but definite, increase as the temperature is decreased
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past T(r(c). This could be driven by a change in the shape of the particle B rich 

drop. This change would not affect the appearance of the distribution function at 

long range and would change the function only slightly at short range, because of 

the relatively small size of the drop.

Sumarising this section we would like to stress the following. The isotropic-nematic 

transition of the B-rich phase results in nematic-nematic coexistence below T/r (c). 

This temperature does not depend on the concentration c, but on the coupling 

constant e. However the system concentration does affect the accuracy with which 

T{r(c) can be determined. This transition is seen only in the systems which exhibit 

the cooperative transition described in Section 5.4.3.

5.4.5 Summary, phase diagrams, expectations, hypothesis

In Figures 5.9, 5.15, 5.27, 5.32, 5.38 and 6.31 we have presented phase diagrams for 

selected values of e. As phase diagrams are the summary of the results presented 

earlier, so the summary of this discussion will be built around discussion of the phase 

diagrams. We will start with the simplest case (the system with e =  0.9, Fig. 5.9) 

and proceed to systems with lesser values of e, referring to earlier discussions, in a 

way analogous to that in which we presented the results in this Chapter.

Let us comment on the I-N curve first. At either end of the concentration axis 

the system exhibits its most extreme features. On one side is a single component 

system with e =  1.0 and I-N transition temperature T f^ lm0 =  1.125. On the other 

side is a single component system with e =  0.9 and I-N transition temperature 

Tfx°'9 = T fx 1'0 • e2 = 1.125 • 0.92. In the cases in between, the Tj n (c) curve seems 

to exhibit simple linear dependence:

T NI = c{TNf °  -  TNf 9) +  T £ f 9 (5.2)

Humphries et al [25] studied the rod-sphere mixture system and derived similar de­

pendence in their theoretical predictions. However, problems arise when the system 

is allowed to demix. In the case of the system currently under discussion (e =  0.9), 

there is no demixing present near the I-N transition. Thus, Equation 5.2 aptly de­

scribes the behaviour of the Ti^{c) curve. Although there is an area in Figure 5.9 

where it was impossible to determine the phase of the system (points marked in
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green), this area cannot with certainty be used as a guide to the I+N coexistence 

strip, which is expected in the vicinity of the I-N transition. The evidence for such 

a coexistence strip has been found elsewhere [178], as described in Chapters 2 and 

3, as well as in the investigations presented in the next Chapter.

With a decrease of e to 0.6, we can anticipate several features of the system. The first 

is that the I-N transition temperature would decrease on the side of low concentration 

(c —> 0) and the T/^(c) dependence would change monotonically, following Equation

5.2. The second is that a N+N coexistence envelope would possibly increase. As the 

difference in coupling strengths becomes larger, the energy difference between the 

mixed and demixed configurations also grows. This would encourage the system to 

demix at higher temperatures. There are uncertainties, however, about the shape of 

the N+N coexistence envelope. Let us look at the measured phase diagram (Figure 

5.15) and compare it with what was expected. The Tj^  curve changes virtually 

linearly with concentration. The demixing envelope increases in size with the highest 

temperature of demixing being T  «  0.26. The envelope itself appears to be slightly 

asymmetric about c = 0.5.

A number of factors may influence the temperature of demixing at different concen­

trations (i.e. the shape of the envelope). Let us examine the role of the potential 

energy in this phenomenon. Both types of particle have cylindrical symmetry and 

order parameter close to 1 for both phase regions throughout the entire concentra­

tion range. For the sake of argument we assume P2 = 1. Since both types occupy 

the same volume, in cases of low and high concentration (for example c =  0.1 and 

c = 0.9) it is the difference in coupling and the concentration ratio which influence 

the demixing temperature the most, and not the orientational entropy or the entropy 

which relates to excluded volume in the system.

To understand this in more detail, let us write down the potential energies of four 

different configurations and compare their contributions to the processes described. 

Configuration one-D is a drop of more anisotropic particles A in a bulk of less 

anisotropic particles B (c =  0.1). Configuration one-M is a well mixed version of 

configuration one-D. Respectively, configurations two-D and two-M are demixed and 

mixed states for c =  0.9. Geometrically, configurations one and two are identical. 

Let us first calculate the potential energy for the two demixed configurations, by 

splitting each into three parts: the energy of the particles in the bulk Ubulk, the
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energy of the particles on the surface Usur^ , and finally, the energy of the particles 

in the drop Udrop. Altogether, they comprise the total energy of the system Utot 

(Equation.5.3)
£jto t    ^jbulk j j s u r f  _j_ jjdrop  (5 3)

Let us recall that we ignore the contribution of orientational changes to the total 

potential energy for simplicity. In both configurations the surface energies are equal.

However, let us point out that this dependence is not proportional to that of a
2

sphere, ~  cs, although it is very close. The investigated system and, hence, its 

spatial dependence is discretised so that there can be a number of concentrations 

that result in the same surface area of the drop, and, thus, the same value of UsurT  

For this reason we simplify the geometry of the surface of the drop in the system by

assuming that it is always cubic. As concentration increases, the surface of the drop
2

develops complex forms, but it always approaches a cube every time (cA)s returns 

to a whole number, where A" is a total number of particles in the system. Thus, 

the dependence of the surface area on c will always approach 6 (cA)s. Therefore the 

potential energy associated with interactions on the surface is given by Equation 

5.4.
£ /s“r /  =  - ( 6 - ( c j V ) s )  . SB  ( 5 .4 )

where c in Equation 5.4 is always the concentration of the component with a lower 

ratio.

The difference in concentration between configurations one and two ensures that 

their bulk energies differ the most, compared to other two energy components. The 

bulk energy is proportional to concentration Ci =  c =  0.1 (for configuration one) or 

C2 =  1 — c =  0.9 (for configuration two) and to the square of the coupling constant 

e2B or e \  — 1 respectively. In the case of configuration one, the bulk energy for the 

system is given by

Vto =  -  f  3 • (1 - e ) - N -  t M t j  . £|  (5.5)

The last term in the large brackets takes account of bulk interactions absent due to 

the surface. In the case of configuration two the potential energy associated with 

the bulk reads:

u % k = -  3̂ • (1 -  c). N  -  ih M l j  . 4  (5.6)
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Equivalently, the energies for the drops in the two configurations are given by

(5.7)

^ p =  - ( 3 - c . j V - ^ ® V 4  (5.8)

Now, if we combine the energies for both configurations (Equation. 5.3), we find that 

the energy for configuration one is higher than that for configuration two, which is 

supported by results presented in Figure 5.10 (page 70). Moreover, the total energy 

for configuration one will always be higher than that for configuration two, as long 

as configuration one relates to the lower concentration of the more anisotropic type 

of particles A (Equation 5.9).

u*$k + UsurS +  =  U*% > =  u !$ k +  Usurf + (5.9)

Let us now calculate the energy of mixed configurations. Configuration one-M is 

a well mixed system with 10% of more anisotropic particles A (c = 0.1), while 

configuration two-M is a well mixed system with 10% of less anisotropic particles B 

((1 — c) =  0.9). Owing to the unequal ratio of the two components, the system will 

inevitably form single component clusters or a network of the species with higher 

concentration ratio or a network. In any case, the potential energy of the system 

Utot, in its ideal configuration (most mixed), can be divided into two parts. One is 

the energy of the pure component clusters or network or indeed a bulk, Upure and 

the other is the energy of well mixed clusters Umix (Equation 5.10).

CJtot = u pure +  Umix (5.10)

The latter can be considered as the surface energy, introduced in configurations one- 

D and two-D, and as in case with demixed system, =  U ^ f  = Umix (Equation 

5.11). However, Umix is linearly proportional to the concentration, unlike Usurf  

(Equation 5.4).

U?iSl = U 2 M = - G - c - N . e B (5.11)

The former, Upure, however has the same form as Ubulk, with the remaining number of 

interactions being proportional to e \  (for configuration one) or e \  (for configuration
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two). Please compare Equations 5.12 and 5.13 for the mixed system with Equations 

5.5 and 5.6 for the demixed system.

u* £ e =  —(3N  -  6 • c • N)  • 4  =  3(N -  2 ■ c ■ N)  ■ e% (5.12)

U ^ e = - ( Z N - 6 - c - N ) - e 2A = 3 ( N ~ 2 - c - N ) - e 2A (5.13)

Here, 3N  is the total number of interactions in the system, while 6 • c • N  is the 

number of interaction between unlike particles.

Please note that, using such division of the potential energy for the system with 

c =  0.5, in mixed configuration Upure =  0, owing to all interactions being assumed 

mixed; and in the demixed configuration the surface energy is changed, owing to the 

geometry of the system (Equation 5.14).

= -  (2  ■ N l )  ■ eB (5.14)

As concentration reaches equal proportions for both types of particles, the surface 

changes from being cubic to lamellar with the surface area being equal to two sides 

of the simulation box, hence the change. As system size increases, the critical 

concentration at which geometry of the droplet changes from cubic to prism and 

then to lamellar, also changes. Thus, the phase diagram should change with system 

size. However, this effect is diminished by the small contribution of Usurf  to the total 

potential energy. Analysis of Equations 5.4-5.8 shows that | Usurf  |<C| Udrop+Ubulk |.

Now, with the energies of the four configurations found, let us assume that the 

boundary of the nematic coexistence envelope is symmetrical. Let us also imagine a 

phase diagram with two points which lie on the N-f-N boundary and which correspond 

to c = 0.1 and c = 0.9 and a fixed temperature T. Let us now examine the energy 

difference for c =  0.1 and c = 0.9 between mixed and demixed configurations in the 

system with e =  0.6. For N  — 16 x 16 x 16 the values of the energy are:

U\°m ~  —5014 > l / } g « - 5184 AC/}04 =  C/J& -  U[% «  170 (5.15)

C/}&« -11305 > U % ^  -11475 A O f  =  U™ -  U*£ «  170 (5.16)

As one could expect, in both cases the total energy of the demixed configuration is 

lower then that of the mixed one. Therefore, at any temperature point the system 

with c =  0.1 and c = 0.9 would favour the demixed state to the mixed one, as far as
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the potential energy is concerned. W hat is surprising is tha t the energy difference 

in the two cases is strikingly equal. Therefore, for both concentrations there is a 

virtually identical inclination to undergo demixing. This means tha t the demixing 

envelope presented on the phase diagrams should be symmetrical, if the potential 

energy and the entropy associated with the orientation of the particles is not present. 

Figures 5.50 and 5.51 show tha t it is not the conveniently chosen value of e in 

Equations 5.15 and 5.16, which leads to such results. In Figure 5.50, we present the
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Figure 5.50: The dependence of the potential energy Um and Uq on coupling con­
stant e for the range of concentrations c.

dependencies of both Um and Up on coupling constant e. According to the Figure, 

the energy gap is largest at concentrations around c =  0.5. Also, as e decreases the 

energy gap between mixed and demixed configurations increases significantly. This 

means tha t the potential energy associated with structural changes in the system
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contributes greatly to the size of the demixing envelope. It is also seen from Figure 

5.51, which also shows tha t the energy gap at c =  0.5 increases more rapidly with 

decrease of e, how similar the energy gap is for any pair of concentrations c and 

(1 - c ) .
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Figure 5.51: The dependence of the energy difference A U  = Um  ~  Up on concen­
tration c for the range of coupling constants e.

Figures 5.50 and 5.51 bring us to the conclusion th a t the assymetry of the demixing 

envelope is solely the effect of the anisotropic properties of the system. On the one 

hand the value of the order parameter is always lower for the lower concentrations, 

since the system would contain a higher proportion of less anisotropic particles. This 

causes the potential energy gap between mixed and demixed states to increase more 

rapidly in configuration one. On the other hand, the entropy associated with the 

particle orientation will be higher for configuration one for the same reason - it is a 

less ordered system.

“ I--------1--------1--------'--------1--------1--------1--------'--------1
0.2 0.4 0.6 0.8 1.0

Concentration, c
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From Figure 5.51 it is clear that the demixing envelope will tend to grow with 

decrease of £, encroaching on the phase diagram from the bottom, subject to the 

constraints imposed by curve. Now, applying Equations 5.2 and 5.3-5.14, one could 

speculate about the slope of the Tjn(c) curve and on the size and shape of the 

demixing envelope as e decreases further. Equipped with the phase diagrams of 

systems with e =  0.9 and e =  0.6, one could also predict the merger of these 

two phase boundaries. Uncertainty, however, arises when the Tj n (c) curve meets 

the boundaries of the coexistence envelope: the demixing envelope and the Tjjv(c) 

curve would, presumably, affect the position of each other’s boundaries. But let us 

first abstract from the limits of what we already know from the results. In Figure 

5.52(b) we present an ‘unrealistic’ extrapolation of the phase diagram for the system 

with e = 0.45 (black lines), based on the behaviour of two systems with e =  0.6 

and £ — 0.9. In the Figure we define several regions within the coexistence envelope 

where the prediction of coexisting phases might become problematic. Let us consider 

the highest portion of the coexistence envelope which lies in the isotropic phase 

(shaded area in Figure 5.52(b)). This isotropic-isotropic coexistence region has been 

seen experimentally in several cases [20] (Figure 2.3), and has been predicted by the 

Flory Huggins and the Maier-Saupe theories [123]. As represented in Figure 5.52(b), 

this area presents an obvious inconsistency with the basic rules of constructing a 

phase diagram, but fortunately the entire shaded area as depicted is not possible 

in the present model. The key parameter driving the phase separation of the two 

types is the coupling constant which is hidden in the interaction potential along 

with the angle dependent term _P2(cos0y) (Equation 4.6). In the isotropic phase, 

P2(cos(f)ij) -+ 0 and, therefore, e has a very little influence on the demixing. Thus, 

there is no demixing possible in the system while it stays in the isotropic phase. 

However, as soon as P2(cos0y) ^  0 and continues to rise, the system begins to be 

able to demix. None the less, we cannot rule out this region completely from our 

predictions. The system with parameters in the middle of the shaded area always 

contains the possibility of being in either, on the one hand, the demixed isotropic 

(particles-B-rich) and nematic (particles-A-rich) phase coexistence or, on the other, 

the homogeneous isotropic phase. The only certainty is that we cannot observe I+ I 

coexistence in the system, for the reasons stated above. Therefore we do not expect 

to see the I+I region on the phase diagram at all, but there may be distortions of 

the Ti n (c) curve caused by the presence of the demixing envelope. The remaining 

area of the coexistence envelope is split horizontally, as is shown by the dashed line
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in Figure 5.52(a). This line passes through the I-N transition temperature of the 

B-rich component, and represents the boundary of N+N demixing.

Before we comment further on this, let us consider the measured phase diagram for 

the system with e = 0.45, which is shown in Figure 5.27 and faded image of which 

is included in Figure 5.52(b) for convenience. As is expected, the Tjn(c)  curve is 

sloped, meeting the transition temperature of the pure component B as c —»■ 0. The 

Tin{c) curve is still close to having linear dependence for most concentrations. It 

deviates slightly from this, however, in the region where the Tjjv(c) curve meets 

the coexistence envelope. In the region of low concentrations (c < 0.1), T/jv(c) 

exhibits a significant change in its behaviour, although as c —> 0 it approaches 

the transition temperature T^y0 45 =  Tjyj1,0 • 0.452 as expected. A phenomenon 

perhaps more interesting and unexpected can be observed on the X j j v ( c )  curve at 

0-5 $  c ~  1-0 in Figure 5.27. Although there is no evidence of demixing or any 

other obvious cause, the measured curve appears to be slightly higher than that 

predicted by our extrapolation (Figure 5.52(a)) and by the work of Humpries et 

al [25]. This phenomenon may be related to the change in the short range radial 

distribution function, which we showed in Figure 5.24 (page 89). Except for this 

distortion to the T/w(c) curve, the observed phase diagram supports our predictions 

regarding the shaded area of the coexistence envelope, i.e. there is no demixing in 

the isotropic phase. Predictions about the horizontal line at approximately T ^ j0A5, 

which separates the demixing envelope into two phase coexistence regions, are also 

consistent with the obtained results. However, the boundary between these two 

regions is somewhat blurred (Figure 5.27), for the reasons discussed earlier.

In the area of low concentrations (c < 0.1), we obtained points for the phase diagram, 

which were taken at smaller concentration intervals. This was done to clarify the 

small region of nematic phase stability (Figure 5.52(b)). On the measured phase 

diagram (Figure 5.27), there is a cross-point, where the near-horizontal line for 

the B-rich I-N transition crosses the boundary of the demixing envelope (point C  in 

Figure 5.52(b)). When the concentration is lower than point C, the more anisotropic 

particles (A) do not have much influence on the behaviour of the B-rich system. As 

a result, the system undergoes this transition virtually at temperature Tjyj0-45. At 

lower temperatures, the system then demixes according to the rules described earlier 

(Equations 5.3-5.14). Alternatively, when the concentration is higher than the point 

C , the ratio of anisotropic particles (A) is sufficient for the system to demix first,
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Figure 5.52: Phase diagrams for the system with e = 0.10(a) and e = 0.45(b). The 
black solid line represents the T[n (c) unaffected by the N+N envelope. The black 
dashed curve is the speculated demixing envelope unaffected by the I-N transition. 
The black dashed horizontal line represents the boundary between I+N and N+N 
regions. The green dashed line shows the slope of the measured T[N(c) curve in the 
region to the left of point M.
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only at lower temperature, does the B-rich isotropic phase in the already demixed 

system undergo the I-N phase transition described in previous paragraphs. Closer 

to the point C we observe ambiguities between these transitions, shown as green 

points on the diagram (Figure 5.27).

The three remaining systems, with coupling constants e = 0.30, e =  0.1, and e — 0.0, 

exhibit similar behaviour to the system with e — 0.45. If we compare the phase 

diagrams of all four systems (Figures 5.27, 5.32, 5.38, and 6.31) we can deduce the 

following. The Tin(c) curve is virtually the same in all four cases. The slope of the 

curve remains at the same level for all systems with e < 0.45 (Figure 5.52(a)). At 

approximately c <  0.05, the T/^r(c) curve changes dramatically, approaching TfN as 

c —> 0 for all systems with e < 0.45. In other words, if we denote the e value at 

which the demixing envelope merges with the Tjjv(c) curve as £ COup-, the slope of the 

Tin(c) curve remains unchanged for all lower values e < £coup. As a consequence, 

the measured Tjw(c) curve to the left of point M  deviates increasingly from the 

predicted solid line as e decreases, since the Tjjy(c) curve remains almost in the 

same place regardless of the value of e (Figures 5.52(a),(b)).

In addition to the simulations already presented in this Chapter, we investigated the 

system at a number of other values of £ to determine the value of £COUp• From these 

we found the value of £C0Up to be somewhere between 0.50 and 0.55. Also, we studied 

the slope of the Tjat(c) curve and its behaviour before and after the coupling. As 

was mentioned before, the slope of the T/#(c) curve remains virtually unchanged 

after it meets the demixing envelope (green dashed line). Therefore, it may be that 

the value of this slope could be related to the value of £ at which the coupling of the 

Ti n (c) curve and the demixing envelope occurs. Taking into account that it is the 

part of the Tjjv(c) curve on the left of the point M  which is affected by the demixing 

envelope, we extrapolate this slope to the temperature axis and find that it crosses 

the c = 0 abscissa at T  «  0.30 (green dashed lines in Figures 5.52(a),(b)). This 

temperature corresponds to the I-N transition temperature of the pure component 

with s ~  \ / t £=*:(y ~  0-52, which is consistent with the value found for £COUp.

To conclude this discussion, we would like to say a little more about the system 

with e = 0.0. This particular case merits individual investigation. The system with 

£ = 0.0 represents a mixture of particles with different symmetries, whereas all other 

cases involve particles of the same symmetry. From Figure 6.31 we see only three re­
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gions. The region that is missing is N+N coexistence, which must necessarily vanish 

as s -* 0.0. We can see also that, except for a small nematic island existing at high 

concentrations and high temperatures, the system exists either as a homogeneous 

isotropic phase or as coexisting isotropic and nematic phases. This is consistent 

with previous simulation results and the molecular field theory [177]. Although this 

binary mixture of particles with spherical and cylindrical symmetries is the simplest 

nematogen mixture, molecular field theory predicts that it will exhibit an intrigu­

ing phase behaviour. For example, for the highest concentrations (c > 0.8), the 

phase sequence is predicted to be: isotropic, I+N coexistence region, nematic, and 

re-entrant I+N coexistence regions [177,179]. Below this concentration, however, 

the I+N coexistence region which forms from the isotropic phase is predicted to 

be stable at all lower temperatures. It is difficult to test these predictions exper­

imentally, since most real systems crystallise before the coexistence region can be 

formed for the required concentrations. However, there have been attempts to test 

the molecular field theory of the re-entrant I+N coexistence region by a computer 

simulation study [177]. To discuss the results presented in Figure 6.31 and compare 

them with [177] we must keep in mind the following. The accuracy of the position 

of the phase boundaries in the vicinity of the transition temperatures (namely, I- 

region versus I+N coexistence region) is very poor, owing to the weakening of the 

first-order I-N transition by the binary mixture. The problem with the approaches 

described above is that they do not involve direct measurements of the free energy 

function, which governs phase equilibria. An important advancement in such calcu­

lations is the finite-size scaling technique described by Lee and Kosterlitz [187,188], 

which allows to calculate phase boundaries more accurately. This approach was ap­

plied to the Lebwohl-Lasher Model by Zhang et al [173]. However, even using such 

techniques, the re-entrant phase behaviour could not be supported with certainty, 

either in [177], or in our simulations (Figure 6.31). This ambiguity is partly due to 

the measurement methods involved, and partly to the effect of isotropic dilutant on 

the strength of the transition, as discussed in the previous paragraph. Nevertheless, 

from the P2 data and general information on the first-order transition, we can con­

clude that the green area in Figure 6.31 represents I+N coexistence; the observed 

behaviour may be due either to the sole effect of the transition, or to the combined 

effects of the transition and demixing.
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The results discussed in this chapter represent an extensive investigation of the 

Lebwohl-Lasher model and give a good overview of its phase behaviour. Although 

the possible re-entrance of the I+N coexistence region was demonstrated using a 

range of different approaches, further study of the system is required, in which the 

coexistence regions can be clearly defined. In next Chapter we will discuss the 

phenomenon of phase re-entrance further in the light of simulations performed in an 

alternative ensemble.
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Chapter 6

Results And Discussion. 

Bi-Dispersed System . NA^VT.

In this Chapter we present and discuss the results of the phase coexistence be­

haviour of binary system, obtained by performing Monte Carlo simulations on the 

Lebwohl-Lasher lattice model in the Semi-Grand Canonical Ensemble (NA//VT). 

The rationale of this ensemble was discussed in Section 4.1.2. The model basis is 

similar to that presented in the previous Chapter and is described in Chapter 4.

For consistency with the results presented earlier, we used for most calculations a 

system in which the cubic simulation box consisted of sixteen sites on each of its 

sides (i.e. a system size of 16x16x16 particles). All results presented in this Chapter 

were obtained using this size unless otherwise stated. The correlation length of run 

for the given system was estimated to be around 5,000 run steps, which approxi­

mately is the same as the number of run steps required for the system to equilibrate. 

Therefore, for the calculation of the average preferred concentration (c(A/j,))nahVT, 

runs with 20,000 steps per point were performed, allowing an additional 5,000 steps 

for equilibration (see Section 4.4.5). Generally, this number was also adequate for 

the calculation of the second-rank order parameter ^ ( A ^ nahvt , used to identify 

nematic ordering, although it had to be doubled at low T. Phase boundaries were 

determined using the (c(Afi))NAnVT and V { c ) ^ =Const data. For the calculation of 

concentration histograms V ( c ) ^ =Const̂  the number of steps per point was increased 

to 3,000,000. The temperature step for most runs was AT =  0.1 or AT =  0.05, 

except for certain systems where AT was reduced to 0.01 in a certain temperature
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range. The step of chemical potential difference for most calculations was at least 

5A n  = 0.0005. The concentration histograms V ( c ) ^ =const were calculated for spe­

cific temperature and chemical potential difference values (usually in the vicinity of 

the transition), guided by (c(An))n a^vt  calculations.

In Section 6.1 we give the system evaluation and explain how the phase diagrams, 

presented in subsequent sections, were constructed. In the next three Sections we 

present results for eight binary systems with coupling constants e = 0.9, 0.6, 0.55, 

0.53, 0.52, 0.50, 0.45, 0.0. The lower the coupling constant e, the less anisotropic 

is one of the components of the binary mixture in the system. The systems with 

different coupling constants were grouped according to the topographies of their 

two phase coexistence regions I+N and N+N. In Section 6.2 we present results for 

the systems with coupling constants e — 0.9,0.6,0.55. In these systems the two 

coexistence regions are widely separated from each other. In Section 6.3 we present 

results for another three binary systems with coupling constants e = 0.53,0.52,0.50. 

These systems exhibit the two coexistence regions as they merge. In Section 6.4 

we present results for the remaining two binary systems with coupling constants 

e = 0.45,0.0. Both of these systems exhibit a single coexistence region.

The results presented for each system are divided into three main parts. In the first 

part, we present calculations of the average preferred concentration and its depen­

dence on temperature T  and chemical potential difference A/x, (c(T, A/x))jVA/zVT- In 

the second part we present the results of the second-rank orientational order pa­

rameter (P2)NAfiVT and its dependence on temperature T  and chemical potential 

difference A/i, {p2(T, A/x))ata^vt- In the third and final part, we present the phase 

diagram of the system, which is based on the results presented previously.

In Section 6.5 of this Chapter we discuss the results presented in sections 6.1-6.4 and 

present additional results to clarify some particular characteristics of the behaviour 

of the system, which have emerged from the results presented in sections 6.1-6.4. The 

discussion in Section 6.5 proceeds in the following order. First in this section we make 

general comments on (c(T, A[i ))nahVt  isotherms, presented in earlier sections of the 

Chapter 6. These are discussed in terms of theoretical Van der Waals loops [189, 

190], hysteresis effect, etc. Then, the coexistence boundaries of phase diagrams are 

discussed in three parts, starting with T/^(ci,C 2 ) coexistence region (Section 6.5.1), 

then nematic-nematic coexistence region (Section 6.5.2) followed by the discussion of
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single coexistence region, coupled from previous two (Section 6.5.3). In Section 6.5.4 

we present alternative view of the phase behaviour. Discussion is based around s-T  

phase diagrams. The Chapter concludes with summary of the discussion of NcVT 

and NA/iVT data (Section 6.5.5)

Since all observables presented in this Chapter were obtained at constant N A f i V T , 

we omit the index (NAf i VT)  in our notation. In this Chapter, the more anisotropic 

particles are indexed as particles A and the less anisotropic particles, as particles 

B. In all the systems covered in this Chapter, only the anisotropy of particles B is 

subject to change.

6.1 System  Evaluation And Introduction To The 

Results

In the Semi-Grand Canonical Ensemble, its thermodynamic function, grand poten­

tial £7, has a unique minimum for any value of A/i and there is no A/i that corre­

sponds to an area of coexistence. This makes it very sensitive to phase boundaries: 

a slight change of A/i can prompt the state point to move rapidly from one minimum 

to another, as the system undergoes a transition from one phase to another. How­

ever, owing to the size of the system, concentration fluctuations can cause the system 

to oscillate from one minimum to another and back again in a single simulation with 

A[i = const. Therefore, in the vicinity of a narrow coexistence region, concentra­

tion histograms can show two peaks, corresponding to two preferred concentrations. 

These concentration values provide the coordinates for the coexistence boundaries 

on the phase diagram for a given temperature (Figure 6.1(a)). The phase diagram 

in this case was plotted against the same two parameters as for the NcVT Ensemble 

(Chapter 5). However, the underlying approach adopted in this Chapter determines 

phase boundaries by scanning the concentration indirectly (e.g. by changing A/i), 

so that the concentration is not fixed, as was the case in the Canonical Ensemble. 

The determining of phase boundaries using this different approach will enable us to 

check the results against those obtained by means of the NcVT Ensemble, and to 

clarify ambiguous areas of the phase diagrams based on those calculations.
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Figure 6.1: Construction of a phase diagram using (c(A / i ) )  and V(c)  data.

According to the literature [178], there is in the N A / i V T  ensemble a value of A iicoex 

a t which two probability peaks on the concentration histogram can be observed, 

if in fact coexistence region exists for the given set of parameters (T, e). As was 

mentioned earlier, the positions of these two peaks give the coordinates of the coex­

istence boundary for the given T  and e. A difficulty arises, however, when one aims 

to find such a value of A / i c o e x ,  which exists in a very narrow region of A / i .  As we
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will show in subsequent sections, for low values of T  and e the accuracy to which 

AHcoex is required is approximately 0.005, while the range of A/x required to cover 

the concentration space 1 to 0 is of the order of 2.0. To search the space of such mag­

nitude (at least 4000 A/x-points for each value of T  and e, allowing a  =  3,000,000 

steps for each point for good statistics) is an inordinately time-consuming proce­

dure. With the reduction of a the number by one order, the double-peak feature 

cannot be resolved. It is also pointless measuring V(c) away from the coexistence 

as the distribution is of single Gaussian form. In order to utilize our efforts we used 

significantly shorter runs (a in the order of 2 0 , 0 0 0  steps per point); this procedure 

gives limited results as far as the concentration histograms are concerned, but yields 

a satisfactory estimation of the concentration dependence on A/x. The dependence 

(c(A/x)) is then plotted.

At a high constant temperature, (c(A/x)) exhibits a gradient discontinuity at A ficoex 

(similar to that shown in Figure 6.3(b)). A ficoex was determined from the maximum 

of (similar to that shown in Figure 6.3(a)). Then, a simulation with a

large number of steps was performed to identify the two preferred concentrations (ci 

and C2 ) for a constant value of A/x =  A/xcoex from the two peaks in the measured 

distribution V(c) (Figure 6 .2 ). To check the credibility of the method and of the 

model as a whole, we attempted to replicate the results from the work of Poison 

and Burnell [178]. The paper does not explain how the specific value of A/xcoex was 

determined; nor does it give the value A/xcoex at which two peaks were observed. 

However, it specifies the temperature T  «  0.6738 (assuming Tj f f  =  1.123 in [178]) 

and the coupling constant e ~  0.632456 (equivalent to that in [178], caa/cbb =  0.4, 

Ta a  = 7 bb, T / T $  = 0 .6 , L = 25). Their results for this set of parameters were 

Ci ^  0.33 and c2 ~  0.39. In Figure 6 . 2  we present a concentration histogram for the 

system with e =  0.632456, T  =  0.6738, and A ficoex = —0.9900. The value of A ficoex 

was determined as max(d̂ ^ ). From the Figure we note peak concentrations that 

are in good agreement with data from [178]. Any deviation in the concentration 

values might be result of original value of T^j  7  ̂ 1.123 in [178].

However, this method was shortly abandoned, owing to still demanding require­

ments of the computational power available. Instead, another criterion was used 

to determine ci and C2 (Figure 6.3). The concentration values were determined as 

cross-points of a vertical line (A/xcoex) and two lines tangent to the two slopes of the 

(c(A/x)) on the both sides from the vertical line. The coordinate for the vertical line
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Figure 6.2: Distribution of the preferred concentration for the system with e =  
0.632456, T  =  0.6738, L = 25. 3,000,000 steps. Distribution values were normalized 
to set the area under the curve to be 1. Two peaks are observed for A/i =  —0.99. 
The positions of the two peaks are c\ ~  0.329 and c2 «  0.386.

was still given by the position of the maximum of • Figure 6.3 shows the feasi­

bility of such a method, comparing obtained values of c\ and C2 with these obtained 

using histogram distribution (Figure 6.2). The nature of V(c)^fl distribution is such 

that the Gaussian changes its position continuously until at certain range of A/i two 

Gaussians at two different positions (ci and C2 ) start to change their hight relatively 

rapidly, so that discontinuity on the (c(A/i)) curve occurs. Thus, it is acceptable to 

use the cross-points shown in Figure 6.3, as they approximately represent c\ and C2 , 

which otherwise could be obtained from the concentration histograms.

For low temperatures the discontinuity is very abrupt. We were thus able to deter­

mine the two preferred concentrations directly from the (c(A/i)) dependence, c\ and 

c2 (Figure 6.1(c)). These concentrations relate to the values of A/i! and A/i2, which
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Figure 6.3: (b) Two preferred concentrations determined as cross-points of the ver­
tical line (A /icoex =  —0.9915) and tangents to the slopes of the (c(A ^)) curve on 
both sides of the discontinuity. System with e =  0.632456, T  =  0.6738, L =  24, 
1,500 steps, (a) A /j,coex is determined as a maximum of the numerical differential of 
the (c(Afj,)) curve, along with smoothing ±20 points.
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are close to A iicoex. For convenience, we note these A/q and An 2 as one point, 

A iicoex — A/X2+Am; and set values A/i2 <  A/q, c2 > c\. From these, we can deduce 

the coexistence boundaries (Fig.6.1(b)).

Therefore we conclude this section with the following. Using the constant NA/iVT- 

Ensemble we can resolve concentration probability distribution V(c) at a range of 

temperatures (Fig.6.1(a)). From these, we can deduce the coexistence boundaries on 

the phase diagram (Fig.6.1(b)) for a coexistence region that is narrow enough. The 

peaks of V(c) histograms show ‘exact’ boundaries of coexistence for isotropic and 

nematic phases, C\ and c2 (Figures 6.1(a) and 6.2). These concentrations found to be 

in good agreement with those obtained by more efficient approach shown in Figure

6.3. These results are consistent with other works [178]. When the energy barrier 

between the two peaks becomes too high or distance between peaks too large, C\ 

and c2 were estimated directly from (c(A/i)) curve as points of sharp discontinuity 

in the curve (Fig.6.1(c)). In the latter case, the hysteresis effect becomes more 

evident and should be taken into account when determining coexistence boundaries 

(will be discussed in Section 6.5). Using these we constructed phase diagrams as 

it is shown in Figure 6.1. As has been explained at the beginning of this Chapter 

and in Chapter 4, (c(A/i)) does not reveal the mesophases of the system for given 

parameters. Thus, in Sections 6.2-6.4 we also present results of the dependence of 

the second-rank orientational order parameter on A/i as an auxiliary observable.

6 .2  Systems with e =  0.90, e —  0.60, e =  0.55

The first system investigated is the binary system with coupling constant e =  0.9. As 

was shown in the previous Chapter, this system is the closest to its single component 

equivalent.

The first observable to be presented is the average preferred concentration of the 

mixture (c( A/i)) and its behaviour with a change of the chemical potential difference 

A/i. In Figure 6.4 we present such dependencies taken at different temperatures in 

the range 0 < T  < 0.2.

At the lowest temperature on the graph, T  = 0.01, the value of the concentration 

approaches 1 and remains unchanged as A/i decreases from its highest value until
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A n «  —0.545. Then, the concentration decreases rapidly over a short range of A/i 

(—0.545 >  A/i > —0.590) with a maximum gradient at A/i «  —0.570. Between 

A/ii ~  —0.585 and A/i2 ~  —0.560, the value of c decreases dramatically, with the 

corresponding values of concentration being c\ ~  0.013 and C2 ~  0.978 respectively.

Chemical Potential Difference, A jll

Figure 6.4: Dependence of the preferred concentration on A/i. 5=0.90. Different 
curves represent runs at different tem peratures in the range 0 < T  < 0 .1 .

As the tem perature is increased further, the c(A/i) curve becomes continuous at 

T  «  0.04. For tem peratures T  > 0.1, the (c(A/i)) curve takes on a more linear 

shape as the tem perature increases. In Figure 6.5 we present the (c(A/i)) da ta  for 

the range of tem peratures 0.1 < T  < 0.9. According to the results presented in the 

previous Chapter, one would expect to see a discontinuity in the gradient of (c(A/i))
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in the range of tem peratures 0.93 < T  <  1.15. Thus we present another graph of 

(c(A/z)) curves taken in tha t region of tem peratures (Figure 6.6).
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Figure 6.5: Dependence of the preferred concentration on A \i. e=0.90. Different 
curves represent runs at different temperatures.

For these tem peratures no discontinuities are apparent on (c(A/x)) isotherm for a 

wide range of T.  For this reason we performed another set of simulations at constant 

A//. In such a method, the thermal dependence of the preferred concentration 

((c(T)A^=const)) is expected to exhibit a discontinuity at Ci(T) and c2(T). This 

method can be more sensitive than th a t of constant tem perature, since the state  

point moves by a different path (Section 6.5). In Figure 6.7 we present such (c(T)) 

curves, measured at different values of A/r.

159



CH APTER 6. RESULTS AN D  DISCUSSION. BI-DISPERSED SYSTEM . N AfiV T .

1.0 

0.9 

0.8 

S  0.7

O 0-6

o
o 0.4 
O
<D
Sf 0.3
©>< 0.2 

0.1 

0.0
-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Chemical Potential Difference, A ji

Figure 6.6: Dependence of the preferred concentration on A/i. e=0.90. Different 
curves represent runs at different temperatures.

The next Figure (6.8) shows the dependence of the preferred orientational order 

parameter on A/i. This observable changes its value relatively sharply at A/icoex, 

which then allows estimation of the approximate concentration (from Figure 6.6) at 

which the ordering transition occurs for a given temperature.

For temperatures T  < 0.91 the order parameter changes continuously from non­

zero value to another, lower, non-zero value as A/i decreases. For the small range 

of temperatures 0.92 < T < 1.12 the order parameter changes from a non-zero 

value to a close-to-zero value as A/i decreases. The change in order is greatest at 

temperatures around T  ^  1.02 ±  0.06. The isotropic-nematic coexistence region is 

believed to be at its widest in this range of temperatures (Section 6.5.1), however
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we were not able to determine c\ and c2 from the (c(A/i)) data or unambiguously 

determine the position of C2 from the (c(A(T)) , as was shown earlier. We will discuss 

this isotropic-nematic coexistence region further in the beginning of Section 6.5 and 

Section 6.5.1.
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Figure 6.7: Dependence of the preferred concentration on T. £=0.90. Different 
curves represent runs at different chemical potential difference Afi =  const.

From the data presented above we were able to construct an approximate phase 

diagram (blue-filled circles in Figure 6.9). Black-filled squares represent data from 

the NcVT Ensemble discussed in the previous Chapter. A comparison and discussion 

of the two sets of results will be presented in Section 6.5.

Let us comment first of all on the isotropic-nematic transition (T jtv(c) ) .  It is as­

sumed that the system undergoes an I-N transition at the temperatures of its pure
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components at both ends of the concentration axis (c =  0.0 and c =  1.0), i.e. 

Ti n (c = 0.0) «  0.93 and T/yv(c =  1.0) «  1.15 (the temperatures from the average 

energy data of NcVT Ensemble (page 59), higher than that, predicted in [177], tak­

ing into account the system size), 7/at(c =  0.0) «  0.93 and TIN(c = 1.0) ~  1.15. The
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Figure 6.8: Dependence of the preferred concentration on A/z. £=0.90. Different 
curves represent runs at different temperatures.

NA/zVT order parameter data (Figure 6.8) agree on these values within ±0.01. Be­

low Ti n (c = 0.0) the order parameter is high and above Tj^{c  =  1.0) it remains close 

to zero throughout the entire concentration range. At concentrations in between, 

the dependence of the T/at(c) is approximately linear in both ensembles (NcVT and
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NAfiVT).  The system undergoes an I-N transition at all concentrations, however 

the coexistence boundaries remain unclear.
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Figure 6.9: Phase diagram for the system with £=0.90. Blue filled circles represent 
the data points obtained from NA/j,VT  Ensemble (Figure 6.7). Filled black squares 
represent the data points obtained from N c V T  Ensemble. Dotted line represents 
approximation based on the data obtained from both ensembles.

At considerably lower temperatures we observe a coexistence region. This corre­

sponds to the demixed system in which two nematic phases, each rich in one of the 

two components of the mixture, coexist. This area of the phase diagram is very 

small and does not extend for temperatures greater than T  & 0.06.

The phase diagram is found to comprise four areas. In the region of high tempera­

tures the top part of the diagram is divided by the Tj n (c) coexistence region (with 

undetermined boundaries) into isotropic (above TIN(c)) and nematic (below T / a t ( c ) )
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Figure 6.10: Dependence of the preferred concentration on A fi. £=0.60. Different 
curves represent runs at different temperatures.

phases. The nematic region extends down to low temperatures where it meets the 

nematic-nematic coexistence region. The nematic-phase region in the middle occu­

pies most of the phase space considered (Fig. 6.9).

The behaviour found here for the system with e =  0.90 is therefore consistent with 

that obtained using the NcVT Ensemble.

We move now to the system with the coupling constant e =  0.6. The behaviour 

of the (c(A//)) curves for this system differs significantly from that for the system 

with e = 0.9. There are new features not previously seen, the first of which is that
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T A ficoex Cl c2 Ac
0.1 -1.885 ±  0.005 0.00 ±0.01 0.98 ±0.01 0.98 ±  0.02

0.15 -1.783 ±0.005 0.04 ±  0.01 0.91 ±0.01 0.87 ±0.02
0.2 -1.705 ±0.005 0.33 ±  0.01 0.68 ±  0.01 0.35 ±  0.02

0.25 -1.647 ±0.005 N /A N /A N /A
0.3-0.4 N /A N /A N /A N / A

0.45 -1.759 ±0.005 0.06 ±0.01 0.08 ±0.01 0.02 ±  0.02
0.5 -1.498 ±0.005 0.12 ±0.01 0.18 ±0.01 0.06 ±  0.02
0.6 -1.159 ±0.005 0.24 ±0.01 0.39 ±0.01 0.15 ±0.02

0.65 -0.995 ±0.005 0.32 ±  0.01 0.51 ±0.01 0.19 ±0.02
0.7 -0.822 ±0.005 0.39 ±0.01 0.57 ±0.01 0.18 ±0.02

0.75 -0.625 ±  0.005 0.47 ±0.01 0.60 ±0.01 0.13 ±0.02
0.8 -0.397 ±0.005 0.54 ±0.01 0.64 ±  0.01 0.10 ±0.02

0.85 -0.145 ±0.005 0.61 ±  0.01 0.66 ±0.01 0.05 ±  0.02
0.9 0.156 ±0.005 0.68 ±0.01 0.72 ±0.01 0.04 ±  0.02

Table 6.1: Table of coexistence concentrations (ci and C2 ), their difference (Ac), the 
corresponding chemical potential difference (A/zcoex) as a function of temperature 
(T). The system with e — 0.6. Criteria of defining these were set out in Section 6.1.

curves taken at different temperatures vary not only in their slopes, but also in the 

position at which the slope is steepest on the A/z axis. The second novel feature 

is that gradient discontinuities in the (c(A/z)) curves occur over a larger range of 

temperature values.

Let us consider the curve taken at the highest temperature on the graph , T  =  0.9. 

Starting from the highest value of A/z, the preferred concentration of the system is 

high (for example, for Afi = 0.40, c ^  0.817). As A/i falls the concentration of the 

system decreases continuously. Then, at A ficoex «  0.156, the concentration changes 

quite rapidly with change in A/i, after which the gradient changes and the con­

centration reverts to approximately linear behaviour. In the vicinity of these rapid 

changes (Aficoex «  0.156), the system seems to have two preferred concentrations for 

the same value of A/i. As the temperature decreases, the discontinuity in (c(A/z)) 

shifts to progressively lower values of A/i. This discontinuity relates to the narrow 

coexistence concentrations, equivalent to these occurring at temperature T  = 0.9. 

The difference between these concentrations varies with the temperature, but overall 

they both move towards lower values as the temperature decreases.

Initially, as the temperature is decreased, the distance between the two preferred 

concentrations Ac — C2 — C\ increases, reaching its maximum value at T  «  0.6.
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Then Ac decreases and eventually vanishes as the temperature approaches 0.4. For 

the interval of temperatures 0.25 < T  < 0.4, the slope of the (c(A/i)) curve is finite 

from c =  1.0 to c = 0.0 as A/i decreases.

<
<N

Ph

cd
cd
Ph
u<D

'dU
O
<D
W)cduD
>

<

T=0.60
T=0.65
T=0.70
T=0.75
T=0.80
T=0.85
T=0.90

I 1 I 1 I 1 I 1 I 1 I ' I 1 I 1 I 1 I 1 I ' I
-2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Chemical Potential Difference, A )i

Figure 6.11: Order Parameter dependence on A/i for the system with £=0.60.

The discontinuity in the (c(A/i)) curve reappears with a further decrease in the 

temperature at T  «  0.2. However, the difference between the two preferred con­

centrations, Ac, is much greater than that observed for higher temperatures. As 

T  —>0.0 the distance between the two preferred concentrations Ac grows, with 

Ci —> 1.0 and c2 —> 0.0. The values of these concentrations are presented in Table 

6. 1.
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The variation of the order parameter with A fi is shown in Figure 6.11. The different 

curves represent the order parameter for different temperatures. Let us consider the
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Figure 6.12: Phase diagram for the system with £=0.60. Blue filled circles represent 
the data points obtained from N A f iV T  Ensemble. Filled black squares represent the 
data points obtained from N c V T  Ensemble. Dotted line represents approximation 
based on data obtained from both ensembles.

curve taken at the highest temperature on the graph , T =  0.9. Starting from the 

highest A/i, the preferred order parameter of the system is high, corresponding to 

the nematic phase (for example for A/i = 0.40 (P2) ~  0.548). As A/i falls, the order 

parameter of the system decreases with a steady gradient. Then, at Afi & 0.156, as 

the concentration curve shown in Figure 6.10 decreases rapidly, so (P2(A/i)) changes 

quite rapidly, approaching zero. For temperatures in the range 0.45 < T < 0.9, 

the order parameter similarly changes rapidly from a non zero to a close-to-zero
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value at the previously identified A ficoex(T) values. At temperatures in the range 

0.25 < T  < 0.40 the value of (P2(A//)) decreases continuously with decrease in 

A/i, but remains non-zero throughout the entire range of A/i. At temperatures 

T  < 0.20, the order parameter changes rapidly from one non-zero value to another, 

lower, non-zero value as A/i decreases.

From the data presented above we were able to construct the phase diagram (blue- 

filled circles) shown in Figure 6.12. The black-filled squares in this figure represent 

equivalent data from the NcVT Ensemble discussed in the previous Chapter. A 

comparison of the two sets of results will be presented in Section 6.5.

Let us comment first of all on the isotropic-nematic coexistence region (Tnv(ci,c2) 

region). It is assumed that the system undergoes an I-N transition at the temper­

atures of its pure components at both ends of the concentration axis, i.e. Tin(c  =  

0.0) «  0.41 and TIN(c = 1.0) «  1.15 (from NcVT Ensemble). At intermediate 

concentrations, the variation of TAv(ci,c2) is approximately linear. The system un­

dergoes an I-N transition at all concentrations. The order parameter data for this 

system indicate the presence of the isotropic and nematic phases, respectively, above 

and below the T/at(ci,c2) region. The c(Afi) data indicate that the system is ho­

mogeneous at temperatures above and below the transition throughout the entire 

concentration range. The region is wider in the middle of the diagram and narrows 

towards concentrations c =  0.0 and c = 1.0.

However, at considerably lower temperatures we observe another coexistence region. 

This corresponds to the demixed system in which two nematic phases, each rich in 

one of the two components of the mixture, coexist. This area of the phase diagram 

remains relatively small, but its shape appears to be slightly asymmetric, C\ on the 

left of the diagram being further from the centre than c2 on the right (Fig. 6.12).

The diagram comprises four areas. In the region of low concentration at the top 

of the diagram the isotropic phase has extended into a lower temperature region, 

as compared to the system with e = 0.9. However, the nematic mixed phase still 

occupies most of the phase space considered (Fig. 6.12) with the narrow lens-shaped 

region (isotropic-nematic coexistence) separating this phase from the isotropic phase 

above. The bottom part of the diagram contains an increased nematic-nematic 

coexistence region. The behaviour of the system with e = 0.60 is consistent with
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Figure 6.13: Dependence of the preferred concentration on A/i. £=0.55. Different 
curves represent runs at different temperatures.

that found for the system with e — 0.90, the differences, however, being the size 

of the demixing envelope of N+N coexistence and the fact that the I-N coexistence 

region, not seen in the system with e =  0.90, became clearly evident in the system 

with e - 0.60.

We move now to the system with the coupling constant e =  0.55. In Fig.6.13 we 

present the (c(A/i)) curves obtained at various temperatures for this system.

The behaviour of the (c(A/i)) curves for this system differs only slightly from that 

for the system with s =  0.6, the values of Ancoex for high temperature system 

being at slightly higher values of A/i. Starting from the highest temperature on 

the graph, T  = 0.9, the preferred concentration of the system for A/i =  —0.40 is
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T A/icoex Cl c2 Ac
0.2 -1.862 ±0.005 0.05 ±0.01 0.89 ±0.01 0.84 ±0.02
0.25 -1.770 ±0.005 0.19 ±0.01 0.78 ±  0.01 0.59 ±  0.02
0.35 -1.628 ±0.005 N /A N /A N /A
0.40 -1.610 ±0.005 0.07 ±0.01 0.15 ±0.01 0.08 ±  0.02
0.45 -1.463 ±0.005 0.11 ±0.01 0.37 ±0.01 0.26 ±  0.02
0.5 -1.339 ±0.005 0.16 ±0.01 0.44 ±0.01 0.28 ±0.02

0.55 -1.206 ±0.005 0.21 ±0.01 0.48 ±  0.01 0.27 ±0.02
0.6 -1.071 ±  0.005 0.28 ±0.01 0.52 ±0.01 0.24 ±  0.02

0.65 -0.914 ±0.005 0.35 ±0.01 0.54 ±0.01 0.19 ±0.02
0.7 -0.743 ±  0.005 0.42 ±  0.01 0.57 ±0.01 0.15 ±0.02

0.75 -0.555 ±0.005 0.49 ±  0.01 0.61 ±0.01 0.12 ±0.02
0.8 -0.339 ±  0.005 0.57 ±0.01 0.67 ±0.01 0.10 ±0.02
0.9 0.218 ±  0.005 0.70 ±  0.01 0.75 ±  0.01 0.05 ±0.02

Table 6.2: Table of coexistence concentrations (ci and C2 ), their difference (Ac), the 
corresponding chemical potential difference (Ancoex) as a function of temperature 
(T). The system with e =  0.55. Criteria of defining these were set out in Section 
6 . 1 .

c «  0.828. As A fi decreases, the concentration of the system falls continuously 

until, at A/i «  0.218, the (c(A/i)) curve exhibits a discontinuity in its gradient with 

preferred concentrations Ci «  0.718 and C2 ~  0.746. At lower temperatures this 

discontinuity becomes more marked. At T =  0.7, for example, the curve changes 

abruptly from C2 ~  0.557 to C\ «  0.425 at A\xcoex «  0.745.

As the temperature continues to decrease, the discontinuity in the (c(A/i)) curve 

occurs at successively lower values of A/i. The two preferred concentrations, which 

correspond to each discontinuity A/icoex(T), are different for each temperature. The 

difference Ac between these concentrations varies with the temperature, but overall 

both concentration values decrease as the temperature decreases. Initially, as the 

temperature is decreased, Ac  increases, approaching its maximum value of Ac «  

0.283 at temperature T  =  0.5. Ac then decreases and eventually vanishes as the 

temperature approaches 0.35. In the interval of temperatures 0.30 < T  <  0.35, the 

slope of the (c(A/i)) curve remains finite from c =  1.0 to c =  0.0 as A/i decreases.

The discontinuity in (c(Afi)) appears again at temperature T  «  0.25, with the 

difference between the two preferred concentrations being Ac =  0.622. As T  —»• 0.0 

Ac grows, and approaches its maximum (Ac =  1.0).
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This behaviour is generally the same as that shown in Figure 6.10 for the system 

with e = 0.60. We observe a small values for Ac at high temperatures and larger 

ones at low temperatures. As in the previous cases, there are temperatures at 

which no discontinuity is found across the entire A/x region. However, the range of 

these temperatures is smaller than that found previously (0.3 < T  < 0 .34). The 

high temperature discontinuity follows the tendency observed in previous systems. 

The concentrations relating to A/icoex(T) depend more strongly on the changes in 

temperature, compared with those for systems with higher e. In addition, in the 

region of temperatures 0.4 < T  < 0.7 the width Ac increases to a greater extent, 

compared to the previous system. These concentrations are set out in Table 6.2.
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Figure 6.14: Dependence of the preferred order parameter on A/x. e=0.55.

The order parameter dependence on A/x and T  is shown in Figure 6.14. Let us 

consider the curve taken at the highest temperature on the graph , T =  0.9. Starting 

from the highest A/x, the preferred order parameter of the system is high, indicating
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the nematic phase (for example for A/i = 0.40, ( P 2 ( A / / ) )  ~  0.536). As A /i falls, the 

order parameter decreases with a steady gradient. Then, at A / i  ^  0.218, (^ ( A / i )) 

changes quite rapidly and approaches zero. In the vicinity of A / i  «  0.218 further 

analysis shows that the system has two preferred order parameters, corresponding 

to the nematic and isotropic phases for c2 and c\ respectively.

For temperatures in the range 0.40 < T  < 0.9, the order parameter changes rapidly 

from a non-zero to zero value at A/icoex(T). At temperatures around T  «  0.35 the 

value of (P2(A/i)) decreases rapidly at first from approximately 0.86 to 0.7, and then 

decreases continuously with A/i. At temperatures T  < 0.25 the order parameter 

changes rapidly from one non-zero value to another, lower, non-zero value as A/i 

decreases.
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Figure 6.15: Phase diagram for the system with e=0.55. Blue filled circles rep­
resent the data points obtained from N A f iV T  Ensemble. Dotted line represents 
approximation based on the data obtained from both ensembles.

From the data presented above we have constructed the phase diagram shown in 

Figure 6.15. Let us start with the isotropic-nematic coexistence region (T/jv(ci,c2) 

region). At both ends of the concentration axis (c =  0.0 and c = 1.0), the system
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exhibits an I-N transition at the temperatures Tj^(c  = 0.0) «  0.35 and Tj n (c = 

1.0) ~  1.15 (these are taken from the energy calculations of the previous chapter). 

At concentrations other than c =  0.0 and c =  1.0, the upper boundary of the 

Ti n {ci , C2 ) region varies approximately linearly with c. The the lower boundary of 

the T/jv(ci,C2 ) region extends in the area of low concentrations, creating bulge in 

the coexistence envelope in the middle of the diagram. The (c(Afi)) data indicate 

nevertheless that the system is homogeneous at temperatures above and below the 

transition (T/;v(ci, C2 )) throughout the entire concentration range.

Another region, which we observe at considerably lower temperatures - the coexis­

tence of the two nematic phases - has increased significance when compared with 

the system with e =  0.6. Again, a slight asymmetry is apparent in the coexistence 

boundaries of this region.

As in the case of the previous system (e = 0.6), the diagram comprises four regions. 

In the region of low concentration on the top of the diagram the isotropic phase has 

extended further into the lower temperature region, as compared to the previous 

system. The nematic-nematic coexistence region in the bottom of the diagram has 

also increased in size. As a result, the nematic phase in the middle of the diagram 

now occupies approximately the same area as the isotropic phase (Fig. 6.15). The 

nematic and the isotropic phases are separated by the region of the isotropic-nematic 

coexistence region, which has now become distorted for 0.15 < c < 0.5.

6.3 System  with e =  0.53, e =  0.52, e =  0.50

According to the predictions set out in the previous Chapter, we would expect to 

see a merger of the two coexistence regions at e «  0.52. The results for systems with 

e = 0.90, e = 0.60 and e = 0.55 show that the range of temperatures for which there 

is no phase coexistence for any concentration decreases with the decrease of e. For 

this reason, we made more detailed measurements in the region between e =  0.55 

and e = 0.45, investigating systems with e =  0.53, e =  0.52, e — 0.50.

Following the same procedure as that adopted in the previous section, we consider 

first the dependence of the average concentration of the mixture with e — 0.53 on 

the chemical potential difference (c(A/i)) (Figure 6.16).

173



CH APTER 6. RESULTS AND  DISCUSSION. BI-DISPERSED SYSTEM .  IVA/i VT.

The behaviour of (c(A/i)) curves for the system differs only slightly from that ob­

served for the system with e =  0.55. For each temperature there is a unique value 

of Aficoex(T) and two preferred concentrations C\(T)  and C2 (T). As the tempera-
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Figure 6.16: Dependence of the preferred concentration on A/i. £=0.53. Different 
curves represent runs at different temperatures.

ture decreases the distance between the two preferred concentrations Ac  increases, 

reaching its maximum value of Ac «  0.46 at temperature T  = 0.45. Then Ac 

decreases and eventually vanishes as the temperature decreases shortly below 0.35 

(Figure 6.17, Table 6.3). This system is unlike the previous two systems (e =  0.60 

and £ =  0.55), in that there is no temperature at which the (c(A/i)) curve changes 

continuously from c =  1.0 to c =  0.0 as A/i decreases. Instead, in the temperature 

interval 0.33 < T  < 0.36, the (c(A/i)) curve experiences two discontinuities as A/i 

changes.
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Figure 6.17: Dependence of the preferred concentration on A/i for tem peratures 
0.30 <  T  < 0.40 (b). Numerical differential of the (c(A/i)) curve at T  =  0.34 (a). 
System with e =  0.53.
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T Cl c2 ci 4 Ac Ac'
0.30 0.20 ±0.01 0.67 ±0.01 N/A N/A 0.47 ±0.02 N/A
0.32 0.32 ±  0.01 0.55 ±0.01 N/A N/A 0.23 ±  0.02 N/A
0.33 0.32 ±  0.01 0.50 ±0.01 N/A N/A 0.18 ±0.02 N/A
0.34 0.35 ±  0.01 0.45 ±  0.01 0.03 ±0.01 0.04 ±  0.01 0.10 ±0.02 0.01 ±  0.02
0.35 0.40 ±  0.01 0.40 ±  0.01 0.04 ±  0.01 0.07 ±0.01 0.00 ±  0.02 0.03 ±  0.02
0.36 N/A N/A 0.05 ±0.01 0.11 ±0.01 N/A 0.06 ±0.02
0.37 N/A N/A 0.05 ±  0.01 0.19 ±0.01 N/A 0.14 ±0.02
0.40 N/A N/A 0.06 ±0.01 0.49 ±  0.01 N/A 0.43 ±  0.02

Table 6.3: Table of concentrations ci, c2 and c[ , d2 and their difference (Ac and Ac') 
that occur at single temperature (T ). Data reflect Figure 6.17(b) for the system 
with e =  0.53. Criteria of defining these were set out in Section 6.1.

T Apcoex Cl C2 Ac

0.2 -1.930 ± 0.005 0.02 ± 0.01 0.92 ± 0.01 0.90 ± 0.02
0.25 -1.825 ± 0.005 0.08 ± 0.01 0.83 ± 0.01 0.75 ± 0.02
0.30 -1.734 ± 0.005 0.20 ± 0.01 0.67 ± 0.01 0.47 ± 0.02
0.40 -1.558 ± 0.005 0.06 ± 0.01 0.49 ± 0.01 0.43 ± 0.02
0.45 -1.443 ± 0.005 0.10 ± 0.01 0.56 ± 0.01 0.46 ± 0.02
0.5 -1.323 ± 0.005 0.15 ± 0.01 0.58 ± 0.01 0.43 ± 0.02
0.55 -1.186 ± 0.005 0.21 ± 0.01 0.58 ± 0.01 0.37 ± 0.02
0.6 -1.045 ± 0.005 0.28 ± 0.01 0.57 ± 0.01 0.29 ± 0.02

0.65 -0.891 ± 0.005 0.36 ± 0.01 0.58 ± 0.01 0.22 ± 0.02
0.7 -0.752 ± 0.005 0.43 ± 0.01 0.59 ± 0.01 0.16 ± 0.02

0.75 -0.530 ± 0.005 0.50 ± 0.01 0.64 ± 0.01 0.14 ± 0.02
0.8 -0.316 ± 0.005 0.56 ± 0.01 0.66 ± 0.01 0.10 ± 0.02

0.85 -0.067 ± 0.005 0.65 ± 0.01 0.71 ± 0.01 0.06 ± 0.02

Table 6.4: Table of two preferred concentrations (ci and c2) and their difference 
(Ac) that occur at unique value of the chemical potential difference (Aficoex) for any 
given temperature (T ). The system with e =  0.53. Criteria of defining these were 
set out in Section 6.1.
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This feature can be seen more clearly in the results for these temperatures presented 

in Figure 6.17(b). The curve at T =  0.34 suggests a presence of the two discontinu­

ities: one at A n coex «  —1.667 with corresponding concentrations c\ ~  0.35, c<i «  0.45 

and another at A \icoex ~  —1.791 with corresponding concentrations c\ «  0.03, 

c'2 ~  0.04 (Figure 6.17(b)). Numerical differentiation shows the location of these 

two discontinuities more clearly (Figure 6.17(a)). Any change in the temperature 

results in the disappearance of one of these discontinuities (Figure 6.17, Table 6.3).

Below T  =  0.34 there is only one discontinuity in the gradient of (c)(Afj,) present. 

As temperature decreases further the distance between two preferred concentrations 

Ac for that discontinuity becomes larger and approaches its maximum of Ac = 1 .0  

as T —> 0.0. The table of all remaining concentrations is presented in Table 6.4.

S3 06

Chemical Potential Difference, A |i

Figure 6.18: Dependence of the preferred Order Parameter on A//. e=0.53.
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The corresponding (P2(A/x)) data are shown in Figure 6.18, different curves repre­

senting the order parameter variation for different temperatures. For temperatures 

in the range 0.37 < T  < 0.9, the order parameter changes rapidly from a non-zero 

to a zero value at Aficoex(T). The differences between values of (P2(A/i)) on both 

sides of A/icoex(T) are higher than those found for the system with e — 0.55. At
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Figure 6.19: Phase diagram for the system with £=0.53. Blue filled circles rep­
resent the data points obtained from N  A f iV T  Ensemble. Dotted line represents 
approximation based on the data obtained from both ensembles.

temperatures below T «  0.37 the value of (P2(A/i)) decreases rapidly twice. First 

it decreases sharply from a high positive to a slightly lower, positive value as A/i 

decreases. Then it decreases steadily for a short while, which is followed by another
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rapid decrease to a close-to-zero value. This double decrease is more clearly seen 

at T  «  0.35, T «  0.34, T «  0.33. At temperatures T < 0.25 the order parameter 

changes rapidly from one non-zero value to another, lower, non-zero value as A \i 

decreases.

The phase diagram, constructed from the data presented above, is shown in Figure 

6.19. For all concentrations the dependence of Ti n (ci , c2) is approximately linear 

at its boundary with the isotropic phase (ci). The system still undergoes an I-

, , . | . | . | . , , |

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Chemical Potential Difference, A p

T=0.20
T=0.25
T=0.30
T=0.35
T=0.40

— T=0.65 
T=0.70

— T=0.75 
T=0.80

— T=0.85 
T=0.90

Figure 6.20: Dependence of the preferred concentration on A//. £=0.52. Different 
curves represent runs at different temperatures.

N transition at all concentrations; however, there is now a very fine bottleneck in 

the nematic region, separating two coexistence regions. This is due to the lower 

boundary of the T / a t ( c i ,  c 2 ) region which extends to even lower temperatures in the
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area of low concentrations. Another coexistence region, which we observe at slightly 

lower temperatures - representing the demixed coexistence of the two nematic phases 

- has risen slightly as compared to the system with s = 0.55. It is highest at 

concentrations around and less than c «  0.5 but changes down to zero on both 

limits of the concentration axis. The asymmetry of this coexistence envelope leads 

it to lean slightly towards the widened T/w(ci,C2 ) region. As was the case in the
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Figure 6 . 2 1 :  Dependence of the preferred concentration on A / i .  £ = 0 . 5 2 .  A  set of 
simulation runs for the temperature range 0 . 3 0  < T  < 0 . 4 0 .

previous systems, this phase diagram also comprises four regions. In the region of 

low concentration on the top of the diagram the isotropic phase has extended further 

into the lower temperature region, as compared to the system with e =  0 . 5 5 .  The 

nematic-nematic coexistence region at the bottom of the diagram has also increased 

in size. The nematic phase in the middle of the diagram still occupies an area similar
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in size to that of the isotropic phase (Fig. 6.19), however this region has shrunk 

somewhat compared with that of the previous system (Fig. 6.15). The nematic and 

the isotropic phases are separated by the increasingly distorted isotropic-nematic 

coexistence region.
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Figure 6.22: Dependence of the preferred concentration on A/r. £=0.52. A set of 
short simulation runs for the temperature range 0.30 < T  < 0.35.

The behaviour of the system with e =  0.53 is consistent with that of the previous 

systems. There is a difference, however, in the sizes of all regions, the nematic phase 

region having shrunk and all other regions expanded.
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T A/icoex C l C 2 Ac

0.20 - 1 . 9 5 9 ± 0 . 0 0 5 0.02 ± 0.01 0 . 9 3 ± 0.01 0 . 9 1 ± 0.02
0 . 2 5 - 1 . 8 5 4 ± 0 . 0 0 5 0 . 0 6 ± 0.01 0 . 8 5 ± 0.01 0 . 7 9 ± 0.02
0 . 3 0 - 1 . 7 5 3 ± 0 . 0 0 5 0.12 ± 0.01 0 . 7 5 ± 0.01 0 . 6 3 ± 0.02
0 . 3 3 - 1 . 6 9 4 ± 0 . 0 0 5 0 . 1 6 ± 0.01 0 . 7 1 ± 0.01 0 . 5 5 ± 0.02
0 . 3 4 - 1 . 6 7 6 ± 0 . 0 0 5 0 . 1 5 ± 0.01 0.66 ± 0.01 0 . 5 1 ± 0.02
0 . 3 5 - 1 . 6 5 7 ± 0 . 0 0 5 0 . 1 4 ± 0.01 0 . 6 4 ± 0.01 0 . 5 0 ± 0.02
0 . 4 0 - 1 . 5 5 6 ± 0 . 0 0 5 0 . 0 6 ± 0.01 0 . 5 8 ± 0.01 0 . 5 2 ± 0.02
0 . 4 5 - 1 . 4 4 5 ± 0 . 0 0 5 0.10 ± 0.01 0 . 5 5 ± 0.01 0 . 4 5 ± 0.02
0 . 5 0 - 1 . 3 2 3 ± 0 . 0 0 5 0 . 1 4 ± 0.01 0 . 5 9 ± 0.01 0 . 4 5 A 0.02
0 . 5 5 - 1 . 1 9 3 ± 0 . 0 0 5 0.20 ± 0.01 0 . 5 8 ± 0.01 0 . 3 8 ± 0.02
0 . 6 0 - 1 . 0 5 2 ± 0 . 0 0 5 0 . 2 8 ± 0.01 0 . 5 7 ± 0.01 0 . 2 9 ± 0.02
0 . 6 5 - 0 . 9 0 5 ± 0 . 0 0 5 0 . 3 5 ± 0.01 0 . 5 7 ± 0.01 0.22 ± 0.02
0 . 7 0 - 0 . 7 4 2 ± 0 . 0 0 5 0 . 4 6 ± 0.01 0 . 5 5 ± 0.01 0 . 0 9 ± 0.02
0 . 7 5 - 0 . 5 6 9 ± 0 . 0 0 5 0 . 5 3 ± 0.01 0 . 5 6 ± 0.01 0.02 ± 0.02
0 . 8 0 - 0 . 3 6 5 ± 0 . 0 0 5 0 . 6 1 ± 0.01 0 . 6 2 ± 0.01 0.01 ± 0.02

Table 6.5: Table of two preferred concentrations (ci and C2 ) and their difference 
(Ac) that occur at unique value of the chemical potential difference (Aficoex) for any- 
given temperature (T). The system with e — 0.52. Criteria of defining these were 
set out in Section 6.1.

We move now to the system with e — 0.52. Let us look at the dependence of the 

average concentration for this system on the chemical potential difference (c(Afi)) 

(Figure 6.20). The overall behaviour of the (c(AfT)) curves for the system differs 

slightly from that observed in the previous system. For each temperature there is 

a unique value of Aficoex(T) and two preferred concentrations C i ( T )  and C 2( X I) .  As 

the temperature decreases, the distance between the two preferred concentrations 

Ac  increases continuously, until at T  «  0.35 it decreases slightly. After this, Ac goes 

on to increase continuously as T  —>• 0.0. This system differs from those examined 

previously, in that no (c(A/qT)) curve was found which changed continuously from 

c — 1.0 to c =  0.0 as A/j, was decreased; nor was any temperature noted at which the 

(c(A/i)) curve experienced two discontinuities on the full range of A(i. Throughout 

the entire temperature region there was always one discontinuity to be observed on 

the (c(A/i)) curve (Figures 6.20,6.21).

There is some ambiguity, however, in the region of temperatures around T  =  

0.34...0.35, where the dependence of ci on T  showed non-monotonic behaviour 

(T =  0.30...35 in Table 6.5). As temperature decreases from high value approaching 

T  «  0.35, the value of c\ continuously decreases. Then at T  «  0.35, c\ increases
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sharply until T  «  0.33, after which c\ —>■ 0.0 with further decrease of T. In ad­

dition to this, in the range A/i < A n coex, on the left from the abrupt change, the 

dependence of the (c(A/i)) curves for temperatures immediately above T =  0.35 is 

virtually linear, but for temperatures T  <0.35 the curve changes with a steep gra­

dient. All this points to a difference between the part of the coexistence boundary 

(represented by C\) below T «  0.35 and above it.
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Figure 6.23: Dependence of the preferred Order Parameter on A//. 6=0.52.

In Figure 6.22 we present the results for the same temperatures as in Figure 6.21, 

but obtained using shorter runs (a = 7,000 steps per point as compared with 20,000
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steps previously). From the Figure we now see the area of ambiguity from a slightly 

different perspective. At temperatures T =  0.33; 0.34, we observe two discontinu­

ities, while at T  — 0.335 we observe only one. A short run often does not allow 

the system to equilibrate and the system sticks in a metastable state or state with 

a low energetic barrier between other, more energetically favourable states. We will 

discuss this further in Section 6.5.
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Figure 6.24: Phase diagram for the system with £=0.52. Blue filled circles repre­
sent the data points obtained from N A / iV T  Ensemble. Blue dotted line represents 
approximation based on the data obtained from both ensembles. Black dotted line 
represents the approximated boundary between I+N and N+N regions based on the 
(P2(A/z)) data and knowledge from N c V T  data.

184



CH APTER 6. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM . N A /i VT.

As was the case for systems investigated previously, the distance between the two 

coexisting concentrations Ac becomes greatest and approaches Ac =  1.0, as T —>• 

0.0. These concentration values are presented in Table 6.5.

1.0 -

<
o 0.7- 
d

.2 0.6 -  
03
(S 0.5- 
o
g 0.4- 
O
& 0-3 -bO
& 0.2 -  

<

T=0.35
T=0.40
T=0.45
T=0.60
T=0.70
T=0.80
T=0.900 .0 -

- 0.1

1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Chemical Potential Difference, A p

Figure 6.25: Dependence of the preferred concentration on A p. c=0.50. Different 
curves represent runs at different temperatures.

The values of the preferred order parameters for a given Ap are shown in Figure 6.23. 

The different curves represent the order parameter for different temperatures. For 

temperatures T > 0.65, as A/i decreases the order parameter changes from a high 

to a close-to-zero value; the change is not abrupt, but the discontinuity is plainly 

evident. For temperatures in the range 0.40 < T  < 0.65 the order parameter changes 

abruptly from a high, to a close-to-zero value, at A/j,coex(T). The difference between 

the values of (P2(A/z)) on the two sides of A ficoex(T) is most marked at temperatures 

around T  ^  0.40. In the range of temperatures 0.33 < T < 0.35 the order parameter
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T A ficoex Cl c2 Ac
0.35 -1.683 ±0.005 0.03 ±  0.01 0.79 ±  0.01 0.76 ±  0.02
0.40 -1.572 ±0.005 0.05 ±0.01 0.72 ±0.01 0.67 ±0.02
0.45 -1.444 ±0.005 0.09 ±0.01 0.71 ±0.01 0.62 ±  0.02
0.6 -1.027 ±0.005 0.28 ±0.01 0.65 ±0.01 0.37 ±0.02
0.7 -0.700 ±  0.005 0.44 ±0.01 0.64 ±0.01 0.20 ±  0.02
0.8 -0.288 ±  0.005 0.59 ±0.01 0.71 ±  0.01 0.12 ±0.02
0.9 0.258 ±0.005 0.72 ±  0.01 0.76 ±  0.01 0.04 ±0.02

Table 6.6: Table of two preferred concentrations (ci and C2 ) and their difference 
(Ac) that occur at unique value of the chemical potential difference (Aficoex) for any- 
given temperature (T). The system with e =  0.50. Criteria of defining these were 
set out in Section 6.1.

falls rapidly at A ficoex{T) to a non-zero value, after which it continuously decreases 

to a close-to-zero value, as A ficoex(T) decreases. At temperatures T  <  0.30 the order 

parameter changes rapidly from one non-zero value to another, lower, non-zero value 

as A/i decreases.

We present the phase diagram that is most consistent with the data obtained in 

Figure 6.24. The upper portion of the region of low concentration (the isotropic 

phase) has extended slightly further into the lower temperature region, as compared 

to the system with e = 0.53. The top boundary of T/at(ci, C2 ) (ci) has changed only 

slightly as compared to the previous system. At concentrations between c = 0.1 

and c = 1.0, its dependence is approximately linear. The lower border of Tjjv(ci, C2 ) 

region, however has extended into the area of lower temperatures and is coupled with 

the nematic-nematic coexistence region, which has also expanded. Ac for this single 

coexistence region now increases continuously with the decrease in temperature until 

T  «  0.34, when its width Ac decreases sharply to 80% of its value. W ith a further 

decrease in temperature, Ac quickly restores to a maximum value and increases to 

1 as T  —y 0.

This results in the division of the nematic phase into two, in the areas of low and 

high concentrations, creating respectively B-rich and A-rich nematic phases. The 

boundaries of the B-rich nematic region are rather ambiguous, however - this will 

be discussed in Section 6.5.3. The total area of the two nematic regions is decreased 

slightly, compared to that of the previous system, owing to the expansion of the 

Tin{ci,C2) and demixing regions in that area. The order parameter data suggest a
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horizontal line, which divides the single coexistence region (formed by the merging 

of two regions, as observed previously) into isotropic-nematic coexistence above the 

line and nematic-nematic coexistence below.
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Figure 6 . 2 6 :  Dependence of the preferred Order Parameter on A / i .  £ = 0 . 5 0 .

The behaviour of the system with e =  0 . 5 2  is consistent with that of the systems 

presented earlier. There are features, however, not seen previously. The first is the 

coupling of the two coexistence regions and their assumed division into isotropic- 

nematic and nematic-nematic coexistence regions.

The next system investigated differs by the virtue of the coupling constant, £ =  0 . 5 0 .  

Let us look at the dependence of the average concentration for this system on the 

chemical potential difference (c(A//)) (Figure 6 . 2 5 ) .

187



CHAPTER 6. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM . NA/x VT.

Overall, the behaviour of (c(A/x)) curves for the system does not differ from the 

previous system, except that they display no ambiguity. For each temperature there 

is a unique value of Aficoex(T) and two preferred concentrations C\(T) and C2 (T). 

As the temperature decreases, the distance between the two preferred concentra­

tions Ac increases continuously as T  -+ 0.0. There is no temperature at which the 

(c(A/x)) curve changes continuously from c = 1.0 to c =  0.0 as A/x decreases, nor is 

there a temperature at which the (c(A/x)) curve experiences two discontinuities on 

the full range of A/x. Throughout the entire temperature region there is only one 

discontinuity on the (c(A/x)) curve.

The values of the preferred order parameters for a given A/x are shown in Figure

6.26. Different curves represent the order parameter for different temperatures. 

Throughout the entire temperature range the order parameter changes its value from 

high non-zero to close-to-zero. For all of these temperatures the order parameter 

changes sharply at A/xcoex(T).

The phase diagram constructed from the data presented above is shown in Figure

6.27. The diagram comprises three areas, owing to the merger of Tin{ci^c2) and 

demixing regions, plus additional area as a result of division of the coupled single 

coexistence area with a horizontal line. The upper portion of the region of low con­

centration (the isotropic phase) seems to remain the same, as compared to the system 

with e — 0.52. At concentrations between c =  0.1 and c — 1.0, the dependence of 

TiN(c\,C2) is approximately linear on its boundary with isotropic phase (ci). On 

entering the coexistence region Tj^{c i, C2 ), the system stays demixed as T  -+ 0.0 for 

a wide range of concentrations (0.0 < c < 0.64). In the area of high concentrations 

(0.64 < c < 1.0), the system enters a homogeneous nematic phase shortly after it 

enters the I+N coexistence region (T/^-(ci, c2)) as the temperature decreases. As 

the temperature continues to fall the system demixes forming either I+N  or N+N 

coexistence, depending on concentration (the concentration threshold is determined 

by the point of crossover between the horizontal line and the coexistence boundary 

(c2))). After entering I+N coexistence the system moves to N+N coexistence region 

as the temperature decreases. The horizontal line lies in the region of temperatures 

0.28 < T  < 0.30 (according to Figure 6.26). The values of (P2(Afi)) that corre­

spond to concentrations on the right-hand and the left-hand side of the coexistence 

boundaries indicate respectively the nematic and isotropic order for temperatures 

T  > 0.30. In the region T  < 0.28 the (P2(A/x)) data indicates a nematic order on
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both sides of the coexistence region. This agrees well with the predictions discussed 

in Section 5.4.4. The nematic region on the right-hand side of the diagram is slightly 

diminished, when compared with that of previous system, owing to the continuous 

expansion of the single coexistence region in that area. The behaviour of the sys-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
o i . i . I__i i__i i__. I . I . I . 1 . I

8 -

6 -

/

i— 1— i— 1— i— 1— i—'— i— 1— i— •— i—*— i— *— r
.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Concentration, C

Figure 6.27: Phase diagram for the system with £=0.50. Blue filled circles repre­
sent the data points obtained from N A f iV T  Ensemble. Blue dotted line represents 
approximation based on the data obtained from both ensembles. Black dotted line 
represents the approximated boundary between I-fN and N+N regions based on the 
knowledge from N c V T  data.

tern with £ =  0.50 is consistent with that of the systems, presented earlier. There 

is a difference, however, in the size and shape of the T/w(ci,c2) and N+N coexis­

tence regions, as they have coupled in a single region (compared to the systems with 

£ =  0.90, £ =  0.60, £ =  0.55, and e =  0.53) and B-rich nematic phase decreased 

significantly (compared to the system with £ =  0.52). Further discussion of these 

results will follow in Section 6.5.3.
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Figure 6.28: Dependence of the preferred concentration on A/i. e = 0.45. Different 
curves represent runs at different temperatures.

6.4 System with e = 0.45, e =  0.00

The first system in this section is the binary system with coupling constant e =  0.45. 

The first observable for this system which we present is the preferred average con­

centration of the mixture (c( A/i)) (Figure 6.28); once again, various curves represent 

the system at different temperatures.

Overall, the behaviour of the (c(A/i)) curves for the system does not differ from the 

previous two systems, except that ambiguity was detected in (c(A/i)) curves in the 

region of low concentration, compared to the e = 0.52 system. For each temper­

ature there is a unique value of A ficoex{T) and two preferred concentrations ci(T) 

and C2 ( T ) .  A s  the temperature decreases, the distance between the two preferred 

concentrations Ac increases continuously as T —> 0.0.
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T ^■f ĉoex Cl c2 Ac
0.2 -2.363 ±  0.005 0.00 ±0.01 0.99 ±0.01 0.99 ±  0.02

0.25 -2.036 ±0.005 0.00 ±  0.01 0.95 ±0.01 0.95 ±  0.02
0.3 -1.907 ±0.005 0.01 ±  0.01 0.92 ±0.01 0.91 ±0.02

0.35 -1.903 ±0.005 0.02 ±  0.01 0.87 ±0.01 0.85 ±  0.02
0.40 -1.625 ±0.005 0.03 ±0.01 0.85 ±  0.01 0.82 ±  0.02
0.45 -1.472 ±0.005 0.07 ±0.01 0.83 ±0.01 0.76 ±  0.02
0.5 -1.332 ±0.005 0.12 ±0.01 0.79 ±0.01 0.67 ±0.02

0.55 -1.189 ±0.005 0.20 ±0.01 0.76 ±0.01 0.56 ±0.02
0.6 -1.015 ±0.005 0.27 ±0.01 0.75 ±  0.01 0.48 ±  0.02

0.65 -0.856 ±0.005 0.35 ±0.01 0.72 ±  0.01 0.37 ±0.02
0.7 -0.685 ±  0.005 0.45 ±0.01 0.71 ±0.01 0.26 ±0.02

0.75 -0.482 ±  0.005 0.53 ±0.01 0.71 ±0.01 0.18 ±0.02
0.8 -0.261 ±  0.005 0.61 ±0.01 0.73 ±0.01 0.12 ±0.02

0.85 -0.011 ±  0.005 0.67 ±0.01 0.77 ±0.01 0.10 ±0.02
0.9 0.286 ±  0.005 0.74 ±  0.01 0.79 ±0.01 0.05 ±0.02
0.95 0.652 ±  0.005 0.80 ±  0.01 0.85 ±0.01 0.05 ±  0.02
1.00 1.127 ±0.005 0.86 ±0.01 0.87 ±0.01 0.01 ±0.02

Table 6.7: Table of two preferred concentrations (ci and C2 ) and their difference 
(Ac) that occur at unique value of the chemical potential difference (A/icoex) for any 
given temperature (T). The system with e = 0.45. Criteria of defining these were 
set out in Section 6.1.

There is no temperature at which the (c(A/i)) curve changes continuously from 

c =  1.0 to c =  0.0 as A/i  decreases, nor is there a temperature at which the (c(A/i)) 

curve experiences two discontinuities on the full range of A/i. Throughout the entire 

temperature region, there is only one discontinuity on the curve.

The values of the preferred order parameters for a given A/i for the system with 

e = 0.45 are very similar to those for the system e =  0.50 shown in Figure 6.26. 

Throughout the investigated temperature range the order parameter changes its 

value from high non-zero to close-to-zero in the region of temperatures T  >  0.25. 

In the range T  < 0.20 the order parameter changes its value from high non-zero 

to low non-zero value. As in the case of previous systems, using (P2(A/j)) data we 

were able to identify phases on opposite sides of the coexistence boundaries, and 

these are shown in the phase diagram constructed from the data presented above 

(Figure 6.29). As in the previous system, the diagram comprises three areas, owing 

to the merger of the two coexistence regions. One more region can be determined
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from the division of the single coexistence region into I+N  and N+N coexistence 

regions, based on data  from NcVT Ensemble. The isotropic phase (upper region 

on the diagram) remained approximately unchanged, as compared to the systems 

with e = 0.52 and e = 0.50. At concentrations between c =  0.1 and c =  1.0, the
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Figure 6.29: Phase diagram for the system with e=0.45. Blue filled circles repre­
sent the data points obtained from N A / i V T  Ensemble. Blue dotted line represents 
approximation based on the data obtained from both ensembles. Black dotted line 
represents the approximated boundary between I+N  and N+N regions based on the 
knowledge from N c V T  data. Black filled squares represent the data  from N c V T  
Ensemble.

dependence of T/^(ci,C 2 ) is approximately linear on its boundary with the isotropic 

phase (ci). For low concentrations (c < 0.1), the curve decreases sharply with a 

decrease of concentration and approaches zero at c —> 0 .0 . having moved from the 

isotropic phase into the coexistence region, the system remains there as T  +  0.0
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Figure 6.30: Dependence of the preferred concentration on A[i. £=0.0. Different 
curves represent runs at different temperatures.

for the range of concentrations (0 . 0  < c <  0.71) wider tha t th a t for the previous 

systems. In the area of high concentrations (c >  0.71) the system undergoes the first 

order isotropic-nematic transition (with relatively narrow I+N  coexistence region), 

after which the system re-enters into the coexistence region as the tem perature 

decreases. The width of the coexistence at the isotropic-nematic transition at high 

temperatures and the type of the coexistence (I+N or N+N) tha t the system enters 

at low tem peratures depends on the concentration.

The area of the nematic region on the right-hand side of the diagram decreased 

slightly, compared to tha t in the previous system, owing to the continuous expansion 

of the merged T/jv(ci,C2 ) and demixing regions in tha t area. We were not able to
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T Aflcoex Cl C2 Ac
0.4 -2.014 ±0.005 0.01 ± 0.01 0.99 ± 0.01 0.98 ± 0.02
0.5 -1.536 ±0.005 0.05 ± 0.01 0.97 ± 0.01 0.92 ± 0.02
0.6 -1.112 ±0.005 0.18 ± 0.01 0.94 ± 0.01 0.76 ± 0.02
0.7 -0.679 ±  0.005 0.41 ± 0.01 0.89 ± 0.01 0.48 ± 0.02
0.8 -0.215 ±  0.005 0.63 ± 0.01 0.84 ± 0.01 0.21 ± 0.02
0.9 0.351 ±0.005 0.77 ± 0.01 0.85 ± 0.01 0.08 ± 0.02

0.95 0.716 ±0.005 0.83 ± 0.01 0.88 ± 0.01 0.05 ± 0.02
1.00 1.193 ±0.005 0.89 ± 0.01 0.91 ± 0.01 0.02 ± 0.02

Table 6.8: Table of two preferred concentrations (ci and C2 ) and their difference 
(Ac) that occur at unique value of the chemical potential difference (Aficoex) for any- 
given temperature (T). The system with e — 0.00. Criteria of defining these were 
set out in Section 6.1.

resolve the nematic region on the left-hand side of the diagram, as it exists only at 

very low concentrations (c < 0.01) and temperatures T  < 0.29 (based on the data 

from the NcVT Ensemble).

The behaviour of the system with e = 0.45 is similar to system with e =  0.50 and 

consistent with the results for the rest of the systems presented in this chapter. 

There is a difference, however, in the size of the merged coexistence region, which 

has increased. The assumed horizontal line, inferred from the NcVT data, moved 

to the lower temperature. Overall, the NcVT data for the rest of the boundaries 

(black squares) agrees with the results presented here. However, the temperature for 

isotropic-nematic transition is slightly lower in the region of concentrations 0.0 < c < 

0.5, while for the rest of concentrations (0.5 < c < 1.0) this temperature is slightly 

higher. The boundary between the nematic phase and the coexistence region on 

the right-hand side appears to be slightly lower for the NcVT data, as compared to 

NA/zVT data. In Section 6.5.3 we discuss further data from both ensembles and the 

reasons for deviations of the phase boundaries.

We now move to the last system considered in this chapter - the system with coupling 

constant e =  0.00. The first observable for this system is the preferred average 

concentration of the mixture (c(A/i)) (Figure 6.30). Various curves here represent 

the system at different temperatures.
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At high temperatures (Fig.6.30) there is a slight discontinuity in the gradient of the 

(c(A/i)) curve at A ficoex. Overall, the behaviour of (c(AfT)} curves for the system 

does not differ from that of the previous system. For each temperature there is a 

unique value of A[icoex(T) and two preferred concentrations Ci(T) and C2 pT). As the 

temperature decreases, the distance between the two preferred concentrations Ac 

increases continuously as T  -+ 0.0. There is no temperature at which the (c(A//)) 

curve exhibits a continuous or close to continuous behaviour.

The values of the preferred order parameters for a given A/i for the system e =  

0.00 are very similar to those for the systems of e =  0.50 shown in Figure 6.26. 

Throughout the investigated temperature range the order parameter changes its 

value from high non-zero to close-to-zero.

The phase diagram constructed from the data presented above is shown in Figure 

6.31. The diagram comprises three areas, as in the previous three systems, however 

there is no horizontal line for this system, owing to the isotropy of B component. 

In the region of low concentration the isotropic phase remained approximately un­

changed, as in the systems with e = 0.52, e — 0.50 and e = 0.45. At concentrations 

between c = 0.1 and c = 1.0, the dependence of T/^(ci,C 2 ) is approximately linear 

on its boundary with isotropic phase (ci). For low concentrations (c < 0.1), the 

curve sharply decreases with a decrease of concentration and approaches zero at 

c —>• 0.0.

Having moved from the isotropic phase system enters I+N coexistence region. For 

concentrations 0.0 < c < 0.84 the system stays in the coexistence region as the 

temperature decreases further down to zero. For the range of concentrations 0.84 < 

c < 1.0 the system enters a nematic phase and then re-enters I+N coexistence region 

as the temperature decreases.

The behaviour of the system with e — 0.00 is similar to that of the three previous 

systems. There is a difference, however, in the size of the single coexistence region, 

which has increased.

The NcVT data for the coexistence boundaries (black squares) in general agrees with 

the results presented here. However, the temperature for isotropic-nematic transition 

is slightly lower in the region of concentrations 0.0 < c < 0.8, while for the rest of 

concentrations (0.8 < c < 1.0) this temperature approximately coincides with the
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boundary obtained from NA/rVT within the error bars. The boundary between 

the nematic phase and the coexistence region on the right-hand side appears to be 

slightly lower for the NcVT data, as compared to NA/iVT data. In Section 6.5.3 

we discuss further the data from both ensembles and the reasons for their slight 

inconsistencies.
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Figure 6.31: Phase diagram for the system with 8=0.0. Blue filled circles and blue 
lines represent the data points obtained from N A j i V T  Ensemble. Blue dotted lines 
represent approximation based on the data obtained from both ensembles. Black 
filled squares represent the data from N c V T  Ensemble. Black solid lines represent 
theoretical calculations of the phase boundaries for this system [177] (see also Figure 
6.31).
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6.5 Discussion Of NA^uVT Results.

Now we come to the discussion of the results presented in this Chapter. First, 

we review some aspects of the phase diagram measurements about which there are 

accuracy problems. Then we discuss each of the phase region found, in Sections 

6.5.1-6.5.3 before giving an analysis of the phase boundaries in Section 6.5.4.
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Figure 6.32: Hysteresis effect in the constant NA/iVT ensemble. Blue lines represent 
simulations with decreasing A/i values, red lines show the equivalent results obtained 
with increasing A/i values.

At the beginning of Section 5.4 we pointed out that an appropriate determination of 

phase boundaries is dependent on an appropriate choice of observables. The thermo­

dynamic potential of the NA/iVT ensemble is the grand potential Q, and therefore 

the most suitable observables in this case are the first derivatives of this potential. 

The observable most frequently used in the procedures described in this Chapter 

was (c(A/i)) =  (dQ/ dA/j,)T=consti which exhibits a break or discontinuity at the first- 

order phase transition. Alternatively, one could measure (c(T)) =  (dfl/dT)An=const, 

which in the case of the shallow slope of the coexistence region (i.e. the T/at(ci,C2 ) 

coexistence region for the system with £ =  0.90) gives a clearer picture in terms of 

coordinates for the discontinuities. Thus for the weak isotropic-nematic transition 

(e.g. case of the system with e —» 1) the (c(T)) measurements were more appropri­

ate, although, for the system size used, the accuracy of determination of C\ and C2 is 

somewhat limited in this region of e. In this case, the (P2(^ /^))t measurements were
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also found to be a useful alternative to the (c(A[i ))t  measurements in determining 

coexistence boundaries.

As the slope of the T/w(ci,c2) coexistence region becomes steeper the discontinu­

ity in the (c(A/z)) curve becomes more pronounced, owing to the sharper form of 

the free energy function. However, the same effect increases another feature, which 

significantly affected the calculated phase diagram - the hysteresis, shown by the 

(c(A/i)) isotherms at the boundaries of the large I+N coexisting region. To quantify 

this effect, we show, in Figure 6.32, (c(A//)) curves, which were measured in simu­

lation sequences with, respectively, increasing and decreasing A/i values. In Figure 

6.32(a) we present such curves for the system with e =  0.00 at temperature T  = 0.6. 

As A/i decreases (blue curve), the (c(A/i)) curve exhibits a sharp discontinuity at 

AHclexi yielding two concentration values cf™71 and cf*™71■ When the simulation 

sequence is reversed, however, (A/i increases, red curve) the (c(A/i)) curve exhibits 

its discontinuity at A /i^ex, with the two corresponding concentration values c{p and 

cjp. The concentration differences Aci and Ac2, depend on A/i“Jca. — A / i ^ n, which 

shrinks with increasing temperature, and on the steepnesses of the slopes on both 

sides of A/icoex, which increase with temperature (Figures 6.32(a),(b),(c)). Although 

these two do not cancel each other out perfectly, they do lead to a relatively weak 

thermal dependence of Aci(T) and Ac2(T). The hysteresis becomes negligible for 

T  > 0.9 (Figure 6.32(c)). In Figure 6.33 we present a phase diagram for the system 

with e =  0.00, which is analogous to that presented earlier in Figure 6.31, this time 

showing the coexistence boundaries taking into account the hysteresis effect. From 

Figure 6.33 it is clear that the hysteresis is greatest at T  «  0.60.

As was noted in Section 6.1, a more accurate estimate of C\ and c2 can be obtained by 

means of distribution histograms than is achievable by the other methods described; 

however, the former requires much more extensive calculations. It also ceases to be 

effective if Ac becomes too great. Even the faster approach of producing (c(A/z)) 

isotherms requires extensive scanning of the A/i axis. This raised the dilemma of 

whether to decrease the 5Afi step between the A/i points that make up the isotherm 

at the expense of decreasing the simulation run a  per point or increase a  while 

increasing 8 Ay,. It would be more efficient to concentrate this effort immediately in 

the vicinity of the first-order phase transition, but this would require prior knowledge 

of the approximate location of Ay coex for a given T  and e. In Figure 6.34 we present 

plots of A y coex against temperature for different values of e. The form of A ficoex(T)
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can be seen to be approximately linear and independent of e for all these systems. 

This information would, therefore, be used to estimate a relatively narrow A/z range 

required for a given scan to include Ap,coex, since the information presented in Figure 

6.34 could be be used to predict the A ficoex value for a given system, based on only 

two A/z points. Adjusting this approach enabled us to concentrate isotherm scans 

in relatively narrow a region about these predicted A ficoex values.
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Figure 6.33: Phase diagram for e=0.00. Red points represent the data calculated as 
A/z increases, while blue points represent the data calculated as A/z decreases. The 
difference between two data sets indicates the hysteresis experienced.
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Figure 6.34: The ratio between A \icoex and T. Knowing this dependence, which is 
fairly linear for a large range of Aficoex and T, allowed the range of the scanned 
An values (for which the transition occurs) to be significantly reduced. The 
discontinuities in some of the curves are due to two individual coexistence regions 
(I+N and N+N).

At the beginning of this Chapter we mentioned that concentration fluctuations, 

which are inversely proportional to the size of the system, allow the observation 

of two peaks on the concentration histogram (Figure 6.2). This same size effect 

minimizes the ‘kink’ in the Van der Waals equation of state. The smaller the effect 

in the the Van der Waals loop, the deeper into the metastable state the system is 

able to go. In the case of the system with e = 0.90, this ‘kink’ is probably virtually 

flat, so that the system effectively moves continuously along the isotherm (Figures 

6.5 and 6.6), while the order parameter changes relatively sharply, reflecting rapidly 

changing symmetry of the system (Figure 6.8). In other cases, where the value of Ac 

is large, the system experiences difficulty in moving from one preferred concentration

200



CHAPTER 6. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM. NAfiVT.

to another. A difficulty for phase diagram measurements is, therefore, present when 

these two phenomena are located close to each other on the isotherm path. For 

example, this results in insufficient resolution to indicate the small nematic phase in 

the bottom left corner of the phase diagram for e = 0.52 (Figure 6.24 on page 184), 

since the (c(Afi)) isotherm does not always reveal two discontinuities.

Owing to these effects a difficulty also arises when calculating phase boundaries in 

the narrow range of temperatures (for values of e close to 0.53), when, throughout 

the entire concentration region (from c — 1.0 to c = 0.0), the system remains in 

the nematic phase, while being close to two coexistence regions which are present 

at slightly higher and lower temperatures. In Chapter 5 we showed that as e de­

creases this temperature region becomes narrower and vanishes at some £COup• In 

our NA/zVT simulations the isotherms measured in this region changed continu­

ously, but quite rapidly from very high to very low values of c and, thus, a criterion 

of a threshold steepness had to be devised in order to determine whether the discon­

tinuity occurs for a given T. Attempts to validate this criterion by increasing the 

system size proved ambiguous.

Therefore, for systems with e =  0.55, e =  0.53 and e =  0.52 we have used the order 

parameter data not only to determine the phases on both sides of the coexistence 

boundaries, but also to estimate the possible existence of such boundaries. Gener­

ally, at these temperatures, we assumed no discontinuity unless there was sufficient 

evidence to indicate otherwise. Consequently, a certain level of ambiguity remains, 

as to what is the lowest value of e at which the phase diagram exhibits two distinct 

coexistence regions.

From the results presented in this Chapter, we see that the system exhibits six 

‘transitions’ from one phase to another. Depending on its parameters (e.g. c(A/i), 

T  and e), the system can undergo these transitions by four different routes. These 

routes are:

I= Q +  N  = © +  N  + N  

I=Q=> I  + N  =Q=> N  + N  

/=(?)+• /  + N  =®=> N  =0)=  ̂N  + N

I=Q=> I  + N  =Q + N  =Q=> I  + N  =Q=> N  + N
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where the arrows represent decreasing temperature. As we have shown, all disconti­

nuities of the (c(A/i)) isotherms are associated with concentrations which determine 

coexistence boundaries. Therefore, the entire phase behaviour can be described in 

terms of these four paths across the phase diagram. One of these boundaries (© ) is 

not seen directly from the NA/iVT results, but is assumed to be present, based on 

the (P2(A/i)) data outside the coexistence region and on the NcVT results (transi­

tion at T/r (c)). The behaviour of the remaining five boundaries have been arranged 

in three groups and will be discussed in the following three sections. Section 6.5.1 

will cover the T/;v(ci, c2) coexistence region, which includes the first-order isotropic- 

nematic transition (steps©  and© ) and the isotropic-nematic transition, weakened 

by impurities (step© ). Section 6.5.2 will cover entry to the nematic-nematic demix­

ing coexistence region (step© ). Section 6.5.3 will discuss particularities relating to 

the coupled single coexistence region, which occurs for e < £coupie, these include the 

phase re-entrance phenomenon (step © ) and the induced isotropic nematic transi­

tion (step©  revisited). This will be followed in Section 6.5.4 by an analysis of the 

phase diagram.

6.5.1 T i n ( c u c 2) coexistence region

Let us begin with the system with e = 0.9. The (c(A/i)) data does not reveal any 

distinct discontinuity in this curve (Figures 6.4-6.6), despite very thorough investiga­

tion of the region where the transition is expected (simulations within T  = 0.90—1.20 

with a step size of AT =  0.01). However, the (P2(A/i)) data reveal that the phase 

transition does in fact occur in this region (Figure 6.8). Further investigation of 

the region (using the A/i =  const method) supports the (P2(A/i)) data as do the 

results obtained from the NcVT Ensemble (Chapter 5). For the reasons, given at 

the beginning of the discussion (Section 6.5), the (c(Afi))T=C0nst curve exhibits effec­

tively continuous behaviour with change in A/i. On the other hand, the (P2(A/i)) 

and (c(T))A/i=ccmsi curves suggest a sharp transition. In the system with e =  0.9, 

the slope of the Tjjv(ci,c2) coexistence region is very flat (Figure 5.9). Therefore, 

for isotherms in the range 0.9 < T  < 1.15, the concentration changes slowly as A/i 

decreases, until it reaches c2, the coexistence boundary. The (c(T))AM=Consf data 

suggest the presence of a coexistence region, which widens at c «  0.5. However, the 

transition is very unclear for concentrations close to c =  0.0 and 1.0.
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As e decreases, the slope of the T/jv(ci,C2 ) coexistence region becomes steeper. In 

Section 5.4.5 we considered the nature of Tjn(c) and the dependence of its slope on 

c and e; we now propose to add to this discussion by commenting on the shape of 

the Tjn(c\ , C2 ) coexistence region. With the decrease of £, the cigar shape of the 

Tin{c\,C2) region becomes more evident (the system with e — 0.6, Figure 6.12). 

This type of behaviour has been discussed in theoretical works concerning mixtures 

[11,191] and reported in numerous experimental studies of LC [20,192-194], although 

the influencing factors in these two are different. Generally, all nematics in real 

life contain impurities. It is also known that impurities which differ in molecular 

structure depress the I-N transition temperature and, hence increase the slope of 

the T/iv(c) curve. As mentioned earlier a binary mixture is a crude approximation 

to a system with impurities. The depression of the I-N transition temperature in 

such a system is connected with the width of the T w(c  1 , 0 2 ) bi-phasic region and 

the entropy of the transition [191]:

Tin -  TfS™ =  - A -  (6.1)
ZAD/at

where Ac is the width of the bi-phasic region and A S in  is the transition entropy 

of the pure nematic (e =  1.0) and there is a dimensional constant of value unity 

suppressed in the right hand side of 6.1 [191]. Therefore, impurities lead to a broad­

ening of I-N coexistence and the appearance of a bi-phasic region [11,191]; they also 

minimize the entropy change, resulting in the transition becoming close to second- 

order.

With a further decrease in e, the Tjn(ci,C2) region becomes wider at c ^  0.5 (for 

systems with e =  0.55 and e =  0.53, Figures 6.15, 6.19). The increase of this 

effect has arisen due to the increased difference in coupling between the two com­

ponents. Lowering of e can be related to quest nematogens that are less rod-like 

or less rigid in their molecular structure than their host, leading to a wider Ac gap 

and to a steeper slope of the Tbv(ci, C2 ) region, as the system deviates from its pure 

composition (c —> 0.5 from either direction). However, this does not explain why 

Ac is much wider on the left-hand side of the diagram. In fact, the shape of the 

coexistence region is affected by several other factors, in addition to the presence 

of another nematogen with slightly different e, which produces this cigar-shape ef­

fect. One of these factors was described by Mukherjee [195] and Luckhurst [177] in
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their discussions of rod-sphere mixtures, which will be considered below. For the 

present, we note that as e decreases, the system increasingly exhibits features of 

rod-sphere mixture systems in which the width of the bi-phasic coexistence region 

is proportional to the concentration of spheres in the system. Another factor is 

the entropy associated with the demixing of the system, the importance of which 

decreases with temperature. Since the coexistence region on the left-hand side of 

the diagram (c < 0.5) occurs at lower temperatures, than that on the right-hand 

side, the influence of this factor is lower for c < 0.5. The shape of the coexistence 

region is, therefore, a consequence of the first-order effect (present for all c) and the 

demixing effect (which enlarges the coexistence region at low temperatures). The 

radial distribution functions obtained at these state points using the NcVT Ensem­

ble support this conclusion, since the short range function decreases more rapidly 

for T  < Ti n - This demixing process is discussed further in the next Section.

6.5.2 Nem atic-nem atic coexistence region

The presence of the coexistence region which occurs due to the demixing of the two 

components is clearly seen in the data obtained from both ensembles, whereas the 

Ti n {c 1 ,^2 ) region is seen only in the data from the NA/iVT Ensemble. The general 

aspects of the former coexistence, as set out in Section 5.4.2 for the NcVT Ensemble, 

also apply for the NA/iVT Ensemble which we are currently discussing; thus here 

we will cover only aspects peculiar to the N A y V T  data.

The data for the systems with e = 0.9 and e = 0.6, obtained using the NA/iVT 

Ensemble, are found to be in good agreement with those obtained in the NcVT En­

semble (Figures 5.9, 5.15). Unlike the coexistence region induced by the first-order 

effects, the boundaries of the demixing region are clearly seen on the curves (c(A/i)) 

for all systems investigated (Figures 6.4, 6.10, 6.13, 6.16, 6.20, 6.25, 6.28, 6.30), the 

exception being in the region of temperatures close to Tc, where the discontinuity 

disappears for T  > T C. Note that here we consider only systems with e > £ couple- In 

fact the behaviour of the demixing region itself is similar to that of liquid-vapour 

coexistence, described elsewhere [127,186]. Such a coexistence region can be ap­

proximated with the Guggenheim curve [196]. Although, this approximation does 

not take into account the anisotropic properties of the system, it still yields a good 

fit to the lattice model under investigation. For e > £COUpie the coexisting phases
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are both nematic, thus the difference in anisotropy is relatively small and the shape 

of the curve is governed, predominantly, by the coupling constant difference, which 

can be interpreted as a miscibility coefficient.

6.5.3 Coupled single coexistence region

This section will discuss the systems with e < s Coupie and the particularities of 

the single coexistence region. According to the interpretation made of the results 

presented in this Chapter, the coupling of the two coexistence regions occurs in the 

region of e =  0.52...0.53. It should be noted that the data obtained from the system 

with e =  0.53 suggest a possible coupling of these two regions; however, the (c(A/i)) 

curves in the region of ambiguity (0.30 < T  < 0.34) calculated for the system with 

size 243 do not support the presence of a discontinuity with a large Ac in this region 

of temperatures, whereas for the system with e =  0.52 the discontinuity is clearly 

present through the entire temperature region ((c(A/z)) data, Figure 6.20).

The first particularity associated with e < £coup systems is the presence of a B-rich 

nematic pocket in the area of low concentrations. The NcVT data clearly indicate 

the presence of such a phase for c < 0.04 (Section 5.1.3). The (c(A/i)) and (P2(A/i)) 

data for the system with e = 0.52 also suggest two coexistence regions at the same 

temperature (in the region around T «  0.34); there are clearly seen from the curves 

calculated with a small number of runs (Figure 6.22). Each transition has its own 

pair of concentrations, which define their coexistence boundaries. The concentration 

range separating the two regions is very small, however, so that in longer runs, the 

simulation appears to sample configurations with concentrations ranging across both 

coexistence regions. For certain values of A/i and temperatures, four peaks on the 

concentration histogram, rather than two, are anticipated. However, since first three 

peaks (starting from the lower concentration) are close together, this may not be 

resolved using the original system size. On the other hand, with increased system 

size, the decreased width of the peaks may not allow for the sampling of all three at 

a single A/i.

The second particularity concerns the single coexistence region itself. The phase 

diagram for the system with s =  0.52 (constructed using these results) has some
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features not seen on any other diagram obtained by the two methods (Figure 6.24). 

The B-rich nematic phase in the area of low concentrations extends to temperatures 

higher than Tjf =  T£=0'52, thus creating three coexistence regions. This is evident 

from the (P2(AfT)) data for e =  0.52 system. The first is the small isotropic-nematic 

coexistence region between the B-rich isotropic and B-rich nematic phases (c < 

0.15); the second is the isotropic-nematic coexistence region, separating the B-rich 

isotropic and A-rich nematic phases (at higher temperatures than the first); and 

the third is the demixing region of coexistence of the two nematic phases, at lower 

temperatures. Therefore, at £COupie> the two coexistence regions merge and initially 

create three coexistence regions. Correspondingly, the phase picture in the area of 

low concentrations becomes similar to that obtained by NcVT Ensemble, i.e. it 

contains of only two coexistence regions (Figure 5.27). Similar phase diagrams have 

been observed experimentally for a variety of binary systems including polymer 

chain LC mixtures (Chapter 2). In [20] experimental results suggested a small 

pocket of B-rich nematic phase in a case, similar to that seen in our system with 

e = 0.52, where one of the mesogens was made sufficiently small (mesogen F744). For 

equivalent system with larger molecular mass (EA8) the system’s phase behaviour 

in [20] becomes similar to that of our systems with high e (recall Figure 2.3 on 

page 18). Benmouda et al, using DSC and optical microscopy, observed similar 

phase behaviour for a PLC-LC mixture [104]. In [104], a pocket of B-rich nematic 

phase was also seen (Figure 2.4 on page 20). The Mean-Field Theory fit for this 

mixture [104] as well as FH-MS Theory calculated for the case described in [20] both 

support the presence of such B-rich nematic pocket.

As e decreases, the coexistence region also extends to the high concentration side of 

the phase diagram, encroaching on the region of the A-rich nematic phase. The c\ 

boundary remains in approximately the same position throughout a wide range of 

coupling constants (0.00 < e < 0.52), while c2 boundary moves to higher tempera­

tures and concentrations. This is consistent with the results presented in Chapter 

5, however the temperatures Ttr and T^ obtained from the NcVT results are gener­

ally lower than those indicated by the coexistence boundaries of the NA/iVT data 

(Figures 6.29, 6.31). In Section 6.5.2 we underlined reasons, for these differences be­

tween the NcVT and NA/iVT boundary prediction. In the parts of the coexistence 

envelope for which immiscibility effects are small, however (T > 0.7), the agreement 

between these two ensembles is recoverable (Figures 6.29, 6.31).
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We now come to the consideration of another particularity, phase re-entrance. As 

was shown in the last part of Section 5.4, phase re-entrance was predicted in [177] 

for the system with e — 0.0 and explained using NcVT simulations on the e = 0.0 

version of the model used in Chapter 5. Recently, Bates showed the presence of this 

region by performing NA/iVT simulation on this same system [179]. The coexistence 

boundaries identified in [179] and the present work are in good agreement, despite 

the relatively big difference in the system size (403 in [179]); the data presented here 

locate the coexistence boundaries at slightly lower temperatures than those in [179], 

but well within the stated error bars.

6.5.4 Alternative Interpretation. Generalizing.

So far, all of the coexistence regions have been interpreted in terms of the influence of 

entropy, interaction potential and internal energy, and some explanations have been 

offered as to the positions of the coexistence boundaries. Comparisons between the 

obtained results and theoretical and computer simulation works have been made, and 

parallels between the presented generic phase diagrams and existing experimental 

reports have been outlined.

In Chapters 5 and 6, the majority of the results have been presented and discussed by 

means of concentration-temperature phase diagrams. Understandably, this method 

was adopted as being accepted practice in the presentation of the phase behaviour 

of some systems, owing to the popularity of lyotropic and thermotropic LC. The use 

of coupling constant-temperature diagrams, on the other hand, is an unusual and 

relatively new approach, which often has a weaker relationship with reality. The 

only exception, perhaps would be novel LC devices with fixed composition, that 

change their anisotropic properties, for example by photo induction, which itself is 

a relatively unexplored and developing area. Nevertheless, we feel it informative to 

include such diagrams here (based on the NA/iVT results), to enable comparison 

with analogous diagrams from the NcVT results, presented in Section 5.3.

The features of interest in these diagrams are the temperatures of discontinuity 

(7)r (c), Td(c) and T/r (c) for NcVT) or, put another way, the boundary positions of 

the coexistence regions (determined by concentration and temperature for NA/iVT). 

In Figure 6.35 we present a schematic view of an e — T  diagram, where it is recog­
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nised that the locations of the phase boundaries (or functions in Figure 6.35) are 

determined by the chosen concentration. Before describing the curves or functions 

that fit the phase boundaries, we need to note the point K(1.0,TfN), where TfN 

is the isotropic-nematic transition temperature of the single system of particles A 

(particles for which e =  1.0). The first function to be presented, f i  = £COupiei is the

1.2
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Figure 6.35: Generic form of T-e phase diagram.

vertical line dividing the phase diagram into two areas - the area in which the two co­

existing regions have coupled (e  <  £ Coupie) and the area in which they exist separately 

( s  >  £ couple)- The second function is a parabola that includes the point I((1.0,T^N) 

and has its minimum at P (0 .0 ,0.0) - / 2 (e) =  a£2, where a =  TfN. This curve is the
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isotropic-nematic transition line for the pure B-component system (c =  0.0) for any 

value of e, and also effectively represents the isotropic-nematic transition of the B 

particles in the coexistence region (i.e. when A and B are well separated). Therefore, 

this function has a significance only in the range P D  corresponding to the demixing 

region (function f$, discussed below). The third function is another parabola that 

includes the point K (l .0 ,T fN) and has its minimum at C(0.0, c-Tf^).  The equation 

for this curve is fs(s, c) =  as2 +  b, where a = (TfN — c • T/)y) and b =  c • T/jy. 

This curve represents the boundary of the T/at(ci,C2) coexistence region with the 

isotropic phase (ci) and assumes a linear dependence of the Tjjy(c) curve on concen­

tration. This curve is a true representation of phase behaviour only in systems with 

£ > £couple {OK-part), when the two coexistence regions are separated. In the case 

of the two being merged (s < £ couple), the boundary with the isotropic phase seems 

to remain unchanged as e decreases (Section 5.3). This part of the boundary is, 

therefore, represented by the fourth function: / 4(c) =  {TfN — c • TfN) • s2coup +  c • T/jy, 

which is simply a horizontal line that passes through point O, - the intersection of 

functions f \  and fs. This line separates the isotropic phase from the rest of the 

diagram and effectively represents the boundary between the Tjiy(ci, c2) coexistence 

region and the isotropic phase (ci) when e < £coup. Functions / 4 and give the 

upper boundary of the T/jy(ci, C2 ) coexistence region for low and high values of e re­

spectively (curve SOK).  No analytical view of the other boundary (c^) will be given, 

as the data that we required for this lie beyond the scope of this thesis (see Section 

6.5.1). We have found that the form of the final boundary, }*>{£,c) can be fitted by 

the Guggenheim fit G(c) for liquid-vapour coexistence [196] (see Section 6.5.2). Tra­

ditionally, the G(c) curve is plotted in temperature-density coordinates (density is 

analogous to c in the model used here) with fixed s. The critical curve [196] and the 

data obtained suggest that overall fs(£, c) may be expected to decrease as c —» 0.0 or 

c —y 1.0, as for Guggenheim’s curve. We were able to obtain data only in the region 

£ > £ couple, to support the contention that f 5(s, c) ~  G{c)-TfN - (s— l ) 2. In the region 

£ £ coup, the demixing boundary is distorted by the effect of the coupling of the 

coexistence regions, resulting in saturation of the value of the / 5(e, c) curve to some 

Tsat, as e —> 0.0 for high concentrations (Figure 6.36). Therefore, the dependence of 

k { £ ^  £ coup, c) on s in this region was simply fitted with a quadratic function which 

has a zero derivative at (s = 0.0, Tsat) and connects to f ^ s  > £ COup, c) at £ C0Up, the 

derivatives of the two curves being matched at £ COUp-
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According to the NcVT results (Section 5.3), the functions / 1 - / 5  should describe 

the phase behaviour with reasonable accuracy for a wide range of concentrations 

(0.1 < c < 0.9). However, inconsistencies can be expected on the isotropic-nematic 

boundary (curve S O K ), as c —> 0.0 in the region e < £C0Upie• Data from both 

ensembles suggest that the Ci-boundary (SO) must gradually be transformed into 

CO as concentration decreases from c & 0.1 to c =  0.0 (for c = 0.0, S  = C). On 

the other hand, / 5 must decrease significantly for 0 . 0  < c < 0 .1 , so that the cross- 

point of fs  and / 2 (point D) shifts along the P K  curve as it approaches point P  

(for c = 0.0, jD = P), being always below the cr-boundary (C O K  or S O K  curves). 

Similar behaviour of / 5 is also anticipated for c —> 1.0 (for c =  1.0, D = P),  although 

it should be borne mind that D  will move along the P K  curve less dramatically, 

owing to the asymmetric shape of the demixing curve (approximated here by G(c)). 

Depending on concentration, the boundary between the I+N and N regions will 

either follow or lie to the left of line OD  and overall cannot be higher than SO  or 

lower than / 5. For concentrations c <  0.5 the (I+N)-(N) boundary lies close to the 

line connecting points O and D, even at very low concentrations (c < 0.1) when 

the extremely small B-rich nematic region'extends between the (I+N) and (N+N) 

regions.

One feature of the real diagrams that was not included in this section is the width of 

the T/jv(ci,c2) coexistence region, the upper boundary of which (ci) is represented 

by the functions / 4 (c) and f 3(8, 0) (curve SOK).  We simply note that the other 

boundary (c2) of the region cannot extend below the limit outlined by / 2 (e) (curve 

PK),  because temperatures below / 2(e) have nematic phases for both components 

of the mixture.

Let us now examine the calculated phase diagrams and compare them with the 

predictions discussed above (Figure 6.35). Following the pattern adopted in Section

5.3, we begin with the high concentrations. The diagram in Figure 5.43 in Section

5.3, for c =  0.7, suggests a stable nematic phase across the entire range of e at 

c > 0.7. Let us, therefore, consider first the diagram for c =  0.9 (Figure 6.36). 

Here, the data points were obtained from the linear interpolation, based on the 

data obtained for C\ and c2 in Sections 6.2-6.4. The data from the NcVT (black­

filled squares) and NA//VT (blue-filled circles) results for c =  0.9 in Figure 6.36 fit 

well with the functions / 1- / 5 , described earlier. As expected, the nematic region 

in the centre of the diagram extends across the entire region of e. The data for
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Figure 6.36: T-£ phase diagram for c=0.90. Dotted lines represent generic diagram, 
while filled blue circles and black squares respectively represent NApVT and NcVT 
data.
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Figure 6.37: T-e phase diagram for c=0.70. Dotted lines represent generic diagram, 
while filled blue circles and black squares respectively represent NApVT and NcVT 
data.
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Figure 6.38: T-e phase diagram for c=0.50. Dotted lines represent generic diagram, 
while filled blue circles and black squares respectively represent NA/iVT and NcVT 
data.
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Figure 6.39: T-£ phase diagram for c=0.20. Dotted lines represent generic diagram, 
while filled blue circles and black squares respectively represent NA/iVT and NcVT 
data.
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Figure 6.40: T-e phase diagram for c=0.10. Dotted lines represent generic diagram, 
while filled blue circles and black squares respectively represent NA//VT and NcVT 
data.

the demixing coexistence region follow f 5{s,c) well. This region is divided in two, 

namely, the isotropic-nematic (above PD)  and the nematic-nematic (below PD)  

coexistence regions. The P D  curve is well reproduced by the NcVT results, because 

at the I-N transition of the B particles, the system is well demixed, so the effect on 

the transition of the A particles at the interface is minimal.

As we move further down the concentration range (c =  0.7, Figure 6.37), several 

variations occur. The first is that the T/;v(ci,C2 ) and demixing coexistence regions 

couple at e < Scaup, causing the disappearance of the C2 boundary of the Tjn(ci, C2 ) 

region and the boundary of the demixing region. Note, this doesn’t occur for c =  0.9 

(Figure 6.36) because these boundaries do not couple. This is because the phase 

diagram for c = 0.9 is located in the plain perpendicular to c — T  phase diagram 

for which the nematic region is always present over a certain temperature range. 

Thus, in spite of the coupling of the TIN(c\, c2) and demixing regions at lower c the 

nematic phase does not vanish at low e for c >  0.9. The NA/zVT data show that for
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c — 0.7 the nematic region, found at higher e, terminates at e ~  0.45, whereas the 

NcVT data suggest that it extends as far as e ~  0.10. We believe the NA/zVT data 

to be more accurate, since the observables used in the NcVT ensemble to identify 

these boundaries cannot be interpreted unambiguously for that range of c and e.

The second major difference between the c =  0.7 and c =  0.9 diagram is that in 

the former point D  (from Figure 6.35) moves closer to the vertical line ecoup, as the 

entire boundary described by /s  moves higher. The final variation is the lowering of 

the I-N curve (or C\ boundary of the Tw(c\,C2) region). All data points agree well 

with the predicted lines in the region e > £ couple (curves DQ  and OK),  but in the 

low concentration part of the diagram the line SO  does not appear to predict the 

ci boundary of the T i n ( c i , c 2 )  region. Indeed, the data from the NcVT ensemble 

closely follow curve CO, which suggests that the part of the boundary which is not 

merged with the demixing region (according to the NcVT data) is unaffected by 

this region and continues to decrease as e2 (CO curve) instead of remaining at fixed 

temperature

We move now to Figure 6.38, which gives the diagram for c =  0.5. The boundary of 

the demixing region couples with the T i n ( c i , c 2 )  region at higher e at this concen­

tration, than it did at the concentrations considered previously; the saturation of 

the growth of the demixing region by the T j n ( c i ,  c 2 )  region (or, equivalently, the re­

sistance by the former to the change in slope of the latter) is greater at c =  0.5 than 

c =  0.7 and c =  0.9. Consequently, the data from the NA/iVT results fit well with 

line SO.  Although the points from the NcVT data continue to resemble a quadratic 

dependence their T  values are shifted from CO to SO. At the lower concentrations 

(c =  0.2 and c = 0.1 , Figures 6.39 and 6.40 respectively), the points from the NcVT 

data are well aligned to the line SO,  whereas the data points obtained from the 

NA//VT results fall slightly higher. The possible reasons for the NA/iVT results 

giving higher values for the isotropic-nematic transition temperature for the sys­

tems with e < £COupie: were discussed in Section 6.5.3. Here, we simply note that the 

remainder of the data corresponds well to the predicted curves. These include the 

(I+N)-(N+N) boundary (curve PD)\  the boundary between the demixed nematics 

of two types and the homogeneous nematic phase (curve QD); and the C\ boundary 

separating the isotropic phase from the nematic phase (curve OK).
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6.5.5 Conclusions Based on the N cV T, NA/xVT Discussions

To conclude the discussions presented in Chapters 5 and 6 we summarise and repeat 

the main points mentioned in sections 5.4 and 6.5.

• In [197], authors used the Lebwohl-Lasher model for the binary mixtures of 

nematogens. They compared four different methods for particle exchange ((a) 

selecting a pair of unlike particles at random; (b) choosing a pair of nearest 

neighbours at random; (c) choosing a pair of nearest neighbours or next near­

est neighbours at random; (d) selecting a pair of particles at random) and 

found them to give the same results. However, method (b) was found to be 

slow to converge. Methods (b-d) included also the possibility of exchanging 

like particles, which was avoided in our simulations. Thus, our approach is 

similar to (6), except the exchange of like particles, since only cases of unlike 

particles were considered. As the result of such an attem pt to decrease the con­

vergence time, probabilities of exchanging neighbouring unlike particles were 

l/r]u instead of 1/6 (rju = 0...6 is the number of unlike neighbours, page 43). 

Although, this does not satisfy the rule of microscopic reversibility in general, 

it speeds up the simulation and is unlikely to affect well mixed or well demixed 

areas or, in fact, the transition point between them and, therefore, would not 

affect a quantative picture of the overall phase behaviour. This assumption 

is also supported by external results. The position of the phase boundaries 

were found to be in good agreement with results of Bates [179] for rod-sphere 

mixtures and theoretical predictions of Luckhurst et al [177]. However, such 

bias could make the interface between phases less distinct, which could explain 

a poor resolution of the boundaries at some concentrations (green points on 

phase diagrams).

• The phase behaviour of LC mixtures was studied using the Lebwohl-Lasher 

model in NcVT and NA//VT Ensembles for a comprehensive range of con­

centrations, temperatures and coupling constants. The simulation data were 

compared with existing experimental and simulation results and theoretical 

predictions.

• Novel approaches were suggested for the determination of the phase bound­

aries.

215



CHAPTER 6. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM . NA/iVT.

• The phase behaviour of the model was also considered in the alternative, tem­

perature - coupling constant plane, and its generic form was determined.

•  The NcVT and NA/iVT results were found to be in good agreement when 

coexistence between two phases appeared only as a result of the first-order I-N 

transition.

• In the area where coexistence was also influenced by demixing, however, the 

NcVT results suggested a smaller coexistence region than that indicated by 

the more reliable NA/iVT results.

•  Hysteresis effects were clearly evident in the NA/iVT simulations. While the 

NcVT data did not suffer such problems, the coexistence boundaries thus 

identified were subject to finite size error due to the large interfaces present in 

this ensemble.

• In both NcVT and NA/iVT Ensembles the phase diagram revealed isotropic, 

nematic, and coexistence regions. However, only the results from the NcVT 

Ensemble showed the boundary between two different coexistence regions, 

while the phase reentrance of I+N phase coexistence predicted by G. Luck- 

hurst [177] was clearly evident only in the NA/iVT Ensemble.

• Asymmetry of the demixing region was solely due to the orientational anisotropy 

properties of the system investigated.

• Coupling of two I+N coexistence regions was determined to occur at £COUp ~  

0.52.

•  The size of the system as well as the introduction of another type of anisotropic 

particles was found to reduce the strength of the first-order isotropic-nematic 

phase transition.

• On the phase diagram, the slope of the I-N boundary was found to change 

with decrease of e. However for e <  £ COuP the slope remained approximately 

unchanged, owing to the effect of the demixing processes in the mixture.
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Chapter 7

Results And Discussion. Ternary 

System . N cVT

In this chapter we present and discuss the results for the phase behaviour of the 

ternary system, based on the Lebwohl-Lasher lattice model. The results were ob­

tained by performing Monte Carlo simulations in the Canonical Ensemble (NcVT). 

The model basis was described in Chapter 4. For most calculations we used a system 

of 16x16x16 particles, as for the previous two investigations. All results presented 

in this chapter were obtained in this way unless otherwise stated. The correlation 

length of run for this system is approximately the same as that of the binary system, 

around 5,000 run steps. Therefore, for such observables as the average energy func­

tion (E ( T ) ) NcVT and the average radial distribution function (gAB(r =  1,T)), runs 

with 20,000 steps per point were performed, allowing an additional 5,000 steps for 

equilibration. For the calculation of the second-rank order parameter (P2 P 7))NcVT, 

we used from 50,000 to 200,000 steps per point. The temperature step for all 

(E (T ) ) n cv t  and (gAB(r =  1,T)) data was A T  = 0.005. The temperature step 

used between calculations of (P2{T))ncv t  was AT =  0.02.

The values chosen for the coupling constants for each of the three components of the 

mixture were £a — 1.0, £b =  0.6 and Ec = 0.2. In what follows, the concentrations of 

these are denoted as ca, cb and cc, although only two of them are independent. The 

entire phase behaviour will then be presented as a 3D phase diagram. In addition, 

for the sake of clarity, we will present some of the results as 2D phase diagrams that 

represent planar cuts through the 3D phase diagram.
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In Section 7.1 we explain the geometry of these phase diagrams. Before any results 

are presented, in Section 7.2 some data from Chapter 5 will be mapped on the new 

3D type of phase diagram. The presentation of data will then follow in Section 7.3. 

Owing to the large quantity of data collected we will present only selected results, 

presenting the data for concentrations which lie on distinct planes in the 3D phase 

diagram. These planes correspond to the bisectors of the equilateral triangle which 

forms base of the 3D phase diagram and are named after particle types A, B  and 

C  since they include the concentration points ca = 1.0, Cb = 1.0 and cc = 1.0 

respectively (Sections 7.3.1-7.3.3). The presentation of results will be concluded 

with 3D phase diagrams in Section 7.4, where we will discuss the results presented 

in Sections 7.3.1-7.3.3.

Since all observables presented in this chapter were obtained at constant N c V T , 

the index (NcVT)  is omitted in the notation. As in the binary system (Chapter 5), 

in the ternary system presented in this Chapter the more anisotropic particles are 

indexed as particles A, with coupling constant Ea — 1.0, then the less anisotropic 

particles are indexed as particles B, with coupling constant eb — 0.6. In addition, a 

third type of particles is introduced and indexed as particles C. This type of particle 

is the least anisotropic of all three (ec =  0.2)

7.1 Geom etry Of The Phase Diagram For The 

Ternary M ixture

In order to construct a concentration-temperature phase diagram for the binary 

system in Cartesian coordinates, two dimensions are sufficient (since the concentra­

tion can be defined by one parameter). However, for a ternary system, in which 

there are three components whose concentrations are not fixed, another dimension 

must be introduced. In the current model only two of the three concentrations are 

independent (Equation (7.1)).

cA + cB + cc = 1.0 (7.1)

This means that all possible concentrations are located on a single 2D surface. The 

closest structure for such a phase diagram is a 3D prism, a 2D concentration surface 

limited by an equilateral triangle plus another dimension for the temperature.
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Figure 7.1: Geometry of the concentration surface for the ternary system

The coordinates, ca, Cb and Cc do not, however, straightforwardly fill a Cartesian 

space (Figure 7.1). Suppose that the equilateral triangle A B C  of the concentration 

surface is plotted on a Cartesian surface, so that A = (0.0,0.0), B  = (0.5, ^ )  and 

C =  (1.0,0.0). In this case, a point O on the concentration surface A B C  represents 

a composition of the system with concentrations:

_  I a  _  Ib  _  l c  2 )

IaYIb +  lc Ia + Ib + lc Ia + Ib + lc
where I a , I b  and lc are the projections of O onto the sides BC, CA  and A B  respec­

tively. A special case of the ternary system, which is equivalent to the general case 

of a binary system, occurs when the concentration of one of the three components 

is zero (i.e. ca = 0.0 or cb = 0.0 or Cc = 0.0).

219



CHAPTER 7. RESULTS AND DISCUSSION. TERN ARY SYSTEM . N C VT

In the next section, the data from three binary systems analogous to those presented 

in Chapter 5 will be used to construct phase diagrams on the faces of the 3D prism, 

these faces correspond to sides B C , CA  and A B  and represent phase diagrams 

for binary mixtures of particles B and C, particles C and A, and particles A and 

B respectively. To fit a 2 D phase diagram of a binary mixture onto a face of 3D 

prism we used relations (7.3-7.5), where concentration values c of the binary systems 

were converted to x  and y coordinates of the base A B C  of the prism (Figure 7.1). 

Relation (7.3) converts the c-coordinate of the binary system of particles B and C, 

relation (7.4) converts the c-coordinate of the binary system of particles C and A 

and relation (7.5) converts the c-coordinate of the binary system of particles A and 

B; while T-coordinate remains unchanged.

x — (1 — c) cos 60° y =  (1 — c) sin 60° ( 0 ,4  =  0.0, c = — —— ) (7.3)
\  c b  +  c c J

x —  c y — 0.0 ( c b ^ O . O ,  c = — — — ) (7.4)
\  ca +  cc J

x = l — sin30°c ?/ =  cos30oc (c c  =  0.0, c = — —— ) (7.5)
\  Ca  +  Cb J

To sample effectively the phase behaviour of the system inside the prism, one could 

randomly select points c^, c# and c q  retaining the constraint given in Equation 

(7.1). Alternatively, one could explore the concentration space by scanning across 

lines corresponding to one of the concentration values being held fixed. Then, all of 

the possible remaining concentration points Oz(c) will depend only on one further 

variable, c, and will lie on a line which is parallel to the corresponding edge of the 

prism (BC  for ca = const, CA  for eg =  const, A B  for cc = const). For example, if 

cB = const, the Cartesian coordinates for any composition read as follows:

x = \ c B + c y = ~~~cB c[0...1] =  — —  (7.6)
2 2 cA + cc

where c is analogous to the concentration of the binary systems and represents 

the relative concentration of the remaining compounds, A and C. The majority 

of our calculations were performed using this method. This approach enabled us 

to cover comprehensively the entire concentration space (Figure 7.2), using twenty 

four Oi(c#,c) points with a relatively uniform distribution. We also conducted 

simulations at nineteen further points: one for the case ca = Cb = cc =  § and 

the rest for the three further planes (six points per plane). The three planes that 

we used for this were the three bisectors of the concentration triangle (Figure 7.1).
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For such planes the values of all three concentrations are variable, while Oi(c) still 

depends on only one parameter. The Cartesian coordinates for Oi(x,y) are given in 

Equations 7.7-7.9:

x = i +^ cos30° y = x +£^ sin30° ( CB =  Cc’ c[0- 1] = ( 7 ' 7 )

cb

Cb +  2 cc
(7.8)

C y J 3 (
x = 0.5 IJ = ~Y~ [cA = cCi c[0...1J =

x  =  1 _  c°s 30° y =  1 - ^ ^  sin 30° ( cA = cB, c[0...1] =  — )  (7.9)
Z Z \  Cq +  zcA j

The results for the concentrations corresponding to points on these three planes, 

set out by the constraints Equations 7.7-7.9, are presented in Sections 7.3.1-7.3.3 

respectively. These include the data for the points cA =  cb — cc =  §•

B

Figure 7.2: Concentration points investigated. 45 points

221



CHAPTER 7. RESULTS AND DISCUSSION. TE R N A R Y SYSTEM . NC VT

7.2 W hat We Know From Binary System s

Earlier we described the geometry of the 3D phase prism for ternary system. Before 

we comment on the three binary systems that form the faces of the prism, let us first 

explain the notation to be used (Figure 7.3). For simplicity, these faces will be called 

face AB,  face B C  and face CA.  These correspond to the components whose binary 

phase diagrams makes up each face. Similarly, the vertical edges of the prism, the 

temperature axes corresponding to the three pure components, will be called edge 

A, edge B  and edge C respectively.

B

<D
S-H

a
<3
S-i
<D
P-t
a
0)

H

A

A

C

Figure 7.3: Representation of the data from Chapter 5 on faces of the 3D prism.
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As was mentioned at the beginning of this Chapter, the system considered here 

comprises three components with coupling constants E a  = 1.0, e b  =  0.6 and Ec =  

0.2. Therefore, some data from Chapter 5 can be used to construct phase boundaries 

on the faces of the phase prism. The data for the binary system with e = 0.6 (Figure 

5.15, page 77) is rescaled to face A B  using relation (7.5) and the system with e =  0.2 

(not presented before) is rescaled to face CA  using relation (7.4). For face B C , 

using relation (7.3), the rescaled data of the binary system with e  = 0.35 (not 

presented before) was used (strictly, the binary system with eb =  0.6 and Ec — 0.2 

corresponds to a rescaling of a binary system with e «  0.33. After transforming the 

concentration points using relations (7.3-7.5) the phase points were plotted onto the 

diagram, shown in Figure 7.3.

From this Figure one can intuitively envisage a smooth surface of isotropic-nematic 

transition which connects the I-N curves on faces A B , B C  and CA,  assuming that 

no anomalies occur once a third component is introduced. On each of the three 

vertical edges A, B  and C  of the prism, the I-N curves of the corresponding two 

faces meet at T^N, TfN and TfN respectively. It is also likely that the nematic- 

nematic coexistence curves will encounter no anomalies on all three edges of the 

prism (A, B  and C), as they meet at T  =  0.0. At this stage it is difficult to predict 

any coexistence boundaries, especially below the demixing curve (the curve between 

any homogeneous phase and a coexistence region). Once one component of the 

mixture is segregated, the rest of the bulk can be treated as a binary mixture with 

the coupling constants of the corresponding components. However, it may be that 

this approximation will work only if the I-N transition temperatures of the pure 

components, which remain mixed in the bulk, lie below the demixing curve of the 

system. These, and other speculations will be revisited in Section 7.4, after all the 

results have been presented.

7.3 Results From Ternary Systems

We now come to consideration of the ternary system, that is, a system in which, 

unlike those in the previous section, all three concentrations are non-zero. First, 

in Sections 7.3.1-7.3.3 we consider the systems whose concentrations c a , c b  and c c  

vary in such a way that the composition of the system, defined by 0 ( c a , c a , c b ) ,  

falls on one of the bisectors of the concentration plane (base A B C  of the phase
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prism). This is achieved if the concentrations of two of the three components are 

equal (ca =  Cb , ca = cq or cb — cc). For simplicity these bisector planes will be 

called plane C, plane B  and plane A, respectively. In addition, we will refer to the 

composition of the system for planes A, B  and C  using the concentrations ca, Cb and 

cc respectively, meaning that the remaining two (equal) concentrations are derived 

from the relation appropriate to the corresponding plane (Equations (7.7-T.9)).

In Chapter 5 we introduced three temperatures of discontinuity, Tfr(c), T^(c) and 

T/r (c). These temperatures referred to different processes in the system. It was 

noted that, although Ttr{c) was the discontinuity that always occurred at the highest 

temperature, the second highest discontinuity temperature was not always Td(c), 

but occasionally T/r (c), owing to the coupling of the first two (Ttr{c) =  T^(c), for 

selected c and e). The ternary system will almost certainly exhibit more than three 

such discontinuity temperatures. Before performing thorough analysis, it is difficult 

to determine to which process each discontinuity temperature refers. Therefore, to 

avoid the confusion of re-labeling these discontinuity temperatures we index them 

appropriately as they appear when presenting the results, but defer explanation of 

these indices to Section 7.4 starting on page 254.

7.3.1 Phase Behaviour in the A-Plane.

The first plane considered is the bisector which starts from point A  of the triangle 

base of the prism (ca + 2 c —  1.0, where c — Cb =  cq, Equation (7.7)).

The first observable that we present is the average internal energy of the system 

(E ). Figure 7.4 shows the dependence of energy (E ( T )) on temperature for vari­

ous concentrations Ca • For all concentrations considered, the energy decreases with 

decreasing temperature. In addition, we observe a gradient discontinuity at tempera­

tures Ttr{cA) on the (E(T))  curves for the entire concentration range. The numerical 

differential of (E (T )) (which is related to the heat capacity) reveals a peak at Ttr{cA), 

which we take to be a point of transition of the system. Let us consider the case 

ca = 0.8. At first, the energy (E ) has a negative value at high temperatures. This 

decreases slowly as the temperature falls until, at T  ^  Ttr(c = 0.8) =  0.94, it starts 

to decrease more rapidly. The internal energy (E ( T )) then decreases with a changed 

slope and shows some small deviations, until temperature is reduced to T  =  0 .
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Figure 7.4: The thermal dependence of the energy for various ca-

As ca decreases, the entire (E(T))  curve moves to higher values but remains below 

zero, similar to the case of the binary system. However, the small deviations noted 

for ca = 0.8, do not allow us to determine unambiguously any tem perature of discon­

tinuity except Ttr(cA) and T/r (c^). These tem peratures will therefore be determined 

from collective analysis of other data, presented further in this section. In Table 7.1 

we present the values of temperatures Ttr(cAj for the set of concentrations.

The dependence of the order param eter on tem perature ((P2(T))) for the given 

concentrations ca is shown in Figure 7.5. The (P2 (T))  curves were obtained in an 

analogous fashion to tha t used for the binary system presented in C hapter 5 (Figure 

5.2 on page 60). As is the case for the (E(T))  curves, for ca = 0.8 the shape of 

the (P2 (T)) curve is very similar to tha t of the binary system with a high value
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ca Ttr(cA) Tlr(cA)
0.1 0.42 ±0 .01 0.04 ±0.01
0.2 0.47 ±0 .01 0.05 ±0.01
0.3 0.56 ±0 .01 0.05 ±0.01
0.4 0.61 ±0 .01 0.04 ±0 .01
0.6 0.77 ±0 .01 0.05 ±0 .01
0.8 0.94 ± 0 .01 0.05 ±0 .01

Table 7.1: Table of tem peratures obtained from (E(T))  data. These were derived 
from the points where the tangent of (E(T))  was at its steepest.
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c =0.2 

ca=0.3 
e =0.4 
c =0.6 

c =0.8H
(N

0.4
<D
u
o

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
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Figure 7.5: The second-rank orientational order parameter, (P2(T)). Different curves 
represent different concentrations cA.
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of c (compare Figure 7.5 with Figures 5.19 on page 83, 5.29 on page 97 and 5.35 

on page 106). From Figure 7.5 we see that the system undergoes the isotropic- 

nematic transition at temperature Ttr(cA = 0.8) «  1.02. The value of Ttr(c^) 

decreases as ca decreases (Fig.7.5). In addition, the gradient of the (P2 P 1)) curve 

exhibits more changes as ca —>■ 0.0. For example, at ca = 0.1, as the temperature 

falls the curve undergoes an initial transition at Ttr(c = 0.1) «  0.41. Then, at 

Tdd(c =  0.1) «  0.30 the curve develops a steeper gradient, approaching a high value 

of the order parameter, before, at T/r (c =  0.1) «  0.07, the gradient increases still 

more as (P2 (T)) approaches its maximum value.

1.0 

0.9 

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Temperature, T

 c =0.1
 c =0.2

-  c =0.3 
 c =0.4

 c a = 0 -6

 c =0.8
A

—» —P2a(T) 
- ° - p 2b(T) 

 P2C(T)

Figure 7.6: Temperature dependencies of the second-rank orientational order param­
eter shown individually for components A, B and C. Different colors of the curves 
represent different concentrations ca. Filled triangles represent (P2{T)A) for parti­
cles A, empty circles - (P2(T)B) for particles B and dots - (P ^ T )6') for particles 
C.
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cb Ttr{CA) Td{CA) Tdd(cA) TIAca)
0.1 0.41 ±  0.05 0.41 ±  0.05 0.30 ±0.05 0.07 ±0.05
0.2 0.48 ±  0.05 0.48 ±  0.05 0.30 ±  0.05 0.07 ±0.05
0.3 0.58 ±0.05 0.58 ±0.05 0.30 ±0.05 0.07 ±0.05
0.4 0.66 ±0.05 0.66 ±0.05 0.30 ±  0.05 0.07 ±0.05
0.6 0.85 ±  0.05 0.62 ±  0.05 0.32 ±  0.05 0.08 ±  0.05
0.8 1.02 ±0.05 0.58 ±0.05 0.32 ±  0.05 0.09 ±  0.05

Table 7.2: Table of temperatures, obtained from (P2(T)) data.

From the data presented in Chapter 5 we discovered that such deviations are caused 

by the mutual influence of the order parameters of each component. Let us, there­

fore, examine individually the order parameters of the components A ((P2)A), B 

((P2)B) and C ((P2)c ) (Figure 7.6). From this we see that, while the initial increase 

in orientational order occurs at the same temperature (Ttr(cA)) for particles A and B 

at all ca, the shapes of the (P2(T)) curves for each type of particle differ significantly. 

In addition, a significant increase in (P2(T)) for particles C does not occur except 

at very low temperatures 0.1), with a slight increase at T  m 0.6 for high values 

of ca- We comment first on the (P2(T)A) curves. For high values of ca, the order 

parameter increases with a steady gradient, starting at Tir(c^) and gradually ap­

proaching 1. As ca decreases, the order parameter increases more steeply, starting at 

lower temperatures Ttr(cA)- The (P2{T)B) curves are very distorted throughout the 

entire range of ca- The order parameter for particles B increases approximately as 

a series of line segments. Similarly to the order parameter for particles A, (P2(T)B) 

curves start to increase at Tfr(c^), however the increase is less steep, as compared 

to that of particles A. As the temperature falls, the (P2(T)B) curves exhibit several 

changes in gradient, after which the order parameter increases sharply to 1.

For low values of ca, the (P2{T)C) curves show a significant increase in the order 

parameter only at very low temperatures (T < 0.1). For high values of ca, the order 

parameter of particles C  increases with a shallow gradient after Ttr{cA) until, at 

Td{cA) it falls back to a close-to-zero value. With a further decrease in temperature 

it increases sharply at T  < 0.1. The latter increase of the order parameter occurs 

for all concentrations on plane A and does not seem to depend on concentration.
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Figure 7.7: Dependencies of the three g(r = 1) functions for the set of concentrations 
cA. (a) cA =  0.1, (b) cA =  0.2, (c) cA = 0.3, (d) cA = 0.4, (e) cA = 0.6, (f) cA = 0.8.
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The order parameter of all components reaches 1 as the temperature approaches 

zero. Figure 7.6 shows that the behaviour of the order parameter is more complex 

then that in single component or binary systems. We will discuss this further in 

Section 7.4. Table 7.2 shows the values of Tir(c^) for the full set of concentrations. 

These values are in reasonable agreement with the values of Ttr{cAj obtained from 

the energy measurements.

The next observables we present are the radial distribution functions of the unlike 

particles. In Chapter 5 we discussed the nature of the radial distribution functions 

and the differences between the short and long range dependencies. We emphasise 

that here we present only the short range (i.e. r = 1) distribution functions and 

their dependence on temperature. In the binary systems, this dependence provided 

an adequate representation of the area of the interface between particles of different 

sorts. However, in the ternary system not one but three radial distribution func­

tions of unlike particles are required to represent fully the structural changes in the 

system. In this case, therefore, they are not explicit representations of the area of 

the interface between particles, but rather an indicator of the average interrelation­

ship between any two different types of particle at distance 1. The first function, 

gAB(r = 1,T), indicates the probability of particles A and B lying adjacent to each 

other; the second function, gCA(r = 1,T), indicates the probability of particles A 

and C being adjacent to each other; and the last function, gCB(r =  1,T), indicates 

the probability of particles C and B being adjacent to each other. This type of 

distribution function, rather than gAA(r = 1 , T), gBB(r =  1,T) and gc c (r =  1,T), 

was chosen for our analysis of the structural changes because it is more sensitive 

to the relative repositioning of particles, whereas the other functions are better at 

indicating the level of segregation of any one type of particle from the rest of the 

system. Before moving on to the presentation of the data we stress that the values of 

the distribution functions are normalised according to the total number of particles 

in the system and not according to the number of particles of each individual type. 

They therefore also reflect the concentration of each particle type.

In Figures 7.7(a-e) we present these distribution functions for the set of concentra­

tions ca- The dashed lines represent phase boundaries, the positions of which are 

based on the (P2(T)A) and (E(T)A) data, presented previously. At the beginning 

of this section we referred to this system (plane A) as being one of the closest to
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a binary system in its behaviour. However, Figure 7.7 reveals structural behaviour 

not seen in any of the binary systems. Indeed, it is difficult even to examine any 

single distribution curve without referring to the other two in order to understand 

the structural changes in the system. Throughout the entire temperature range, 

the gradient of gAB(r =  1,X) changes its sign three times, while the gradient of 

gCB(r =  1,T) changes its sign only once and the sign in gradient of gCA(r =  1 ,T) 

remains unchanged. This happens for all concentrations, except cA =  0.1 where 

these effects are diminished. Let us, therefore, examine all three curves simultane­

ously as the temperature decreases, starting from the lowest concentration (Figure 

7.7(a)).

For the range of temperatures T  > Ttr{cA = 0.1), the system is well mixed. The 

values of gAB(r =  1,T) and gCA(r =  1 ,T) are approximately equal, which indicates 

the equal proportions of components B and C in the system as well a uniform distri­

bution of small amount of particles A in the bulk. When the temperature decreases 

below Ttr(cA = 0.1), the system moves from the isotropic phase and particles A be­

gin to separate out. This can be seen from the decrease in gCA(r = 1,T). The other 

particles remain mixed, which is seen from unchanged values of gCB(r = 1,T) and 

gAB(r — 1,T) for temperatures just below Ttr(cA =  0.1). Indeed, snapshots of the 

system at Tdd(cA = 0-1) < T  < Ttr(cA =  0.1) show that particles A formed a drop, 

while the rest of the bulk (particles B and C) remained mixed. The order parameter 

data show that particles A developed a nematic order here, while particles C ex­

hibited no orientational ordering and particles B had only a slightly increased order 

parameter. Overall, for temperatures T  < Tdd(cA =  0.1) the functions gCA(r =  1, T) 

and gCB(r =  1 ,T) decrease, while gAB(r =  1,T) goes through a bulge as the tem­

perature decreases. The decrease in gCB(r =  1,T) indicates the demixing of the 

remaining bulk; the corresponding decrease in gAC(r =  1,T) suggests that while 

separating out and forming a drop, particles A avoid contact with particles C. This 

can only result from the drop moving deeper inside a region occupied by compound 

B. The increase of gAB(r = 1 ,T) at Tdd{cA = 0.1) also supports this suggestion. The 

latter effect also coincides with the isotropic-nematic transition of particles B.

As the concentration of particles A increases (cases cA = 0.2 - cA = 0.4), the 

following changes in the three functions occur. The first concerns the isotropic 

phase, where the values of gAB(r = 1, T) and gAC(r = 1, T) increase with cA and 

that of gCB(r = 1, T) decreases; this simply reflects the changing composition of
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the system. The temperature at which all three functions first change (Ttr (c^)) 

increases with increase in ca. The second change concerns the appearance of a 

little maximum in gCB(r = 1,T), before the function decreases markedly and the 

appearance of a slight minimum in gAB(r = 1 ,T ), before its bulge. These features 

occur just below Ttr(cA) and have their extrema at T ^ c ^ ) . Moreover, they become 

more pronounced as ca increases. The third change concerns the fact that for the 

temperatures T  < Ttr(cA = 0.1) all three functions decrease, as the temperature 

decreases, with the exception of the two bulges on gAB(r =  1,T) and gCB(r =  1,T) 

mentioned previously.

When the temperature decreases below Ttr(cA), the system moves from the isotropic 

phase and particles A begin to separate out (decrease in gAB(r =  1, T) and gCA(r =  

1, T)). The number of interactions between particles of types B and C also increases 

(function gCB(r =  1,T)). As in the case of low concentrations, snapshots of the 

system at T ^ c ^ )  < T  < Ttr(cA) show a droplet of particles A. Order parameter 

data indicate nematic order for particles A, and isotropic for particles C and B, 

although particles B exhibit a slight ordering in this range of temperatures. As 

temperature passes below T ^ c ^ ) , gAB(r =  1,T) starts to increase, while all the 

other functions decrease. This coincides with the isotropic-nematic transition of 

particles B, according to Figure 7.6. In our examination of binary systems we 

discovered that when the system is in isotropic-nematic coexistence, with a low 

concentration of particles in the nematic phase (a small nematic drop in an isotropic 

bulk), the area of the interface increases slightly at the isotropic-nematic transition 

of the bulk (pages 88-93). In Section 7.4 we discuss where this is also the case for 

the ternary system.

However, some features remain unchanged with an increase in ca- At high tem­

peratures, the values of gAB(r = 1, T) and gAC(r — 1, T) are approximately equal, 

indicating the equal proportions of particles B and C. Similarly, at low temperatures 

the values of gAB(r =  1,T) and gCB(r = 1,T) are close, indicating that the inter­

faces between corresponding particle types have similar areas; meanwhile, the value 

of gAC(r =  1,T) remains consistently at zero, indicating that there is no contact 

between particles A and C.

As concentration ca increases further (ca > 0.4), the values of gAB(r =  1,T) and 

gAC(r = l jT )  continue to increase, while gCB(r = 1 , T) decreases for ‘isotropic’
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temperatures. However, at temperatures below Ttr(cA), these functions do not ex­

hibit such sharp changes in their gradients as they do at lower values of cA• As 

a result, the maximum in gAB(r =  1 , T) and the minimum in gCB(r =  1 , T) at 

Tdd{cA), become less pronounced as concentration increases. The (P2(T)) data show 

nematic order for all particles in the range of temperatures Td(cA) < T  < Ttr(cA), 

or more precisely, nematic order is clearly seen for particles A and B, while particles 

C exhibit some degree of nematic ordering, which is probably induced by the rest 

of the bulk. This points to the presence of a homogeneous nematic phase, which 

is particularly clearly present at cA =  0.8. With further decrease in temperature 

the functions exhibit behaviour similar to that observed previously. However, ow­

ing to the changes in concentration, their values at high temperatures are changed 

(increased for gAB(r =  1,T), gAC{r =  1,T) and decreased for gCB(r = 1,T)), while 

their values at T  —> 0.0 remain virtually unchanged. As a result, the maximum 

in gAB(r = 1 ,T) and the minimum in gCB(r = 1 ,T) for T  < Td(cA) become less 

dramatic with increase in cA.

Taking into account the ratio of the three components, the geometry of the system 

(PBC) and the data presented, the topology of the demixed system can be charac­

terised as follows. For low concentrations (cA < 0.2) the system sheds a nematic 

drop at first (A) before separating into two layers at lower temperatures (layers B 

and C), the drop remaining in layer B. As concentration increases (0.2 < c A < 0.3), 

the system separates into a cylinder of A, wrapped in a cylinder of B, that are in the 

bulk C. As concentration increases further (0.3 < cA < 0.4), the system separates 

into several layers, where layer B is always between A and C. With further decrease 

in concentration (0.4 < cA < 0.6) the topology of the system is exactly reversed 

to that of 0.2 < cA < 0.3, with a cylinder of C in the middle. Finally, for large 

concentrations (cA > 0.8) the system separates into a C sphere, which is wrapped 

in B sphere, that are in the bulk A.

Using the same method as in Chapter 5 (pages 68, 92), we have constructed a 2D 

phase diagram for the ternary system considered from the energy, order parameter 

and distribution function data presented in this section. This phase diagram is a 

part of the complete 3D phase diagram, which will be presented in the next section 

and represents a ‘slice’ cut out by the plane A. The position of the plane A was 

described in the beginning of the present section and in Section 7.1. The 2D phase 

diagram is presented in Figure 7.8.
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Figure 7.8: 2D phase diagram of the A-plane.

We describe all the regions on the phase diagram first and then comment on the 

boundaries between them. The diagram comprises five areas. The area on the top of 

the diagram, represents the isotropic phase. Below this region there are two regions, 

the coexistence of the isotropic phase and particle-A-rich nematic phase on the left 

hand side of the diagram, and the homogeneous nematic phase on the right hand 

side of the diagram. At lower temperatures is a region of of three phase coexistence. 

These phases are A-rich nematic, B rich nematic and C-rich isotropic. Finally, at 

the bottom of the diagram there is a region, where three nematic phases coexist.

The isotopic region extends to low temperatures for small values of ca ■ The boundary 

between the isotropic phase and the rest of the phase diagram (henceforth Ttr(cA)
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curve) is believed to be at T  =  Tt̂ c (c = 0.5) (Figure 7.3) for ca =  0.0 and at 

T  = Ttr{e = 1.0) ~  1.15 (Table 5.1, page 59) for ca =  1.0. Here, Tt̂ c (c = 0.5) is 

the temperature of the isotropic nematic transition of the binary system of particles 

B and C with equal composition. For intermediate values of ca , with ca the Ttr(cA) 

curve varies approximately linearly.

The next curve is the boundary between I  -f Na coexistence region and the regions 

above it (henceforth T^ca)  curve). This curve couples with the Ttr{cA) curve for 

ca < 0-4.

Below this there is a boundary between the I  +  Na and Na +  Nb  +  l c  coexistence 

regions (henceforth T ^ ca)  curve). The Tdd(c^) curve effectively represents the 

temperature of demixing of the remaining particles B and C. As it happens, the 

particles B also undergo their isotropic-nematic transition at this temperature. On 

the phase diagram in Figure 7.8 cb =  cc always, owing to the position of plane A 

on the 3D phase diagram (Section 7.1). Thus, the T ^ c ^ )  curve is a projection of 

the demixing curve of the binary mixture and, hence, the T^(c^) curve is effectively 

a horizontal line. Further discussion of this will follow in Section 7.4.

The last boundary on the phase diagram is the T/r (c^) curve, which indicates the 

isotropic-nematic transition of particles C - this too is a horizontal line. It is analo­

gous to that seen in the binary system and its temperature is equal to that of T/r (c) 

of the binary system of particles B and C.

All the phase regions found in Figure 7.8 are consistent with the phase diagrams 

defined with the appropriate binary systems. Further discussion of these results will 

follow in Section 7.4.

7.3.2 Phase Behaviour in B-bisector Plane.

The next plane considered has the bisector of plane AC as a base and goes to point B  

of the concentration triangle. The behaviour of this set of concentrations (which are 

constrained by cb +  2cc =  1.0, where c = ca = cc) exhibits some features not seen 

in the previous section. Plane B is one of most interesting considered in this thesis, 

primarily because the degree of anisotropy of particle B is intermediate between 

those of the other sites present. This means that as cb decreases, the particles with
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higher and lower values of coupling constant compete to have influence on particles 

B. This means that both enhancement and reduction of the ordering and structure 

of the system are achieved for some concentrations.
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Figure 7.9: The thermal dependence of the energy for the set of concentrations c#.

Let us consider first the average internal energy of the system (E). Figure 7.9 shows 

the dependencies of the energy (E ( T )) on temperature for various concentrations 

Cb - For all concentrations, the energy decreases with a decrease in temperature. In 

addition, there is a gradient discontinuity at temperatures Ttr(cB) on the (E(T))  

curves throughout the entire concentration range. The heat capacity data reveal a 

peak at Xb(cs), which is accepted as a point of transition of the system.
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ca Ttr{cB) Tlr(cB)
0.1 0.59 ±0.01 0.04 ±0.01
0.2 0.57 ±0.01 0.05 ±0.01
0.3 0.55 ±0.01 0.05 ±0.01
0.4 0.51 ±0.01 0.04 ±0.01
0.6 0.46 ±0.01 0.05 ±0.01
0.8 0.41 ±  0.01 0.05 ±0.01

Table 7.3: Table of temperatures obtained from (E(T))  data. These were derived 
as a point where the tangent of {E(T)) is the steepest.

The behaviour of all (E(T)} curves for concentrations cB is similar to that for con­

centrations ca, presented earlier. Each curve experiences a number of discontinuities 

at two or more of the temperatures Ttr(cB), Td(cB), Tdd(cB) and T/r (cg). As cB de­

creases, the entire (E ( T )) curve moves to lower values, unlike the behaviour observed 

in the case of plane A. In Table 7.3 we present the values of all temperatures, Ttr{cB) 

and T[r(cB) for the set of concentrations.

The dependence of the order parameter on temperature ((P2(T))) for the same con­

centrations cB is shown in Figure 7.10. The (P2(T)) curves for different values of cB 

retain their generic behaviour, that is the order parameter increases with a decrease 

in temperature, starting from Ttr(cB), and experiences a number of changes in gra­

dient as it approaches its maximum value at T  —> 0.0; however, with a change in 

concentration, its variations in value are not, as was the case with the (P2(T)) curves 

shown in Figure 7.5, all in the same direction throughout the entire temperature 

range. Rather, as cB decreases, the order parameter decreases at lower tempera­

tures (0.0 < T  <  0.4) but increases at higher temperatures (0.4 < T  < Ttr(cB))- 

For temperatures around 0.4 the value of the order parameter depends very little on 

concentration cB. There are two significant changes in the gradient of the (P2(T)) 

curves. The first occurs when the system undergoes the isotropic-nematic transition 

at temperature Ttr(cB); the second, at lower temperatures, occurs when other, as yet 

unknown processes drive the order parameter up. This happens at Tdd(cB) ^  0.40 

and does not seem to depend significantly on concentration cB (Table 7.4). Through­

out the entire concentration range considered, Ttr(cB) decreases with increase in cB, 

whereas the gradients of the order parameter curves become steeper. For all con-
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centrations the order param eter approaches its maximum value when the gradient 

changes at Tdd(cB).
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Figure 7.10: The second-rank orientational order parameter, (P2(T)).  Different 
curves represent different concentrations cB.

Let us now examine individually the order parameters of components A ((P2)A), B 

((P2)b ) and C ((P2) ° ) (Figure 7.11). As was the case with variations in ca (Fig­

ure 7.6), the initial increase in orientational order occurs at the same temperature 

(Ttr{cB)) for particles A and B, but the shapes of the (P2( T )) curves for each type of 

particle differ. In addition, as happened with variation in ca, a significant increase in 

the value of (P2(T)) for particles C occurs only at very low temperatures (Tdd(cB)). 

However, the bulge of increased order parameter for high values of cB (cB = 0.8), 

which occurs at temperatures Td(cB), is now more pronounced, as compared to the 

previous case (ca = 0.8).
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Figure 7.11: The thermal dependence of the second-rank orientational order pa­
rameter, shown individually for components A, B and C. Different curves represent 
different concentrations c#. (a) (P2(T)A) for particles A. (b) (P2(T)B) for particles 
B. (c) (P2(T)c ) for particles C.

Thus we comment first on individual order parameters for c# =  0.8. The (P2{T)A) 

and (P2{T)b) curves for this concentration are relatively close to each other, in­

creasing with similar gradients as the temperature falls, starting from Ttr(cB = 0.8). 

However, at Td(cB = 0.8) there is a slight change in gradient on the (P2(T)a) curve, 

which correlates with the minimum in the order parameter of particles C, formed 

by the bulge.
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cb 7fr (c#) Td(cs) Tdd(cB) T U cb)
0.1 0.66 ±0.05 0.66 ±0.05 0.39 ±  0.05 0.06 ±  0.05
0.2 0.64 ±  0.05 0.64 ±0.05 0.40 ±  0.05 0.06 ±0.05
0.3 0.61 ±0.05 0.61 ±0.05 0.42 ±  0.05 0.06 ±  0.05
0.4 0.58 ±0.05 0.58 ±0.05 0.45 ±  0.05 0.06 ±0.05
0.6 0.53 ±0.05 0.38 ±0.05 N/A 0.07 ±  0.05
0.8 0.48 ±  0.05 0.17 ±0.05 N/A 0.08 ±0.05

Table 7.4: Table of temperatures T ^ c# ), Td(ce), obtained from (P2(T)} data. These 
were derived as a point where the tangent of (E(T))  is the steepest. Constraint B.

As Cb decreases, the (P2(T)A) and (P2(T)B) curves appear further apart, and the 

bulge of increased order parameter on the (P2(T)C) curve diminishes. We also 

note that the appearance of the (P2{T)A) and (P2(T)C) curves becomes similar to 

that observed in single component systems with coupling constants £ =  1.0 and 

e = 0.2 respectively; while the gradient of the (P2(T )B) curve approaches that of 

the (P2(T)a) curve in the region of lower temperatures (0.0 < T < 0.3), and that of 

the (P2(T)c ) curve in the region of higher temperatures (0.3 < T  < Ttr (ce)).

The value of the order parameter for all components reaches 1 as the temperature 

approaches zero. The ordering behaviour of the three components (Figure 7.11) 

suggests that the changing gradient of (P2(T)) in Figure 7.10 reflects the behaviour of 

the order parameter for particles B. We will discuss this further in Section 7.4. Table 

7.4 shows the values of Ttr(c^) for the full set of concentrations. These values are in 

good agreement with the values of Ttr(cB) obtained from the energy measurements.

The next observable we present is the radial distribution functions of the unlike 

particles gAB(r =  1,T), gCA(r =  1,T) and gCB(r =  1,T), the physical nature of 

which was dealt with briefly in the previous section. In Figures 7.12(a-e) we present 

the functions for the set of concentrations c#. As in the previous case, the dashed 

lines represent boundaries between different phase regions.

Following the procedure adopted in the previous section, we examine all three curves 

simultaneously as the temperature decreases, except that this time we consider all 

concentrations at once. As with the distribution functions in the previous case, the
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gradient of gAB(r = 1,T) changes its sign three times, while that of gCB(r =  1 , T) 

changes its sign once and the sign in the gradient of gCA(r = 1 , T) remains un­

changed, as temperature decreases. However, now this is true for all concentrations 

Cb - With an increase in concentration of particles B, the following changes in the 

three functions occur. The first relates to the isotropic phase, where the values of 

gAB(r =  1, T)  and gCB(r =  1, T)  increase and the value of gAC(r = 1, T)  decreases, 

which reflects the proportion of the three components in the system. The tempera­

ture at which all three functions change (Ttr(cB)) decreases with an increase in c#. 

Throughout the whole concentration range considered, functions gAB(r =  1,T) and 

gCB(r =  1,T) have approximately equal values for both isotropic temperatures and 

as T  —¥ 0.0. The equality of these two functions at high temperatures indicates the 

equal proportions of particles A and C in the system. At low temperatures their 

values are fairly close, indicating that the interface between particles A and B, and 

interface between particles C and B are of similar area size throughout the entire 

concentration range; this further suggests that the ways in which particles A and 

C demix from particles B are similar. A zero value of gAC(r = 1,T) at T  —»• 0.0 

indicates no contact between particles A and C, as was found in the previous sec­

tion. Depending on concentration, the topology of the demixed system changes from 

having two drops, one of particles A and the other of C, in a bulk of particles B (for 

high values of c#), to having a bulk of particles A which is separated from a bulk 

of particles C by thin films of particles B. Snapshots for these concentrations at low 

temperature (not shown) support this characterisation.

However, between this topology and the homogeneous structure, there are a num­

ber of intermediate stages. For low values of cb , the values of all functions exhibit 

gradient discontinuities at Ttr(cB)• The gAB(r = 1 ,T) and gAC(r = 1 ,T ) func­

tions decrease (immediately below Tfr.(c#)), whereas the gCB(r = 1 ,T ) function 

increases. The decrease in the first two indicates segregation of particles A, result­

ing in increased contact between particles C and B i.e. an increase of gCB(r =  1, T). 

Snapshots show that for T  < Tir(cfi), particles A did indeed form a single domain 

while the (P2{T)) data indicate nematic order for particles A. Meanwhile, the rest of 

the bulk (particles C and B) remained mixed and exhibited no (particles C) or little 

(particles B) ordering. This behaviour continues until 7d(c#), when the gradient 

of gCB(r = 1,T) changes its sign and the decrease in gAB(r =  1,T) is halted and 

even reversed to a small degree as the temperature continues to fall below T^c#).
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At the same time, the gAC(r = 1 , T) function continues to decrease. The (P2(T)) 

data, along with snapshot views, indicate demixing of the remaining bulk (particles 

B and C) at this point, which is supported by the decrease in gCB(r = 1,T) and 

by the coincident isotropic-nematic transition of particles B. As they separate from 

particles B, particles C also push the former closer to particles A (as is reflected 

by the slight increase in gAB(r = 1,T)), creating a film of particles B between the 

As and Cs. With further decrease of the temperature, the three phases continue to 

minimize their areas of interface as is clear from the decrease in all three distribution 

functions. While well demixed (at T  < T^c#)), the domain of particles C under­

goes an isotropic-nematic transition at T ^ c b )  (which is evident from an increase in 

(P2c (T)) in Figure 7.11).

For high values of eg, the values of all the functions remain unchanged as the tem­

perature passes below T<r(ce). The position of Ttr(cB) is clear, however, from the 

(P2(T)) data (Figure 7.11). Although this shows a nematic order for all three types 

of particle, the distribution function exhibits no noticeable changes. This indicates 

a homogeneous nematic phase, resembles the behaviour of the distribution functions 

of unlike particles in binary mixtures with high values of c (Chapter 5). Subse­

quently, the gAC(r =  1,T) function decreases continuously, while gAB(r =  1,T) and 

gCB(r =  1,T) deviate slightly, down and up respectively, from the flat behaviour at 

around T^c#). Snapshots reveal that this relates to formation of small domains of 

particles A and C for temperatures slightly below Td(c#) and the (P2(T)) data indi­

cate the nematic order of such domains. Then, as the temperature passes T^Cjs), 

the domains grow quickly (within AT «  0.1) and form two drops, one of particles A 

and one of particles C, which maintain their distance from each other. As these two 

domains grow, one (particles A) remains in the nematic phase but the other (par­

ticles C) returns to the isotropic phase until at T [ t ( c b )  a sharp increase in ( P ^ i T ) )  

points to the isotropic-nematic transition of particles C.

From the data presented in this section, we have constructed a 2D phase diagram for 

the ternary system ‘sliced’ by the plane B. The position of the plane B was described 

in the beginning of the present section and in Section 7.1. The 2D phase diagram is 

presented in Figure 7.13.
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Figure 7.13: 2D phase diagram of the B-plane.

We use the order to describe the phase diagram adopted in the previous Section. The 

diagram comprises five regions.The area on the top of the diagram, represents the 

isotropic phase. Below this, there are two regions, the coexistence of the isotropic 

phase and particle-A-rich nematic phase on the left hand side of the diagram, and the 

homogeneous nematic phase on the right hand side of the diagram. Further below 

this is the first region of three phase coexistence. This comprises an A-rich nematic 

phase, a B rich nematic phase and a C-rich isotropic phase. Finally, at the bottom of 

the diagram there is a region, where the three nematic phases coexist. The difference 

between this phase diagram and that for plane A (Figure 7.8) lies in the values of 

the slopes. In Figure 7.13 the Tb(cs) curve decreases with increase of c#, unlike
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the Ttr(cA) curve in Figure 7.8. The Td(cA) curve that separates the homogeneous 

nematic from the coexistence region, is very steep, while Tm (cb) and T/r (c^) remain 

unchanged. As the value of cB increases Ttr(cB) curve changes continuously from 

Ttr(cB =  0.0) ~  0.6 to the value of the transition temperature for pure particles B 

(:Ttr{cB = 1.0) «  0.41).

The next curve is the boundary between I  + N A coexistence region and the regions 

above it (Td(cB) curve). This curve couples with the Ttr(cB) curve for 0.4 < cB <  0.6, 

which declines a little with increase of cB. For the the concentrations cB > 0.6 Td(cB) 

declines quite steeply, approaching T  = 0.0 as cB —> 1.0.

Below this there is a boundary between the I  +  NA and N A +  N B +  Ic  coexistence 

regions (Tdd(cB) curve). As in the previous case (Figure 7.8), for temperatures 

T  < Tdd(cB) the remaining particles B and C demix while the particles B also 

undergo the isotropic-nematic transition. On the phase diagram in Figure 7.13 

cA =  cc always, owing to the position of plane B on the 3D phase diagram (Section 

7.1). Thus, the difference between the I  -f NA and NA -f N B +  Ic  regions (and 

therefore the Tdd(cA) curve) becomes weaker as cB —> 0.0.

The last boundary on the phase diagram is the T[r(cB) curve, which indicates the 

isotropic-nematic transition of particles C - again, this is a horizontal line. It is 

analogous to the horizontal line found in binary system and its temperature is equal 

to that of T/r (c) of the binary systems with e = 0.2. As in the previous case, 

T/r (c#) «  Ttr(e = 0.2), which is isotropic-nematic transition of single component 

system of particles C.

All of the values in Figure 7.13 are found to be in agreement with the data obtained 

from the earlier investigations of binary systems and the phase diagram in Figure 

7.13 seems to concatenate well with that in Figure 7.8. Further discussion of these 

results will follow in Section 7.4.

7.3.3 Phase Behaviour in C-bisector Plane.

The next plane considered has the bisector of AB as a base, and starts from point 

C of the concentration triangle (cc +  2c =  1.0, where c = cA = cB, Eq. 7.9). In this 

ternary system, the concentration of particles with the lowest anisotropy (particles
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C) is subject to variation, while the concentrations of the other two components, 

both of which are more anisotropic, occupy equal portions of the rest of the volume 

available on the lattice. Owing to the concentration constraint imposed for plane C, 

this system might be expected to exhibit behaviour similar to that of binary systems 

with low values of e.
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Figure 7.14: The energy dependence on temperature for the set of concentrations 
cc-

Let us look at the average internal energy of the system (E(T))  (Figure 7.14). The 

Figure shows the dependencies of the energy (E(T))  on temperature for various con­

centrations cc- The dependence of (E ( T )) on temperature and concentration recalls 

the behaviour of the binary system with e = 0.10 (for cc =  (1 — c), where c is the
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Cc Ttr(cc) TUcc)
0.1 0.66 ±0.01 N /A
0.2 0.61 ±0.01 N /A
0.3 0.55 ±0.01 0.06 ±0.01
0.4 0.50 ±0.01 0.06 ±  0.01
0.6 0.43 ±  0.01 0.05 ±0.01
0.8 0.35 ±0.01 0.05 ±0.01

Table 7.5: Table of temperatures, obtained from (E(T))  data. These were derived 
as a point where the tangent of (E ( T )) is the steepest.

concentration of the binary system in Figure 5.33, page 104). For all concentrations 

considered, the energy decreases with decrease in temperature. As cc decreases, the 

entire (E {T )) curve moves to lower values, behaviour similar to that of the binary 

system with e =  0.10. The energy values of the system below the temperature of 

discontinuity Ttr{cc) change more rapidly with cc than do those above, and the 

discontinuity becomes steeper as cc —> 1.0. Again, this behaviour is similar to that 

of the binary system with e =  0.10. The gradient discontinuities of (E ( T )) in the 

region of temperatures T  < Ttr{cc) indicate the occurrence of other processes below 

the isotropic-nematic transition temperature. In Table 7.1 we present the values of 

temperatures, Ttr(cc) and T[r(cc) for the set of concentrations.

The dependence of the order parameter on temperature ((P2(T))) for the given 

concentrations cq is shown in Figure 7.15. As is the case for the (E(T))  curves, the 

overall behaviour of the (P2 CO) curve is similar to that of the binary system with 

s = 0.10 (compare Figure 7.15 with Figure 5.35 on page 106). From Figure 7.15 

we see that the system undergoes the isotropic-nematic transition at temperature 

Ttr{cc) for all concentration values. For cc = 0.6, for example, the order parameter 

sharply increases at Ttr(cc = 0.6) «  0.48, but approaches a low value (around 0.15) 

as the temperature falls. Then at Tdd{cc =  0.6) «  0.44 the order parameter increases 

sharply, approaching its maximum value. On the other hand, for cc = 0.1, the order 

parameter increases virtually linearly with decrease in temperature, starting from 

Ttr{cc =  0.1) ~  0.76. For all the intermediate concentration values, the behaviour 

of (P2(-0) gradually changes from that which occurs for cc =  0.8 to that which is 

seen for cc = 0.1; there is, however, a weak discontinuity at Td(cc)-
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Figure 7.15: The second-rank orientational order parameter, (P2(T)).  Different 
curves represent different concentrations cc-

Let us now examine individually the order parameters of components A ((P2)A), 

B ((P2)B) and C ((P2)c ) (Figure 7.16). As with the previous two cases (Sections 

7.3.1, 7.3.2), the increase in the orientational order occurs at the same temperature 

(Ttr(cc)) for particles A and B. However, the shape of the {P2(T)) curves for particles 

A resembles that of the characteristic curve, while the shape of the (P2(T))  curves 

for particles B deviates from it. A significant increase in (P2(T)) for particles C 

does not occur except at very low temperatures (^  0.1). There is also a shallow and 

virtually linear increase, which starts which Ttr(cc). For low values of cc, however, 

this shallow linear increase develops into a small bulge (Figure 7.16); apart from 

this, the {P2(T)) curves for particles C are similar in shape to those of the binary 

system (5.36, page 107). The gradient of the (P2(T))  curves for particles B can
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be divided in two sections. In the first, the low temperature section (T < Td(cc)), 

the gradient approaches that of component A. In the second, the high temperature 

section (T^(cc) < T  < Ttr(cc)), the gradient approaches that of component C.
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Figure 7.16: The second-rank orientational order parameter shown individually for 
components A and B. Dependence on the temperature. Different curves represent 
different concentrations cc■

The order parameter of all components reaches 1 as the temperature approaches 

zero. We will discuss this further in Section 7.4. Table 7.6 shows the value of 

Ttr(cc) determined from the (P2 CO) data for the full set of concentrations. These 

values are in reasonable agreement with the values of Ttr(cc) obtained from the 

energy measurements.
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cb Ttr(Cc) Td(cc) Tdd{cc) TUcc)
0.1 0.76 ± 0.05 0.30 ±0.05 N/A 0.07 ±0.05

0.2 0.70 ±0.05 • 0.40 ± 0.05 0.40 ± 0.05 0.07 ±0.05

0.3 0.64 ±0.05 0.64 ±0.05 0.41 ± 0.05 0.07 ±0.05

0.4 0.57 ±0.05 0.57 ±0.05 0.42 ± 0.05 0.07 ±0.05

0.6 0.48 ±0.05 0.48 ± 0.05 0.44 ± 0.05 0.07 ±0.05

0.8 0.37 ±0.05 0.37 ±0.05 N/A 0.07 ±0.05

T a b le  7 .6 :  T a b le  o f  t e m p e r a t u r e s ,  o b t a in e d  fr o m  (P2(T)) d a t a .

W e  m o v e  n o w  t o  t h e  n e x t  o b s e r v a b le , t h e  r a d ia l  d is t r ib u t io n  fu n c t io n s  o f  t h e  u n lik e  

p a r t ic le s  gAB(r = 1 , T ) ,  gCA{r =  1 ,X )  a n d  gCB(r =  1 , T )  a n d  th e ir  d e p e n d e n c e  o n  

c o n c e n tr a t io n  cc (F ig u r e s  7 .1 7 ( a - e ) ) .

A s  in  t h e  p r e v io u s  tw o  c a s e s ,  t h e  d a s h e d  l in e s  s e p a r a te  d if fe r e n t  p h a s e  r e g io n s  d e ­
te r m in e d  fr o m  t h e  (P2(T)) a n d  (E(T)) d a t a .  T h e  b e h a v io u r  o f  t h e  d i s t r ib u t io n  

fu n c t io n s  fo r  c o n c e n tr a t io n s  cc is  in  g e n e r a l  s im ila r  t o  t h a t  s e e n  in  t h e  p r e v io u s  tw o  

c a s e s  ( S e c t io n s  7 .3 .1  a n d  7 .3 .2 ) .  T h e  g r a d ie n t  o f  gAB(r =  1 , T )  c h a n g e s  i t s  s ig n  t h r e e  

t im e s ,  w h ile  t h e  g r a d ie n t  o f  gCB(r = 1 , T )  c h a n g e s  i t s  s ig n  o n ly  o n c e  a n d  t h e  s ig n  

in  t h e  g r a d ie n t  o f  gCA(r =  1 ,T )  r e m a in s  u n c h a n g e d , a s  t h e  t e m p e r a tu r e  d e c r e a s e s .  
W it h  a n  in c r e a s e  in  c o n c e n tr a t io n  o f  p a r t ic le s  C , t h e  fo l lo w in g  c h a n g e s  in  t h e  t h r e e  

fu n c t io n s  o c c u r . T h e  f ir s t  r e la te s  t o  t h e  is o t r o p ic  p h a s e  ( T  >  Ttr(cc) ) ,  w h e r e  t h e  

v a lu e s  o f  gAC(r = 1 , T )  a n d  gCB(r =  1 ,T )  in c r e a s e  a n d  t h e  v a lu e  o f  gAB(r = 1 , T )  

d e c r e a s e s , t o  r e f le c t  t h e  p r o p o r t io n s  o f  th r e e  c o m p o n e n t s  in  t h e  s y s t e m . F o r  e x a m ­

p le ,  t h e  e q u a l i t y  o f  gCB(r =  1, T )  a n d  gAB(r =  1 , T )  th r o u g h o u t  t h e  e n t ir e  r a n g e  o f  

cc in d ic a t e s  t h e  e q u a l  p r o p o r t io n s  o f  p a r t ic le s  A  a n d  B  in  t h e  s y s t e m . W h i le  t h e  

g r a d ie n t  d i s c o n t in u i t y  in  a l l  th r e e  c u r v e s  o c c u r s  a t  a  s in g le  t e m p e r a tu r e  Ttr(cc) fo r  t h e  

e n d  v a lu e  o f  cc , t h i s  t e m p e r a t u r e  o f  d i s c o n t in u i t y  d e c r e a s e s  w it h  a n  in c r e a s e  in  Cc-

A m o n g  t h e  f e a tu r e s  t h a t  r e m a in  u n c h a n g e d  fo r  a l l  v a lu e s  o f  cc c o n s id e r e d  a r e  

gAC(r =  1 , T )  —> 0 .0 , fo r  T  —y 0 .0 ; a n d  gAB(r = 1 , T )  «  gCB(r = 1 , T ) ,  fo r  

T  —>• 0 .0  a n d  cq <  0 .4 .  T h e  c lo s e - to - z e r o  v a lu e  o f  gAC(r = 1 , T )  a t  lo w  t e m p e r a t u r e  

in d ic a t e s  n o  c o n t a c t  b e tw e e n  p a r t ic le s  A  a n d  C . T h e  s im i la r i t y  o f  gAB(r =  1 , T )  a n d  

gCB(r =  1 , T )  a t  lo w  t e m p e r a t u r e s  in d ic a t e  t h a t  t h e  a r e a s  o f  in te r fa c e  b e t w e e n  t h e  

c o r r e s p o n d in g  p a r t ic le s  a r e  s im ila r . F o r  e x a m p le ,  t h e  la y e r  t o p o lo g y ,  w h e r e  la y e r s  o f  

p a r t ic le s  A  a n d  C  are  s e p a r a te d  b y  la y e r s  o f  p a r t ic le s  B ,  w o u ld  p r o d u c e  s u c h  v a lu e s  

o f  gAB(r = 1 , T ) ,  gCB{r = 1 , T )  a n d  gAC(r = 1 , T ) .
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F ig u r e  7 .1 7 : D e p e n d e n c ie s  o f  t h e  th r e e  g(r = 1) f u n c t io n s  for  t h e  s e t  o f  c o n c e n t r a ­
t io n s  cc. (a )  cc = 0 .1 ,  (b )  cc = 0 .2 ,  (c )  cc = 0 .3 , (d )  cc = 0 .4 ,  (e )  cc = 0 .6 ,  ( f )  
c c  =  0 .8 .
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O v e r a ll ,  a c c o r d in g  t o  s n a p s h o t s  o f  t h e  s y s t e m , t h e  t o p o lo g y  o f  th e  d e m ix e d  s y s t e m  

c h a n g e s  w it h  cc in  e x a c t ly  th e  s a m e  w a y  a s  w it h  ca (s e e  S e c t io n  7 .3 .1 ) .  T h is  a g r e e s  

w it h  t h e  r e s u lt s  p r e s e n te d  in  F ig u r e  7 .1 7 .

F r o m  th e  d a t a  p r e s e n te d  in  t h i s  s e c t io n ,  w e  h a v e  c o n s tr u c t e d  a  2 D  p h a s e  d ia g r a m  for  

t h e  te r n a r y  s y s t e m  ‘s l i c e d ’ in  t h e  p la n e  C . T h e  p o s i t io n  o f  th e  p la n e  C  w a s  d e s c r ib e d  
in  t h e  b e g in n in g  o f  p r e s e n t  s e c t io n  a n d  in  S e c t io n  7 .1 . T h e  2 D  p h a s e  d ia g r a m  is  

p r e s e n te d  in  F ig u r e  7 .1 8 .
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F ig u r e  7 .1 8 :  2 D  p h a s e  d ia g r a m  fo r  C -p la n e .

T h e  d ia g r a m  c o m p r is e s  f iv e  r e g io n s , w h ic h  a r e  in  t h e  s a m e  o r d e r  a s  t h o s e  p r e s e n te d  

o n  p r e v io u s  p h a s e  d ia g r a m s . T h e  a r e a  o n  t h e  t o p  o f  t h e  d ia g r a m , r e p r e s e n ts  t h e  
is o t r o p ic  p h a s e . I m m e d ia t e ly  b e lo w  t h i s  th e r e  a r e  th r e e  r e g io n s , t h e  h o m o g e n e o u s
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n e m a t ic  p h a s e  o n  t h e  le f t  h a n d  s id e  o f  t h e  d ia g r a m , th e  c o e x i s t e n c e  o f  t h e  i s o tr o p ic  

p h a s e  a n d  p a r t ic le - A -r ic h  n e m a t ic  p h a s e  in  t h e  m id d le  o f  t h e  d ia g r a m , a n d  t h e  c o ­

e x is t e n c e  o f  th r e e  p h a s e s  (Na +  Nb +  Ic) o n  t h e  r ig h t  h a n d  s id e  o f  t h e  d ia g r a m .  
T h e  la t t e r  a ls o  r u n s  b e lo w  t h e  o th e r  tw o . F in a lly ,  a t  t h e  b o t t o m  o f  t h e  p h a s e  d ia ­
g r a m  th e r e  i s  a  r e g io n , w h e r e  t h r e e  n e m a t ic  p h a s e s  c o e x i s t .  T h e  d if fe r e n c e  b e tw e e n  

t h r e e  p h a s e  d ia g r a m s  d is c u s s e d , th u s , l ie s  in  t h e  s lo p e s  a n d  lo c a t io n s  o f  t h e  p h a s e  

b o u n d a r ie s  a n d  r e g io n s . S im ila r  t o  t h e  p h a s e  d ia g r a m  p r e s e n te d  in  F ig u r e  7 .1 8 , t h e  

Ttr(dz?) c u r v e  d e c r e a s e s  w it h  in c r e a s e  o f  c # , u n lik e  t h e  Tir(cA) c u r v e  in  F ig u r e  7 .8 ,  
w h e r e  i t  in c r e a s e s  w i t h  in c r e a s e  o f  ca• T h e  Ttr(cc) c u r v e  is  b e l ie v e d  t o  a p p r o a c h  

t h e  t r a n s i t io n  t e m p e r a tu r e  o f  t h e  b in a r y  m ix tu r e  T  = 7 J f ° ' 6 (c  = 0 .5 )  ~  0 .7 6  a s  

Cb —> 0 .0 .  O n  t h e  o th e r  s id e  o f  t h e  d ia g r a m , a t  cc = 1 .0 , t h e  Ttr(cc) c u r v e  a p ­
p r o a c h e s  T  =  Ttr(e — 0 .2 )  «  0 .0 5 .  T h e  n e m a t ic  r e g io n  o n  t h e  p h a s e  d ia g r a m  is  

l o c a t e d  o n  t h e  le f t  h a n d  s id e , u n lik e  t h a t  in  p r e v io u s  tw o  d ia g r a m s . H o w e v e r , t h e  

b o u n d a r ie s  Td(cc) a n d  T[r{cc) a r e  c o n s i s t e n t  w it h  th o s e  o b t a in e d  fo r  t h e  o th e r  tw o  
d ia g r a m s .

A l l  t h e  v a lu e s  in  F ig u r e  7 .1 8  a r e  fo u n d  t o  b e  in  a g r e e m e n t  w i t h  t h e  d a t a  fr o m  

in v e s t ig a t io n  o f  b in a r y  s y s t e m s  a n d  t h o s e  d is c u s s e d  e a r lie r  in  t h i s  C h a p te r . In  t h e  

n e x t  s e c t io n  w e  d is c u s s  t h e  r e s u lt s  p r e s e n te d  fo r  t h e  te r n a r y  m ix t u r e  a n d  w i l l  lo o k  

a t  t h e  p h a s e  b e h a v io u r  a s  a  w h o le ,  in  fo r m  o f  3 D  p h a s e  d ia g r a m s .

7.4 Discussion

In  t h i s  C h a p te r  o n ly  o n e  t e r n a r y  s y s t e m  w a s  d is c u s s e d , t h e  c o u p l in g  c o n s t a n t s  fo r  

e a c h  c o m p o n e n t  b e in g  ea — 1 .0 , £b = 0 .6  a n d  Ec — 0 .2 . T h e  s y s t e m ’s  b e h a v io u r  
w a s  c o n s id e r e d  in  t e r m s  o f  c h a n g in g  tw o  p a r a m e te r s ,  t h e  t e m p e r a t u r e  a n d  t h e  c o n ­

c e n tr a t io n  r a t io .  A l t h o u g h  t h e  c h a n g e  in  t h e  t e m p e r a tu r e  h a s  d ir e c t  im p l ic a t io n s  

t o  r e a l s y s t e m s ,  t h i s  is  h a r d ly  t h e  c a s e  fo r  t h e  c o n c e n tr a t io n  c h a n g e , s in c e  a p p l i ­

c a t io n s  o f  t e r n a r y  m ix tu r e s  w i t h  v a r ie d  c o n c e n t r a t io n  r a t io  a r e  r a re . H o w e v e r , t h e  

c h a n g e s  a lo n g  c e r ta in  c o n c e n t r a t io n  p la n e s ,  w h ic h  c a n  b e  r e p r e s e n te d  b y  th e ir  r e ­

s p e c t iv e  2 D  p h a s e  d ia g r a m s , r e la te  t o  c h a n g e s  t h a t  a r e  a c h ie v a b le  in  r e a l s y s t e m s .  

F o r  e x a m p le ,  p la n e s  A , B  a n d  C  r e p r e se n t  5 0 / 5 0  b in a r y  m e s o g e n ic  m ix t u r e s  d i lu t e d  

b y  a  m e s o g e n ic  s o lv e n t .  W e  in te n d  t o  k e e p  t h i s  s e c t io n  o p e n  a n d  fr e e  f r o m  e la b o r a t e  

in t e r p r e t a t io n  o f  t h e  r e s u lt s .  In  t h e  b e g in n in g  o f  S e c t io n  7 .3  w e  in t r o d u c e d  d i s c o n ­
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t in u i t y  t e m p e r a t u r e s .  N o w , a f te r  p r e s e n t in g  p h a s e  d ia g r a m s  w e  d is c u s s  t h e  n a tu r e  

o f  th e s e  t e m p e r a t u r e s  a n d  t h e  g e n e r a l  p h a s e  b e h a v io u r  o f  t h e  s y s t e m .

T h e  f ir s t  t e m p e r a t u r e ,  Ttr{c) ( c  — c(ca,cb,cc)), in d ic a t e s  t h e  i s o t r o p ic - n e m a t ic  
t r a n s i t io n  t e m p e r a t u r e  o f  o n e  o r  m o r e  c o m p o n e n t s  fr o m  t h e  h o m o g e n e o u s  is o t r o p ic  

p h a s e . T h e s e  t e m p e r a t u r e s  fo r m  a  Ttr(c) c u r v e  o n  a  2 D  p h a s e  d ia g r a m  (o r  t h e  Ttr{c) 

su r fa c e  o n  t h e  3 D  p h a s e  d ia g r a m )  w h ic h  s e p a r a te s  t h e  h o m o g e n e o u s  i s o t r o p ic  p h a s e  

fr o m  t h e  r e s t  o f  t h e  d ia g r a m . T h e  v a lu e  o f  Ttr(c) in c r e a s e s  a s  t h e  r a t io  o f  m o r e  

a n is o tr o p ic  p a r t ic le s  in c r e a s e s  (F ig u r e s  7 .8  a n d  7 .1 8 ) .  T h e  s lo p e  o f  t h e  Ttr(c) c u r v e  

o n  t h e  p h a s e  d ia g r a m  o f  B  p la n e  (F ig u r e  7 .1 3 )  is  n e a r ly  h o r iz o n ta l  a n d  d e c r e a s e s  

a s  cb in c r e a s e s .  T h is  is  b e c a u s e ,  a s  cb v a r ie s , p a ir s  o f  p a r t ic le s  B  a r e  in te r c h a n g e d  
w it h  o n e  m o r e  a n is o t r o p ic  a n d  o n e  le s s  a n is o t r o p ic  p a r t ic le ,  w h ic h  k e e p s  t h e  o v e r a ll  
v a lu e  o f  Ttr{cB) o n ly  s l ig h t ly  d e p e n d e n t  o n  c # .

A l l  t h e  Ttr(c) d a t a  a r e  c o n s is t e n t  w i t h  e a c h  o th e r  a n d  w i t h  t h e  r e s u lt s  o b t a in e d  fo r  

b in a r y  m ix tu r e s .  T h e  Ttr(c) c u r v e s  c r o s s  a t  ca =  Cb =  cc =  0 .3 3  a n d  c o r r e la te  w it h  
th e ir  c o u n te r p a r ts  o n  t h e  fa c e s  o f  t h e  3 D  p r ism .

T h e  s e c o n d  t e m p e r a tu r e  is  Td(c). W h e n  t h i s  is  s e e n , i t  s e p a r a t e s  a  h o m o g e n e o u s  n e ­
m a t ic  p h a s e  fr o m  t h e  d e m ix e d  r e g io n s  b e lo w  it;  o th e r w is e  Td(c) = Ttr{c). F o r  h ig h  

a n d  m id d le  v a lu e s  o f  cc t h e  Td(c) c u r v e  in d ic a t e s  p h a s e  s e p a r a t io n  o f  t h e  h o m o ­
g e n e o u s  p h a s e  in t o  t h e  i s o t r o p ic - n e m a t ic  c o e x is t e n c e  r e g io n , w h e r e  t h e  s e g r e g a t e d  

c o m p o u n d  c a n  b e  e ith e r  in  t h e  is o t r o p ic  p h a s e  (a lw a y s  p a r t ic le  C  r ic h )  o r  n e m a t ic  

p h a s e  (a lw a y s  p a r t ic le  A  r ic h ) ,  d e p e n d in g  o n  c o n c e n t r a t io n .  F o r  lo w  v a lu e s  o f  c c ,  
h o w e v e r  t h e  Td(c) c u r v e  is  c o u p le d  w it h  T ^ ( c )  -  t h e  th ir d  d i s c o n t in u i t y  t e m p e r a ­

tu r e , w h ic h  s ig n a ls  a  r e g io n  o n  t h e  p h a s e  d ia g r a m  w h e r e  a ll  t h r e e  c o m p o u n d s  are  

w e ll  d e m ix e d  in t o  t h r e e  d o m a in s ,  e a c h  r ic h  in  o n e  o f  t h e  t y p e s  o f  p a r t ic le s .  A s  w a s  

m e n t io n e d  b e fo r e , t h e  T ^ ( c )  d a t a  o b ta in e d  fo r  t h e  A  p la n e  s h o w  t h a t  Tdd{c) i s  v ir ­

t u a l ly  in d e p e n d e n t  o f  ca■ T h is  is  e x p la in e d  b y  t h e  fa c t  t h a t ,  t h r o u g h o u t  t h e  e n t ir e  

c o n c e n tr a t io n  r a n g e , t h e  r a t io  o f  p a r t ic le s  B  a n d  C  r e m a in s  t h e  s a m e  ( 5 0 / 5 0 )  w h ile  

p a r t ic le s  A  a r e  s e p a r a te d  o u t  b o t h  b e fo r e  a n d  a f te r  t h e  t r a n s i t io n  T ^ ( c ) .  T h u s ,  t h e  

p h a s e  s e p a r a t io n  p r o c e s s  c a n  b e  c o m p a r e d  t o  t h a t  o f  t h e  b in a r y  m ix t u r e  o f  p a r t ic le s  

B  a n d  C . In d e e d , t h e  t r a n s i t io n  t e m p e r a tu r e s  fo r  t h i s  b in a r y  m ix tu r e  c o r r e la t e  c lo s e ly  

w it h  t h o s e  o f  t h e  t e r n a r y  m ix tu r e  for  c o n c e n t r a t io n s  ca (F ig u r e  7 .8 ) .  A s  ca —>■ 0 .0  

t h e  Ttr(c) c u r v e  o f  t h e  te r n a r y  m ix tu r e  v a n is h e s ,  t h e  d if fe r e n c e  b e t w e e n  r e g io n s  I  

a n d  Na + I  d is a p p e a r s  a n d  Tdd(c) c u r v e  fo r  t e r n a r y  m ix tu r e s  b e c o m e s  e q u iv a le n t
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t o  Ttr(c) for  b in a r y  m ix t u r e  B C . U n c e r ta in ty ,  h o w e v e r , a r is e s  r e g a r d in g  t h e  Tdd{c) 

su r fa c e  for  p la n e s  B  a n d  C . A s  th e  c o n c e n tr a t io n  r a t io  for  t h e s e  p a r t ic le s  c h a n g e s  

w it h  c h a n g e  o f  c , t h e  t e m p e r a t u r e  a t  w h ic h  p a r t ic le s  B  a n d  C  s e p a r a te  s h o u ld  va ry . 
N o n e t h e le s s ,  t h e  v a lu e s  for  X ^ ( c )  o n  th e s e  p h a s e  d ia g r a m s  are  a p p r o x im a t e ly  t h e  

s a m e  a n d  c o r r e la te  w i t h  Tdd(c) d a t a  o b ta in e d  fo r  p la n e  A . In  a d d it io n ,  t h e  v a lu e  

o f  Tdd{c) c o in c id e s  w it h  t h e  i s o t r o p ic - n e m a t ic  t r a n s i t io n  t e m p e r a tu r e  o f  p u r e  p a r ­
t i c le s  B . T h e  la s t  d i s c o n t in u i t y  t e m p e r a tu r e ,  T /r (c ) ,  in d ic a t e s  t h e  i s o t r o p ic - n e m a t ic  

t r a n s i t io n  o f  p a r t ic le s  C . W it h in  erro r  b a r s , t h is  su r fa c e  is  a  h o r iz o n ta l  p la n e  a t  t h e  
b o t t o m  o f  th e  d ia g r a m  a n d  is  p r e s e n t  for  m o s t  c o n c e n tr a t io n s  w i t h in  t h e  d e m ix in g  

r e g io n . T h is  su r fa c e  is  a n a lo g o u s  t o  a n d  in c lu d e s  t h e  h o r iz o n ta l  l in e  T /r (c )  o f  t h e  
b in a r y  s y s t e m  w it h  e = 0 .2 .  I t s  t e m p e r a tu r e  is  c lo s e  t o  t h a t  o f  i s o t r o p ic - n e m a t ic  

t r a n s i t io n  o f  p a r t ic le s  C  (Ttr(s = 0 .2 ) ) .

A

A

F ig u r e  7 .1 9 : 3 D  p h a s e  d ia g r a m . T h e  su r fa c e  o f  i s o t r o p ic  n e m a t ic  p h a s e  t r a n s i t io n  
t e m p e r a tu r e  Ttr(c) for  t h e  t e r n a r y  m ix tu r e .  F or  c o n v e n ie n c e , t h e  c o lo r  g r a d ie n t  
r e p r e s e n ts  t h e  t e m p e r a tu r e  v a lu e  for  a n y  g iv e n  p o in t  o n  t h e  su r fa c e .
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L e t u s  n o w  d is c u s s  th e  r e s t  o f  t h e  d a t a ,  p r e s e n te d  o n  3 D  p h a s e  d ia g r a m s  (F ig u r e s  

7 .1 9 - 7 .2 1 ) .  O w in g  t o  th e  a m o u n t  o f  d a t a  p r o d u c e d , w e  c o n c e n tr a te  o n ly  o n  th e  tw o  

s u r fa c e s  t h a t  r e p r e se n t  th e  Ttr(c) a n d  Td(c) d is c o n t in u i t y  t e m p e r a tu r e s .

F ig u r e  7 .2 0 : 3 D  p h a s e  d ia g r a m . Ttr(c) a n d  Td(c) s u r fa c e s  for  t h e  t e r n a r y  m ix t u r e .  
F or c o n v e n ie n c e , th e  c o lo r  g r a d ie n t  o n  Td(c) su r fa c e  r e p r e s e n ts  t h e  t e m p e r a t u r e  v a lu e  
for  a n y  g iv e n  p o in t .
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F ig u r e  7 .2 1 : 3 D  p h a s e  d ia g r a m  fr o m  a n  a l t e r n a t iv e  v ie w in g  a n g le .  X)r (c )  a n d  T ^ (c)  
su r fa c e s  for  t h e  t e r n a r y  m ix tu r e . F or  c o n v e n ie n c e , th e  c o lo r  g r a d ie n t  o n  7 d (c )  s u r fa c e  
r e p r e s e n ts  t h e  t e m p e r a tu r e  v a lu e  for  a n y  g iv e n  p o in t .

F o llo w in g  t h e  o r d e r  a d o p te d  p r e v io u s ly  in  t h i s  w o r k  w e  f irs t d is c u s s  t h e  i s o t r o p ic -  

n e m a t ic  su r fa c e  Ttr(c) (c  =  (c ^ , c # ,  cc)) p r e s e n te d  in  F ig u r e  7 .1 9 . T h e  e x p e c t e d  
s h a p e  o f  th e  su r fa c e  b a s e d  o n  e x t r a p o la t io n  o f  th e  b e h a v io u r  o f  b in a r y  m ix t u r e s  

(C h a p te r  5  a n d  S e c t io n  7 .2 )  a g r e e s , in  g e n e r a l , w i t h  t h a t  p r e s e n te d  in  F ig u r e  7 .1 9 .  
H o w e v e r , th e r e  are  s o m e  im p o r ta n t  d if fe r e n c e s . T h e  f ir s t  is  t h a t  t h e  s u r fa c e  a t  a  s h o r t  

d is t a n c e s  fr o m  th e  fa c e s  o f  t h e  3 D  p r is m , e x t e n d s  t o  s l ig h t ly  h ig h e r  t e m p e r a t u r e s  

t h a n  w o u ld  b e  p r e d ic te d . In  o th e r  w o r d s , th e  s u r fa c e  c o n s t r a in e d  b y  t h e  c u r v e s  o n
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t h e  th r e e  fa c e s ,  d o e s  n o t  h a v e  t h e  m in im u m  a r e a , a s  e x p e c t e d ,  b u t  r a th e r  fo r m s  

b u lg e s  n e a r  t h e  fa c e s .  T h e  lo w e r in g  o f  t h e  s u r fa c e  o n  t h e  fa c e s  a n d  in  t h e  m id d le  

o f  t h e  p r is m  r e c a lls  t h e  e f fe c t  in  b in a r y  s y s t e m  (C h a p te r  5 ) .  P h a s e  d ia g r a m s  fo r  

a ll  s y s t e m s  w i t h  e <  0 .4 5  sh o w e d  t h e  i s o t r o p ic - n e m a t ic  c u r v e  t o  a p p r o a c h  t h e  id e a l  

t h e o r e t ic a l  l in e  m o s t  c lo s e ly  e ith e r  in  t h e  r e g io n  o f  e q u a l  c o n c e n t r a t io n  o f  t h e  tw o  

c o m p o n e n t s  o r  in  t h e  r e g io n  o f  t h e  p u r e  c o m p o n e n t s  (c  =  0 .0  a n d  c  =  1 .0 ) .  In  a l l  
o th e r  c a s e s ,  t h e  v a lu e  o f  Ttr{c) w a s  fo u n d  t o  b e  h ig h e r  t h a n  t h e  id e a l  b e h a v io u r  l in e .  

T h is  e f fe c t  w a s  d is c u s s e d  in  S e c t io n  5 .4  a n d  w a s  l in k e d  t o  t h e  f a c t  t h a t  t h e  g r o w in g  

d e m ix in g  e n v e lo p e  w a s  d i s t o r t in g  t h e  Ttr(c) c u r v e . T h u s  w e  l in k  t h e  b u lg e  a n d  t h e  

m in im u m  in  t h e  m id d le  o f  t h e  Ttr(c) s u r fa c e  t o  t h e  p r e s e n c e  o f  t h e  d e m ix in g  r e g io n  

w h ic h  d i s t o r t s  t h i s  su r fa c e . H o w e v e r , w e  a r e  u n a b le  t o  d r a w  a n y  s p e c if ic  c o n c lu s io n s ,  
b e c a u s e  o f  t h e  l im i t e d  n u m b e r  o f  s y s t e m s  in v e s t ig a t e d .

T h e  s e c o n d  su r fa c e  t o  d is c u s s  is  t h e  s u r fa c e  T ^ (c). A s  m e n t io n e d  a b o v e , fo r  h ig h  

c o n c e n tr a t io n s  o f  p a r t ic le s  C  t h i s  su r fa c e  c o u p le s  w i t h  Ttr(c) s u r fa c e  d i s t o r t in g  i t  

s l ig h t ly .  W e  w il l  c o n c e n tr a te  o n  t h e  p a r t  o f  t h e  Td(c) su r fa c e  t h a t  d o e s  n o t  c o u p le  

w it h  Ttr{c) su r fa c e . T h is  is  a  r e g io n  b e tw e e n  fa c e  A B  a n d  t h e  p la n e  w h ic h  r o u g h ly  

g o e s  t h r o u g h  t h e  m id d le  o f  fa c e s  CA  a n d  CB. T h e  Td{c) su r fa c e  a lo n g  w i t h  t h e  

Ttr(c) su r fa c e  o u t l in e  t h e  b o u n d a r ie s  fo r  t h e  h o m o g e n e o u s  n e m a t ic  p h a s e .  T h e  n e ­
m a t ic  r e g io n  e x t e n d s  t o  h ig h  t e m p e r a t u r e s  in  c o r n e r  A  o f  t h e  p r is m , w h ile  Ttr(c) 

su r fa c e  c o n s t r ic t s  i t  in  c o r n e r  B . T h is  b e h a v io u r  is  t h e  s a m e  a s  t h a t  o f  t h e  b in a r y  

m ix t u r e  w i t h  e = 0 .6 0  ( A B  m ix t u r e ) .  A s  t h e  c o n c e n t r a t io n  o f  p a r t ic le s  C  in c r e a s e s ,  
su r fa c e  Ttr(c) m o v e s  t o  lo w e r  t e m p e r a tu r e s ,  w h ile  s u r fa c e  Td(c) e x t e n d s  t o  h ig h e r  

te m p e r a tu r e s .  E v e n tu a l ly ,  t h e  tw o  s u r fa c e s  c o u p le  a s  t h e  c o n c e n tr a t io n  o f  p a r t ic le s  

C  r e a c h e s  a p p r o x im a te ly  0 .3 . T h e  c o u p l in g  o f  t h e  tw o  s u r fa c e s  d o e s  n o t  s e e m  t o  

d e p e n d  s ig n i f ic a n t ly  o n  t h e  r e la t iv e  c o n c e n t r a t io n  o f  t h e  r e m a in in g  tw o  c o m p o n e n t s  

(A  a n d  B ) .  T h is  a g r e e s  w e ll  w i t h  t h e  p r e v io u s  r e s u lt s  o f  b in a r y  s y s t e m s .  T h e  v a l­
u e s  o f  t h e  c o u p l in g  c o n s t a n t s  fo r  b o t h  A  a n d  B  p a r t ic le s  is  h ig h e r  t h a n  t h a t  fo r  C  

p a r t ic le s .  T h u s , t h e  r e la t iv e  c o n c e n t r a t io n  o f  p a r t ic le s  A  a n d  B  in  t e r n a r y  s y s t e m  

is  n o t  e x p e c t e d  t o  in f lu e n c e  t h e  p o s i t io n  o f  t h e  p o in t  a t  w h ic h  c o u p l in g  o f  t h e  tw o  

su r fa c e s  o c c u r s  w i t h  r e s p e c t  t o  C  p la n e . In  o th e r  w o r d s , t h e  p o in t  o r  r a th e r  l in e  o f  

c o u p lin g  o f  t h e  tw o  su r fa c e s  s h o u ld  s a t i s f y  t h e  r e la t io n  ( 7 .1 0 ) ,  w h ic h  in  c o n j u n c t io n  

w ith  r e la t io n  (7 .1 )  g iv e s  cc ~  0 .3 .

CA + CB ~  1 -  0.3 (7.10)
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P h a s e  d ia g r a m s  fo r  th r e e  p la n e s  (F ig u r e s  7 .8 ,  7 .1 3  a n d  7 .1 8  ) d o  n o t  s h o w  t h e  

n e m a t ic  r e g io n  o n  b o t h  s id e s  o f  t h e  c o n c e n tr a t io n  a x is ,  u n lik e  p h a s e  d ia g r a m s  for  

b in a r y  m ix t u r e s  (fo r  e x a m p le  F ig u r e  5 .2 7  o n  p a g e  9 3 ) .  In  c a s e s  o f  p la n e s  A  a n d  

B  t h i s  is  d u e  t o  t h e  fa c t  t h a t  t h e  l im i t s  ca 0 .0  a n d  c #  —> 0 .0  c o r r e s p o n d  t o  

5 0 / 5 0  b in a r y  m ix tu r e s  o f  p a r t ic le s  B  a n d  C , a n d  A  a n d  C  r e s p e c t iv e ly ,  fo r  w h ic h  

t h e  n e m a t ic  r e g io n  is  a b s e n t .  In  t h e  c a s e  o f  p la n e  C , h o w e v e r , t h e  r e a s o n  l ie s  in  t h e  

in s u f f ic ie n t  n u m b e r  o f  d a t a  p o in t s  c o n s id e r e d  a r o u n d  cq —> 1 .0 ; o t h e r w is e  w e  w o u ld  

c e r t a in ly  e x p e c t  t o  s e e  a  s m a l l  r e g io n  o f  h o m o g e n e o u s  n e m a t ic  p h a s e  in  t h e  r e g io n  

o f  h ig h  cc fo r  t h e  p la n e  C .

W e  n o w  b r ie f ly  d e s c r ib e  t h e  r e m a in in g  tw o  su r fa c e s , n o t  p r e s e n t  o n  t h e  3 D  p h a s e  

d ia g r a m s  s h o w n . F r o m  t h e  2 D  p h a s e  d ia g r a m s  d is c u s s e d  i t  is  c le a r  t h a t  t h e  v a lu e  o f  

Tdd{c ) a p p e a r s  t o  b e  h o r iz o n ta l  th r o u g h o u t  t h e  e n t ir e  c o n c e n tr a t io n  r a n g e  a v a i la b le  

fo r  t h i s  su r fa c e  ( i .e .  l im i t e d  b y  su r fa c e s  Ttr(c) a n d  Td(c)). W e  e x p e c t e d  t h e  Tdd{c) 

s u r fa c e  t o  b e  t i l t e d  w i t h  h ig h e r  t e m p e r a tu r e  v a lu e s  c lo s e r  t o  c o r n e r  B  a n d  d e c r e a s in g  

in  t h e  a r e a  c lo s e r  t o  c o r n e r  C . T h e  r e a s o n  fo r  t h i s  w a s  t h a t  t h e  r e m a in in g  is o t r o p ic  

p h a s e  a n d  , h e n c e , t h e  T ^ ( c )  t e m p e r a t u r e  s h o u ld  b e  d iffe r e n t  fo r  d if fe r e n t  v a lu e s  o f  

cb a n d  c c ,  g iv e n  t h e  d a t a  o b t a in e d  fr o m  b in a r y  m ix tu r e s .  N o n e t h e le s s ,  t h e  T ^ ( c )  

su r fa c e  p r o v e d  v ir t u a l ly  in d e p e n d e n t  o f  c o n c e n tr a t io n .  T h is  n e a r -h o r iz o n ta l  Tdd{c) 
su r fa c e  c a n n o t  b e  e x p la in e d  t r iv ia l ly  a n d  r e q u ir e s  fu r th e r  in v e s t ig a t io n .

T h e  T /r (c ) su r fa c e  is  a ls o  h o r iz o n t a l ,  s im ila r  t o  T ^ ( c )  su r fa c e . T h is  c a s e  is  a n a lo g o u s  
t o  t h a t  o f  t h e  b in a r y  s y s t e m  a n d , th e r e fo r e , d o e s  n o t  r e q u ir e  a n y  d is c u s s io n  a d d i t io n a l  

t o  t h a t  w h ic h  w a s  g iv e n  in  S e c t io n  5 .4 .  W e  m a y  s im p ly  n o te  t h a t  o w in g  t o  t h e  f a c t  

t h a t  a ll  th r e e  c o m p o n e n t s  o f  t h e  s y s t e m  a r e  w e ll  d e m ix e d  t h e  b e h a v io u r  o f  t h e  s y s t e m  

c a n  b e  c o n s id e r e d  in  t e r m s  o f  e a c h  in d iv id u a l  c o m p o n e n t .

7.4.1 Interesting Observations

In  S e c t io n  7 .3 .2  w e  p r e s e n te d  r e s u lt s  fo r  a  5 0 / 5 0  b in a r y  m ix tu r e  o f  m e s o g e n s  A  a n d  C , 
d i lu te d  in  t h e  s o lu t io n  o f  p a r t ic le s  B . F o r  t h i s  p a r t ic u la r  c o n c e n t r a t io n  c o n s tr a in ,  t h e  

(P2{T)B) c u r v e s  a ll  c r o s se d  a t  T  «  0 .4 3 ,  ^ ( T )  «  0 .1  (F ig u r e  7 .1 1 ( b ) ) .  F o r  Cb =  1 .0  

t h e  (P2(T)b) c u r v e  in c r e a s e s  s h a r p ly  a t  T  «  0 .4 3 . A s  cb d e c r e a s e s ,  t h e  in c r e a s e  

in  (P2(T)b) o c c u r s  a t  p r o g r e s s in g ly  h ig h e r  t e m p e r a tu r e s ,  o w in g  t o  t h e  in c r e a s e d  

r a t io  o f  p a r t ic le s  A . T h e s e  r e s u lt s  r a is e  t h e  p r o s p e c t  t h a t  fo r  a n y  t e r n a r y  m ix t u r e  o f
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m e s o g e n s  s t u d ie d ,  i t  m a y b e  p o s s ib le  t o  f in d  a  c o n c e n tr a t io n  r a t io  o f  p a r t ic le s  A  a n d  

C  fo r  w h ic h  a d d i t io n  o f  a  th ir d  c o m p o n e n t  B  w i l l  n o t  a f fe c t  t h e  i s o t r o p ic - n e m a t ic  

t r a n s i t io n  t e m p e r a tu r e  t h r o u g h o u t  t h e  e n t ir e  c o n c e n tr a t io n  r a n g e  c # ,  b u t  w i l l  a ffe c t  

t h e  s tr u c t u r e  o f  t h e  p h a s e  b e h a v io u r  b e lo w  Ttr(c). C o m m o n  s e n s e  s u g g e s t s  t h a t  t h e  

r a t io  o f  p a r t ic le s  A  a n d  C  h a s  t o  b e  c h o s e n  s u c h  t h a t  Ttr(c) fo r  t h i s  b in a r y  m ix tu r e  

s h o u ld  c o in c id e  w i t h  Ttr{c) o f  p u r e  s y s t e m  o f  p a r t ic le s  B .

In  F ig u r e s  7 .7 ,  7 .1 2  a n d  7 .1 7  w e  sh o w e d  t h e  r a d ia l  d is t r ib u t io n  f u n c t io n s  o f  u n lik e  

p a r t ic le s  fo r  p la n e s  A , B  a n d  C  r e s p e c t iv e ly .  F r o m  t h e s e  f ig u r e s  tw o  m a in  c o n c lu s io n s  

c a n  b e  d r a w n  a b o u t  t h e  th r e e  d is t r ib u t io n  fu n c t io n s ,  gAB(r =  1 , T ) ,  gCA(r = 1 ,T )  

a n d  gCB(r = 1 , T ) .  T h e  f ir s t  is  t h a t  t h e  g e n e r a l  b e h a v io u r  o f  e a c h  f u n c t io n  d o e s  n o t  

d e p e n d  o n  c o n c e n tr a t io n .  A s  t e m p e r a t u r e  d e c r e a s e s , t h e  g r a d ie n t  o f  gAB(r = 1 ,T )  

c h a n g e s  i t s  s ig n  th r e e  t im e s ,  w h ile  t h a t  o f  gCB(r =  1 , T )  c h a n g e s  i t s  s ig n  o n c e  a n d  
th e  s ig n  o f  t h e  g r a d ie n t  o f  gCA(r =  1 , T )  r e m a in s  u n c h a n g e d  fo r  a ll  c o n c e n tr a t io n s ,  
e x c e p t  v e r y  lo w  c o n c e n tr a t io n s . W h e n  t h e  c o n c e n tr a t io n  o f  a n y  o f  t h e  c o m p o n e n t s  

is  le s s  th a n  0 .1 ,  t h e  m in im a  or  m a x im a  o f  t h e  r e le v a n t  d i s t r ib u t io n  fu n c t io n  are  

d im in is h e d . T h e r e fo r e , t h e  b e h a v io u r  o f  t h e s e  th r e e  fu n c t io n s  is  d ic t a t e d  b y  t h e  

d if fe r e n c e  in  t h e  c o u p l in g  c o n s t a n t  o f  p a r t ic le s .  T h e  s e c o n d  c o n c lu s io n  is  t h a t  t h e  

v a lu e s  o f  t h e  th r e e  d i s t r ib u t io n  f u n c t io n s  a t  h ig h  ( T  >  Ttr(c)) a n d  lo w  ( T  —> 0 .0 )  

t e m p e r a tu r e s  c a n  b e  e x p l ic i t ly  d e t e r m in e d  fr o m  t h e  c o n c e n t r a t io n  o f  t h e  s y s t e m .  

F o r  h ig h  t e m p e r a t u r e s ,  a ll  th r e e  c o m p o n e n t s  a r e  w e ll  m ix e d  a n d  th e  p r o b a b i l i t y  t o  

e n c o u n te r  p a r t ic le s  o f  a n y  tw o  d if fe r e n t  t y p e s  is  d ir e c t ly  d e p e n d e n t  o n  t h e  c o n c e n ­
t r a t io n s  o f  t h e s e  t y p e s  o n ly , ir r e s p e c t iv e  o f  t h e  d if fe r e n c e  in  t h e  c o u p l in g  v a lu e s .  F o r  

lo w  t e m p e r a tu r e s ,  h o w e v e r , t h e  c o u p l in g  c o n s t a n t s  a r e  im p o r t a n t  in  d e t e r m in in g  t h e  

g(r =  1 , T )  v a lu e s ,  a l th o u g h  t h e ir  in f lu e n c e  is  c o n s t a n t  fo r  a l l  c o n c e n t r a t io n s  a n d  

k n o w le d g e  o f  t h e  e x a c t  v a lu e s  o f  c o u p l in g  c o n s t a n t s  is  n o t  r e q u ir e d . I t  i s  s u f f ic ie n t  
t o  k n o w  w h e th e r  t h e  v a lu e  fo r  o n e  t y p e  is  g r e a te r  o r  s m a lle r  t h a n  t h e  o th e r . In  t h e  

c a s e  o f  s y s t e m  in v e s t ig a t e d ,  i t  r e a d s  as:

eA > eB > €c (7*11)

F r o m  t h e s e  c o n c lu s io n s , t h e  fo l lo w in g  g e n e r a l  c o n s e q u e n c e s  c a n  b e  d e r iv e d . T h e  

d is t r ib u t io n  f u n c t io n  o f  u n lik e  p a r t ic le s  fo r  w h ic h  t h e  d if fe r e n c e  in  t h e  v a lu e s  o f  e 

is  t h e  g r e a t e s t  (e .g .  gCA(r =  1 ,T )  in  t h e  s y s t e m  s tu d ie d )  w i l l  a lw a y s  a p p r o a c h  

z e r o  v a lu e  a s  T  0 .0 . T h e  p a r t ic le s  w i t h  h ig h e s t  le v e l  o f  a n is o t r o p y  (A )  a lw a y s  

s e p a r a te  f ir s t  s e g r e g a t in g  in to  t h e  n e m a t ic  p h a s e , a s  t e m p e r a t u r e  d e c r e a s e s .  In
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a d d it io n ,  t h e  m in im u m  in  gAB{r =  1 , T )  (w h ic h  w i l l  b e  d is c u s s e d  s h o r t ly )  a lw a y s  

c o in c id e s  w it h  a  m a x im u m  in  gCB(r =  1 , T )  a n d  in d ic a t e s  t h e  s e p a r a t io n  o f  t h e  th r e e  

c o m p o n e n t s  in  a  t o p o lo g y  w h e r e  p a r t ic le s  B  fo r m  a  w a ll  o r  s h e l l ,  w h ic h  s e p a r a te s  

p a r t ic le s  A  a n d  C . F o r  a p p r o x im a t e ly  e q u a l  p r o p o r t io n s  o f  t h e  th r e e  c o m p o n e n t s  

( e .g .  ca ~  cb ~ cc ~  0 .3 3  ±  0 .1 )  t h e  v a lu e s  o f  t h e  d i s t r ib u t io n  f u n c t io n s  gAB(r = 

1 , T )  a n d  gCB(r = 1 , T )  a p p r o a c h  e q u a l  v a lu e s  fo r  b o t h  T  —y 0 .0  a n d  T  >  7*r (c ) ,  

ir r e s p e c t iv e  o f  r e la t io n  ( 7 .1 1 ) .  T h e  e q u a l i t y  o f  gAB(r =  1 ,T )  a n d  gCB(r = 1 , T )  a t  

lo w  t e m p e r a tu r e s  m e a n s  t h a t  t h e  t o p o lo g y  o f  t h e  c o m p le t e ly  d e m ix e d  s y s t e m  is  e ith e r  

f la t  ( la y e r s , f i lm s ) ,  o r  c y l in d r ic a l ,  w h e r e  p a r t ic le s  A  a n d  C  fo r m  s im i la r  s tr u c tu r e s .  
F o r  e x a m p le ,  i f  gCB(r — 1 , T  —> 0 .0 )  is  s l ig h t ly  h ig h e r  t h a n  gAB(r =  1 , T  —)■ 0 .0 )  

(F ig u r e s  7 .7 ( a ) ,  7 .1 7 ( e , f ) )  t h e n  t h e  t o p o lo g y  o f  t h e  s y s t e m  is  a  c y l in d e r  or  s p h e r e  o f  

p a r t ic le s  A  w r a p p e d  in  a  f i lm  o f  p a r t ic le s  B ,  w h ic h  f lo a t s  in  a  b u lk  o f  p a r t ic le s  C . 

I f  gCB(r = 1 , T  —> 0 .0 )  <  gAB(r =  1, T  —> 0 .0 ) ,  th a n  t h e  t o p o lo g y  is  s im ila r  b u t  

p a r t ic le s  A  a n d  C  sw a p . T h e  s u g g e s t io n  m a d e  e a r lie r  a b o u t  t h e  k in k  in  gAB(r =  1, T )  

fo r  t h e  b in a r y  s y s t e m  p r e s e n te d  in  F ig u r e  5 .2 5  (p a g e  9 0 )  c a n  a ls o  b e  u s e d  t o  e x p la in  

t h e  b e h a v io u r  o f  t h e  gAB(r =  1, T )  c u r v e  in  t h e  t e r n a r y  m ix tu r e . H o w e v e r , in  t h e  c a s e  

o f  t h e  b in a r y  s y s t e m , t h e  m ix tu r e  w a s  a lr e a d y  s e p a r a te d  a n d  t h e  o n ly  in f lu e n c e  o n  

t h e  a r e a  o f  t h e  in te r fa c e  or  p e r t u r b a t io n  o f  t h e  s h a p e  o f  t h e  in te r fa c e  w a s  d u e  t o  t h e  

f ir s t  o r d e r  I -N  t r a n s i t io n  o f  t h e  le s s  a n is o t r o p ic  p a r t ic le s .  T h e  k in k  in  gAB(r =  1 ,T )  

in  t h e  t e r n a r y  s y s t e m  is  a ls o  a s s o c ia t e d  w i t h  s e p a r a t io n  o f  p a r t ic le s  B  a n d  C , a s  

w e ll  a s  t h e  I -N  t r a n s i t io n  o f  p a r t ic le s  B . W h i le  s e p a r a t in g ,  p a r t ic le s  C  t r y  t o  a v o id  

c o n t a c t  w i t h  p a r t ic le s  A , th e r e fo r e  in c r e a s in g  t h e  c o n t a c t  a r e a  b e t w e e n  p a r t ic le s  A  

a n d  B , h e n c e  t h e  k in k  in  gAB(r = 1 , T )  fo r  t e m p e r a t u r e s  b e lo w  T ^ ( c ) .

H a v in g  p r e s e n te d  t h i s  a r g u m e n t , t h e  e f fe c t  o f  t h e  I -N  t r a n s i t io n  in  b o t h  c a s e s  s h o u ld  

n o t  b e  u n d e r e s t im a te d ,  a s  i t  m ig h t  b e  a  r e a s o n  fo r  t h e  h o r iz o n ta l  a p p e a r a n c e  o f  

t h e  Tdd{c) su r fa c e , t h e  v a lu e  o f  w h ic h  c o in c id e s  w i t h  t h e  p o s i t io n  o f  t h e  k in k  ( th e  

m in im u m  o f  gAB(r = 1,T), t o  b e  p r e c is e ) .  I t  is  p o s s ib le  t h a t  p a r t ic le s  B  g r a d u a l ly  

d e v e lo p  o r d e r e d  r e g io n s  a r o u n d  t h e  s e p a r a t e d  A -r ic h  n e m a t ic  d r o p s  o r  la y e r s  a r o u n d  

t e m p e r a tu r e s  o f  t h e  I -N  t r a n s i t io n  o f  t h e  p u r e  c o m p o n e n t  B , w h ic h  c o in c id e s  w i t h  

t h e  t e m p e r a tu r e  v a lu e  o f  Tddic) su r fa c e  a n d  t h e  k in k . In  b in a r y  s y s t e m s ,  t h e  m a g n i­

tu d e  o f  t h e  k in k  in  gAB(r = 1, T), r e la t iv e  t o  t h e  d if fe r e n c e  b e tw e e n  m a x im u m  a n d  

m in im u m  v a lu e s  o f  gAB(r = 1 , T )  o n  t h e  e n t ir e  t e m p e r a tu r e  r a n g e , d e c r e a s e s  w i t h  

in c r e a s e  o f  n e m a t ic  d r o p  s iz e . In  t h e  c a s e  o f  t h e  t e r n a r y  s y s t e m  i t  a ls o  d e c r e a s e s ,  
s u g g e s t in g  s im i la r i t ie s  w it h  t h e  b in a r y  m ix t u r e s .
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H e r e  w e  s u m m a r is e  m a in  p o in t s  d is c u s s e d  in  t h i s  T h e s i s  a n d  s u g g e s t  p o s s ib le  fu r th e r  

d e v e lo p m e n t s .  W e  s ta r t  w i t h  t h e  b in a r y  s y s t e m s  a n d  c o n c lu d e  w i t h  t e r n a r y  m ix tu r e s .

T h e  p h a s e  b e h a v io u r  o f  b in a r y  m ix tu r e s  w a s  s t u d ie d  u s in g  t h e  L e b w o h l-L a s h e r  m o d e l  

in  N c V T  a n d  N A /z V T  e n s e m b le s  fo r  a  c o m p r e h e n s iv e  r a n g e  o f  c o n c e n tr a t io n s ,  t e m ­
p e r a tu r e s  a n d  c o u p l in g  c o n s t a n t s .  T h e  s im u la t io n  d a t a  w e r e  c o m p a r e d  w i t h  e x is t in g  

e x p e r im e n t a l  a n d  s im u la t io n  r e s u lt s  a n d  th e o r e t ic a l  p r e d ic t io n s  a n d  w e r e  fo u n d  t o  b e  

in  r e a s o n a b le  a g r e e m e n t .  T h e  L e b w o h l-L a s h e r  m o d e l  is  o n e  o f  t h e  s im p le s t  m o d e ls ,  
n o n e t h e le s s  i t  p r o d u c e d  s o m e  in t e r e s t in g  r e s u lt s  a n d  m o t iv a t e d  s o m e  id e a s ,  w h ic h  

h e lp e d  in  t h e  u n d e r s ta n d in g  o f  t h e  p r o c e s s e s  t h a t  in f lu e n c e  t h e  p h a s e  b e h a v io u r  o f  

t h e  s y s t e m . T h is  p h a s e  b e h a v io u r  w a s  a d d i t io n a l ly  c o n s id e r e d  in  t h e  a l t e r n a t iv e ,  
t e m p e r a tu r e  -  c o u p l in g  c o n s t a n t  p la n e , a n d  a t t e m p t s  w e r e  m a d e  t o  d e t e r m in e  i t s  

g e n e r ic  fo r m  a n a ly t ic a l ly  (S e c t io n  6 .5 .4 ) .  A ls o  i t  w a s  s h o w n  t h a t  t h e  a s y m m e t r y  o f  
t h e  d e m ix in g  r e g io n  w a s  s o le ly  d u e  t o  t h e  o r ie n t a t io n a l  a n is o t r o p y  p r o p e r t ie s  o f  t h e  

s y s t e m  in v e s t ig a t e d ,  a n d  t h a t  t h e  c o u p l in g  o f  tw o  I + N  c o e x is t e n c e  r e g io n s  o c c u r s  

a t  scoup & 0 .5 2 . F u r th e r  w o r k  o n  t h e s e  s y s t e m s  c o u ld , th e r e fo r e , c o n c e n t r a t e  o n  

fo r m u la t io n  o f  m o r e  p r e c is e  g e n e r ic  a n a ly t ic a l  d e s c r ip t io n s  o f  t h e  p h a s e  b e h a v io u r  in  

b in a r y  m ix tu r e s  o f  m e s o g e n s . A  s ig n if ic a n t  a d d it io n a l  s t e p  w o u ld  th e n  b e  t o  e x t e n d  

t h i s  a p p r o a c h  t o  t e r n a r y  m ix tu r e s .

D u r in g  o u r  s t u d ie s  o f  b in a r y  m ix tu r e s ,  n o v e l  a p p r o a c h e s  w e r e  s u g g e s t e d  fo r  t h e  d e t e r ­
m in a t io n  o f  t h e  p h a s e  b o u n d a r ie s .  In  a d d it io n ,  e v id e n c e  o f  t h e  c o r r e la t io n  b e tw e e n  

t h e  c h a n g e  in  t h e  s h o r t  r a n g e  r a d ia l  d i s t r ib u t io n  a n d  t h e  i s o t r o p ic - n e m a t ic  t r a n s i t io n  

w a s  p r e s e n te d  a n d  d is c u s s e d . T h is  fu n c t io n  h a s  n o t  b e e n  u s e d  p r e v io u s ly  t o  in d ic a t e
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t h e  is o t r o p ic - n e m a t ic  t r a n s i t io n .  A ls o ,  t h i s  c h a n g e  in  t h e  s tr u c t u r e  o n  t h e  s h o r t  

r a n g e  m ig h t  b e  t h e  r e a s o n  fo r  t h e  e n h a n c e d  t e m p e r a t u r e  o f  t h e  t r a n s i t io n .  T h u s ,  
fu r th e r  s t u d ie s  o f  t h i s  e f fe c t  a r e  r e q u ir e d  , a s  i t  c o u ld  y ie ld  a  d e e p e r  u n d e r s t a n d ­

in g  o f  t h e  p r o c e s s e s  t h a t  d e t e r m in e  t h e  i s o t r o p ic - n e m a t ic  t r a n s i t io n  t e m p e r a tu r e  in  

m ix t u r e s .  S o m e  f e a tu r e s  o f  t h e  p h a s e  d ia g r a m  (e .g .  p h a s e  r e -e n tr a n c e  p r e d ic te d  b y

G . L u c k h u r s t  [1 7 7 ]) w e r e  d if f ic u lt  t o  d e t e r m in e  in  t h e  C a n o n ic a l  E n s e m b le , w h e r e a s  

o th e r  f e a tu r e s  ( e .g .  t h e  b o u n d a r y  b e tw e e n  t h e  tw o  p h a s e  c o e x i s t e n c e  r e g io n s  I + N  

a n d  N + N )  w e r e  d if f ic u lt  t o  d e t e r m in e  in  t h e  S e m i G r a n d  C a n o n ic a l  E n s e m b le .  In  

b o t h  N c V T  a n d  N A /z V T  e n s e m b le s ,  h o w e v e r , t h e  p h a s e  d ia g r a m s  r e v e a le d  i s o t r o p ic ,  
n e m a t ic ,  a n d  c o e x i s t e n c e  r e g io n s . T h e  d a t a  fr o m  b o t h  e n s e m b le s  w e r e  fo u n d  t o  b e  

in  g o o d  a g r e e m e n t .  T h e  te r n a r y  m ix t u r e  w a s  s t u d ie d  in  C a n o n ic a l  E n s e m b le  o n ly ,  
w h e r e a s  t h e  a d v a n ta g e  o f  u s in g  b o t h  e n s e m b le s  w a s  c le a r ly  s h o w n  in  C h a p te r s  5  a n d  

6 . T h e r e fo r e , t h e  fu tu r e  w o r k  c o u ld ’ l ie  in  im p r o v in g  t h e  la t t i c e  m o d e l  fo r  te r n a r y  

s y s t e m s  t o  w o r k  in  t h e  S e m i G r a n d  C a n o n ic a l  E n s e m b le  a s  w e ll.

O n  t h e  p h a s e  d ia g r a m s  fo r  t h e  b in a r y  m ix tu r e s ,  t h e  s lo p e  o f  t h e  I -N  b o u n d a r y  w a s  

fo u n d  t o  c h a n g e  w i t h  d e c r e a s e  o f  e. H o w e v e r  fo r  e <  ecoup t h e  s lo p e  r e m a in e d  

a p p r o x im a t e ly  u n c h a n g e d  w i t h  e, o w in g  t o  t h e  e f fe c t  o f  t h e  d e m ix in g  p r o c e s s e s  in  

t h e  m ix tu r e .  T h is  c a u s e d  t h e  i s o t r o p ic - n e m a t ic  t r a n s i t io n  t e m p e r a tu r e  t o  b e  h ig h e r  

th e n  e x p e c t e d .  A ls o , t h e  e n h a n c e d  i s o t r o p ic - n e m a t ic  t r a n s i t io n  t e m p e r a t u r e  in  t h e  

r e m a in in g  p a r t  o f  t h e  Ttr{c) c u r v e  c r e a te d  t h e  ‘m in im u m ’ in  t h e  m id d le .  T h e  3 D  

p h a s e  d ia g r a m  fo r  t h e  t e r n a r y  m ix tu r e  a ls o  r e v e a le d  a  m in im u m  o n  t h e  Ttr(c) su r fa c e  

in  t h e  r e g io n  c o r r e s p o n d in g  t o  e q u a l  c o n c e n t r a t io n s  o f  t h e  th r e e  t y p e s  o f  p a r t ic le ,  a s  

w e ll  a s  e n h a n c e d  t r a n s i t io n  t e m p e r a tu r e s  in  o th e r  a r e a s  o f  t h e  Ttr(c) s u r fa c e  (a s  s p e c ­
u la t e d  in  t h e  b e g in n in g  o f  C h a p te r  7 ) .  S u g g e s t e d  r e a s o n s  fo r  t h i s  a r e  t h e  in f lu e n c e  o f  

th e  d e m ix in g  e n v e lo p e  in  t h e  a r e a  o f  h ig h  c o n c e n t r a t io n  o f  le s s  a n is o t r o p ic  p a r t ic le s  

a n d  c h a n g e s  in  t h e  s h o r t  r a n g e  s t r u c tu r e  o f  t h e  m ix tu r e  in  t h e  a r e a  o f  h ig h  c o n ­

c e n t r a t io n  o f  m o r e  a n is o t r o p ic  p a r t ic le s .  F u tu r e  w o r k , th e r e fo r e , c o u ld  c o n c e n t r a t e  

o n  in v e s t ig a t in g  t h e  m e c h a n is m s  t h a t  c a u s e  t h e s e  e n h a n c e d  t r a n s i t io n  t e m p e r a t u r e s  

a n d  t h e  ‘m in im u m ’ in  t h e  m id d le  o f  t h e  Ttr(c) su r fa c e .

T h e  s iz e  o f  t h e  s y s t e m  a s  w e ll  a s  t h e  in t r o d u c t io n  o f  a n o t h e r  t y p e  o f  a n is o t r o p ic  

p a r t ic le s  w a s  fo u n d  t o  r e d u c e  t h e  s t r e n g t h  o f  t h e  f ir s t -o r d e r  i s o t r o p ic - n e m a t ic  p h a s e  

t r a n s i t io n  in  b in a r y  m ix tu r e s .  I t  is , th e r e fo r e , e x p e c t e d  t h a t  t h i s  e f fe c t  w i l l  b e  e v e n  

m o r e  m a r k e d  in  t e r n a r y  m ix tu r e s .  In  a d d it io n ,  in t r o d u c t io n  o f  a  th ir d  c o m p o n e n t  

in to  t h e  m o d e l  w i t h o u t  c h a n g in g  s y s t e m  s iz e  w o u ld  in c r e a s e  s u r fa c e  e f fe c t s .  I n d e e d ,
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t h e  lo w  t e m p e r a t u r e  g{r) r e s u lt s  fo r  t h e  t e r n a r y  m ix tu r e  s y s t e m s  w e r e  s u b j e c t  t o  

t o p o lo g ic a l  c o n s t r a in t s  im p o s e d  b y  t h e  P B C s .  W h e n  t h e  s iz e  o f  t h e  d r o p  e x c e e d e d  

t h e  l im it  im p o s e d  b y  t h e  s iz e  o f  t h e  s im u la t io n  b o x ,  t h e  d o m a in  t u r n e d  in t o  e ith e r  

a  c y l in d e r  o r  a  la y e r  o f  s e p a r a te d  c o m p o n e n t s .  T h e r e fo r e , fu r th e r  in v e s t ig a t io n s  

in t o  t h e  c r i t ic a l  d o m a in  s iz e  c o u ld  b e  u n d e r ta k e n , s im u la t in g  m u c h  la r g e r  n u m b e r  o f  

p a r t ic le s ,  s o  a s  t o  r e d u c e  t h i s  t o p o lo g ic a l  e f fe c t . A n o t h e r  e x t e n s io n  o f  t h e  w o r k  m a y  

l ie  in  in c r e a s in g  t h e  n u m b e r  o f  c o m p o n e n t s  in  t h e  s y s t e m . O w in g  t o  t h e  f a c t  t h a t ,  in  

r e a lity , i t  is  o f t e n  d if f ic u lt  t o  a c h ie v e  a  100%  p u r e  m a t e r ia l ,  fu r th e r  s im u la t io n  s t u d ie s  

o f  p o ly - d is p e r s io n s  in  m ix tu r e s  c o u ld  r e v e a l  t h e  r e a s o n s  for  s o m e  in c o n s i s t e n c ie s  

b e tw e e n  th e o r y  a n d  t h e  e x p e r im e n t ,  s u c h  a s  t h e  s t r e n g t h  o f  t h e  i s o t r o p ic - n e m a t ic  

t r a n s i t io n .  O u r  p r e l im in a r y  tr ia l  s im u la t io n s  w i t h  t e n  or  m o r e  t y p e s  o f  p a r t ic le  

s h o w e d  t h a t  t h e  t r a n s i t io n  t e m p e r a tu r e  a n d  i t s  s t r e n g t h  d e p e n d  s t r o n g ly  o n  t h e  

t y p e  o f  t h e  d i s t r ib u t io n  o f  p a r t ic le s  w i t h  d if fe r e n t  c o u p l in g  c o n s ta n t s .

O w in g  t o  t h e  s p e c if ic s  o f  t h e  in t e r a c t io n  p o t e n t ia l  u s e d  h e r e , t h e  p h a s e  d ia g r a m s  

d o  n o t  s h o w  is o t r o p ic - i s o t r o p ic  c o e x i s t e n c e .  A s  m e n t io n e d  e a r lie r , t h i s  c a n  b e  e a s i ly  

a c h ie v e d  b y  in t r o d u c t io n  o f  a n  e x t r a  t e r m  in t o  t h e  p o t e n t ia l .  W h i le  fo r  b in a r y  

m ix t u r e s  t h i s  m o d if ic a t io n  w il l  a d d  a n o th e r  p h a s e  r e g io n  a t  t h e  t o p  o f  Ttr{c) c u r v e ,  

t h e  p h a s e  b e h a v io u r  o f  te r n a r y  m ix t u r e  fo r  s u c h  m o d e l  is  d if f ic u lt  t o  im a g in e .  T h u s ,  
fu r th e r  w o r k  m a y  in v o lv e  a n  in v e s t ig a t io n  o f  p o ly - d is p e r s e d  m ix t u r e s  w i t h  o n e  or  

m o r e  i s o t r o p ic  t e r m s  in t r o d u c e d  t o  t h e  in t e r a c t io n  p o t e n t ia l .

D u r in g  t h e  s t u d ie s  o f  te r n a r y  m ix t u r e s ,  m a n y  o th e r  u n c e r ta in t ie s  h a v e  a r is e n . F u ­
tu r e  w o r k  m a y , th e r e fo r e , b e  d e d ic a te d  t o  r e s o lv in g  th e s e  n u m e r o u s  u n c e r t a in t ie s .  

P e r h a p s , t h e  m o s t  in t e r e s t in g  o n e  is  in d e p e n d e n c e  o f  t h e  Tdd{c) s u r fa c e  o n  c o n c e n ­
t r a t io n .  T h e r e fo r e , t h e  d e t a i le d  in v e s t ig a t io n  o f  t h e  p r o c e s s e s  b e h in d  t h e  t r a n s i t io n  

Tdd{c) c o u ld  b e  u n d e r ta k e n  t o  o b t a in  a  b e t t e r  u n d e r s t a n d in g  o f  w h y  t h i s  s u r fa c e  

a p p e a r s  h o r iz o n ta l .  O n e  o f  t h e  n e c e s s a r y  c o n d i t io n s  fo r  t h i s  w o u ld  b e  in c r e a s e  o f  

t h e  s iz e  o f  t h e  s y s t e m . S im u la t io n  s t u d ie s  o f  t e r n a r y  s y s t e m s  a n d  t h e  s y s t e m s  w i t h  

t h e  h ig h e r  n u m b e r  o f  c o m p o n e n t s  a r e  r e la t iv e ly  fe w . T h is  is  m a in ly  d u e  t o  t h e  c o m ­

p le x i t y  o f  t h e  p r o b le m . H o w e v e r , t h e  m o d e l  in v e s t ig a t e d  in  t h i s  t h e s i s  p r o v id e s  a  

c h e a p  a l t e r n a t iv e  t o  m o r e  c o m p le x  m o d e ls  fo r  s u c h  s t u d ie s .  A ls o ,  a s  t h e  n u m b e r  o f  

in v e s t ig a t io n s  in  t h i s  a r e a  in c r e a s e s  i t  w o u ld  b e  u s e fu l  t o  d e v is e  a n  a p p r o p r ia t e  v i s u ­

a l is a t io n  a p p r o a c h  t o  a d e q u a t e ly  r e p r e s e n t  t h e  a m o u n t  o f  in fo r m a t io n  t h e s e  s y s t e m s  

p r o d u c e . P e r h a p s , t h e  s o lu t io n  l ie s  in  t h e  e m p lo y m e n t  o f  in t e r a c t iv e  v i s u a l i s a t io n  

a p p l ic a t io n s ,  s im i la r  t o  t h a t  p r o v id e d  in  A p p e n d ix  A .
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The Compact Disc.
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