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ABSTRACT
The use of wavelets in the image processing domain is still in its
infancy, and largely associated with image compression. With
the advent of the dual-tree hypercomplex wavelet transform (D-
HWT) and its improved shift invariance and directional selec-
tivity, applications in other areas of image processing are more
conceivable. This paper discusses the problems and solutions in
developing the DHWT and its inverse. It also offers a practical
implementation of the algorithms involved. The aim of this work
is to apply the DHWT in machine vision.

Tentative work on a possible new way of feature extraction is
presented. The paper shows that 2-D hypercomplex basis wave-
lets can be used to generate steerable filters which allow rotation
as well as translation.

Index Terms— Image Processing, Wavelet transforms, Fea-
ture extraction, Algorithms, Linear systems

1. INTRODUCTION

Wavelets are of significant interest in signal processing. However
in contrast to the discrete Fourier transform the discrete wavelet
transform is not shift invariant. In the area of image processing
this has restricted the use of the wavelet transform to areas such
as image compression where shift invariance is not a require-
ment. Recent research in wavelet signal processing however has
resulted in the dual-tree complex wavelet transform[1] which of-
fers approximate shift invariance and amplitude-phase analysis.

Analogical to 1-D signals requiring a pair of complex wave-
lets, 2-D signals require a quadruple of hypercomplex wavelets
for analysis[2]. This analogy extends to higher dimensions as
well, and the hypercomplex wavelet transform can for example
be used to filter 3-D data[3]. The hypercomplex wavelet trans-
form has already been used for optic flow estimation, texture seg-
mentation, and feature extraction.

This paper outlines a complete implementation of Selesnick’s
biorthogonal wavelet filter design technique and the dual-tree hy-
percomplex wavelet transform. The dual-tree hypercomplex wa-
velet is then used to generate three steerable filters which allow
rotation as well as translation.

2. STATE OF THE ART

An outline of Selesnick’s filter design technique for designing
biorthogonal wavelets[4] is hereby given. For a more detailed
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introduction to the dual-tree wavelet transform see Selesnick’s
joint publication with Kingsbury[1].
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Figure 1. Biorthogonal wavelet filters

If h0, h1, h̃0, and h̃1 are odd-length real-valued filters and
H0, H1, H̃0, and H̃1 their Z-transforms, the perfect reconstruction
condition for the first filter bank in figure 1 is

H̃0(z) H0(−z) + H̃1(z) H1(−z) = 0 and

H̃0(z) H0(z) + H̃1(z) H1(z) = 2
(1)

By letting H1(z) = H̃0(−z) and H̃1(z) = −H0(−z) the first part of
equation (1) is satisfied. The biorthogonality is established by

H0(z) = F(z) D(z), H̃0(z) = F̃(z) D(z−1) z1−L,

G0(z) = F(z) D(z−1) z1−L, G̃0(z) = F̃(z) D(z)
with F(z) = Q(z) (1 + z−1)K and F̃(z) = Q̃(z) (1 + z−1)K̃

(2)

where K and K̃ are the numbers of desired vanishing moments.
D is a Thiran filter[4] to approximate a half sample delay

d(n) =
(
L − 1

n

)
(−1)n

n−1∏
k=0

τ − L + 1 + k

τ + 1 + k
, here τ = 0.5 (3)

To also fulfil the second part of equation (1) both filter-pairs
have to meet the following condition

H̃0(z) H0(z) = G̃0(z) G0(z) = Q(z) Q̃(z) S (z) = 2

where S (z) � (1 + z−1)K+K̃ D(z) D(z−1) z1−L
(4)

Solving the following equation system yields R(z) � Q(z) Q̃(z).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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0
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0
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where N = K + K̃ + 2 L − 1, and N is odd

(5)
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Note that R is symmetric (R(z) = R(z−1) zN−1) because of equa-
tion (5).

3. SPECTRAL FACTORISATION WITH LAGUERRE

To determine a pair of spectral factors Q and Q̃, each root of R is
assigned to either become a root of Q or a root of Q̃. Since R is
symmetric and odd-length, for every root oi there is a related root
at 1/oi. As R also is real-valued, each complex root therefore has
related roots at o∗i , 1/oi, and 1/o∗i . The roots of R(z) zN−1 can be
determined using Laguerre’s iterative method[5] and polynomial
division. Instead of reducing the polynomial by only a single
root, first polynomial division with (1−oi) (1−o∗i ) (1−1/oi) (1−
1/o∗i ) is attempted. If the error is too large, the occurrence of a
pair of real roots is assumed and reduction with (1−oi) (1−1/oi) is
performed. This approach allows to safely choose the roots in the
next step. Polynomial division without remainders is formulated
as a least squares problem as shown in [6].

As Q and Q̃ need to be symmetric and real-valued, each root
of a group of two or four related roots must be assigned to the
same spectral factor. Furthermore the difference in size of Q and
Q̃ should be minimal. Applying these criteria can still leave a list
of choices. At least for larger filters however there does not seem
to be much difference between these.

After choosing a spectral factorisation the filters can be com-
puted according to equation (2). Finally the filters are normali-
sed. Note that equation (5) requires r1 = 0 and rN = 0. This
is solved by performing spectral factorisation for r2 zN−2 + r3 +

zN−3 + . . . + rN−1 and later extending Q̃(z) with a zero coefficient
at the beginning and the end.

4. 2-D HYPERCOMPLEX WAVELET TRANSFORM

The two-dimensional wavelet tree shown in [7], which already
uses four-element vectors, can be represented using hypercom-
plex numbers as follows. First the real-valued image is multi-
plied with (1+i+ j+k) so that all four components of the resulting
hypercomplex number equal each other.

prepare(X)(�z) � X(�z) (1 + i + j + k) (6)

1, i, j, k ∈ HCA2 are the units of the commutative hypercomplex
algebra HCA2[2]. The layers of the wavelet pyramid are com-
puted by recursively applying the following function to the lower
frequency band

decompose
(1)
a,b(W)(�z) �

[↓z2 2]
(
[↓z1 2]

(RW(�z) H̃a(z1)
)

H̃b(z2)
)
+

[↓z2 2]
(
[↓z1 2]

(IW(�z) G̃a(z1)
)

H̃b(z2)
)
+

[↓z2 2]
(
[↓z1 2]

(JW(�z) H̃a(z1)
)
G̃b(z2)

)
+

[↓z2 2]
(
[↓z1 2]

(KW(�z) G̃a(z1)
)
G̃b(z2)

)
where a, b ∈ {0, 1}

(7)

The operators R, I, J , and K are for accessing the different
components of the hypercomplex number.

For the inverse wavelet transform the values are recursively

composed using the following function

compose(W0,0,W1,0,W0,1,W1,1)(�z) �∑
a,b∈{0,1}

(
[↑z2 2]

(
[↑z1 2]

(RWa,b(�z) Ha(z1)
)

Hb(z2)
)
+

[↑z2 2]
(
[↑z1 2]

(IWa,b(�z) Ga(z1)
)

Hb(z2)
)

i+

[↑z2 2]
(
[↑z1 2]

(JWa,b(�z) Ha(z1)
)
Gb(z2)

)
j+

[↑z2 2]
(
[↑z1 2]

(KWa,b(�z) Ga(z1)
)
Gb(z2)

)
k

)
(8)

The real-valued image is reconstructed by applying the inverse
of

f inalise(W)(�z) �
1
4

(RW(�z) + IW(�z) +JW(�z) +KW(�z)
)

(9)

5. IMPLEMENTATION

We have implemented the DHWT in Y. Matsumoto’s program-
ming language Ruby. Since Ruby is an interpreted language, the
code can be used in an interactive Ruby session. T. Hunter’s im-
age processing extension was used to load and save images.

While the datatypes for representing 2-D arrays of hyper-
complex numbers can be implemented in Ruby easily, the perfor-
mance is insufficient to process images in real-time. As a solution
M. Tanaka has implemented NArray which is a static datatype
for Ruby to manipulate large arrays in real-time. Unfortunately
the code is static and cannot be easily extended. Therefore an ar-
ray datatype was implemented which allows definition of custom
element-types.

Ruby offers methods to pack numerical data into a platform-
dependent binary representation. E.g. integers can be converted
to bytes and later on be retrieved as follows

[1,2].pack("cc") => "\001\002"

"\001\002".unpack("cc") => [1, 2]

This allows the implementation of an array datatype in Ruby
which operates on binary data. A custom element-type can be
created by implementing a corresponding mapping to and from
binary data. Similar as in the NArray implementation, array ele-
ments are only temporarily represented as Ruby objects.

Ruby allows introspection, i.e. the existence of a method
with a certain name can be checked during run-time using the
method Object::respond to?. This can be used to develop a
method which tries to invoke an efficient native implementation
before falling back to using a slower generic implementation.

A large number of native implementations is required to cover
all possible operations. There are 12 element datatypes (integer,
complex, ...), 3 unary operations (negation, square root, absolute
value), 3 accumulating operations (minimum, maximum, sum),
and 6 binary operations (minus, plus, multiply, ...). Furthermore
native implementations for down-, and upsampling, correlation,
type-conversions, and extraction of sub-arrays are required. Op-
timising binary operations is especially hard because in each case
there is an array-array-operation, a scalar-array-operation, and an
array-scalar-operation to be supported. 12 ·12 ·3 ·6 = 2592 differ-
ent native methods are required to provide for all possible binary
operations.

Instead of implementing a code-generator as in the NArray

project, the problem was addressed by nesting C++ templates.
The major obstacles to this approach can be overcome by us-
ing template meta-programming techniques which were devel-
oped within the Boost project[8]. For example an entry of the
compile-time look-up table for return-types of binary operations
is implemented as follows
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template<>

struct _coercion< complex< double >,

hypercomplex< float > >

{

typedef hypercomplex< double > type;

};

In a similar way function objects are selected and method names
are computed. Also the conversion from a C++ datatype to a
Ruby class requires the use of templates.

6. STEERABLE FILTERS

Table (1) shows all components of the four hypercomplex basis
wavelets of the third level of the wavelet pyramid. The images
were generated by composing a wavelet pyramid of zeros with
a single hypercomplex impulse (for example W

(3)
a,b(�z) = z−4

1 z−4
2 j)

where (−4,−4) is next to the centre of the pyramid).

Table 1. Hypercomplex basis wavelets
W

(3)
a,b(�z) = z−4

1 z−4
2 h

b a h = 1 h = i h = j h = k

0 0

0 1

1 0

1 1

We can pool the four hypercomplex coefficients for a linear
combination of the four basis wavelets shown in table 1 as a 2×2
matrix so that W

(3)
a,b = z−4

1 z−4
2 va,b

V =
(
v0,0 v0,1

v1,0 v1,1

)
,V ∈ HCA2×2

2 (10)

One can see in table 1 that the low-frequency wavelets have
a pattern which has half the frequency of its high-frequency sib-
ling. If we take this into account, we can model small translations
of the texture defined byV as follows

e

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2 π∆y j/2 0
0 2 π∆y j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ · V · e
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝2 π∆x i/2 0

0 2 π∆x i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

Note that this model requires a commutative algebra, i.e. this
forbids the use of quaternions. The pattern is centred if V =
A (1 + i + j + k) where A is real-valued (A ∈ R2×2). Table (2)
shows the result.

One can see in table 1 that the low frequency wavelets can be
used to generate a steerable gradient-like shape. Term (12) yields
the rotating pattern shown in table (3)).

(1 − k) cos(α)
(
1 0
0 0

)
+ (i − j) sin(α)

(
1 0
0 0

)
(12)

Figure 2 shows how the frequency domain is covered by the
basis wavelets. As can be observed, modelling rotations in gen-
eral is much more difficult, because signal energy is transferred

Table 2. translation in x-direction (∆y = 0)
∆x = 0 1

6
2
6

3
6

4
6

5
6

Table 3. rotating gradient shape
α = 0 π

12
2 π
12

3 π
12

4 π
12

5 π
12

between different basis wavelets. E.g. if all signal energy is con-
centrated in v0,1 and in the first quadrant (see figure 2), a rotation
of π2 − ρ (where ρ � sin−1( 1

3 ), see figure 2) will transfer all en-
ergy to v1,0. A solution to this problem is to use polar separable

v1,0 v1,1

v0,1 ρ

Figure 2. Basis wavelets of different scale covering the first
quadrant of the frequency domain

filters as in [9]. However this approach does not allow to model
the translations as shown above.

However using linear combinations of the basis wavelets (see
table 1) one can approximate rotating patterns. Using the term
(13), table (4) was generated.

(1 + k) cos(α + ρ)
(
0 1
0 0

)
+ (i + j) cos(α − ρ)

(
0 1
0 0

)
+

(1 + k) sin(α + ρ)
(
0 0
1 0

)
+ (i + j) sin(α − ρ)

(
0 0
1 0

)
+

1
2

(1 − i) sin(α)
(
0 0
0 1

)
+

1
2

(1 − j) cos(α)
(
0 0
0 1

) (13)
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Table 4. rotating gradient shape
α = 0 π

12
2 π
12

3 π
12

4 π
12

5 π
12

Term (14) generates a rotating chequered shape (see table (5).
One can see that the outer fringes of the filter are not participating
in the rotation of the pattern.

(1 + i + j + k) cos(α)
(
0 0
0 1

)
+

(1 + i − j − k) sin(α)
(
0 0
1 0

)
+ (−1 + i − j + k) sin(α)

(
0 1
0 0

)
(14)

Table 5. rotating chequered shape
α = 0 π

6
2 π
6

3 π
6

4 π
6

5 π
6

Using the addition theorems, terms (12), (13), and (14) each
can be brought into the following form which represents a steer-
able filter

cos(α)H1 + sin(α)H2, whereH1,H2 ∈ HCA2×2 (15)

7. CONCLUSION

A complete implementation of Kingsbury’s dual-tree hypercom-
plex wavelet transform including Selesnick’s filter design has
been given. A fully functional program for manipulating arrays
of hypercomplex numbers in Ruby was implemented. The pro-
gram then was optimised by adding native methods for element-
wise operations into this framework. This concept allows real-
time performance to be achieved without sacrificing the flexibil-
ity of the datastructures in use. The implementation is available
for free on the Nanorobotics website1 under the terms and con-
ditions of the GPL. Our implementation does not rely on propri-

1http://vision.eng.shu.ac.uk/mmvlwiki/index.php/Nanorobotics

etary software and therefore can potentially be integrated into an
embedded platform.

It has been shown, how the basis wavelets can be used to
model translation of patterns. Furthermore three patterns have
been presented which allow approximate rotations as well. Fu-
ture work will attempt to model rotating patterns more accu-
rately. The motivation is to be able to represent arbitrary texture
patches as a linear combination of steerable wavelets which can
be steered both in rotation as well as translation. If such a wavelet
basis exists, it would be possible to model arbitrary translations
and rotations as operations in the hypercomplex domain. A fea-
ture extraction method based on this model would then be able
to pick out salient features (e.g. edges, corners, and joints) and
recover them regardless of rotation, translation, and scale.

Furthermore we would like to point out that the redundancy
of the dual-tree complex wavelet transform can be overcome by
using the softy-space projection[10] which relieves the redun-
dancy by projecting the real-valued image on a hypercomplex
image of lower resolution.
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