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ABSTRACT 

Background While compensatory eating following acute aerobic exercise is highly 

variable, little is known about the underling mechanisms that contribute to alterations 

in exercise-induced eating behaviour.  

Methods Overweight and obese women (BMI = 29.6 ± 4.0kg
.
m

2
) performed a bout of 

cycling individually tailored to expend 400kcal (EX), or a time-matched no exercise 

control condition in a randomised, counter-balanced order. Sixty minutes after the 

cessation of exercise, an ad libitum test meal was provided. Substrate oxidation and 

subjective appetite ratings were measured during exercise/time-matched rest, and 

during the period between the cessation of exercise and food consumption.  

Results While ad libitum EI did not differ between EX and the control condition 

(666.0 ± 203.9kcal vs. 664.6 ± 174.4kcal, respectively; ns), there was marked 

individual variability in compensatory energy intake (EI). The difference in EI 

between EX and the control condition ranged from -234.3 to +278.5kcal. 

Carbohydrate oxidation during exercise was positively associated with post-exercise 

EI, accounting for 37% of the variance in EI (r = 0.57; p = 0.02).  

Conclusions These data indicate that capacity of acute exercise to create a short-term 

energy deficit in overweight and obese women is highly variable. Furthermore, 

exercise-induced CHO oxidation can explain part of the variability in acute exercise-

induced compensatory eating. Post-exercise compensatory eating could serve as an 

adaptive response to facilitate the restoration of carbohydrate balance.  



WHAT ARE THE NEW FINDINGS? 

 Compensatory eating in overweight and obese women following acute 

exercise is highly variable, but inter-individual variability is masked when 

reporting the mean response in food intake. 

 While for some individuals there is no compensatory increase in energy intake 

following exercise, others partially compensate for the increased exercise-

induced energy expenditure through increased energy intake. 

 Carbohydrate oxidation during exercise influenced post-exercise energy 

intake, with those demonstrating greater carbohydrate oxidation during 

exercise experiencing greater post-exercise energy intake. 

HOW MIGHT IT IMPACT ON CLINICAL PRACTICE IN THE NEAR 

FUTURE? 

 The disclosure of marked individual variability in post-exercise eating 

behaviour helps further our understanding of how appetite regulation is 

affected by acute exercise. 

 

 Future research should focus on further characterising the physiological and 

behavioural mechanisms that mediate compensatory changes in energy intake, 

and turn, body weight regulation.  



INTRODUCTION 

While acute exercise does not stimulate an obligatory rise in post-exercise energy 

intake (EI) to restore energy balance,
1 

marked individual variability exists in post-

exercise compensatory eating behaviour in lean
2
 and obese females

3
.
 
Energy intake 

increases in some people and partially compensates for the exercise-induced energy 

expenditure (ExEE), while others show no evidence of compensation.
2 3

 Such 

variability is consistent with the heterogeneity reported in body weight and eating 

behaviour changes following long-term exercise in overweight and obese individuals,
4 

5
 but is concealed in studies reporting the mean response only. However, currently 

little is known about the underling mechanisms that contribute to alterations in 

exercise-induced eating behaviour.  

While non-homeostatic factors such as food hedonics have been shown to play a role,
2
 

compensation in EI may also be metabolically driven. Given the tight regulation of 

carbohydrate (CHO) in the body,
6
 CHO metabolism could influence eating behaviour 

in order to regulate energy and substrate balance. This would be of importance for 

exercise-induced compensatory eating, as exercise is a potent metabolic stimulus that 

perturbs nutrient balances.
7
 These disturbances may encourage post-exercise 

compensation as glycogen availability may act as a signal that influences day-to-day 

EI.
8
 However, while a negative CHO balance following dietary and/or exercise 

manipulation of glycogen has been shown to predict greater ad libitum EI,
9-13

 findings 

are equivocal.
14-17 

 

Given the variability in substrate oxidation during
18

 and following exercise,
19 

those 

who rely more heavily on CHO oxidation during/following exercise could be more 

susceptible to post-exercise compensatory eating (due to an elevated drive to restore 

CHO balance). Indeed, it has been suggested that poor metabolic flexibility could 

increase the risk of weight gain, with a positive energy balance in part driven by 

glycogenostatic feeding.
20 

However, evidence of a direct link between substrate 

oxidation during exercise and post-exercise compensatory eating is limited.
21 22 

Therefore, this study aimed to characterise the variability in acute compensatory 

eating, and examine the role of substrate oxidation during and following exercise in 

driving such behaviour. 



METHODS 

Participants  

Sixteen pre-menopausal overweight or obese females (mean (± SD) BMI = 29.6 ± 

4.0kg
.
m

2
; Table 1) were recruited via poster or email advertisements. Participants 

were sedentary (≤ 2hrs
.
wk

-1
 of moderate intensity exercise over the previous six 

months), weight stable (± 2kg for the previous three months), non-smokers and not 

taking medication known to effect metabolism or appetite. All participants gave their 

written informed consent, and the study was approved by the Institute of 

Psychological Sciences Ethics Board, University of Leeds, UK. 

 

Table 1: Descriptive characteristics of participants. 

 Mean (SD) 

Age (yrs) 39.3 (10.3) 

BMI (kg
.
m

2
) 29.6 (4.0) 

Body Mass (kg) 79.8 (12.1) 

Waist Circumference (cm) 111.6 (7.7) 

RMR (kcal
.
day

-1
) 1465.1 (165.6) 

Maximal Aerobic Capacity (ml
.
kg

-1.
min

-1
) 32.0 (9.6) 

BMI, body mass index; RMR, resting metabolic rate. 

Study Design 

Following a preliminary assessment visit, participants performed an exercise (EX) or 

time-matched no exercise control condition in a randomised, counter-balanced order. 

Each condition was performed at the same time of day (8-9am) following an 

overnight fast, and consisted of three phases: 1) pre-treatment, 2) metabolic 

assessement, and 3) a 60 minute recovery phase. Phases One and Three did not differ 

between conditions. During EX, Phase Two consisted of cycling (gross ExEE = 

400kcal), while during the control condition exercise was substituted for time-

matched rest. Substrate metabolism and subjective appetite were measured 

throughout, and an ad libitum test meal was provided at the end of Phase Three 

(Figure 1). Experimental conditions were separated by one week, with participants 

maintaining their normal dietary and physical ativity patterns between conditions.  

 

Figure 1 here 



Preliminary Assessment 

Body composition, resting metabolic rate (RMR) and maximal aerobic capacity were 

measured in the morning (8-9am) following an overnight fast (10-12hrs). To exclude 

any residual effects of previous exercise, participants were instructed to avoid 

strenous exercise 24hrs prior to testing. Resting metabolic rate was measured using an 

indirect calorimeter fitted with a ventilated hood (GEM, Nutren Technology Ltd, 

Cheshire, UK), based on The American Dietetic Association guidelines.
23

 Resting 

substrate oxidation was calculated using standard stoichiometric equations
24

. Air-

displacement plethysmography (BOD POD Body Composition System, Life 

Measurement, Inc., Concord, USA) was used to measure body composition, 

according to manufacturer’s instructions. Waist circumference was measured at the 

narrowest point between the lower costal border and the iliac crest.
25

 Finally, maximal 

aerobic capacity was determined using a validated incremental treadmill test.
26

  

Experimental Conditions 

At the start of each experimental condition, participants rated their feelings of 

subjective appetite (hunger, fullness and desire to eat) using 100mm visual analogue 

scales (VAS). These scales have previously been shown to be valid and reliable.
27

 

Participants then completed either a bout of cycling, expending 400kcal at 70% of 

their age predicted maximum heart rate (EX), or an equivalent period of seated rest 

(control). The required duration of exercise (and therefore seated rest) was calculated 

using stoichiometric equations
24

 based on data from the incremental treadmill test. 

During exercise/rest, respiratory data was measured continously (Sensormedics 

Vmax29, Yorba Linda, USA). Data was averaged over time periods that equated to 

the expenditure of 100 (T1), 200 (T2), 300 (T3) and 400kcal (T4) during exercise, with 

the same periods used during time-matched rest.   

Following exercise/rest, participants underwent a 60 minute seated recovery period in 

which respiratory measures were taken at 0-10 (R10), 30-35 (R35) and 50-60 (R60) 

minutes, and appetite ratings were taken at 0, 10, 35 and 60 minutes. Finally, an ad 

libitum test meal was administered, consisting of risotto (Uncle Ben's Mediterranean 

Vegetable), yoghurt (Yeo Valley Organic Strawberry) and water. When participants 

had reached comfortable fullness, a final post-meal appetite rating was taken. 

Participants ate in isolation and were instructed to eat as much or as little as they 



wanted until comfortably full. Food was provided in excess of expected consumption, 

with participants able to request further food and water if required. Energy and 

macronutrient intake was calculated by weighing the food before and after 

consumption, and with reference to the manufacturers’ energy values. The mean (± 

SD) proportions of energy contributed by fat, protein, and carbohydrate in the meal 

were 24.1 ± 6.0%, 11.2 ± 2.0%, and 64.7 ± 7.6%, respectively. Before commencing 

the study, prospective participants completed a food preference questionnaire, and if 

they disliked any of the test foods, they were excluded. 

Statistical Analysis 

Data are reported as mean ± SD throughout. Statistical analyses were performed using 

PASW for windows (SPSS, Chicago, Illinois, Version 18.0). Paired sample t-tests 

were used to examine differences in the ExEE and EI. Two-way ANOVAs with 

repeated measures (time*condition) were performed to examine differences in 

substrate oxidation and subjective appetite. Where appropriate, Bonferroni corrections 

were applied to post-hoc analysis. Bivariate and partial correlation analyses were used 

to test for associations between EI, substrate oxidation and appetite, while simple 

linear regression was used to calculate the proportion of between-subject variance in 

EI explained by exercise CHO oxidation. 



RESULTS 

Energy Expenditure & Substrate Oxidation 

By design, total energy expenditure for EX (exercise and recovery) was significantly 

greater than during the control condition (445.2 ± 54.0 vs. 88.4 ± 22.5kcal; p < 0.001). 

Energy expenditure during the exercise phase of EX (Phase Two) was 390.2 ± 

16.4kcal, as compared to 39.4 ± 13.3kcal during the control condition (p < 0.001). 

During the recovery phase (Phase Three), energy expenditure did not differ between 

EX and the control condition (54.4 ± 25.5 vs. 49.0 ± 13.1kcal, respectively; p = 0.29; 

Table 2). 

Table 2: Mean (± SD) energy expenditures during the phases of EX and the control condition. 

 Mean (SD) 

Total Energy Expenditure during EX (kcal) 445.2 (54.0)* 

Total Energy Expenditure during Control (kcal) 88.4 (22.5) 

Energy Expenditure during Exercise (kcal) 390.2 (16.4)** 

Energy Expenditure during Time-matched Rest (kcal) 39.4 (13.3) 

Energy Expenditure during Recovery of EX (kcal) 54.4 (25.5) 

Energy Expenditure during Recovery of Control (kcal) 49.0 (13.1) 

*Total energy expenditure during EX significantly different from total energy expenditure during the 

control condition (p < 0.001). **Energy expenditure during exercise significantly different from energy 

expenditure during time-matched rest (p < 0.001). 

 

Mean RER during the exercise phase of EX (Phase Two) was 0.86 ± 0.04, while 

during the equivalent phase of the control condition, RER was 0.80 ± 0.05. Mean 

CHO and fat oxidation during exercise was 23.30 ± 10.79 and 8.20 ± 2.97mg
.
kg

-

1.
FFM

.
min

-1
, respectively. During the equivalent rest phase of the control condition, 

mean CHO and fat oxidation was 1.56 ± 0.97 and 1.33 ± 0.69mg
.
kg

-1.
FFM

.
min

-1
, 

respectively. There was a significant main effect of time (p < 0.001), condition (p < 

0.001), and a time*condition interaction (p < 0.001) for RER, CHO and fat oxidation, 

such that these variables were significantly higher during the exercise phase of EX 

than during the equivalent phase of control (Figure 2). During Phase Three (recovery), 

RER was significantly lower at R10 during EX (p = 0.01), and remained lower 

throughout Phase Three (p > 0.05).  



Figure 2 here 

Subjective Appetite and Food Intake 

There was no difference in EI between EX and the control condition (666.0 ± 203.9 

vs. 664.6 ± 174.4kcal, respectively; p > 0.05). Significant main effects of time (p < 

0.001) and condition (p < 0.001) were observed for hunger, desire to eat and fullness, 

but no time*condition interactions were noted (p > 0.05). Food intake after EX or the 

control condition was not related to hunger, desire to eat or fullness (p > 0.05). In 

addition, post-exercise EI following EX was not related to ExEE or exercise duration 

(p > 0.05). 

Examination of the individual responses in EI revealed marked between-subject 

variability (Figure 3). The differences in EI between EX and the control condition 

were calculated (EX EI – Control EI) to provide an indicator of compensation (EIdiff). 

EIdiff ranged from -234.3 to +278.5kcal. Nine participants ate less following EX 

compared to the control condition (mean reduction: -100.3 ± 60.0kcal), one 

participant showed no change in EI (-1.5kcal), while six participants ate more (mean 

increase: +154.3 ± 77.2kcal). To account for differences in exercise-and-rest-induced 

EE, and to determine the degree of EI compensation, the difference between EEdiff 

(total EE during EX – total EE during control) and EIdiff was compared. The net 

energy deficit created by exercise ranged from -112.6 to -543.3kcal.  

Figure 3 here 

Substrate Oxidation and Food Intake 

Total exercise CHO oxidation (54.4 ± 22.2g) was positively associated with EI 

following EX (r = 0.61; p = 0.01), and this relationship remained after controlling for 

body weight (r = 0.58; p = 0.02), fat-free mass (r = 0.56; p = 0.02) or fat mass (r = 

0.60; p = 0.01). Similarly, EI following EX was associated with the rate of CHO 

oxidation during exercise (mg
.
kg

-1.
FFM

.
min

-1
; r = 0.57; p = 0.02). There were also 

significant associations between exercise CHO oxidation and CHO (r = 0.63; p = 

0.02) and protein intake (r = 0.53; p = 0.03), but not fat intake (r = 0.43; p = 0.09). 

However, substrate oxidation during the recovery phase of either condition was not 

related to EI (Table 2). 



Table 3: Correlation coefficients for energy intake (kcal), resting metabolic rate (kcal
.
day

-1
), resting 

substrate oxidation (mg
.
kg

.
FFM

-1.
min

-1
) and total carbohydrate and fat oxidation (g) during Phase Two 

EX and Control.  

Variable Energy Intake 

 r r
2
 P value 

Total CHO oxidation during exercise of EX 0.61 0.37 p = 0.01* 

Total fat oxidation during exercise of EX 0.18 0.03 p = 0.51 

Total CHO oxidation during EX recovery 0.21 0.04 p = 0.46 

Total fat oxidation during EX recovery 0.35 0.13 p = 0.19 

    

Total CHO oxidation during time match rest (Control) 0.21 0.05 p = 0.43 

Total fat oxidation during time match rest (Control) 0.36 0.13 p= 0.18 

Total CHO oxidation during Control recovery 0.19 0.01 p = 0.69 

Total fat oxidation during Control recovery 0.46 0.21 p = 0.71 

    

RMR and EI during EX 0.61 0.38 p = 0.01* 

RMR and EI during Control 0.41 0.17 p = 0.12 

Resting CHO oxidation and EI during EX 0.11 0.01 p = 0.99 

Resting fat oxidation and EI during EX 0.01 0.01 p = 0.99 

Resting CHO oxidation and EI during Control -0.21 0.04 p = 0.47 

Resting fat oxidation and EI during Control 0.31 0.09 p = 0.25 

CHO, carbohydrate; RMR, resting metabolic rate; EI, energy intake; FFM, fat-free mass; EX, exercise 

condition; Control, no exercise condition. *Correlation is significant at the 0.05 level (2 tailed). 



DISCUSSION 

This study examined the relationship between substrate oxidation during and 

following exercise, and variability in post-exercise compensatory eating in overweight 

and obese women. In line with previous findings, our data demonstrated that the 

degree of EI compensation in response to acute exercise is highly variable. This 

heterogeneity was concealed by the mean response, and was not related to differences 

in body composition or ExEE. This highlights the importance of examining biological 

and behavioural responses to exercise at the individual level; although acute exercise 

did not elicit immediate compensation in EI in all individuals, some clearly showed 

exercise-induced overconsumption. Here, approximately 56% of participants 

consumed the same or less following exercise, while 38% consumed more following 

exercise. Although exercise created an acute energy deficit in all individuals, the 

actual deficit ranged from -112.6 to -543.3kcal. As the capacity of exercise to create a 

net energy deficit is moderated by compensatory eating, a greater understanding of 

the mechanisms that confer susceptibility to exercise-induced overconsumption is 

warranted.  

Carbohydrate Oxidation and Post-Exercise Compensatory Eating 

In the present study, total exercise CHO oxidation was strongly associated with post-

exercise EI during EX, with greater CHO oxidation associated with greater EI. This 

relationship was not influenced by body composition or habitual diet, and is 

consistent with the Glycogenostatic theory of feeding
8
 and reports that a negative 

CHO balance is associated with increased EI.
9-13

 Greater CHO oxidation during 

exercise could augment reductions in glycogen stores and increase perturbations to 

CHO balance, eliciting a greater compensatory drive in EI to restore CHO balance. 

However, it should be recognised that CHO oxidation during exercise is unlikely to 

act in isolation (or indeed be the main driver) in promoting exercise-induced 

compensatory eating. Such compensation will be mediated through a combination of 

homeostatic (e.g. gastrointestinal peptides) and non-homeostatic factors (e.g. food 

hedonics
2
). However, the relative contribution of these, or how they interact within a 

co-ordinated regulatory system, is unclear.  

 



However, as total CHO oxidation during EX was small (57.5 ± 22.3g), the impact of 

EX on stored glycogen would have been minimal. This is of importance as the 

pathways through which perturbations to glycogen stores are signalled to the brain to 

elicit compensatory feeding are unclear.
28 29

 Vagal afferent nerve activity has been 

suggested as the signal between the liver and the central nervous system.
30

 However, 

it cannot be ruled out that the associations between CHO balance and EI
9-13

 are co-

incidental rather than causal. Indeed, the observed relationship between CHO 

oxidation and EI may reflect exercise-induced changes in appetite related peptides, 

which act to regulate EI while mediating substrate metabolism. In the present study, 

post-exercise substrate oxidation was measured as exercise-induced changes during 

this period could have influenced subsequent EI. However, substrate oxidation during 

recovery and EI were not related, despite large variability in post-exercise CHO and 

fat oxidation. Given the low absolute rates of post-exercise substrate turnover, even 

after accounting for any exercise-induced elevation, the impact on glycogen 

concentrations would have been minimal.  

Methodological Issues and Areas for Future Research 

Although exercise CHO oxidation was also associated with CHO and protein intake 

following EX, the test meal employed was not designed to examine differences in 

macronutrient intake. These relationships are likely to be a function of the total energy 

consumed, rather than substrate-driven macronutrient selection. The test meal 

employed was designed to detect small (but meaningful) changes in EI, despite 

marked variability in EI and substrate oxidation. Indeed, buffet meals with a wide 

selection of highly palatable foods may not be sensitive to small changes in hunger 

and satiation, as they may promote hedonically driven overconsumption. However, 

we recognise that compensation to exercise was only measured at one meal, and 

therefore the effects of exercise on 24hr energy balance cannot be determined. Indeed, 

changes in EI at a single meal may not alter 24hr EI owing to compensation at 

subsequent meals.  

It should also be noted that this study was conducted in fasted overweight and obese 

women. The effect of prior nutritional status on compensatory eating is unclear. 

Although post-prandial exercise has been shown to suppress post-exercise hunger to a 

greater extent than fasted exercise,
31

 these differences are not reflected in subsequent 



EI.
17

 Sex differences have also been reported in the appetite-related hormonal 

response to acute exercise,
32

 and the efficacy of exercise-induced weight loss.
33

 

However, recent evidence indicates that when
 
the

 
ExEE is matched, no sex differences 

exist in the compensatory responses (body composition, EI or appetite) to chronic 

exercise.
34

 Consequently, the effect of gender and prior nutritional status needs to be 

addressed, as variability in post-exercise compensatory EI has only been examined in 

fasted women. Furthermore, differences in susceptibility should be explored between 

lean and obese individuals.
35

 

Practical Implications 

The disclosure of large variability in post-exercise EI could be dismissed as random 

variability.  However, the clear association with underlying biological variables 

suggests this is not the case. Rather, this variability reflects a dynamic regulatory 

system in which physiological mediators can act as drivers of behaviour. 

Acknowledgment of this variability is of fundamental importance, as without this, a 

full understanding of how appetite regulation is affected by exercise cannot be 

achieved. The characterization of susceptible/resistant individuals is needed to further 

our understanding of the behavioural and biological mechanisms that mediate weight 

loss, and help explain why some people fail to lose as much weight as expected 

during exercise-induced weight loss.
36

 

 

Conclusions 

These data confirm that the capacity of acute exercise to create a short-term energy 

deficit in overweight and obese women is highly variable, and is mediated by post-

exercise EI. While for some individuals there is no compensatory increase in EI 

following exercise, others partially compensate for the ExEE through increased EI. 

While the physiological and behavioural mechanisms behind this variability need 

further examination, greater CHO oxidation during exercise was associated greater 

post-exercise EI. As such, the metabolic response to a bout of exercise may mediate 

acute perturbations to energy balance, with CHO oxidation during exercise providing 

a potential stimulus for post-exercise compensatory eating.  



FIGURE LEGENDS 

Figure 1: Schematic representation of the study design. RMR, resting metabolic rate; 

BC, body composition; WC, waist circumference; VO2max, maximal aerobic 

capacity; HRmax, heart rate maximum; TFEQ, Three factor eating questionnaire; 

RER, respiratory exchange ratio; VAS, visual analogue scale.  

Figure 2: Mean changes in RER (Panel A), carbohydrate (Panel B) and fat oxidation 

(Panel C) during Phases Two and Three of EX and the control condition. CHO, 

carbohydrate; FFM, fat-free mass; EX, exercise condition; Control, no exercise 

condition. *Significant difference between EX and the control condition (p < 0.05). 

Figure 3: Individual variability in compensatory EI (EIdiff) following acute exercise. 

EX, exercise condition; Control, no exercise condition. 
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