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Orientational and phase-coexistence behaviour

of hard rod-sphere mixtures

Dmytro Antypov 1, Douglas J. Cleaver ∗
Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield

S1 1WB, UK

Abstract

Results are presented from Monte Carlo simulations of bulk mixtures of Hard Gaus-
sian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters
equal to the breadths of the rods. For sphere number-concentrations of 50% and
lower, compression of the isotropic fluid results in formation of a homogeneous
(i.e. compositionally mixed) nematic phase. The volume fraction of this isotropic-
nematic transition is found to increase approximately linearly with sphere concen-
tration. On compression to higher volume fractions, however, this homogeneous
nematic phase separates out into coexisting nematic and isotropic phases.

1 Introduction

When simulating or performing a theoretical study on a particular system, it
is often informative initially to consider its behaviour in the hard-particle ap-
proximation. In this limit, in the canonical ensemble at least, the equilibrium
state is determined by the entropy alone [1]. A particular issue that arises
when treating mixtures of hard particles is that it is not always straightfor-
ward to determine (by theory) or establish (by simulation) whether a given
mixture undergoes phase separation. The possibility of fluid-fluid coexistence
in binary mixtures of hard spheres with different diameters, for example, has
been the focus of several recent studies (see ref. [2] for the current picture). In
addition to this system, the competing demixing and ordering behaviours of
numerous other binary hard particle mixtures have been studied using both
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theory and computer simulation [3–12]. Mixtures of different types of rods [3–
5], rods and disks [6,7], and rods and spheres [8–12] have all been investigated.
These studies show that, even in the hard-core approximation, binary mixtures
can exhibit macroscopic and microscopic demixing as well as orientationally
ordered phases.

To date, most theoretical studies of hard rod-sphere mixtures have been re-
stricted to one of two approximations: the rods have been taken either to be
thin and noninteracting or to be parallel (i.e. perfectly aligned). Experimental
studies of the former situation [8] reveal that small thin rods are very efficient
depletion agents and readily induce an effective sphere-sphere attraction. A
density functional treatment (DFT) of such systems [9], which was restricted
to state points where orientational transitions of the rods were not relevant,
found only mixed and demixed regions. Another DFT of hard spheres and
hard ellipsoids of arbitrary sizes has predicted the coexistence of nematic rod-
rich and isotropic sphere-rich phases at high packing fractions [10]. However,
the approach adopted in ref.[10] utilised a number of approximations to the
rod direct correlation function, which lead to an inadequate description for
the behaviour of the nematic order parameter. More recently, the geometrical
approximation approach has been used to study entropy driven demixing for
the general case of isotropic binary mixtures of convex bodies [5]. Whilst here
it was shown that, in general, prolate and oblate particles demix more eas-
ily than spherical ones, fluid-fluid demixing of rod-sphere mixtures was found
to be explicitly forbidden when the breadths of the rods were made equal to
the diameters of the spheres. Like its predecessors, however, this theory did
not consider the way in which demixing might be affected by being either pre-
empted or accompanied by an orientational transition of the rods. In contrast,
if the rods are kept parallel [11,12], only perfectly ordered liquid crystalline
behaviour can be studied. In this limit, mixtures of hard spheres and parallel
spherocylinders have been shown to form a lamellar phase in which there is
microphase separation of the two components. This type of lamellar phase
has also been observed for some experimental rod-sphere systems based on
suspensions of rod-like viruses and polystyrene spheres [13,14].

Despite this considerable literature, therefore, most of the theoretical ap-
proaches used are only truly valid in the limit of very long, thin rods whereas
real liquid crystal molecules typically have aspect ratios of 5 or less. For this
reason, we present here an exploratory MC simulation study of a hard par-
ticle rod-sphere mixture performed using particle shapes and concentrations
for which both orientational ordering and demixing are pertinent.
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2 Simulation model and results

In this Letter, we present results from MC simulations of mixtures of Hard
Gaussian Overlap (HGO) particles with an aspect ratio of 3:1 and hard spheres
(HS) with diameters equal to the breadths of the rods. For aspect ratios of
3 and higher, the undiluted HGO model is known to exhibit a density-driven
N-I transition; a phase diagram has recently been calculated [15]. In our mixed
systems, the interaction between two particles i and j, separated by a distance
rij, is given by

Uij =





0 (rij > σij),

∞ (rij ≤ σij),
(1)

where σij is the appropriate range parameter function for the particle-type
combination, ij. For two hard spheres, σij is simply the sphere diameter σ0.
The range parameter function for two HGO particles depends on their orien-
tations, denoted by the unit vectors ûi and ûj, and is given by [16]

σ(r̂ij, ûi, ûj) = σ0

[
1− χ

2

{
(r̂ij · ûi + r̂ij · ûj)

2

1 + χ(ûi · ûj)
+

(r̂ij · ûi − r̂ij · ûj)
2

1− χ(ûi · ûj)

}]−1/2

,(2)

where r̂ij = rij/rij is the unit vector along the intermolecular vector rij and
χ = (k2 − 1)/(k2 + 1), k being the particle aspect ratio. For un-like particles,
for example, if particle i is a sphere and particle j is a rod, σij is given by [16]

σ(r̂ij, ûj) = σ0

[
1− χ(r̂ij · ûj)

2
]
.−1/2 (3)

All simulations were performed in the constant NV T ensemble using a stan-
dard MC algorithm. For each trial move, a particle was selected at random and
subjected to a random trial displacement within a cube centred on the parti-
cle’s original position. Where the selected particle was a rod, this displacement
was combined with a random rotation implemented using the Barker-Watts
method [17]. N such random MC moves made up one MC cycle, so that, on
average, each particle experienced one trial move per cycle.

Five HGO-HS systems were simulated, the sphere concentrations being 0%,
10%, 20%, 30%, 40% and 50%, by number. The total number of particles was
kept at N = 2048 for all systems, the numbers of rods and spheres being
adjusted to provide each desired concentration. A compression sequence was
performed at each concentration, each sequence starting from a low density,
orientationally isotropic configuration. The orientational order parameter was
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calculated as the ensemble average of the largest eigenvalue of the Q tensor:

Qαβ =
1

Nrod

Nrod∑

i=1

1

2
(3uiαuiβ − δαβ), (4)

where Nrod is the number of rods in the system, uiα is the α component
(α = x, y, z) of the vector ûi, and δαβ is the Kronecker delta. The mean square
particle displacement was also monitored routinely to ensure that, within each
run, the particles travelled distances comparable with the simulation box side;
had the runs been significantly shorter than this, it would have been impossible
to assess any possible demixing occurring in the system. This requirement lead
to run-lengths of between 6× 105 and 1.5× 107 MC cycles, depending on the
system density.

Fig. 1 shows the nematic order parameter as a function of occupied volume
fraction at various sphere concentrations. Here, we follow theoretical treat-
ments of HGO systems [18,19] in equating the volume of an HGO particle
with that of an ellipsoid of the same elongation. The occupied volume fraction
can then be expressed in terms of the total number density ρ = N

V
and the

sphere number-concentration ratio 0 ≤ csph ≤ 1 using

f =
Voccupied

V
≈ Vsph (Nsph + 3Nrod)

V
= ρVsph (3− 2csph) , (5)

where Nsph is the number of spheres in the system, and Vsph and 3Vsph are the
sphere and rod volumes, respectively. The data shown in Fig. 1 indicate that an
N-I transition occurred during each compression sequence. The data also show
a clear tendency for the volume fraction at the transition, fN−I, to increase with
increasing sphere concentration. At the highest sphere concentration studied,
50%, the volume fraction at which the N-I transition occurred was so great
that the mobility of the particles was very low: 1.5 × 107 MC cycles were
required to equilibrate the last configuration in this compression sequence.
Sphere concentrations above 50% were not studied because of this dramatic
increase in the required computational time.

The structural behaviour exhibited during compression of the 50% mixture
was studied by monitoring the sphere-sphere radial distribution function gss(r).
The difference between the short-range regions of gss(r) for the 50% mixture
above and below f = 0.53 is indicative of phase separation (Fig. 2). A con-
figuration snapshot taken at f = 0.534071, shown in Fig. 3, confirms this
assessment; it shows a rod-rich phase, almost free of spheres, coexisting with
a rod-sphere mixture with a high (about 70%) concentration of spheres. This
suggests that the volume fraction at which phase separation takes place de-
pends only weakly on sphere concentration, especially at 0 ≤ csph ≤ 0.50.
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For the 50% system, it is not clear whether a brief window of homogeneous
nematic stability preceded this phase-separation; the latter appears to have
taken place at a slightly higher volume fraction than the rise seen in the
nematic order parameter, but the volume-fraction difference is similar to the
density increments used. In order to assess this more fully, the 20% mixture
was compressed to similarly high volume fractions to investigate its phase-
separation behaviour. The resulting gss(r) curves, shown in Fig. 4, indicate a
weak but growing tendency for the spheres to cluster with increase in system
density, but approach unity at large r for all volume fractions considered. This
suggests a random distribution of small clusters of spheres. A number and size
distribution analysis of clusters of spheres separated by distances greater than
1.5σ0 was performed at each density and averaged over at least 105 MC cycles.
The resulting data, which are shown in Tab. I, indicate that macroscopic phase
separation was not seen: about a hundred clusters of spheres (half of which
were just single spheres) were found even at the highest density. That said,
the largest cluster contained about 20% of the total number of spheres at high
densities.

Since the runs performed here were sufficiently long to give an average net
sphere displacement greater than the simulation box side, these systems were
certainly not glassy. Also, the clusters of spheres were found to change dy-
namically during the runs. When compared with the results from the 50:50
system simulations, phase separation would have been expected at about the
same volume fraction, i.e. f = 0.53. This is consistent with the point at which
the size of the largest cluster started to increase significantly (Tab. I). We also
note a possible anomaly in the gradient of the order parameter curve of the
20% mixture at this volume fraction. These observations both suggest that
the 20% mixture may have a weak tendency to phase separate. Our inabil-
ity directly to observe macroscopic phase coexistence here is not surprising,
however; finite size effects, particularly the relatively high surface to volume
ratio of a sphere-rich droplet at low overall sphere concentrations, would be
expected to inhibit such an observation in a constant NV T simulation. Fi-
nally, we note that the order parameter values shown in Tab. I increase at a
volume fraction of about 0.50, indicating that a compositionally homogeneous
nematic phase was present in the range 0.50 < f < 0.53. This supports the
possibility of there being a similar but much narrower window of homogeneous
nematic stability in the 50% mixture.

3 Discussion and Conclusion

The simulations presented here show that, while binary mixtures of hard
spheres and HGO particles with aspect ratio 3 do not exhibit lamellar struc-
tures, they do undergo macroscopic phase separation at high volume fraction.
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A partial phase diagram for the system is shown in Fig. 5, diamonds repre-
senting the simulation points. Here, the dashed line connects points at which
the increase of the nematic order parameter indicates a N-I phase transition.
It was not possible to resolve the individual isotropic and nematic coexis-
tence densities from our exploratory NV T simulations. However, the weakly
first-order nature of the N-I transition dictates that the dashed line in Fig. 5
actually represents a narrow region of N+I coexistence. We also indicate, with
a solid line, the approximate location of the much wider, re-entrant N+I co-
existence region identified from our simulations at high volume fractions. We
note that an equivalent wide N+I coexistence region has been seen at low T
in the temperature-concentration phase diagram of a liquid crystal-silicone oil
mixture [20]. It has also been seen in lattice model simulations of thermotropic
liquid crystal-isotropic fluid mixtures [21,22].

In discussing these results further, there are two useful reference points to
consider: the random close packing volume fraction fHSF ' 0.64 (the short
dashed line in Fig. 5) and the freezing point of a monodisperse hard sphere
system [23], fHSF ' 0.494 (the dot-dashed line). In rod-sphere mixtures with
low sphere concentrations, an N-I transition occurs at volume fractions below
fHSF. At these sphere concentrations, the ordered phase is simply a nematic
containing randomly dispersed spheres, i.e. the mixing entropy is high. As the
concentration of spheres is increased, the N-I transition shifts towards pro-
gressively higher volume fractions before, at a sphere concentration slightly
over 50%, the narrow coexistence region associated with the homogeneous N-I
transition opens up into a very broad N+I coexistence envelope which dom-
inates for volume fractions above f ≈ 0.53. The simulation method we have
used is not able either to access the (presumably glassy and crystalline) struc-
tures pertaining at very high volume fractions or determine the boundaries of
the N+I coexistence envelope at low and high sphere concentrations. We do
not, therefore, speculate on these areas of the phase diagram.

In a pure hard-rod system, the N-I transition point is determined by the bal-
ance of the (orientational and rotational) ideal-gas and excluded volume en-
tropy terms. On extending this csph = 0.0 limit to two-component rod-sphere
mixtures, the excluded volume term splits into three separate elements (rod-
rod, sphere-sphere and rod-sphere), while the mixing entropy is introduced
by expressing the ideal gas contributions from each component with separate
terms. For these systems, the excluded volume contributions which signifi-
cantly influence the N-I transition are the rod-rod and rod-sphere terms: the
increase in fNI with sphere concentration simply indicates that these excluded
volume terms drop more rapidly than the orientational ideal-gas contribution
as the number of rods in the system is reduced. In contrast, it is competition
between the mixing entropy and the various excluded volume contributions
that determines the boundary of the re-entrant N+I phase coexistence region.
On leaving the homogeneous nematic region, the system sacrifices its mixing
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entropy in order to reduce the weight given to the rod-sphere excluded volume
term and increase those given to the more efficient rod-rod and sphere-sphere
contributions.

In conclusion, our simulation results have shown that this simple hard-particle
mixture exhibits both an orientational ordering transition and a re-entrant
N+I phase-coexistence region which occupies a significant concentration range
at high volume fractions. Having established the generic behaviour of rod-
sphere mixtures in the hard particle approximation, our future work will ex-
plore the changes brought to this base phase diagram by the introduction of
attractive interactions with various symmetries.
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Table I. Order parameter and cluster distribution measured for the 80/20 mixture
at different volume fractions f .

f Order parameter Number of clusters Largest cluster

0.490015 0.206± 0.023 188.4± 6.6 16.7± 3.8

0.496821 0.486± 0.012 167.8± 7.7 21.4± 8.3

0.503626 0.568± 0.018 164.3± 7.2 21.1± 6.3

0.510432 0.609± 0.010 159.9± 6.0 18.6± 4.5

0.517238 0.655± 0.011 139.8± 9.5 37.4± 12.8

0.524044 0.695± 0.007 123.7± 5.9 39.6± 8.3

0.530850 0.723± 0.007 115.7± 8.9 61.9± 15.2

0.537655 0.742± 0.010 120.9± 5.8 42.4± 10.8

0.544461 0.771± 0.012 107.2± 6.2 88.2± 21.6

0.551267 0.795± 0.006 79.5± 4.5 80.8± 22.4

0.558073 0.806± 0.004 79.7± 5.3 66.5± 12.6
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Figure 1. Order parameter dependence on volume fraction for various mixtures.
Figure 2. Sphere-sphere radial distribution functions measured in 50% mixture at

different volume fractions.
Figure 3. Configuration snapshot of 50/50 mixture taken at volume fraction f =

0.534071.
Figure 4. Sphere-sphere radial distribution functions measured in 20% mixture at

different volume fractions.
Figure 5. Approximate phase diagram of our hard particle mixture.
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Figure. 1
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Figure. 2
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Figure. 3
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Figure. 4
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Figure. 5
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