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Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB,
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Abstract

We present a computer simulation study of amphiphilic self assembly performed us-

ing a computationally efficient single-site model based on Gay-Berne and Lennard-Jones

particles. Molecular dynamics simulations of these systems show that free self-assembly

of micellar, bilayer and inverse micelle arrangements can be readily achieved for a single

model parameterisation. This self-assembly is predominantly driven by the anisotropy

of the amphiphile-solvent interaction, amphiphile-amphiphile interactions being found to

be of secondary importance. While amphiphile concentration is the main determinant of

phase stability, molecular parameters such as headgroup size and interaction strength also

have measurable affects on system properties.
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1 Introduction

Amphiphilic molecules such as surfactants, block copolymers and phospholipids are well known

to spontaneously self-assemble into a wide variety of structures when mixed in an aqueous sol-

vent [1, 2]. The formation of these aggregates is substantially attributable to the amphiphilic

duality of these molecules, i.e., the fact that they contain both hydrophilic and hydrophobic moi-

eties. The hydrophobic effect is commonly cited as being the main driver of this self-assembly,

the amphiphilic molecules tending to aggregate in structures that shield their hydrophobic re-

gions from the aqueous solvent. The resultant structures include micelles, lamellae and the

closed bilayer vesicles which are important for nano-biotechnology applications. The mecha-

nisms and processes controlling amphiphilic self-assembly are relevant to sectors ranging from

chemical processing to biochemistry and medical interest. Gaining predictive understanding, at

the molecular level, of the self-assembly processes relevant to these many aggregate structures

is therefore a fundamental challenge.

In response to this, a number of computational models have now been developed with which

to simulate aspects of the complex phase behaviour exhibited by amphiphilic systems. Early

Monte Carlo simulations of lattice models were the first such systems to yield information on

these self-assembling properties. Pioneered by Larson et al. [3] and Care et al. [4], these models

proved capable of simulating several micelles for a few micelle life-times. In parallel with these

works on intrinsically simple models, atomistic Molecular Dynamics (MD) simulations were also

developed to investigate detailed issues underlying the behaviour of these systems. Atomistically

detailed simulation studies of such system have now progressed to the stage where, for example,

runs have been performed employing 100,000 particles representing a pure 60Å× 60Å lipid

bilayer patch on time-scales approaching 10 ns [5]. However, most all-atom simulations are

performed on pre-assembled structures and, therefore, do not give insight into the self-assembly

processes of these systems. Indeed, due to the considerable computational costs associated

with such simulations, they still fall well short of the time- and length-scales pertinent to the

structural changes and co-operative effects associated with biological processes. Thus, while the
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self-assembly of surfactants into micelles has been reported by Maillet et al. [6], the length-scale

available to these simulations restricted them to only a single micelle and it was not possible to

access the dynamic equilibrium processes involved in real micellar behaviour.

In response to these limitations, a series of more generic, coarse-grained (CG) amphiphilic

models have been developed to extend the accessible time- and length-scale window. Of these,

the model of Marrink et al. [7], which itself is closely related to those previously considered

by Lipowsky et al. [8, 9] and Smit et al. [10], is a good example of a simple but very efficient

CG model for lipid and surfactant systems. Here, each amphiphilic molecule is represented by

a chain of Lennard-Jones beads whose interaction parameters are set to reflect their affinities

with one another and with explicit solvent spheres. Through appropriate tuning, these bead-

spring models have successfully been used to simulate large time-scale events such as vesicle

self-assembly [11], membrane pore formation [12] and vesicle fusion [13]. As an alternative to

this scientific-intuition-based approach to parameterising CG models, Shelley et al. [14,15] have

adopted a more prescriptive route. Specifically, they have adopted an approach in which the

site-site interactions in a bead-spring-type model have been described by complex tabulated

potentials tuned to recover the head group-head group radial distribution function obtained

from all-atom simulations of a bilayer structure. While this approach benefits from having no

arbitrary parameters, it is questionable whether the resultant potential is transferable to other

amphiphilic structures. As such, the predictive capabilities of such a model appear intrinsically

limited. In addition to these bead-spring model approaches, in which the aqueous solvent is

treated with explicit interaction sites, another class of solvent-free CGmodels has been developed

recently [16–18]. These models have been used to simulate fluid bilayer systems and processes

such as vesicle formation. This class of models has proved attractive to the modelling community

due to its high computation efficiency. However, most of these models have been designed so as

to study specific phases. For example, models developed to simulate the bilayer phase employ

a very strong cohesive energy between the amphiphiles, which may preclude the possibility

of other amphiphilic phases forming. The neglect of other solvent-mediated effects, such as
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hydrodynamics, is also an issue with these models.

All of the models cited thus far are based on assemblies of spherical interaction sites. How-

ever, a small number of models have been developed using anisotropic interaction sites based

on the Gay-Berne potential [19]. One such model used multiple Gay-Berne sites together with

Lennard-Jones sites to form a phospholipid [20]. Another, more coarse-grained, approach used

a Gay-Berne site for the solvophobic tail linked with a Lennard-Jones site for the solvophilic

head group [21]. Prior to these, a single site Gay-Berne based amphiphilic model was devel-

oped in 1989 by Gunn and Dawson [22]. In this model, the amphiphile-solvent interaction was

designed so as to create a ‘solvophobic-solvophilic’ dipole, promoting solvation at just one end

of the amphiphilic molecule. This model was parameterised with a very strong side-side inter-

action, favouring a parallel configuration of the anisotropic sites, i.e promoting the formation

of a bilayer phase. Unfortunately, relatively little work was performed to investigate the full

capabilities of this class of model.

All of the CG models listed above have in common a relatively weak attractive or repul-

sive tail-solvent interaction compared with the other interactions employed. The self-assembly

processes described by these models are, therefore, enthalpic in origin and should be essen-

tially independent of temperature. It is, nevertheless, important to recall that some aspects of

the self-assembly of surfactant molecules in aqueous solutions are generally accepted as being

entropy-driven processes with clear temperature dependence. One could, therefore, argue that

these models are not appropriate for studying these self-assembly phenomena in aqueous solu-

tions. As already noted by Lipowsky et al. [8], these enthalpic models could, indeed, correspond

better to enthalpy-driven self-assembly in non-polar solvents [23–26]. One could alternatively

argue that some degree of entropic rearrangement is actually incorporated into those models via

the packing of the solvent around the hydrophobic tail induced by the strong solvent-solvent

attraction.

Ultimately, these models balance the mechanisms responsible for the self-assembly (be they

entropic or enthalpic) in a way which makes the net free energy change for dissolution un-

4



favourable. There exisits, thus, a need to examine how sensitive these processes and structures

are to the make-up of this balance. To assess this, however, it is necessary to have access to

a model capable of exhibiting multiple phases and large time- and length-scale phenomena. In

this context, we present here a simulation study of a computationally efficient generic model

capable of exhibiting a wide range amphiphilic phase behaviour. In the next section, the model,

which is based on the well established Gay-Berne model for thermotropic liquid crystals [19], is

described and characterised in terms of basic molecular parameters. Following this, we present

results from MD simulations performed with this model for a wide range of amphiphile-solvent

compositions. From these, we examine the ability of this model to freely self-assemble into a

range of amphiphilic structures including micelles, bilayers and inverse micelles. Finally, we

discuss the limitations and capabilities of this model, with a view to assessing its ability to re-

late molecular parameters such as the hydrophilic-lipophilic balance, hydrophobic strength and

molecule shape to amphiphilic phase behaviour and structure-formation processes.

2 Definition of the computer model

Molecular models employed in simulations of thermotropic liquid crystals can, like those sum-

marised in the previous section, be broadly categorised as all-atom based or CG [27]. However,

in the field of thermotropics, CG models based on rigid anisotropic units are commonly used.

When considered from a molecular basis, this restriction to fixed molecule shape is not obvi-

ously justified, given that most mesogens contain significant flexible regions. In practice, though,

shape anisotropy has been shown to be a sufficient condition for nematic phase stability, and

virtually the full phase behaviour of thermotropic liquid crystals, including a number of different

smectic phases, has been obtained without resort to molecular flexibility [27]. While the success

of this class of model in this context casts light on the relative importance of different contri-

butions in establishing various phase behaviours, it is also important to recognise an important

practical point. Due to their simple and smooth shapes, molecules represented by, e.g., rigid

ellipsoids or sphero-cylinders are particularly well-suited to exhibiting phase transitions - due to
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their lack of local entanglements and other bottlenecks to structural rearrangement, the phase

stability of such models can be established at significantly lower computational cost than that

required for similar but flexible models.

One of the most-used CG models in thermotropic liquid crystal simulation is the Gay-Berne

model [19, 28, 29]. Here we examine the ability of such a model to exhibit amphiphilicity by

studying the behaviour of appropriately tuned Gay-Berne particles immersed in a solvent of

Lennard-Jones spheres.

The model employed here is based on a rod-sphere mixture comprising Gay-Berne and

Lennard-Jones particles [30, 31]. In a mixture of two different species, one has to deal with

3 interactions: one interaction for each species and a further interaction between the unlike

species. Here, we characterise the sphere-sphere interactions via the Lennard-Jones potential,

the rod-rod interactions via the Gay-Berne potential and, finally, the rod-sphere interaction via

the Generalised Gay-Berne potential.

The sphere-sphere interaction, modelling the solvent-solvent interaction, is then given by:

ULJ(rij) = 4ε0

[

(

σ0

rij

)12

−

(

σ0

rij

)6
]

. (1)

The interaction between rod-like particles, describing the amphiphile-amphiphile interaction, is

described by the Gay-Berne potential:

UGB(rij, ûi, ûj) = 4ε(r̂ij, ûi, ûj)

[

(

σ0

rij − σ(r̂ij, ûi, ûj) + σ0

)12

−

(

σ0

rij − σ(r̂ij, ûi, ûj) + σ0

)6
]

, (2)

where r̂ij = rij/rij is a unit vector along the intermolecular vector rij = ri − rj. ûi and ûj are

unit vectors describing the orientations of the rod particles. The shape parameter, σ(r̂ij, ûi, ûj),

is defined by

σ(r̂ij, ûi, ûj) = σ0

[

1−
χ

2

{

(r̂ij · ûi + r̂ij · ûj)
2

1 + χ(ûi · ûj)
+

(r̂ij · ûi − r̂ij · ûj)
2

1− χ(ûi · ûj)

}]−1/2

. (3)
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Here, the parameter χ reflects the shape anisotropy of the rod particle and is a function of the

rod length to breadth ratio l/d. Thus,

χ =
(l/d)2 − 1

(l/d)2 + 1
. (4)

In this study we have set the ratio l/d = 3. For the well-depth anisotropy term, we adopt the

form

ε(r̂ij, ûi, ûj) = ε0
[

1− χ2(ûi · ûj)
2
]−1/2

. (5)

This is simpler than the equivalent term used in most Gay-Berne parameterisations for ther-

motropic liquid crystals in that it is independent of the intermolecular vector r̂ij. This amphiphile-

amphiphile interaction also involves no breaking of the head-tail symmetry. This means that a

tail interacts with a head in exactly the same way as with another tail. The assumptions im-

plied by this interaction are, at face value, counterintuitive, since in real amphiphilic molecules

the head groups interact differently with different parts of other amphiphilic molecules. How-

ever, one of the aims of this study is to find the minimum requirements, in terms of modelling,

needed to achieve amphiphilic behaviour. Investigating whether the breaking of this symmetry

is a requirement for the formation of lyotropic structures is, then, a central issue in this study.

The amphiphile-solvent interaction, i.e. the rod-sphere interaction, is modelled using the

Generalised Gay-Berne potential [32] capable of dealing with interactions between unlike par-

ticles. In the specific case of rods and spheres, with the sphere diameter set equal to the rod’s

breadth, the basic form of (2) is used but the shape parameter is now given by:

σ(r̂ij, ûj) = σ0

[

1− χ(r̂ij · ûj)
2
]−1/2

. (6)

This class of model has been studied by Antypov and Cleaver in respect of the effects of

spherical additives on thermotropic liquid crystals [30,31]. In this paper, we develop this model

further by making the rod-sphere interaction potential amphiphilic. Specifically, we introduce a

functional dependence of the well-depth anisotropy on ûi · r̂ij (see Fig. 1) which makes one rod
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end solvophilic and the other solvophobic.

The mathematical function used to achieve this here is an exponential decay, controlled by

the parameters A, B and C.

ε(r̂ij, ûj) = −ε0 [A+B · exp (C · (r̂ij · ûj))] . (7)

This form was found to offer some practical advantages over the simple cubic extension to

Antypov and Cleaver’s model. The parameters A and B describe the well-depth anisotropy

of the rod-sphere interaction whereas C controls the sharpness of the curve, i.e. controls the

solvophobic to solvophilic ratio H.

In Antypov and Cleaver’s model, the well-depth anisotropy of the rod-sphere interaction was

expressed using the parameter κ
′

which set the ratio of the well depths experienced at the side

and end of the rod (i.e. setting κ
′

< 1 promoted accumulation of spheres at the rod ends). For

consistency, here we assume κ
′

≤ 1 and impose the constraints ε(r̂ij · ûj = +1) = ε0/κ
′

(lyophilic

head, more attractive to solvent) and ε(r̂ij · ûj = −1) = ε0κ
′

(lyophobic tail, less attractive to

solvent). From these it then follows that A and B are given by

A = κ
′

+

(

κ
′

−
1

κ′

)(

eC

eC − e−C

)

(8)

B =

(

1

κ
′ − κ

′
)

eC − e−C
. (9)

As noted above, the parameter C controls the sharpness of the decay between the two fixed

end points. From this, it is then possible to define a solvophobic-to-solvophilic balance using C

to set the crossover point between the solvophobic and the solvophilic parts of the model. A

numerical value for this crossover can then be defined in terms of x0 where ε(r̂ij · ûj = x0) = ε0

and −1 < x0 < +1. Rewriting this in terms of conventional hydrophilic-lipophylic balance

language, we then define
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H = 50(1 + x0) = 50 ·

(

1 +
1

C
· ln

(

(1− A

B

))

(10)

where H can vary from 0 to 100% and corresponds to the relative size of the solvophobic region

compared to the total length of the rod. Note that while Eqn. (10) cannot be analytically

inverted to give C as a function ofH, numerical inversion is always possible. Fig. 2(a) shows plots

of C vs. H for different values of 1/κ
′

. A comparison between two alternative parameterisations

of this model and the original definition of Antypov’s model is shown in Fig. 2(b). The H=80%

parameterisation shows a relatively sharp transition from the solvophobic region (ε < 1) to the

solvophilic region (ε > 1) compared with that of the H=50% parameterisation. The difference

with Antypov’s original model can be observed in Fig. 3 which shows equipotential contour plots

for the two models. In this, while Antypov’s model treats both ends of the rod as being equally

attractive, the new formulation has broken this symmetry and only posesses one attractive end.

The model just described represents a very simple representation of an amphiphilc molecule.

As noted above, it largely neglects details of the solvent-solvent and amphiphile-amphiphile

interactions, implementing these using the simplest volume-conserving potentials available. For

simplicity, these interactions are kept identical for all of the systems studied in this paper.

The amphiphile-solvent interactions are then characterised by two parameters: the strength

anisotropy κ
′

, which sets the depth of the attractive minimum at the head end of the amphiphile,

and the solvophobic to solvophilic ratio H which determines the extent of the headgroup. Both

of these parameters can be expected to affect the inherent curvature of any assemblies formed

by these systems, but their precise roles may be expected to differ. The other variable that we

shall be considering here is the amphiphile:solvent concentration ratio.

In the next section, we present details of our simulation methodolgy, followed by three sets

of simulation results obtained using this model. In the first of these, we examine the effect of

concentration on phase behaviour for fixed amphiphile-solvent parameterisation. Following this,

we investigate the sensitivity of the system to the model parameters κ
′

andH. Finally, we present

a more in-depth study of the phase properties exhibited at low amphiphile concentrations, where
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conventional runs are unable to distinguish between amphiphiplic self assembly and simple phase

coexistence.

3 Simulation results

3.1 Method of simulation and analysis

All of the simulations presented here were performed in the constant NV T ensemble using a

standard MD algorithm [33, 34]. The Velocity Verlet algorithm was chosen for the integration

step as it is known to be a robust integrator for relatively large time-step; a time-step of δt =

0.0015 was used here. The constant NV T ensemble was simulated by re-scaling the velocities

at every time step using the Berendsen thermostat.

The starting configuration for each run was obtained by taking an orientationally isotropic

configuration with 100% rod concentration and substituting rods by spheres until the required

ratio was obtained. In doing this, care was taken to compensate for the differing volumes of the

different particle shapes. This was achieved by running all systems at approximatively the same

volume fraction. Considering each rod as a linear chain of spheres the volume of a rod can be

approximated by

Vrod ≈
Π

6

l

d
σ3

0 =
l

d
· Vsph. (11)

Recalling that here l/d = 3 , the total volume of particles in the system is:

Vocc ≈ Nsph · Vsph +Nrod · 3Vsph = Vsph · (Ntotal + 2Nrod). (12)

Thus, the volume fraction can be expressed as:

Vf =
Vocc
Vtotal

= Vsph · (ρ+ 2Crod). (13)

Therefore, for each concentration, the box density was adjusted so as to achieve a volume
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fraction of 0.44 which, at moderate temperatures, corresponds to a liquid phase for Lennard-

Jones particles. Cubic box periodic boundary conditions, the minimum image convention and the

Verlet neighbour list were employed. A spherical cut-off distance of rcut = 4.0σ0 was employed

for all inter-particle potentials. The systems were quenched for 2 × 106δt from an isotropic

configuration, initially equilibrated at high temperature, to a lower temperature of T = 0.7.

It was found that this rapid quenching approach yielded the same self assembled structures as

multi-step cooling sequences.

In order to perform further analysis on the resultant aggregates, a cluster identification

algorithm was developed. In such an algorithm, when distinguishing between a non-aggregated

particle or monomer and a particle belonging to a cluster, it is common for a simple cutoff

distance, rc, between particles to be used as criterion. For the amphiphilic systems considered

here, however, the distance between the particle centres of mass, defined by |rij|, proved poor at

differentiating between monomers and aggregated particles. Rather, the distance
∣

∣r
′

ij

∣

∣ between

the solvophobic ends of the rod particles was found to be a more robust indicator. Fig. 4 clearly

illustrates this idea; essentially, two amphiphilic rods were judged to be aggregated if their

solvophobic ends were in close proximity to each other.

At low rod concentrations the sites associated with the rods’ solvophobic ends formed dense

clouds of points inside each aggregate, and these could be identified using relatively small cutoff

distances. Keeping this cutoff distance small proved useful since it helped to avoid nearby

monomers (or particles from another aggregate) from being judged part of a given cluster. This

cluster identification algorithm enabled calculation of the number of clusters present in each

configuration. It also made it possible, by comparing the lists of particles belonging to each

cluster at different timesteps, to track clusters through time. At low amphiphile concentrations,

this analysis was performed using the rods only, as the solvent spheres were largely acting as

a homogeneous bath. However, at high rod concentrations, cluster analysis on the spheres also

proved informative, particularly for systems that formed inverse phases.
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3.2 Variation of phase behaviour with concentration

A systematic series of exploratory simulations was performed to investigate the concentration

dependance of the H = 80% and κ
′

= 1/5 system at a constant temperature of T = 0.7. To

this end, ten rod-sphere mixtures were simulated using N = 1024 particles in total, the rod

concentrations being 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, by number.

The final configuration snapshots of the 2× 106 timestep MD runs, shown in Fig. 5, display

a wide range of phase behaviours. With increasing concentration, one can observe the self-

assembly of spherical and cylindrical aggregates, lamellar phases, curved bilayers and inverse

micellar phases. This sequence is in agreement with experimental phase diagrams and other

simulations [?]. From low to high amphiphile concentration, the aggregates change from being

positive curvature objects, e.g. micelles (Fig. 5(a)), to negative curvature objects, e.g. inverse

micelles (Fig. 5(f)). The zero curvature state is represented by the lamellar phase (Fig. 5(c))

found at intermediate concentrations. Given the simplicity of the CG model employed here, the

range of phases apparent from this initial survey for a single parameterisation is very encourag-

ing.

To assess the behaviour of the model in more detail, we now consider the self-assembly

mechanisms observed in the development of the configurations shown in Fig. 5. Specifically,

using a cluster analysis approach, we track the histories of the aggregation processes observed.

Principally, this is achieved by monitoring time series of the aggregate size and normalised

principal moments of inertia (IL, IM and IS) through each run.

Fig. 6 shows the evolution of the aggregate size and the principal moments of inertia of the

largest aggregates found in the 5% and 10% amphiphile concentration systems. Fig. 6(a) clearly

shows a three-stage process in which the main aggregate formed after only 50 × 103 steps and

remained unchanged for about 150 × 103 steps after which other smaller aggregates coalesced

with it almost simultaneously over a short period (about 10× 103δt). One can observe that the

aggregate formed before 0.2× 106 steps was nearly spherical as its moments of inertia are close

to each other. When the other aggregates first joined the main one, the moment of inertia data
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indicate a cylindrical shape which then rapidly reverted to being near-spherical again. Note

that the time required for the aggregates to go back to being spherical was similar to that of the

initial self-assembly from the isotropic configuration. At around 0.9 × 106 steps, another very

small aggregate finally joined, leading to a single micelle-like aggregate.

Due to the small system size used here, it is not possible to establish, from this simulation,

whether this result corresponds to a genuine micellar phase or if the system simply underwent

a bulk phase separation as seen with other mixtures of rods and spheres [30, 31, 35]. Also, the

structure of this aggregate and the associated self-assembly dynamics might have been affected

by the periodic boundary conditions. These issues are investigated in greater detail in section 3.4

through the use of a significantly larger simulation performed at this rod concentration.

For the 10% system, the evolution of the size of the main aggregate again showed a rapid

initial clustering that took place over about 50 × 103δt (Fig. 6(a)). In contrast to the 5%

system, this self-assembly process took place in a single stage, presumably due to the higher

concentration of rods. Also, the moment of inertia data indicate that the aggregate was only

slightly cylindrical before, at 0.6 × 106δt, it fused with its own image through the periodic

boundaries. Following this self-fusion, the aggregate adopted the shape of a ‘tubular’ micelle.

The fact that the original aggregate formed by this system remained stable for nearly 0.5×106δt

before being ‘trapped’ by its own image strongly suggests that system size was an issue here. As

such, the worm-like micellar aggregate apparent from Fig. 5(b) may not be a genuinely stable

structure for this model parameterisation.

The time evolution of the 30% system is illustrated in Fig. 7 through configuration snapshots

taken at significant steps in the development of the final lamellar bilayer arrangement. The first

of these steps was the rapid aggregation of the amphiphiles into random aggregates in which

the solvophobic regions were shielded from the solvent spheres. These aggregates then slowly

arranged themselves and coalesced, leading to the formation of two bilayer-like aggregates which

went on to fuse with themselves through the periodic boundary conditions. Following this, a

series of slow local re-arrangements took place in which the bilayers freed themselves of pores
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and various other defects. The corresponding histories of the principal moment of inertia and

aggregate size data confirm this timeline: the largest aggregate at short times had a spherical

shape, but it grew rapidly and became increasingly planar, this being the signature of the nascent

bilayer. A sharp change is apparent in the aggregate shape at about 0.5 × 106 steps, which

configuration snapshots confirm as corresponding to the bilayer merging with its own image

through the boundary conditions. The associated decrease in the aggregate size was probably a

consequence of the bilayer needing to become commensurate with the simulation box periodicity.

We note that the process pathway just outlined shows a very strong similarities to that identified

by Marrink et al. from their all-atom simulation study of bilayer formation [?]. Qualitatively, at

least, this suggests that the neglect of intramolecular degrees of freedom in our model does not

have a significant effect on self-assembly dynamics. While the stability of the planar bilayers

obtained at the end of this run was likely enhanced by the periodic boudary conditions, there

appears little evidence to suggest that the bilayers were reliant on those boundary conditions for

their stability. Both the planar character of the growing aggregates and the fact that the bilayers

formed at an angle to the box axes (and so were able to modify their effective areas) support

the assertion that the planar bilayer was the stable phase at this concentration. Furthermore,

similar bilayer arrangements were adopted in runs on systems with amphiphile concentrations

of 20% and 40%.

On increasing the amphiphile concentration to 50-60% by number, the cluster-identification-

based analysis route ceased to be particularly informative. Essentially, these systems formed

bicontinuous, spongey networks in which all of the amphiphiles aggregated into relatively open,

curved bilayer structures. These networks were found to form relatively quickly, but, despite

repeated runs performed with different starting configurations, no specific mesoscale structure

could be associated with these apparently rather random final structures.

At 70%, rod concentration the solvent domains appeared to cease to be continuous, shrinking

so as to form solvent droplets surrounded by amphiphilic rods. Fig. 5(e) and Fig. 5(f) show

the final configuration snapshots for the 70% and 90% systems at T = 0.7. To explore the
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structural changes occurring in this concentration range, cluster analysis was performed on

the spheres for the 70, 80 and 90% systems, as shown on Fig. 9. These plots clearly indicate

the formation of stable sphere clusters for all three systems. However, for 70%, the number

of clusters in the system slowly decays to unity, suggesting that the spheres just percolate at

this concentration. Furthermore, the associated cluster size probability distribution function

indicated a single cluster of about 300 spheres, whereas those for the 80% and 90% systems

indicated average cluster sizes of 15 and 5, respectively. Thus, on increasing the amphiphile

concentration above 70%, the structure adopted ceases to be bicontinuous and inverse phases

are formed. These are characterised by water droplets encapsulated within amphiphile bilayers

(i.e. the opposite of a normal micellar phase where surfactant droplets form in water).

3.3 Effect of molecular parameters on phase behaviour

In this section, we briefly survey the effect of the model paramters H and κ
′

on the system

phase behaviour. The aim here is to determine the sensitivity of the model to changes in these

interaction parameters.

3.3.1 Effect of H, the solvophilic to solvophobic balance

In order to assess the effect of the solvophilic to solvophobic ratio on the phase behaviour of these

systems, a second series of simulations was performed at a range of amphiphile concentrations,

but this time with the parameter H set to 50%. Other than this change in the headgroup size,

the simulation procedures and parameters used were the same as those employed in the previous

section. The results are summarised via the configuration snapshots shown in Fig. 10.

At 5% amphiphile concentration, a micelle-like phase was found, which remained stable up

to 25% amphiphile concentration. The micelles obtained here were significantly different from

that formed by the H = 80% system; they were smaller, more highly curved aggregates and

were not as well defined. For rod concentration of 30% to 60%, bilayer structures were formed

when the micelles start to join through the periodic boundary conditions. However, rather than
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being lamellar, these systems were characterised by curvy and entangled intersecting bilayers.

For amphiphile concentrations of 70% and above, inverse phases, similar to those obtained with

the H = 80% system, were found.

In conclusion, decreasing H to 50% led to a sensible sequence of amphiphilic behaviour with

increasing concentration. However, the number of different phases observed was significantly

smaller than that seen for the H = 80% system. Furthermore, even when the same phases

were formed, their properties (e.g. micelle structure, bilayer flexibility) were clearly different.

These differences were consistent with the behaviour expected from increasing the amphiphilic

headgroup size.

3.3.2 Effect of κ
′

, the amphiphilic strength

The parameter κ
′

controls the strength of the anisotropy of the rod-sphere interaction, i.e. the

hydration strength. To investigate the effect of this model parameter on system properties, an

extended simulation was performed on an N = 1024 10% rod system at constant temperature

(T = 0.7) with H set to 50%. Within this run, the value of the amphiphilic strength was

modified every 1.0 × 106 timesteps in the sequence κ
′

= 1/5, κ
′

= 1/3, κ
′

= 1/2.5 and finally

κ
′

= 1 (where no amphiphilic behaviour should be expected).

The normalised principle moments of inertia of the largest aggregate formed in this system

were monitored over the course of this run. These are shown in Fig. 11. From t = 0δt to

t = 1.0 × 106δt, (κ
′

= 1/5) these indicate the self-assembly of a near spherical aggregate from

a random initial configuration. This is confirmed by the configuration snapshot on Fig. 12(a)

which displays a multi-micellar arrangement of near-spherical aggregates.

At t = 1.0 × 106δt, the amphiphilic strength was switched to 1/3 and one can notice a

repartitioning of the principal moments of inertia indicating a more cylindrical shape of the

main aggregate in the system. As shown by the configuration snapshot of Fig. 12(b), here all

the amphiphiles had aggregated into a single cluster with a cylindrical symmetry. This closed

cylinder remained stable until the amphiphilic strength was reduced to 1/2.5 at t = 2.0× 106δt.
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Here, a similar change was found to that observed previously for the H = 80%, κ
′

= 1/5 system

at 10% rod concentration (recall Fig. 5(b) and Fig. 6(b)). Thus, the aggregate fused with itself

through the periodic boundary conditions and formed a ‘tubular’ micelle (Fig. 12(c)). As before,

this structure was clearly stabilised by this self-fusion as much less noise can be observed in its

moment of inertia data. At t = 3.0 × 106δt, the amphiphilic strength was switched to unity

which, in principle, should not promote amphiphilic behaviour as no anisotropy is present in

the energy parameter of the rod-sphere potential. As expected, then, the previously observed

structure collapsed soon after this final switch to give an isotropic mixture of rods and spheres

(Fig. 12(d)).

This brief survey certainly suggests that the amphiphilic behaviour (i.e. the structure shape)

exhibited by these systems is sensitive to the hydrophilic interaction strength: setting the

hydrophilic strength 1/κ
′

closer to unity progressively reduces the curvature in the structure

formed. The amphiphilic aggregates are surpisingly stable even at very low amphiphilic strength

such as κ
′

= 1/2.5, and it is only when the amphiphilic strength is reduced to unity that the

structure collapses completely.

3.4 Simulation of the micellar phase

At 5% amphiphile concentration, 1024 particle simulation performed using the H = 80%,

κ
′

= 1/5 parameterisation led to the formation of a single near-spherical aggregate. As dis-

cussed earlier, at that relatively small system size, it was not possible to determine whether

this observation corresponded to phase separation or micelle formation. In order to address this

issue, a larger system was required to give access to the longer length-scale properties of this

system. To this end, a system of 8192 particles (containing 410 rods corresponding to a 5%

system) was created by replicating eight images of the initial configuration of the 1024 particle

system. This 8192 particle system was then run for 1×106 MD steps, all of the other simulation

parameters being set to those used in the previous simulations. Configuration files were dumped

every 1000 steps for post-simulation analysis.
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Fig. 4 shows the final configuration snapshot obtained for this run. Here, one can observe

multiple distinct assemblies (the solvent spheres are not shown for clarity) each of which is

similar to the single aggregate observed in the 1024 particle system. These aggregates are all

of similar size and shape and are also in equilibirum with monomers. Virtually no intermediate

aggregate sizes can be seen on this snapshot. To check the equilibration of this 8192 particle

system, the time evolution of the number of monomers was monitored throughout this run (see

Fig. 4). From this analysis, one can observe that the monomer number attained a non-zero

steady state value after 0.6 × 106 time steps, the early stage of the run being characterised by

a rapid initial clustering of the particles. The qualitative form of this monomer-number graph

was found to be largely independent of the cluster cut-off distance rc, similar equilibration times

being indicated for a range of rc values.

Following the initial self-assembly process of 0.6×106 steps, a number of clusters had formed

in equilibrium with these monomers. From the cluster-counting algorithm, a probability size

distribution function P (n), where n is the cluster size, was calculated. The form of this probably

distribution was found to be strongly dependent on the cluster counting cut-off distance used.

For large rc (i.e. ≥ 1.20σ0), the algorithm tended to identify pairs of separate aggregates as single

clusters, resulting in noisey distribution functions with a few sharp peaks. On the other hand, if

the cutoff distance was set too small, no or very few clusters were identified and the distribution

function just showed monotonic decay from a very high monomer peak. At the intermediate

cutoff values (rc = 0.80σ0), smoother distribution functions were obtained, showing both a

high monomer peak and a broad second peak centered on the aggregate preferred size or mean

aggregation number (of ∼ 25 in this system). This can be seen in Fig. 4, where the distribution

function obtained by averaging over all configurations from 0.6 × 106 < t < 1.0 × 106 is shown

as n × P (n). The minimum found between the monomer and micellar peas demonstrates that

clusters of intermediate size (i.e. sub-micellar aggregates) were less prevalent than monomers

and micelles (confirming the earlier observation based on the configuration snapshot Fig. 4).

The long tail in the n × P (n) data for n > 40 arose due to the occasional detection of large
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assemblies. These occured due to events involving micelle fusion followed by fission, so that

these large aggregates were only short-lived.

Fig. 4 shows the 3 principal moments of inertia averaged over the time window 0.6× 106 <

t < 1.0 × 106 as a function of cluster size, n. By correlating this plot with the micelle size

distribution function (Fig. 4), it can be seen that at the mean aggregation number, the micelles

were at their most spherical - (Il, Im and Is are at their closest to 1
3
). At larger n, these data

become rather noisier, due to the worsening statistics, but they tend increasingly to the values

expected for cylindrical micelle shape, consistent with these large assemblies being related to

fusion and fission events.

4 Conclusion

In this study, a rod-sphere computer model has been developed based on a mixture of Gay-

Berne and Lennard-Jones particles. In this, the rod-sphere potential has been adjusted in order

to promote amphiphilic behaviour. Specifically, one end of the rod has been made strongly

attractive to the solvent sphere, the other end being only weakly attractive.

From the simulations presented here, it seems that this model is suitable for studying the

effects of molecular interaction parameters on a range of self-assembly processes. Molecular

characteristics such as the solvophobic chain length and the solvophobic strength can be readily

changed within this generic model and their effects on phase properties assessed. The range

of phases accessible to this model is surprisingly large, given its simplicity, and the simulation

timescales accessible appear more than adequate for phase stability to be established. We are

not aware of any other model capable of exhibiting this range of phase behaviour from a single

molecular parameterisation. It is also noteworthy that the self-assembly processes observed here

are driven purely by the amphiphilic effect (modelled here by the dipolar symmetry in the rod-

sphere interaction). This contests starkly with the ‘solvent-free’ amphiphile models employed

in other recent studies of bilayers and vesicles [16,36,37].

Here, the effect of concentration has been studied for the parameter sets H = 80%; κ
′

= 1/5
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and H = 50%; κ
′

= 1/5. Then, the effect of varying the amphiphilic strength κ
′

has been

examined at constant H = 50%. While concentration has proved the main determinant of

phase stability, κ
′

and H also play measurable roles. Little temperature dependance has been

observed, other than to gain compositional isotropy by imposing high temperature values.

Due to the relatively low computational cost of this model and the fact that its particles can-

not suffer from entanglements, it has proved possible to establish an equilibrated multi-micellar

system. We shall consider the processes and properties found in such systems in a subsequent

publication. Here we note that, like previous workers, we have been able to observe this self-

assembly without recourse to a term representing solvent entropy. This is largely eplained by

the relatively strong enthalpic head-solvent interaction used in this study. The results obtained

here raise the prospect, though, of direct investigation of the relative importance of entropic and

enthalpic contributions in micellar systems; entropic contributions could be incorporated into

the current model in a number of ways (explicit or implicit). The roles played by such terms

could then be assessed so as to investigate the fundamentals of the hydrodynamic effect in a

systematic fashion.
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Figures

Fig. 1: Schematic diagram of a rod and a sphere.

Fig. 2: (a): Plot of the parameter C as a function of H for different values of 1/κ
′

- (b):

Energy functions for Antypov’s rod-sphere interaction and two different parameterisations of

the exponential model. The black dotted line corresponds to the constant ε0 = −1.

Fig. 3: Equipotential contour plot of the two models: (a) Exponential model for κ
′

= 1/5 and

H=50% - (b) Antypov’s model for κ
′

= 1/5.

Fig. 4: Diagram of two amphiphilic rods. The distance between particle is defined by the

intermolecular vector rij = ri− rj and the distance between the two solvophobic ends is defined

by the vector r
′

ij = r
′

i − r
′

j with r
′

i = ri − (κ
2
) · ûi.

Fig. 5: Configuration snapshots of 1024 particles system for different concentrations at T = 0.7.

For figures (a), (b) and (c), the size of the solvent spheres has been reduced for clarity. Solvent

spheres are in blue, solvophobic tails in green and solvophilic head groups in red.

Fig. 6: Evolution of the principal moments of inertia and size of the main aggregate in the (a)

5% and (b) 10% systems.

Fig. 7: Evolution of the 30% system in time.

Fig. 8: Evolution of the principal moments of inertia and size of the main aggregate in the 30%

system.

Fig. 9: Evolution of the total numbers of sphere clusters in the high amphiphile concentration

systems. Here, cluster analysis was performed on the solvent spheres with rc = 1.3.

Fig. 10: Typical configuration snapshots of the H50K5 system for different rod concentration.
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Fig. 11: Principal moments of inertia, IL, IM and IS, of the largest cluster determined using

rc = 0.9σ0. The regions (a), (b), (c) and (d) correspond to the κ
′

values and configurations

snapshots shown on Fig. 12.

Fig. 12: Study of the effect of the rod-sphere interaction strength - 10% rod H = 50% system

of 1024 particles at constant T = 0.7.

Fig. 13: Configuration snapshot after 106 MD steps with N = 8192 for 5% rod concentration

at T = 0.7.

Fig. 14: Evolution of the number of monomers with time for a cut-off distance rc = 0.8σ0.

Fig. 15: Probability distribution n · P (n) vs. cluster size n for the 8912 particle system at 5%

rod concentration and T = 0.7 averaged over 6 × 105δt < t < 106δt for a cutoff distances of

rc = 0.8σ0.

Fig. 16: Principle moments of inertia as a function of aggregate size for 8192 particle 5% system

at T = 0.7
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(a) 5% - ‘spherical’ micelle (b) 10% cylindrical micelle

(c) 20%-40% lamellar phase (d) 50%-70% sponge phase

(e) 80% inverse cylindrical micelle (f) 90% inverse spherical micelle
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(a) t = 0 (start) (b) t = 80, 000 MD steps (c) t = 160, 000 MD steps

(d) t = 240, 000 MD steps (e) t = 320, 000 MD steps (f) t = 400, 000 MD steps
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(a) 5 to 30% (b) 40 to 60% (c) 70 to 90%

Figure 10:
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= 3.0 - cylindrical mi-
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