Sheffield Hallam University

The effect of organoclay addition on the properties of an acrylate based, thermally activated shape memory polymer

BARWOOD, Michael J., BREEN, Christopher http://orcid.org/0000-0002-9566-5739 and HAMMOND, Carol L.

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/8769/

This document is the Accepted Version [AM]

Citation:

BARWOOD, Michael J., BREEN, Christopher, CLEGG, Francis and HAMMOND, Carol L. (2014). The effect of organoclay addition on the properties of an acrylate based, thermally activated shape memory polymer. Applied Clay Science, 102, 41-50. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

- The effect of organoclay addition on the properties of an acrylate based, thermally activated
 shape memory polymer.
- 3 Michael J. Barwood^{a,1}, Chris Breen^{a,*}, Francis Clegg^a, Carol L. Hammond^b

^aMaterials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK
 ^bMultipackaging Solutions, Millenium Way West, Phoenix Centre, Nottingham, NG6 6AW, UK

7 ABSTRACT

6

8 Shape Memory Polymers (SMPSMPs) exhibit the intriguing ability to change back from an 9 intermediate, deformed shape back to their original, permanent shape. In this contribution a 10 systematic series of t-butylacrylate-co-poly(ethyleneglycol) dimethacrylate (tBA-co-11 12 PEGDMA) polymers have been synthesised and characterised prior to incorporation of organoclay. Increasing the poly(ethyleneglycol) dimethacrylate (PEGDMA) content in 13 14 increments of 10% increased the storage modulus from 2005 to 2250 MPa, reduced the glass transition temperature from +41 to -26° C and reduced the intensity of the associated 15 tan δ peak. The tBA-*co*-PEGDMA crosslinked networks displayed useful shape memory 16 properties up to PEGDMA contents of 40 %. Above this PEGDMA percentage the 17 materials were prone to fracture and too brittle for a realistic assessment of their shape 18 19 memory capability. The system containing 90% t-butylacrylate (tBA) and 10% PEGDMA was selected as the host matrix to investigate how the incorporation of 1 to 5 mass% of a 20 21 benzyl tallow dimethylammonium-exchanged bentonite, (BTDB) influenced the shape memory properties. X-ray diffraction data confirmed that BTDB formed a microcomposite 22 in the selected matrix and exerted no influence on the storage modulus, rubbery modulus, 23 glass transition temperature, T_g , or the shape or intensity of the tan δ peak of the host 24 matrix. Therefore, it was anticipated that the presence of BTDB would have no effect, 25 positive or negative, nor on the shape memory properties of the host matrix. However, it 26 was found that the incorporation of clay, especially at the 1 mass% level, significantly 27 accelerated the speed, compared to-with the clay-free SMPSMPs, at which the 28 microcomposite returned to the original, permanent shape. This accelerated return to the 29 permanent shape was also observed when the microcomposite was coated onto a 100 µm 30 PET film. 31

- 32
- 33 Keywords
- 34 Shape memory polymer, nanocomposite, organoclay, polyacrylate
- 3536 Corresponding Author:
- Professor Chris Breen, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield
 S1 1WB, UK. Phone +44-1142253008. E-mail: <u>c.breen@shu.ac.uk</u>
- **39** Contact details for other authors:
- Dr. Francis Clegg, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1
 1WB, UK. Phone +44-1142253062. E-mail: <u>f.clegg@shu.ac.uk</u>
- 42 Dr. Michael Barwood, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield
 43 S1 1WB, UK. Phone +44-1142253008. E-mail: <u>m.barwood@lboro.ac.uk</u>
- Carol Hammond, Multipackaging Solutions, Millenium Way West, Phoenix Centre, Nottingham, NG6 6AW,
 UK. carol.hammond@multipkg.com
- 46

¹ Dr. Michael Barwood, Centre for Sustainable Manufacturing and Recycling Technologies, Wolson School of
 Mechnical and Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.

50 1. Introduction.

Shape memory polymers (SMPSMPs) have the ability to store a permanent shape and be 51 deformed into a temporary shape by applying an external stress and temperature. This 52 temporary shape is stored by cooling into the dormant shape, in which it remains, until it is 53 54 encouraged to return to its original, permanent shape (Figure Fig. 1). The transformation from the stressed temporary shape back to the permanent, stress-free shape is usually triggered by 55 thermal (Liff et al., 2007), electrical (Liu et al., 2009), or other environmental stimuli e.g. UV 56 or visible radiation (Jiang et al., 2006). This change from temporary to permanent shape is 57 58 essentially driven by the elastic strain stored in the dormant shape during the initial deformation into the temporary shape (Liu et al., 2007). 59

Fig. 1. Schematic depiction of the unconstrained shape memory effect (SME) of a thermallyactivated SMP.

The most common <u>SMPSMPs</u> are thermally-responsive, which means that the material is deformed into its temporary shape, at one temperature and a second thermal change is required to initiate the return to its original, permanent, shape. The temperature at which this change in shape occurs is referred to as the transition temperature, T_{trans} , and is typically the glass transition temperature, T_g , or melting transition temperature, T_m , of the polymer. The unique, 'tunable' properties of <u>SMPSMPs</u> make them attractive for a number of potential applications in almost every avenue of life, ranging from self-repairing car bodies (Ikematu et

70	al., 1993), kitchen utensils (Lendlein and Kelch, 2002), switches to sensors (Liu et al., 2009),
71	intelligent packaging (Behl et al., 2010), toys (Ikematu et al., 1993) and tools (Tong, 2004). A
72	significant number of studies have focussed on the use of <u>SMPSMPs</u> in biomedical
73	applications including sutures (Lendlein and Langer, 2002), stents (Venkatraman et al.,
74	2006), catheters (Liu et al., (2007), micro-actuators (Maitland et al., 2002) and tissue
75	scaffolds (Migneco et al., 2009). More recently, the focus has moved towards <u>SMPSMPs</u>
76	with two temporary shapes which transform in response to two different stimulus events
77	(Behl et al., 2010; Tao, 2010; Ge et al., 2013).
78	Two commonly adopted approaches to improve and expand the applications of <u>SMPSMPs</u>
79	are 1) optimise the polymer system's mechanical, thermal and shape memory properties for
80	the intended application and/or, 2) incorporate nanomaterials into the optimised polymer to
81	provide additional property enhancements. The knowledge that the incorporation of 1 to 5
82	mass% of well dispersed clay can increase both the tensile properties and the storage modulus
83	of the host polymer (Annabi-Bergaya, 2008; Utracki, 2010) means that a clay polymer
84	nanocomposite (CPN) has the potential to increase the energy stored within the temporary
85	shape of a SMP; giving it the ability to exert a stronger physical force when returning to the
86	original shape and/or transform at a faster rate. Despite their potential to improve shape
87	memory properties, clays have not been extensively studied. Most reports focus on their
88	positive influence on polyurethanes (PU) at organoclay (OC) levels of 0.5 to 2 mass% (Cao
89	and Jana, 2007; Chung et al., 2011; Haghayegh and Sadeghi, 2012) although larger quantities
90	of calcined attapulgite (Xu et al., 2009) and grafted bentonite (Wu et al., 2013) were required.
91	Rezanejad and Kokabi (2007) established that adding 12 mass% of Cloisite 15A (a
92	dihydrogenated tallow dimethyl ammonium-bentonite) increased the recovery stress by
93	200%. Finally, OC have been used to improve the shape memory properties of epoxy CPN
94	(Liu et al., 2011) and nanofoams (Quadrini et al., 2012).

Page **3** of **28**

95	Acrylate polymers represent an ideal system for SMP/clay studies since the copolymerization
96	of linear acrylates (mono-functional monomers) with acrylate cross linkers (multifunctional
97	monomers) yields <u>SMPSMPs</u> with tuneable properties that can be optimiszed for specific
98	applications (Safranski and Gall, 2008; Voit et al., 2010). Previous investigations by Yang et
99	al., (2007), Yakacki et al., (2008) and Ortega et al., (2008) have shown that tert-butylacrylate-
100	co-poly(ethylene glycol) dimethacrylate (tBA-co-PEGDMA) networks have shape memory
101	ability with thermal and mechanical properties that can be readily tailored. In this particular
102	example a transition temperature near 40 °C was required.
103	To our knowledge the enhancement of tBA-co-PEGDMA networks via incorporation of OC
104	has yet to be reported, thus this contribution represents a benchmark study designed to
105	explore the impact of clay on the properties of an optimised acrylate based SMP system. It
106	aims to identify the influence of the OC loading on a UV polymerised polyacrylate system, of
107	selected stoichiometry, and the effect on the resulting physical properties. The features under
108	investigation are; the OC loading required to influence the shape memory effect of self-
109	supporting polymer films (and when coated onto a PET substrate); the effect of OC loading
110	on the storage moduli, the glass transition temperature, and, in particular, macroscopic effects
111	including the shape fixity, the extent of shape recovery as well as the time required to return
112	to the original, permanent shape.

113 **2. Experimental**

114 2.1 Materials

- 115 The mono-functional acrylate tert-butyl acrylate (tBA), the di-functional acrylate
- poly(ethylene glycol) dimethacrylate (PEGDMA), with an average molecular weight of 750 g
- 117 mol⁻¹, the photoinitiator 2,2-dimethoxy-2-phenylacetophenone (DMPA) and accelerator
- 118 ethyl-4-(dimethylamino) benzoate (EDB) were purchased from Sigma-Aldrich and used as

Page **4** of **28**

119 received. The purity of tBA was 98%, while the purities of the other reagents were \geq 99%.

120 The Cloisite 10A (C10A), is a bentonite in which the resident Na^+ -cations have been replaced

- 121 by quaternary benzyl hydrogenatedtallow dimethylammonium ions, and was supplied by
- 122 Rockwood Specialties Inc., UK. The substrate material used in the coating studies was a 100
- 123 μm thick polyethylene terephthalate (PET) film (HiFi Films Ltd.).
- 124 2.2 Pre-treatment of commercial organoclay

125 Initial attempts to fully polymerise the tBA-co-PEGDMA systems in the presence of as-

126 received C10A were unsuccessful and the excess surfactant present on C10A was identified

127 as the cause. The excess organomodifier was removed, prior to use, by dispersion in water

128 whilst stirring at 80 °C for 1 h, then filtered and washed with propan-2-ol. This was repeated

129 6 times before drying at 70°C for 4 h. The fully washed material is subsequently referred to

- 130 as benzyl tallow dimethylammonium-bentonite (BTDB).
- 131 2.3 Preparation of polymers and PCN

132 2.3.1 tBA-co-PEGDMA

A series of polymer networks were prepared using selected ratios of the monomers (Table 1).

134 The tBA, PEGDMA, DMPA and EDB were weighed out and added together in a glass vial,

135 wrapped in foil and the solution was magnetically stirred for 30 mins at ca. 22°C. The

solution was then sonicated for an additional 30 mins before photopolymerisation (see

137 <u>Section</u> 2.3.3 below).

138 2.3.2 tBA-co-PEGDMA/BTBD

139 The tBA90/PEGDMA10 polymer network was used as a host matrix for selected quantities

140 of BTBD (Table 1). The procedure was similar to that described above except that the

mixture was stirred for 24 h at ca. 22°C, before sonication and photopolymerisation (Decker
et al., 2005).

143 2.3.3 Polymer Photopolymerisation

- 144 Photopolymerisation of stirred and ultrasonicated mixtures was carried out in a mould
- 145 constructed using two ultraviolet (UV) clear glass slides, 100 x 100 x 1 mm³, to which UV
- 146 clear PET film liners, $12 \times 12 \times 0.1 \text{ mm}^3$ were attached so that the reaction mixture was only
- in contact with the PET film and the 500 µm spacer. The reaction mixtures were injected into
- the reaction cavity and the entire mould was placed in a UV chamber (model CL-1000
- 149 ultraviolet cross-linker, $\lambda = 254$ nm, output energy = 200 mJ/cm²). The mould was turned
- 150 over every 5 mins for ca. 30 mins to promote an even cure on both surfaces of the mould.
- 151 **Table 1.**
- 152 Sample description, notation, type, composition and clay content.

Sample Description	Sample notation in	Sample	tBA	PEGDMA	BTBD
Sample Description	figures	type	/ mass%	/ mass%	/ mass%
tBA100/PEGDMA0	t100/P0	Film	100	0	0
tBA90/PEGDMA10	t90/P10	Film	90	10	0
tBA80/PEGDMA20	t80/P20	Film	80	20	0
tBA70/PEGDMA30	t70/P30	Film	70	30	0
tBA60/PEGDMA40	t60/P40	Film	60	40	0
tBA15/PEGDMA85	t15/P85	Film	15	85	0
tBA0/PEGDMA100	t0/P100	Film	0	100	0
tBA90/PEGDMA10/BTBD 0	t90/P10/BTBD 0	Film	90	10	0
tBA90/PEGDMA10/BTBD 1	t90/P10/BTBD 1	Film	90	10	1
tBA90/PEGDMA10/BTBD 3	t90/P10/BTBD 3	Film	90	10	3
tBA90/PEGDMA10/BTBD 5	t90/P10/BTBD 5	Film	90	10	5
tBA90/PEGDMA10/BTBD 0	t90/P10/BTBD 0 P	Coated on PET	90	10	0
tBA90/PEGDMA10/BTBD 1	t90/P10/BTBD 1 P	Coated on PET	90	10	1

153

154 In order to polymerise the tBA90/PEG10 mixture, with and without BTBD, onto the PET

155 film it was applied using a meter bar, producing a ca. 30 μm thick film. The coated film was

156 placed into a nitrogen gas filled chamber, equipped with a UV transparent window, and the

157 entire configuration was placed into the UV chamber for ca. 30 min.

158 2.4 Characterisation Methods

Swelling tests and ATR-FTIR Spectroscopy were used to confirm that cross-linking had taken place and DSC traces (not illustrated) confirmed that the systems were fully cured. Samples (10 mm²) of tBA-*co*-PEGDMA network sheets were cut and weighed for their initial mass, m_i , and separated into vials where they were immersed in 20 ml of propan-2-ol. The samples were removed from the solvent periodically, dried lightly and weighed until an equilibrium, swollen, mass, m_s , was reached. The equilibrium swelling ratio, q, was calculated using the relationship, $q = m_s/m_i$.

Fig. 2. Schematic illustration of a) the deformation method, b) the customised shape memory effect (SME) evaluation platform and c) the shape recovery process. 1) Sample was heated and deformed to a temporary shape using an external force, which applied a fixed compression stress. 2) The sample was fixed into its temporary shape by rapid cooling in a fridge, at $3\pm 2^{\circ}$ C, while the external force was maintained, θ_{Max} . 3) The external force was removed and θ_{Fixed}° , was assessed. 4) The sample was placed in the heated chamber at a fixed temperature and recovery to θ_{Final} was recorded over time (Lin and Wu, 1992).

174

175 <u>The ATR-FTIR spectra were collected using a Nicolet, Nexus FT-IR model at room</u>

temperature. X-ray diffraction traces of cast films were recorded, over an angular range of 5

to 40 °20, using a Philips X'Pert XRD, with a Cu X-ray source ($\lambda = 1.542$ Å), and a Philips

178 Miniprop detector. Dynamic Mechanical Analysis (DMA) was used to determine the

179	viscoelastic properties of the samples. A PerkinElmer model DMA8000 was employed in
180	tension mode, with no pre-load, over a temperature range of -50 to 150°C, at a frequency of 1
181	Hz. The polymer samples, 25 x 5 (\pm 0.1) x 0.5 mm ³ , were equilibrated at -50°C for 3 mins
182	then raised to 90°C at a ramp rate of 3°C min ⁻¹ . The T_g was defined as the peak maximum of
183	the tan δ curve. The rubbery modulus was determined from the storage modulus, when it had
184	reached a steady state above the T_g as indicated by the unchanging tan δ curve.
185	The unconstrained shape memory capability of the tBA-co-PEGDMA and
186	tBA90/PEGDMA10 BTBD networks was evaluated using a customised platform consisting
187	of a hotplate, a glass enclosure and a temperature probe (Fig. 2). The hotplate was pre-heated
188	to a temperature that was 10°C above the highest T_g of the samples under study, i.e. $T_{high} =$
189	$(T_g + 10^{\circ}\text{C})$. The sample, 40 x 20 x 0.5 mm ³ , was placed inside the enclosure for 10 mins to
190	equilibrate at the T_{high} temperature. The sample was deformed, $\theta_{Max},$ using a 250 g preheated
191	steel weight and maintained at T_{high} in the enclosure, for an additional 5 mins while the
192	sample was under strain, i.e. a fixed compression stress. The sample and the weight were
193	taken from the enclosure and cooled to $3\pm 2^{\circ}$ C, T_{low} , in a fridge. At T_{low} the external force was
194	removed and the fixed deformability, $\theta_{Fixed}^\circ,$ was recorded. The sample was placed inside the
195	heated glass enclosure, still at T_{high} , and the recovery angles, $\theta_i(t)$, that occurred during the
196	shape memory evaluation were determined from still photographs captured, at appropriate
197	time intervals, from video recordings. Once the sample had completed its transformation
198	towards its permanent shape the value of θ_{Final} was recorded. Three replicate assessments of
199	each sample were collected and the reproducibility was such that the data point size (in
200	FiguresFigs. 6, 9 and 10) covers the sample to sample variation.
201	The unconstrained shape memory effect of uncoated PET and the coated PET samples, 60 x
202	$20 \times 0.03 \text{ mm}^3$, was determined by cutting slits in the flat samples (Fig. 3a) and placing them
203	in the heated enclosure for 10 mins to equilibrate at the deformation temperature. They were

Page **8** of **28**

204 then deformed by inserting a cylindrical steel rod between the alternate strips of coated, or 205 uncoated, PET (Fig. 3b). The deformed sample was then cooled in a fridge before the steel 206 rod was removed and the sample placed in the chamber at T_{high} . The initial parameters noted 207 were θ_{max} and θ_{Fixed} . A θ_{max} value of 100% reflected the ability of the sample to completely adopt the temporary shape under the influence of the deformation stress. If the sample 208 209 relaxed after the stress was removed then this was recorded as θ_{Fixed} . Once these two initial parameters had been recorded a standard unconstrained shape memory evaluation was carried 210 211 out with $\theta_i(t)$ being recorded photographically, as described above, every 30 seconds. When the sample transformation was complete, or the original shape recovered, θ_{Final} was recorded. 212 213 The parameters extracted from the $\theta_i(t)$ versus time plot were $\theta_{1/2 \text{ Final}}$ Time, i.e. the time taken 214 to recover 50% of the permanent shape, and θ_{Final} Time, the time taken to reach θ_{Final} i.e. the 215 time taken to return to the permanent shape.

216

218 **3. Results**

- 219 *3.1 Initial observations.*
- 220 The complete absence of three diagnostic absorbance bands in the FTIR spectrum of tBA,
- assigned to C=C stretch (ca. 1636 and 1620 cm⁻¹) and the C=CH₂ twist (ca. 811 cm⁻¹)
- following photopolymerisation, together with the DSC data, confirmed that the reaction was

Page **9** of **28**

- Fig. 4. Illustrative examples of the equilibrium swelling ratios, q, as a function of the molepercent of PEGDMA after 1 h, 3 days and 5 weeks immersion in propan-2-ol.
- 233 3.2 Shape memory behaviour of clay-free acrylate systems
- 234 *3.2.1 Dynamic mechanical analysis*

230

- The temperature variation of the storage modulus and tan δ , of the t100/P0 to t0/P100
- samples, were plotted as a function of temperature, -50 to 125°C (Fig. 5), and the relevant
- 237 dynamic mechanical properties are summariszed in Table 2.

238

Fig. 5. Temperature dependence of a) storage modulus, and b) tan δ for the t100/P0 to 239 240 t0/P100 networks over the temperature range -50 to 125°C. 241 Fig. 5a shows that the storage modulus at -50°C increased as the PEGDMA content increased (Table 2) as did the rubbery modulus (at ca. 100°C), whereas Fig. 5b shows that both the 242 243 temperature at which the maximum in tan δ occurred, and the associated peak intensity, 244 decreased with increased PEGDMA content. The temperature at which the modulus dropped 245 sharply marked the onset of the $T_{g\alpha}$ transition, when large segments of the polymer chains gain sufficient thermal energy to begin moving, and established the starting point of the shape 246 memory effect. Tsai et al., (2008) suggested that a sharp, at least one order of magnitude, 247 248 decrease in storage modulus provides convincing evidence that a polymer system will demonstrate shape memory capability (Du and Zhang, 2010). The temperature at which the 249 tan δ_{max} for a particular sample occurred (Fig. 5b) was used to define the T_g of the polymer 250 251 system under investigation, while the intensity and shape of the tan δ peak provided 252 information concerning the nature of the transformation from the temporary to the permanent 253 shape. A sharp, intense tan δ_{max} peak followed by a reduction in tan δ to values below 0.5 254 indicates that a SMP will behave in a manner similar to an elastomer and display significant 255 shape recovery when evaluated. In contrast, a low intensity tan δ_{max} indicates that a lesser 256 shape recovery will occur (Chun et al., 2002, Tsai et al., 2008). Hence, a narrow, intense tan δ

Page **11** of **28**

257 peak indicates a fast transformation whereas a weak broad peak suggests that the 258 transformation will be slower. A large, steep drop in storage modulus indicates that the 259 energy stored in the deformation process will enable the SMP to exert a strong physical force 260 as it returns to its permanent shape. This ability is particularly useful when the SMP has to 261 work against an opposing force such as when used as a stent where it has to open up a 262 collapsed blood vessel and keep it open (Ratna and Karger-Kocsis, 2008). Alternatively, when used as a suture it may be required to contract and in so doing pull two pieces of flesh 263 264 together (Liu et al., 2009).

265 The initial storage modulus of the pure PEGDMA, t0/P100 (
, Fig. 5a), was 2129 MPa at -50°C and this steadily decreased reaching a value of 1903 MPa at -47°C. The T_g of this 266 system was -26°C at which point the tan δ_{max} value was 0.6 tan δ (Fig. 5b). This latter value 267 268 was sufficient to indicate that pure PEGDMA would exhibit shape memory capability, while 269 the return to a tan δ of ca. 0 after the transition indicated that it should also behave like an 270 elastomer. The reduction in modulus of the t0/P100 network was close to one and a half 271 orders of magnitude, from 2129 MPa at -50°C to 34 MPa at the end of the T_{ga} transition. The 272 gradual increase in the storage modulus to 42 MPa after the transition stage was attributed to 273 thermally induced crystallisation (Smith et al., 2009a, b). Overall, pure PEGDMA (t0/P100) 274 was predicted to exhibit some useful shape memory properties.

At -50 °C pure tBA, t100/P0, exhibited an initial storage modulus of ca. 2005 MPa (\diamond , Fig. 5a) which decreased steadily until ca. +22°C, when the modulus had reached ca. 1145 MPa. The narrow, high intensity tan δ_{max} value, of 2.1 tan δ , together with the return back to a tan δ value of zero (Fig. 5b), indicated that pure tBA would behave like an elastomer and display significant shape recovery when evaluated. At tan δ_{max} (41°C) the modulus had reduced to ca. 22 MPa, and continued to decrease steadily until at the end of the T_{ga} transition it had reached

Page 12 of 28

ca. 0.2 MPa. The drop in pure tBA storage modulus was almost four orders of magnitude; i.e.

283 **Table 2.**

Summary of the values obtained from dynamic mechanical analysis for the t100/P0 to t0/P100 networks over the temperature range -50 to 90°C.

Sample	Storage Modulus / MPa							$T_{g\alpha}$ /	Tan	
notation	Storage Modulus / Mira								°C	δ_{max}
	-50°C	-30°C	-10°C	10°C	30°C	50°C	70°C	90°C		
t100/P0	2005	1756	1605	1368	637	0.8	0.2	0.2	41	2.1
t90/P10	2108	1961	1782	1416	425	2	0.7	0.5	39	2.1
t80/P20	2035	1847	1597	1194	61	4	3	3	33	1.7
t70/P30	1923	1688	1342	659	10	4	3	2	24	1.3
t60/P40	2168	1719	1194	160	9	8	8	8	15	1.1
t15/P85	2249	759	27	21	22	24	25	27	-18	0.7
t0/P100	2129	292	36	35	37	39	41	42	-26	0.6

286

287	The systems with the more intense tan δ_{max} values, i.e. t90/P10 to t60/P40 (Table 2), were
288	anticipated to exhibit significant shape recovery when evaluated whereas the lower tan δ_{max}
289	value for the t15/P85 network (0.7 tan δ), offered <u>a</u> clear evidence that the shape recovery
290	would be less dramatic (Chun et al., 2002, Tsai et al., 2008). Note that the 100-fold reduction
291	in the storage modulus of the t90/P10 to t15/P15 networks provided good evidence for useful
292	shape memory ability (Tsai et al., 2008, Du and Zhang, 2010). The increase in storage
293	modulus as the PEGDMA content increased was anticipated as was the associated increase in
294	the rubbery modulus (Kramer et al., 2010).
295	Overall the storage modulus, rubbery modulus and tan δ results, suggested that addition of
296	PEGDMA to tBA resulted in a controllable shift, to lower temperatures, of the T_g and a
297	reduction in the tan δ_{max} peak intensity. The rubbery storage modulus increased as the
298	PEGDMA content increased in line with work with related systems (Gall et al., 2005; Ortega
299	et al., 2008; Kramer et al., 2010).
300	3.2.2 Evaluation of the unconstrained shape memory effect

Page **13** of **28**

a very strong indication of a useful shape memory capability (Tsai et al., 2008).

301	Unconstrained shape memory evaluation was employed to determine the extent to which each
302	network would demonstrate shape memory and to explore the effect of increasing PEGDMA
303	content on the speed and extent of shape reversal (Fig. 6). Cross-linked tBA-co-PEGDMA
304	polymer networks are a class I type SMP, with a $T_{trans} = T_g$ (Liu et al., 2007). An appropriate
305	SME temperature range to account for the different T_g values, which range from -26°C for
306	pure PEGDMA to $+41^{\circ}$ C for pure tBA (Table 2), needed to be identified and a T _{high} value of
307	50°C, which was 10°C above the highest T_g , was chosen to ensure full shape recovery in all
308	the relevant samples. Each network was annealed at 70°C for 15 mins prior to being
309	deformed (Table 3).

310 Due to the higher PEGDMA, and hence cross-link, content the t60/P40 and t15/P85 networks 311 were too brittle for an effective shape memory evaluation. The increased cross-link density 312 most likely caused the stress-strain behaviour of the material to change from an elastomeric 313 response to a stiff network with a pronounced brittle response (Ortega et al., 2008). The 314 t100/P0 network exhibited a θ_{Max} of 100 % (Table 3), demonstrating that it was elastic 315 enough to accommodate a high level of deformation stress. No recovery was observed after 316 the deformation constraint was removed, thus a θ_{Fixed} value of 100 % was assigned, which 317 demonstrated that the t100/P0 material could easily store the full amount of imparted strain. 318 Yang et al. (2007) reported that at low temperatures, i.e. T_{low} , the entropy driven strain 319 recovery forces are simply not sufficient to overcome the barrier to shape recovery. 320 Consequently, the deformation cannot recover while the sample is maintained at T_{low} , even at 321 long times, because the activation energy required to initiate recovery cannot be achieved.

322

Page **15** of **28**

- 341 behaved as anticipated, based on the DMA results (Fig. 6), which identified the propensity
- for large recoverable strains (Ortega et al., 2008). The $\theta_{1/2\,Final}$ and θ_{Final} Times of recovery 342
- 343 (Table 3) demonstrated that the t90/P10 to t70/P30 networks also recovered 50 % of their
- 344 permanent shape in ca. half the full recovery time.

345 Table 3.

346

Values, obtained using a T_{high} of 50°C, for the parameters θ_{Max} , θ_{Fixed} , $\theta_{1/2\ Final}$, θ_{Final} , $\theta_{1/2\ Final}$, 347

the samples described in Table 1. 348

Sample Description	Sample notation in figures	θ _{Max} / %	$\theta_{\rm Fixed}$ / %	$\substack{\theta_{1/2 \; Final} \\ / \; \%}$	θ _{Final} /%	$\theta_{1/2 \text{ Final}}$ Time	θ_{Final} Time
	(100/D0	100	100	50	100	/ sec	/ sec
IBA100/PEGDMA0	t100/P0	100	100	50	100	0	11
tBA90/PEGDMA10	t90/P10	100	100	50	100	7	13
tBA80/PEGDMA20	t80/P20	100	100	50	100	12	22
tBA70/PEGDMA30	t70/P30	100	100	50	100	10	17
tBA90/PEGDMA10/BTBD 0	t90/P10/BTBD 0	100	100	50	100	7	12
tBA90/PEGDMA10/BTBD 1	t90/P10/BTBD 1	100	100	50	100	2.5	5.5
tBA90/PEGDMA10/BTBD 3	t90/P10/BTBD 3	100	100	50	100	4	9
tBA90/PEGDMA10/BTBD 5	t90/P10/BTBD 5	100	100	50	100	5	13
tBA90/PEGDMA10/BTBD 0 P	t90/P10/BTBD 0 P	100	93	41.5	90	52	540
tBA90/PEGDMA10/BTBD 1 P	t90/P10/BTBD 1 P	100	80	38.0	96	18	270

349

350	Overall these results indicated that as the PEGDMA content increased there was a
351	corresponding increase in the $\theta_{1/2\;Final}$ and θ_{Final} Times of recovery. The t70/P30 network
352	demonstrated faster $\theta_{1/2 \; Final}$ and θ_{Final} Times of recovery than the t80/P20 network which may
353	have its origins in that the increased number of cross-links could have enabled it to store
354	larger amounts of energy culminating in a faster response. A complete assessment of the
355	shape memory ability of the entire t100/P0 to t0/P100 system was not possible because of the
356	brittleness of the t15/P85 and t0/P100 networks, but, it is almost certain that their shape
357	recovery ability would be lower because highly cross-linked networks generally demonstrate
358	low recoverable strain (Ortega et al., 2008). In effect these observations correspond well with

Page **16** of **28**

the DMA results which identified those networks with the ability to recover their permanentshape and exhibit large recoverable strains.

361 *3.2.3 Summary of clay-free acrylate networks*

The tBA-co-PEGDMA networks were fully cured and thermally stable, offering useful 362 363 mechanical properties with most of the investigated combinations able to provide a shape 364 memory response. Networks with high PEGDMA contents exhibited poor shape memory 365 properties, being brittle and fracturing when subjected to large deformations. The t90/P10 366 network showed the most promise because it could be fully polymerised, offered useful 367 mechanical properties, with similar elasticity and shape recovery capability to pure tBA, and 368 had a rubbery modulus (above its T_{e}) capable of withstanding moderate mechanical load. However, even though this system returned to its permanent shape in only 13 seconds, it still 369 370 exhibited relatively poor mechanical strength when compared to shape memory metal alloys (Lin and Wuet al., 1992); a classic shortcoming of SMPs. The incorporation of well dispersed 371 372 OC is known to enhance the mechanical properties of acrylate networks (Wu et al., 2010; 373 Ingram et al., 2008; Oral et al., 2009) but the effect of clay incorporation on the shape 374 memory properties has not previously been explored. Consequently, the consequences of 375 adding BTBD to the t90/P10 system were investigated. 376 3.3 Shape memory behaviour of clay-acrylate nanocomposites

377 *3.3.1 Initial observations*

Swelling tests were carried out and ATR-FTIR spectra collected, as described in 3.2.1 above,
which confirmed that the polymer networks had fully cured and formed cross-links and that
all the BTBD-containing networks displayed similar swelling properties to the equivalent

381 pure polymer (Fig. 4).

382 3.3.2 X-ray diffraction data for shape memory nanocomposites.

Page 17 of 28

- The XRD trace for BTBD powder (Fig. 7) displayed diffraction peaks at $4.2 \,^{\circ}2\theta$ (21.0
- 384 Å),19.7 °2 θ (4.5 Å), and 35.0 °2 θ (2.6 Å) which correspond to (001), (110,020) and (130,
- 200) reflections, respectively. The trace for the sample prepared without clay (t90/P10/BTBD
- 386 0) showed two broad reflections at 9.1 °2 θ (9.7 Å) and 17.5 °2 θ (5.1 Å) which were attributed
- to the polymer. The XRD traces for the systems containing 1, 3 and 5 mass% BTBD
- 388 (t90/P10/BTBD 1, 3 and 5) all displayed a single peak at 4.5 $^{\circ}2\theta$ (19.6 Å) as well as the two
- reflections associated with the polymer, at 9.5 °2 θ (9.7 Å) and 17.5 °2 θ (5.1 Å). The
- diffraction peaks associated with BTBD at 19.7 °2 θ (4.5 Å) and 35.0 °2 θ (2.6 Å) were too
- 391 weak to be seen at these addition levels.

- **Fig. 7.** Cu XRD traces of BTBD and the t90/P10/BTBD 0 to 5 networks.
- 394

392

4

The low angle reflection associated with BTBD, in the BTBD-containing networks, appeared at slightly higher angles than that of the BTBD powder (Fig. 7). Vaia and Liu (2002) have advised caution when tempted to overstate the consequences of small shifts in the positions of reflections in CPN, because several factors can contribute to a decrease in diffraction peak

Page 18 of 28

399	intensity and uncertainty concerning the distance between the layers. The apparent reduction
400	in basal spacing from 21.0 to 19.6 Å could indicate a reduction in the interlayer content but a
401	more likely explanation, in accord with Vaia and Liu's interpretation, is that the shift arises
402	from a change in the number of layers per stack and angular variations between layers in a
403	stack. Nonetheless, the diffraction data confirmed that polymerisation did not occur, nor was
404	polyacrylate present, in the interlayer space. The apparent absence of poly(tBA-co-
405	PEGDMA) in the interlayer contrasts with the report of Ingram et al., (2008) who found that
406	quaternary (bis-2-hydroxyethyl) methyl tallowammonium-exchanged Cloisite, C30B, formed
407	exfoliated/intercalated CPN in a radically-initiated methylmethacrylate (MMA) network. The
408	XRD trace for MMA containing 1 and 2 mass% C30B exhibited no diffraction peaks leading
409	the authors to suggest full exfoliation, whereas the XRD trace for the 4 mass% 30B/MMA
410	sample displayed a reflection at 2.1 °2 θ (42.0 Å) indicating <u>that</u> an intercalated CPN had been
411	produced.
412	3.3.23 Dynamic mechanical analysis of clay-acrylate nanocomposites
413	The storage modulus and tan δ values, for the t90/P10/BTBD 0 to 5 networks, are plotted in
414	Fig. 8 over the temperature range, -50 to +125 $^{\circ}$ C, and the associated values for the properties
415	of interest are summariszed in Table 4. The data for the t90/P10/BTBD 0 sample was
416	described above (t90/P10, Fig. 5, Table 2) and the samples prepared by incorporation of
417	BTDB into this host matrix, t90/P10/BTBD 1 to 5, exhibited initial storage moduli of ca.
418	1949, 1629 and 1702 MPa, respectively, at -50°C which steadily decreased reaching values
419	of ca. 1417, 1040 and 1083 MPa at 12°C. The ensuing steep drop in the moduli established
420	the starting point of the shape memory effect and resulted in reductions of at least three and a

421 half orders of magnitude in modulus, reaching 1.0, 0.5 and 0.6 MPa, respectively, at 150°C.

Page **19** of **28**

Fig. 8. Temperature dependence of a) storage modulus, b) tan δ of the t90/P10/BTBD 0 to 5
networks over the temperature range -50 to 125°C.

425 The T_g values for the t90/P10/BTBD 1, 3 and 5 samples were very similar at 37, 37 and 38°C,

respectively. The corresponding tan δ_{max} values, 2.1, 2.0 and 1.8 tan δ , taken together with the

427 reduction in the associated tan δ values to zero, were large enough to confidently predict that

428 these networks would display elastomeric behaviour and exhibit useful shape memory

429 properties. However, these results were remarkably similar to the t90/P10 host polymer so no

430 dramatic increase in shape memory capability was expected.

431 **Table 4**.

432 Summary of the values obtained from dynamic mechanical analysis for the t90/P10/BTBD 0

433	to 5 networks over the	temperature range -50 to 150°C.

Sample Description		Storage Modulus / MPa							
	-50°C	-25°C	0°C	25°C	50°C	100°C	150°C		
t90/P10/BTBD 0	2108	1928	1629	876	2	0.5	0.4	40	2.1
t90/P10/BTBD 1	1949	1808	1563	549	2	2.0	1.0	37	2.1
t90/P10/BTBD 3	1629	1562	1276	459	2	0.8	0.5	37	2.0
t90/P10/BTBD 5	1702	1564	1322	508	3	1.0	0.6	38	1.8

434

The DMA results confirmed that the incorporation of BTBD resulted in no significant shift of

436 the T_g and only small reductions in the tan δ_{max} peak intensity; as noted for shape memory

Page **20** of **28**

437	clay-epoxy nanocomposites (Liu et al., 2011). The rubbery modulus of the t90/P10/BTBD 1
438	network was more than twice that of the other, clay-containing, networks indicating that it
439	could maintain greater mechanical loading than the other systems when $T > T_g$. Benfarhi et al.
440	(2004) and Okamoto et al. (2000) also noted that the highest modulus was obtained with a
441	clay loading of ca. 1 mass% in related, non-SMP, acrylate CPN. However, as the BTBD
442	content was increased the initial storage modulus decreased from that of the host matrix
443	which corresponded to reports where acrylate networks, PU-based acrylates and epoxy-based
444	acrylates, exhibited a drop in initial storage modulus with increasing clay content (Benfarhi et
445	al., 2004; Keller et al., 2004). It is, however, more common for the initial storage modulus to
446	increase when the OC is effectively dispersed throughout the polymer matrix(Okamoto et al.,
447	2001; Shemper et al., 2004; Decker et al., 2005; Xu et al., 2006; Zang et al., 2009).

448

451 3.3.<u>34</u> Evaluation of the unconstrained shape memory effect

452 The unconstrained shape memory ability was evaluated to establish whether the BTBD-

453 containing networks would demonstrate shape memory and to determine the effect of BTBD

- 454 content (Fig. 9). The close proximity of the T_g values for the different samples meant that a
- single deformation regime was appropriate. Table 3 summarises the properties of interest.

456

457	Once again the values of θ_{Final} , $\theta_{1/2 Final}$ Time and θ_{Final} Time (Fig. 9, Table 3) confirmed that
458	the clay-free network stored the full load of imposed strain and that it recovered 50% of its
459	permanent shape in half the time required for full recovery. The t90/P10/BTBD networks also
460	displayed a θ_{Max} of 100 %, confirming that the BTBD content did not retard the elasticity nor
461	reduce the networks' ability to accommodate a high level of deformation strain. The θ_{Fixed}
462	results were also 100 % for all these systems confirming that an increased BTBD content did
463	not diminish the ability of the networks to retain their temporary shape. Reaching a θ_{Final} of
464	100 % proved that these networks could store the deformed strain and return to their
465	permanent shape. The $\theta_{1/2 \text{ Final}}$ and θ_{Final} Times of recovery (Table 3) demonstrated that the
466	BTBD-containing samples also recovered 50 % of their permanent shape in ca. half the full
467	recovery time. Most of these observations corresponded well with the results predicted by
468	DMA, but the DMA data was singularly unable to predict the extent to which the presence of
469	BTBD accelerated the rate of permanent shape recovery. The fastest return to the permanent
470	shape was achieved when 1 mass% BTBD was incorporated. Liu et al. (2011) also observed
471	that the θ_{Final} Times of recovery for clay-epoxy <u>SMPSMPs</u> did not vary systematically with
472	OC content and the shortest recovery time occurred when 3 mass% of a
473	cetyltrimethylammonium-clay was used. The authors attributed this non-systematic variation
474	to a reduction in OC dispersion at loadings of 4 and 5 mass%.

475 *3.3.4<u>5</u> Imparting shape memory effect to PET film*

The t90/P10/BTBD 1 network demonstrated the fastest return to its permanent shape and
exhibited the largest rubbery modulus (2.0 MPa) so it was chosen as the preferred system to
coat onto a PET substrate. The aim was to determine whether this acrylate network could
confer shape memory capability to the PET substrate and whether the presence of BTBD
offered any additional capability (Fig. 10). The t90/P10/BTBD 0 and 1 coated PET substrate

Page **22** of **28**

and uncoated PET sheet were deformed, after annealing at 70°C, and their shape memory

482

recoveries determined as described in <u>S</u>ection 2.4 (Fig. 2 and 3).

(b) 30 sec

(d) 180 sec

496

Fig. 10. Unconstrained SME testing of t90/P10/BTBD 0 and 1 coated PET substrates, from temporary to permanent shape. Video capture images of a t90/P10/BTBD 1 SMP coated PET at sequential time intervals (a) 0, (b) 30, (c) 90 and (d) 180 sec; (e) recovery % against time.
All data were obtained at a fixed temperature, 50°C.

501

- 502 The uncoated PET sample was deformed to a θ_{Max} of 100 % (Fig. 3) and cooled to T_{low} , 0 to
- 503 5°C. Upon removal of the steel rod the uncoated PET sample immediately collapsed;

Page **23** of **28**

504	dramatically demonstrating a θ_{Fixed} value of 0 %. The t90/P10/BTBD 0 coated substrate was
505	deformed in the same manner and achieved a θ_{Max} of 100 % demonstrating that the shape
506	memory coating had accommodated the deformation stress but the sample relaxed a little at
507	T_{low} leading to a θ_{Fixed} value of 93 %. This confirmed that the t90/P10/BTBD 0 P coated
508	substrate could be deformed to a large degree and was able to store the majority of the
509	imposed strain, in marked contrast to the behaviour of the uncoated PET which collapsed
510	back to its permanent (flat) shape when the steel rod was removed. The t90/P10/BTBD 0 P
511	sample reached an ultimate recovery, θ_{Final} , of 90 % with corresponding $\theta_{1/2 \ Final}$ and θ_{Final}
512	Times of 90 and 540 secondss, respectively, showing that the t90/P10/BTBD 0 P coated
513	substrate recovered 50 % of the θ_{Final} very rapidly compared to the full recovery time.
514	The t90/P10/BTBD 1 P coated substrate exhibited a θ_{Max} of 100 % and a θ_{Fixed} of 80 %
515	proving that it was also able to accommodate, and store, a high level of deformation stress,
516	albeit less than the pure acrylate coated substrate. The t90/P10/BTBD 1 coated PET substrate
517	achieved a θ_{Final} of 96 % which demonstrated that neither the t90/P10/BTBD 0 nor
518	t90/P10/BTBD 1 coated PET were able to fully return to their permanent, flat shape. The
519	$\theta_{1/2Final}$ and θ_{Final} Times of recovery for the t90/P10/BTBD 1 P sample were 18 and 270
520	secondss, respectively, which demonstrated that the presence of as little as 1 mass% BTBD in
521	a shape memory CPN could significantly accelerate the rate of permanent shape recovery of a
522	coated substrate.

523 **4. Conclusions**

The tBA-*co*-PEGDMA crosslinked networks displayed useful shape memory properties up to
PEGDMA contents of 40 %. Above this PEGDMA content the materials were prone to
fracture and too brittle for a realistic assessment of their shape memory capability. The
tBA90/PEGDMA10 material was selected as the host matrix to investigate the effect of

Page **24** of **28**

528	incorporating OC on the shape memory capability. X-ray diffraction data confirmed that
529	BTBD formed a microcomposite in the selected matrix and hence exerted no influence on the
530	storage modulus, rubbery modulus, glass transition temperature, T_g , or the shape or intensity
531	of the tan δ peak of the host matrix. Therefore, it was anticipated that the presence of BTBD
532	would have no effect, positive or negative, on the shape memory properties of the host
533	matrix. However, it was found that the incorporation of clay, especially at the 1 mass% level,
534	significantly accelerated the speed at which the microcomposite returned to the original,
535	permanent shape. This accelerated return to the permanent shape, compared to the clay-free
536	SMP, was also observed when the microcomposite was coated onto a 100 μm PET film.

537 5. Acknowledgements

- 538 MB gratefully acknowledges support from the Engineering and Physical Science Research
- 539 Council via a CASE Award (Voucher Number 08002513).

540

541 **References**

542	Annabi-Bergaya F., 2008. Layered clay minerals. Basic research and innovative composite	
543	applications. Microporous and Mesoporous Mater. 107, 141-148.	
544	Behl M., Razzaq M.Y., Lendlein A., 2010. Multifunctional Shape-Memory Polymers. Adv.	
545	Mater. 22, 3388-3410.	
546	Benfarhi S., Decker C., Keller L., Zahouily K., 2004. Synthesis of clay nanocomposite	
547	materials by light-induced crosslinking polymerization. Eur. Polym. J. 40, 493-501.	
548	Cao F., Jana S.C., 2007. Nanoclay-tethered shape memory polyurethane nanocomposites.	Formatted: Spanish (Spain-Traditional
549	Polymer. 48, 3790-3800.	Sort)
550	Chun B.C., Cha S.H., Chung Y.C., Cho J.W., 2002. Enhanced dynamic mechanical and	
551	shape-memory properties of a poly(ethylene terephthalate)-poly(ethylene glycol)	
552	copolymer crosslinked by maleic anhydride. J. Appl. Polym. Sci. 83, 27-37.	
553	Chung Y-C., Choi J.W., Park J.S., Shin C.H., Chun B.C., 2011. Covalent bonding of surface-	
554	modified montmorillonite nanoparticle with polyurethane and its impact on shape	
555	memory effect and mechanical properties. J. Thermoplatic Composite Materials. 24, 477-	
556	497.	
557	Decker C., Keller L., Zahouily K., Benfarhi S., 2005. Synthesis of nanocomposite polymers	
558	by UV-radiation curing. Polymer. 46, 6640-6648.	
559	Du H.Y., Zhang J.H., 2010. Shape memory polymer based on chemically cross-linked	Formatted: English (U.K.)
560	poly(vinyl alcohol) containing a small number of water molecules. Colloid. Polym. Sci.	
561	288, 15-24.	
562	Gall K., Yakacki C.M., Liu Y.P., Shandas R., Willett N., Anseth K.S., 2005.	
563	Thermomechanics of the shape memory effect in polymers for biomedical applications.	
564	J. Biomed. Mater. Res. A, 73A, 339-348.	
565	Ge Q., Luo X.F., Iversen C.B., Mather P.T., Dunn M.L., Qi H.J., 2013. Mechanisms of triple-	
566	shape polymeric composites due to dual thermal transitions. Soft Matter. 9, 2212–2223.	
567	Haghayegh M., Sadeghi G.M.M., 2012. Synthesis of shape memory polyurethane/clay	
568	nanocomposites and analysis of shape memory, thermal and mechanical properties.	
569	Polym. Comp. 843-849.	
570	Ikematu T., Kishimoto Y., and Miyamoto K., 1993. Shape memory polymer resin	
571	composition and the shape memorizing moulded product thereof. Japan Patent 5189110.	
572	Ingram S., Dennis H., Hunter I., Liggat J.J., McAdam C., Pethrick R.A., Schaschke C.,	
573	Thomson D., 2008. Influence of clay type on exfoliation, cure and physical properties of	
574	in situ polymerised poly(methyl methacrylate) nanocomposites. Polym. Int. 57, 1118-	
575	1127.	
576	Jiang H.Y., Kelch S., and Lendlein A., 2006. Polymers move in response to light. Adv.	
577	Mater. 18, 1471-1475.	
578	Keller L., Decker C., Zahouily K., Benfarhi S., Le Meins J.M., Miehe-Brendle J., 2004.	
579	Synthesis of polymer nanocomposites by UV-curing of organoclay-acrylic resins.	
580	Polymer. 45, 7437-7447.	
581	Kramer N.J., Sachteleben E., Ozaydin-Ince G., van de Sanden R., Gleason K.K., 2010. Shape	Formatted: English (U.K.)
582	memory polymer thin films deposited by initiated chemical vapor deposition.	
583	Macromolecules. 43, 8344-8347.	

581	Lendlein A. Kelch S. 2002. Shape memory polymers: Angew. Chem. Int. Edn. 41, 2035	
585	2057	
586	Lendlein A Langer R 2002 Biodegradable elastic shape-memory polymers for potential	
587	biomedical applications. Science, 296, 1673–1676	
588	Liff S M Kumar N McKinley G H 2007 High-performance elastomeric nanocomposites	
589	via solvent-exchange processing. Nat. Mater. 6, 76-83.	
590	Lin H.C., Wu S.K. 1992. Strengthening effect on shape recovery characteristic of the	
591	equiatomic TiNi allov. Scripta Metall., 26, 59–62	
592	Liu C., Oin H., Mather P.T., 2007. Review of progress in shape-memory polymers, J.Mater.	
593	Chem. 17. 1543-1558.	
594	Liu Y., Han C., Tan H., Du X., 2011. Organic-montmorillonite modified shape memory	
595	epoxy resin. 22, 2017-2021.	
596	Liu Y.J., Lu H.B., Lan X., Leng J.S., Du S.Y., 2009. Review of electro-activate shape-	
597	memory polymer composite. Compos. Sci. Technol. 69, 2064–2068	
598	Maitland D. J., Metzger M. F., Schumann D., Lee A., 2002. Photothermal properties of shape	
599	memory polymer micro-actuators for treating stroke. Laser. Surg. Med. 30, 1-11.	
600	Migneco F., Huang, Y.C., Birla R.K., Hollister S.J., 2009. Poly(glycerol-dodecanoate), a	
601	biodegradable polyester for medical devices and tissue engineering scaffolds.	
602	Biomaterials, 30, 6479-6484.	
603	Okamoto M., Morita S., Kim Y.H., Kotaka T., Tateyama H., 2001. Dispersed structure	Formatted: English (U.K.)
604	change of smectic clay/poly(methyl methacrylate) nanocomposites by copolymerization	
605	with polar comonomers. Polymer. 42, 1201-1206.	
606	Okamoto M., Morita S., Taguchi H., Kim Y.H., Kotaka T., Tateyama H., 2000. Synthesis and	 Formatted: English (U.K.)
607	structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene	<u> </u>
007		
608	nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890.	
608 609	nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay	Formatted: Spanish (Spain-Traditional
608 609 610	nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611	nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910.	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618 619	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618 619 620	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd composites: a review. J. Mater. Sci. 43, 254-269. 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618 619 620 621	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd composites: a review. J. Mater. Sci. 43, 254-269. Rezanejad R., Kokabi M., 2007. Shape memory and mechanical properties of cross-linked 	Formatted: Spanish (Spain-Traditional Sort) Formatted: English (U.K.)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd composites: a review. J. Mater. Sci. 43, 254-269. Rezanejad R., Kokabi M., 2007. Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856 -2865 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd composites: a review. J. Mater. Sci. 43, 254-269. Rezanejad R., Kokabi M., 2007. Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856 -2865 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd composites: a review. J. Mater. Sci. 43, 254-269. Rezanejad R., Kokabi M., 2007. Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856 -2865 Safranski D.L., Gall K., 2008. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer 	Formatted: Spanish (Spain-Traditional Sort)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625	 nanocomposites via in situ intercalative polymerization. Polymer. 41, 3887-3890. Oral A., Tasdelen M.A., Demirel A.L., Yagci Y., 2009. Poly(methyl methacrylate)/clay nanocomposites by photoinitiated free radical polymerization using intercalated monomer. Polymer. 50, 3905-3910. Ortega A.M., Kasprzak S.E., Yakacki C.M., Diani J., Greenberg A.R., Gall K., 2008. Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth)acrylate-based system. J. Appl. Polym. Sci. 110, 1559-1572. Quadrini F., Santo L., Squeo E.A., 2012. Solid-state foaming of nano-clay-filled thermoset foams with shape memory properties. Polymer-Plastics Technology and Engineering 51, 560-567. Ratna D., Karger-Kocsis J., 2008. Recent advances in shape memory polymersa nd composites: a review. J. Mater. Sci. 43, 254-269. Rezanejad R., Kokabi M., 2007. Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856 -2865 Safranski D.L., Gall K., 2008. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth)acrylate shape memory polymer networks. Polymer. 49, 4446-4455. 	Formatted: Spanish (Spain-Traditional Sort)

- Shemper B.S., Morizur J.F., Alirol M., Domenech A., Hulin V., Mathias L.J., 2004. Synthetic
 clay nanocomposite-based coatings prepared by UV-cure photopolymerization. J. Appl.
 Polym. Sci. 93, 1252-1263.
- Smith K.E., Parks S.S., Hyjek M.A., Downey S.E., Gall K., 2009<u>a</u> The effect of the glass
 transition temperature on the toughness of photopolymerizable (meth)acrylate networks
- under physiological conditions. Polymer. 50, 5112-5123.
- Smith K.E., Temenoff J.S., Gall K., 2009b. On the toughness of photopolymerizable
 (meth)acrylate networks for biomedical applications. J. Appl. Polym. Sci. 114, 27112722.
- Tao X., 2010. Tunable polymer multi-shape memory effect. Nature. 464, 267-270
- Tong T.H., 2004. Shape memory styrene copolymer. Patent US6759481 B2.
- Tsai Y., Tai C.H., Tsai S.J., Tsai F.J., 2008. Shape memory effects of poly(ethylene
 terephthalate-co-ethylene succinate) random copolymers. Eur. Polym. J. 44, 550-554.
- Utracki L.A., 2010. Clay-Containing Polymeric Nanocomposites and Their Properties. IEEE
 Electr. Insul. M. 26, 6-15
- Vaia R.A., Liu W.J., 2002. X-ray Powder Diffraction of Polymer/Layered Silicate
 Nanocomposites: Model and Practice. J. Polym. Sci. Polym. Phys. 40, 1590-1600.
- Venkatraman S.S., Tan L.P., Joso J.F., Boey Y.C., Wang X., 2006. Biodegradable stents with
 elastic memory. Biomaterials. 27, 1573–1578
- Voit W., Ware T., Dasari R.R., Smith P., Danz L., Simon D., Barlow S., Marder S.R., Gall
 K., 2010. High-strain shape-memory polymers. Adv. Funct. Mater. 20, 162-171.
- Warren P.D., McGrath D.V., and Geest J.P.V., 2010. Effect of crosslinker length and
 composition on the hydrophobicity and thermomechanical response of acrylate-based
 shape-memory polymers. Macromol. Mater. Eng. 295, 386-396.
- Wu G.L., Liu G.P., Zang Y.L., Lu Y.B., Xiong Y.Q., Xu W.J., 2010. Preparation and
 characteration of UV-cured EA/MMT nanocomposites via in-situ polymerization. J.
 Macromol. Sci. A. Pure. Appl. Chem. 47, 647-654.
- Wu T., O'Kelly K., Chen B., 2013. Poly(methylmethacrylate)-grafted clay-thermoplastic
 e;astomer composites with water induced shape-memory effects. J. Polym. Sci. Polym.
 Phys. 51, 1513-1522.
- Xu B., Huang W.M., Pei Y.T., Chen Z.G., Kraft A., Reuben R., De Hossen J.Th.M., Fu Y.Q.
 2009. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory
 nanocomposites. 45, 1904-1911.
- Ku Y.J., Brittain W.J., Vaia R.A., Price G., 2006. Improving the physical properties of
 PEA/PMMA blends by the uniform dispersion of clay platelets. Polymer. 47, 4564-4570.
- Yakacki C.M., Shandas R., Safranski D., Ortega A.M., Sassaman, K., Gall K., 2008. Strong,
 tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 24282435
- Yang F., Wornyo E., Gall K., King W.P., 2007. Nanoscale indent formation in shape memory
 polymers using a heated probe tip. Nanotechnology. 18, 285302.
- 666 Zang Y.L., Xu W.J., Liu G.P., Qiu D.Y., Su S.P., 2009. Preparation of ultraviolet-cured
- bisphenol A epoxy diacrylate/montmorillonite nanocomposites with a bifunctional,
- reactive, organically modified montmorillonite as the only initiator via in situ. J. Appl.Polym. Sci. 111, 813-818.