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Abstract

We present a study of the effects of nano-confinement on a system of hard Gaussian overlap par-

ticles interacting with planar substrates through the hard-needle–wall potential, extending earlier

work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here,

we consider the case of hybrid films, where one of the substrates induces strongly homeotropic

anchoring while the other favours either weakly homeotropic or planar anchoring. These systems

are investigated using both Monte Carlo simulation and density-functional theory, the latter im-

plemented at the level of Onsager’s second virial approximation with Parsons-Lee rescaling. The

orientational structure is found to change either continuously or discontinuously depending on sub-

strate separation, in agreement with earlier predictions by others. Theory is seen to perform well

in spite of its simplicity, predicting the positional and orientational structure seen in simulations

even for small particle elongations.

PACS numbers: 68.08.-p, 64.70.mf, 61.30.Hn
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I. INTRODUCTION

It is often the case, in nature as in human affairs, that the most interesting phenomena

occur at boundaries. A fluid in contact with a solid substrate may grow phases that are

only metastable in bulk; it may or may not cover that substrate completely; or its consti-

tutent particles may acquire positional order as a result (see, e.g., [1] for a review). If in

addition the fluid particles are able to order orientationally, as in liquid crystals (LCs), even

richer behaviours may be obtained. Most substrates favour a particular alignment, which is

transmitted to the bulk fluid through a mechanism called anchoring [2]. The most common

arrangements are homeotropic (i.e., perpendicular to the surface), planar (i.e., parallel to the

surface) and tilted. A range of azimuthal anchoring states are also possible. Upon change

of experimental conditions, modification of the surface arrangement can be observed to lead

to a change in the bulk alignment; such an event is called an anchoring transition [2].

Because they are optically anisotropic, LC materials play a key role in many display

technologies (see, e.g., [3]). Typically an LC layer is sandwiched between suitably prepared

substrates, which may favour the same (symmetric) or different (hybrid) alignments. An

electric field is then used to deviate the orientational order profile from that induced by the

substrates alone. Whilst the conventional (and highly successful) twisted-nematic (TN) cell

[3] can be thought of as a hybrid geometry, a more recent realisation is the hybrid aligned

nematic (HAN) cell of Bryan-Brown et al. [4], which has led to a practical realisation of

a bistable device. Unlike the TN cell, a bistable device has two optically distinct, stable

states and an applied voltage is only needed when switching between them. The consequent

energy savings are substantial.

Hybrid aligned nanometrically thin LC films have also attracted academic interest. For

example, Vandenbrouck et al. [5] have observed spinodal dewetting of the nematogen 5CB

spun-cast onto silicon wafers. In these experiments, hybrid anchoring was enforced by con-

flicting boundary conditions: orthogonal at the free surface, and planar at the silicon sub-

strate. Films thicker than 20 nm were found to be stable, while thinner ones broke up into

islands which subsequently thickened and merged. This was initially interpreted in terms

of competition between elasticity and van der Waals forces [5], though an alternative ex-

planation based on fluctuation-induced interactions was also proposed [6]. Very recently,

a more comprehensive experimental study of such systems has been undertaken [7], which

2



concluded that neither of these theoretical descriptions is robust for film thicknesses below

50 nm. Instead,the authors of [7] called for a theoretical description capable of recognising

the molecular structure within such film. We address this directly in this paper.

Applications based on hybrid aligned LC films have also been considered. For example,

the Abbott group has investigated the use of hybrid aligned LC films confined between

air and water as a novel sensor system [8]. Here, by varying surfactant concentration at

the LC-water interface, it has proved possible to switch in and out of the hybrid aligned

state, so giving an easy-to-read surfactant detector. Hybrid aligned LC confinement is also

pertinent to some of the many fascinating LC colloid systems devised in recent years [9].

Specifically, this is relevant for LC systems loaded either with mixtures of colloidal species

with competing surface alignments, or with Janus-type particles [10] featuring competing

preferred alignments on different regions of each particle. Such systems have the potential

to exhibit qualitatively different particle-particle interactions and self-assembled structures

from those observed thus far [11].

In a previous paper [12] we reported computer simulations of a discontinuous struc-

tural transition in a thin hybrid film obtained using a hard-particle LC model. Then in

[13] we showed how the simple Onsager approximation of density-functional theory (DFT)

could provide a semi-quantitatively accurate description of the structure of a fluid of hard

rods confined between two hard, impenetrable walls, provided allowance was made, in a

phenomenological way, for the incorrect prediction of the location of the isotropic–nematic

(I–N) transition. We later applied the same formalism to symmetric films confined between

flat substrates of variable penetrability, in order to mimic different anchoring conditions

[14], and discussed their relevance in the context of interactions between (large) inclusions

in a nematic colloid. Here we return to the more challenging topic of hybrid aligned films,

this time comparing simulation outputs with DFT predictions. Our aim is to show that the

richer anchoring behaviour of these systems can also be fairly well described by our simple

DFT with a standard modification. It was not our intention to perform an exhaustive study

of capillary nematisation, adsorption, wetting transitions or other orientationally ordered

phases of confined elongated particles. Although such a complete picture is definitely worth

pursuing, and DFT is very likely the appropriate tool to arrive at it, the sheer number of

relevant variables (pore size, anchoring strengths, density and particle elongation. . . ) man-

dates a step-by-step approach. Furthermore, notice that we are not (yet) after quantitative
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agreement between theory and simulation, since our version of DFT is much too simple.

The remainder of this paper is organised as follows: in section II we recapitulate the

model used, and in section III the theory of [13, 14], both modified to allow for unequal

anchorings at the confining substrates. We also introduce a simplified form of Parsons-Lee

rescaling for a more accurate location of the I–N transition. Then in section IV we present

DFT and Monte Carlo (MC) simulation results for the density and order parameter profiles

of LC films subject to hybrid anchoring conditions. In particular, we examine the effect of

film thickness on whether the structure varies smoothly or discontinuosly on going from one

substrate to the other. Finally in section V we discuss the potential and limitations of our

approach, and outline some directions for future research.

II. THE MODEL

Following established practise in the field of generic-model LC simulation [15], we consider

a purely steric molecular model of elongated particles. Specifically, we take uniaxial rod-

shaped particles represented by the hard Gaussian overlap (HGO) potential [16]:

U12(r12, ω1, ω2) =











0 if r12 ≥ σ(r̂12, ω1, ω2)

∞ if r12 < σ(r̂12, ω1, ω2)
, (1)

where ωi = (θi, φi) are the polar and azimuthal angles describing the orientation of the long

axis of particle i, and r̂12 = r12/r12 is a unit vector along the line connecting the centres

of the two particles. In this model, the contact distance is that determined by Berne and

Pechukas [17] when they considered the overlap of two ellipsoidal Gaussians, given by

σ(r̂12, ω1, ω2) = σ0

[

1 −
1

2
χ

{

(r̂12 · û1 + r̂12 · û2)
2

1 + χ(û1 · û2)
+

(r̂12 · û1 − r̂12 · û2)
2

1 − χ(û1 · û2)

}]− 1

2

, (2)

where ûi = (cos φi sin θi, sin φi sin θi, cos θi) and χ = (κ2 − 1)/(κ2 + 1), κ being the particle

length to breadth ratio, σL/σ0. For moderate κ, the HGO model is a good approximation

to the hard ellipsoid (HE) contact function [18, 19]; furthermore, their virial coefficients

(and thus their equations of state, at least at low to moderate densities) are very similar

[20]. However, this is no longer true of highly non-spherical particles [16, 21], for which

the behaviours of the two models differ appreciably [22]. Finally, HGOs have the consider-

able computational advantage over HEs that σ(r̂12, ω1, ω2), the distance of closest approach

between two particles, is given in closed form [23].
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The HGO model is the hard-particle equivalent of the much-studied Gay-Berne

model [24]. The phase behaviour of the HGO model is density-driven and fairly simple,

comprising only two non-crystalline phases; isotropic and (for κ>
∼

3) nematic fluids at, re-

spectively, low and high number densities ρ∗ = ρσ3
0 . The isotropic-nematic phase-coexistence

densities have been located for various particle elongations in a series of previous MC sim-

ulation studies [22, 25, 26]; for the most commonly used elongation of κ = 3, the transition

occurs for ρ∗ ≈ 0.30 with a slight system-size dependence.

Particle–substrate interactions have been modelled, as in [12, 14], by a hard needle–wall

(HNW) potential

βVHNW (z, θ) =











0 if |z − zα
0 | ≥

1
2
σ0κS cos θ

∞ if |z − zα
0 | < 1

2
σ0κS cos θ

(3)

where β = 1/kBT and the z-axis has been chosen to be perpendicular to the substrates,

located at z = zα
0 (α = 1, 2). 0 ≤ κS ≤ κ sets the length of the needle with which the

substrate interacts via L = κSσ0. This affords us a degree of control over the anchoring

properties: physically, 0 < L < σL corresponds to a system where the molecules are able

to embed their side groups, but not the whole length of their cores, into the bounding

walls. Varying L between 0 and σL is therefore equivalent to changing the degree of end-

group penetrability into the confining substrates. In an experimental situation, this might

be achieved by manipulating the density, orientation or chemical affinity of an adsorbed

surface layer. The value of L can be set independently at either substrate, or indeed allowed

to vary within one or both of the substrates [27]. In this way, symmetric, hybrid and

patterned anchoring conditions can all be obtained from this one model. Other choices of

wall potential are, of course, possible, which can be derived using the results of [19], and

may in some cases be more desirable, e.g., for hard biaxial particles.

We have investigated the HGO+HNW model in a series of previous studies of LCs con-

fined in slab geometry. Our work was preceded by related simulations by Allen [28], in

which the particle centres of mass were taken to interact sterically with the substrate (corre-

sponding to the HNW potential with L = 0). More recently, a discotic equivalent has been

developed by Galindo and co-workers [29]. Finally, we should mention a DFT calculation of

the structure of a hybrid aligned HGO film performed by de Vos and Baus [30], for the spe-

cific geometry of the TN cell, using the Onsager approximation and Rapini-Papoular-type

anchoring potentials [31].
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III. THEORY

In order to find the equilibrium density distribution of a HGO film, we start from the

grand-canonical functional [32]:

βΩ [ρ(r, ω)] = βF [ρ(r, ω)] + β
∫

[

2
∑

α=1

VHNW (θ, |z − zα
0 |) − µ

]

ρ(r, ω) drdω

=
∫

ρ(r, ω) [log ρ(r, ω) − 1] drdω

−
βF exc

HS /N

8ρv0

∫

ρ(r1, ω1)f12(r1, ω1, r2, ω2)ρ(r2, ω2) dr1dω1dr2dω2

+ β
∫

[

2
∑

α=1

VHNW (|z − zα
0 |, θ) − µ

]

ρ(r, ω) drdω, (4)

where F [ρ(r, ω)] is the intrinsic Helmholtz free energy of the inhomogeneous fluid,

f12(r1, ω1, r2, ω2) = exp [−βU12(r1, ω1, r2, ω2)] − 1 is its Mayer function, µ is the chemical

potential, zα
0 (α = 1, 2) are the positions of the two substrates, and, because we are dealing

with hard-body interactions only, for which the temperature is an irrelevant variable, we can

set β = 1/kBT = 1 in all practical calculations (we retain it in the formulae for generality).

ρ(r, ω) is the density-orientation profile in the presence of the external potential VHNW (z, θ);

it is normalised to the total number of particles N ,

∫

ρ(r, ω) drdω = N, (5)

and is related to the probability that a particle positioned at r has orientation between ω

and ω+dω. From equation (1) it follows that the interaction term in equation (4) is just the

excluded volume of two HGO particles, weighted by the density-orientation distributions

ρ(r, ω), The prefactor multiplying this term contains F exc
HS , the Carnahan-Starling excess

free energy of the reference hard-sphere fluid of the same bulk packing fraction η = ρv0 =

(π/6)κρσ3
0 as the HGO fluid, given by [33]

βF exc
HS

N
=

(4 − 3η)η

(1 − η)2
. (6)

This is a simplified implementation of the Parsons-Lee density re-scaling [34], which amounts

to (approximately) summing the higher virial coefficients. In the spirit of [45], this prefactor

is a function of the bulk density, and not of the local density, which should be valid provided

the density does not exhibit too sharp spatial variations. Equation (4) is, thus, the ‘corrected’

Onsager approximation to the free energy of the confined HGO fluid, which we expect
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to perform better for particle elongations κ ≪ ∞ inasmuch as structure is determined

by location in the phase diagram. We do not expect, however, to see any new structure

that is not captured by the Onsager approximation, since what we are doing is a simple

density rescaling. More sophisticated approaches exist (see the discussion in section V),

but our purpose, as stated above, was to establish just how well we can describe anchoring

phenomena using the simplest possible microscopic treatment.

Because the particle-substrate interaction, equation (3), only depends on z and θ, it is

reasonable to assume that there is no in-plane structure, so that all quantities are functions

of z only. Then equation (4) simplifies to

βΩ [ρ(z, ω)]

Sxy

=
∫

ρ(z, ω) [log ρ(z, ω) − 1] dzdω

−

(

1 − 3
4
η
)

η

2(1 − η)2

∫

ρ(z1, ω1)Ξ(z1, ω1, z2, ω2)ρ(z2, ω2) dz1dω1dz2dω2

+ β
∫

[

2
∑

α=1

VHNW (|z − zα
0 |, θ) − µ

]

ρ(z, ω) dzdω, (7)

where Sxy is the interfacial area. Ξ(z1, ω1, z2, ω2) is now the area of a slice (cut parallel to

the bounding plates) of the excluded volume of two HGO particles of orientations ω1 and ω2

and centres at z1 and z2 [36], for which an analytical expression has been derived [23]. Note

that each surface particle experiences an environment that has both polar and azimuthal

anisotropy, as a consequence of the excluded-volume interactions between the particles in

addition to the ‘bare’ wall potential.

Minimisation of the grand canonical functional, equation (7),

δΩ [ρ(z, ω)]

δρ(z, ω)
= 0, (8)

yields the Euler-Lagrange equation for the equilibrium density-orientation profile,

log ρ(z, ω) = βµ −

(

1 − 3
4
ξ
)

(1 − ξ)2

∫ ′

Ξ(z, ω, z′, ω′)ρ(z′, ω′) dz′dω′, (9)

where the effect of the wall potentials, given by equation (3), has been incorporated through

restriction of the range of integration over θ:
∫ ′

dω =
∫ 2π

0
dφ

∫ θm

π−θm

sin θ dθ =
∫ 2π

0
dφ

∫ cos θm

− cos θm

dx, (10)

with

cos θm =











1 if |z − zα
0 | ≥

L
2

|z−z0|
L/2

if |z − zα
0 | < L

2

, (11)
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zα
0 being, we recall, the position of substrate α.

It is clear from the structure of equation (9) that µ is the Lagrange multiplier associated

with requiring that the mean number of particles in the system be N . We are therefore at

liberty to fix either µ or N (see also discussion in [28]): as in earlier work we opt for the

latter, since it allows closer contact with (constant NV T ) simulation.

Once ρ(ω, z) has been found, we can integrate out the angular dependence to get the

density profile,

ρ(z) =
∫

ρ(z, ω) dω, (12)

and use this result to define the orientational distribution function (ODF) f̂(z, ω) =

ρ(z, ω)/ρ(z), from which we can calculate the orientational order parameters in the

laboratory-fixed frame [37]:

η(z) = 〈P2(cos θ)〉 = Qzz, (13)

ε(z) = 〈sin 2θ sin φ〉 =
4

3
Qyz , (14)

ν(z) = 〈sin 2θ cos φ〉 =
4

3
Qxz, (15)

ς(z) = 〈sin2 θ cos 2φ〉 =
2

3
(Qxx − Qyy), (16)

τ(z) = 〈sin2 θ sin 2φ〉 =
4

3
Qxy, (17)

where 〈A〉 =
∫

Af̂(z, ω) dω. These are the five independent components of the nematic order

parameter tensor, Qαβ = 〈1
2
(3ω̂αω̂β−δαβ)〉: they give the fraction of molecules oriented along

the z-axis (Qzz); along the bisectors of the yz-, xz- and xy-quadrants (Qyz, Qxz and Qxy,

respectively); and the difference between the fractions of molecules oriented along the x- and

y-axes (Qxx − Qyy). In the case under study there is no twist, i.e., the director is confined

to a plane that we can take as the xz plane and ε(z) = τ(z) = 0. The three remaining

order parameters, η(z), ν(z) and ς(z), are in general all non-zero owing to surface-induced

biaxiality, see our earlier work for κS = κ [13]. This effect has not been neglected in the

present treatment, but in what follows we show results for η(z) = Qzz only, as we wish to

concentrate on the planar-to-homeotropic transition.
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IV. RESULTS

We start by calculating the phase diagram of HGOs, to check the quality of the Parson-Lee

density re-scaling of Onsager’s theory. From the bulk version of equation (7) (i.e., with all

spatial integrations extended to ±∞ and VHNW (z, θ) = 0), we have found the pressure and

the chemical potential of the I and N phases and performed the standard double-tangent

construction. Both the angle-averaged second virial coefficient (for the I phase) and the

angle-dependent excluded volume (for the N phase) are known analytically (see, e.g., [38]).

The remaining integrations over ωi were carried out by 16-point Gauss-Legendre quadrature.

Figure 1 shows the phase diagram, in terms of the reduced density, ρ∗ = ρσ3
0 , versus

elongation, κ; we have also included the Onsager theory results of [13] and coexistence

points as determined by Gibbs-Duhem integration [22]. It is seen that, as expected, the

present theory performs much better than the earlier one for smaller κ. Both the location

and the width of the I–N transition are quantitatively predicted down to κ ≈ 5, and even

for κ = 3 the discrepancy between theory and simulation is only about 10%. This should be

contrasted with Onsager theory, which only becomes comparably accurate for κ > 10. The

data of figure 1 are also consistent with the findings of Camp et al. [39], who carried out

a similar (but more thorough) analysis for the HE fluid. We are, thus, reassured that it is

sensible to perform comparison of theory and simulation results for the confined HGO fluid

at the same values of the density.

Equation (9) was solved iteratively for ρ(z, ω) by the Picard method, with an admixture

parameter of 0.9 (i.e., 90% of ‘old’ solution in each iteration), starting from a uniform and

isotropic profile. Following Chrzanowska [40], most integrations were performed by Gauss-

Legendre quadrature using 64 z-points (the minimum necessary to resolve the structure of

the profiles at the higher densities considered) and 16 × 16 ω-points (for consistency with

the bulk calculation).

Note that the range of ω′ depends on z′: the closer a particle is to a substrate, the fewer

orientations are accessible. In order to achieve good accuracy it is nevertheless crucial to

include the same number of points in the angular integrations for all z′ [40]. Convergence

was deemed to have been achieved when the error, defined as the square root of the sum of

the squared difference between consecutive iterates at 64×16×16 = 16384 points), was less

than 10−3. The density and order parameter profiles were then calculated from equations
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(12) and (13)–(17), respectively.

All simulations were performed in the canonical (NVT) ensemble. The systems were

periodic in the x and y directions, along which the simulation box lengths were determined

for each imposed number density, ρ∗, through the relationship Lx = Ly =
√

N/(ρ∗Lz).

Typical run-lengths at each state point were 0.5×106 MC sweeps (where one sweep represents

one attempted move per particle) of equilibration followed by a production run of 0.5× 106

sweeps. Initial analysis of the surface-induced structural changes has been performed using

profiles of the number density, ρ∗(z), the orientational order measured with respect to the

substrate normal,

Qzz(z) =
1

N(z)

N(z)
∑

i=1

(

3

2
u2

i,z −
1

2

)

, (18)

where N(z) is the instantaneous occupancy of the layer, and the (uniaxial) orientational

order parameter in the director frame, 〈P2〉(z).

Here, we consider two sets of simulations of κ = 3 HGO particles confined between hybrid-

anchoring substrates. First are systems with one strongly homeotropic substrate (κ′
S = 0)

and one which favours either weakly homeotropic (κ′
S = 0.2), bistable (κ′

S = 0.5) or planar

(κ′
S = 0.8) alignment. For these, we present data from simulation sequences performed

employing N = 1000 particles with wall separations Lz = 4κσ0. Subsequently, we address

systems with one strongly planar substrate and one strongly homeotropic substrate, and

investigate the effect of film thickness on the resultant alignment states. Specifically, we

consider systems with Lz = 4κσ0 and N = 1000; Lz = 6κσ0 and N = 1250; and Lz = 8κσ0

and N = 2000.

The three sets of ρ∗(z), Qzz(z) and 〈P2〉(z) profiles obtained for the first of these studies

are plotted in figures 2–4. In all cases the interfacial regions at the top (i.e., large-z)

substrate (κ′
S = 0.0) exhibit the features typical of strong homeotropic anchoring, that

is a strong density peak immediately at the substrate, with orientational order aligned along

the z-axis. At low density (ρ = 0.28) the equivalent profiles in the bottom (i.e., small-z)

substrate regions correspond reasonably to those substrates’ inherent anchoring properties.

In both simulation and DFT, these surface effects do not extend into the bulk part of the

slab and, therefore, the pairs of interfacial regions exert little influence on one another. As

the number density is increased into the bulk nematic phase, however, orientational order

develops across the whole of the the cell width, such that the bulk region comes under the
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competing influences of both surfaces. We note that, particularly for these thin simulated

films, the bulk region order parameter values observed are lower than those found in bulk

systems run at given ρ. This arises simply due to the ability of the simulated particles to

hide parts of their volume in the substrates, such that the bulk densities achieved in these

systems are generally lower than the stated ρ values.

The question naturally arises of whether a true I–N transition still exists in this small

(Lz = 4κσ0) system. The critical point for capillary nematisation of both hard spherocylin-

ders of length-to-ratio 15 and Zwanzig hard rods was set at around 2 particle lengths by

Van Roij et al. [41]. On the other hand, Mederos and co-workers [42] did find a critical pore

width of about 4 particle lengths, but note that there need be no contradiction between their

results and those of Van Roij et al., since the two groups performed calculations/simulations

on spherocylinders of very different aspect ratios and used different surface potentials. Our

theoretical curves in figures 2 and 3 clearly show two distinct phases, isotropic and nematic,

at the lower and higher densities, respectively. At the lower density the order parameter

is clearly zero in the central part of the film and the density profile is fairly structureless,

unlike at the higher density. Admittedly the nematic phase is not very strongly ordered and

the pore width may be subcritical.

In two of the three cases considered (κ′
S = 0.2 and κ′

S = 0.5), the profiles indicate a smooth

transition between the two surface arrangements, with little variation in 〈P2〉(z) and almost

linear changes in ρ∗(z) and Qzz(z) being seen in the bulk regions. For κ′
S = 0.8, however,

there is a clear drop in 〈P2〉(z) in a localised z-range which suggests a discontinuity, perhaps

somewhat rounded because the system is probably subcritical, see discussion in preceding

paragraph. This is consistent with the configuration snapshots of figure 5: the low values of

〈P2〉(z) might be understood by the presence of particles with very different orientations in

the same slice (although one should be careful not to read too much into an instantaneous

configuration). This effect is not apparent from the Qzz(z) profile, though, as similar values

could be obtained from a slice of n particles with θ ∼ π/4 and a slice of equal number of

particles with θ ∼ 0 and θ ∼ π/2. If real, the above discontinuous transition is similar to that

reported earlier by two of us [12]: in both cases, when the anchorings at the two walls are of

very different strengths then the tilt angle varies smoothly (as in figures 2 and 3), but when

they are of comparable strengths then there is a transition to a regime where the tilt angle

does not vary smoothly (as in figure 4). Note that it is essential that films be sufficiently
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thin in order to exhibit this kind of behaviour [43, 44]; the qualitative dependance on film

thickness will be discussed later.

Overall agreement between theory and simulation is good at the lower density for all

needle lengths. At the higher density, theory succeeds in capturing both the positional and

orientational structure observed in the simulated films. However, quantitative agreement

deteriorates somewhat as the film anchorings are made more hybrid, i.e., as the bottom

wall κ′
S value is increased. When this parameter is set at κ′

S = 0.2, the heights and num-

bers of peaks/troughs are fairly well predicted, but their positions are slightly shifted. For

κ′
S = 0.5, the theory predicts a somewhat more structured density, and a higher degree

of orientational order, in the lower half of the film (adjacent to the bistable wall) than is

present in the simulation data. Then for κ′
S = 0.8 agreement again improves throughout the

system. The fact that the second and third density peaks (and corresponding features in the

order parameter profiles) from theory are systematically shifted away from the substrates is

probably a consequence of an overestimation of the strength of the nematic phase.

Next, we consider systems in which the substrate conditions were held fixed at strongly

planar (κ′
S = 1.0) and strongly homeotropic (κ′

S = 0.0,) but the film thickness was varied.

This required increasing the number of particles in the system, in order to avoid interactions

between particles and their images. We took Lz = 4κσ0, Lz = 6κσ0 and Lz = 8κσ0, and

N = 1000, N = 1250 and N = 2000, respectively. For the largest of these the number

of z-points in the DFT calculation also had to be increased to 100, and Gauss-Chebyshev

quadrature was used. Typical profiles obtained at the nominally nematic density of ρ∗ = 0.35

are shown in figure 6 where, for comparison purposes, the z coordinates have been scaled

by Lz .

Not surprisingly, both theory and simulation predict that the discontinuous director field

observed for the κ′
S = 0.8 system above is also exhibited by the thinnest of these strongly

anchored systems. This is most clearly apparent from the marked minima seen in the

corresponding 〈P2〉(z) profiles. For the two thicker systems, however, theory and simulation

are in disagreement; theory continues to predict the discontinuous behaviour, whereas the

simulations exhibit bent director arrangements in which the director varies smoothly from

planar to homeotropic as the film is traversed. The profiles obtained for these continuous

bent director arrangements are characterised by extended regions in the bulk of the confined

films in which the density and nematic order profiles are virtually flat, while the Qzz(z) profile
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varies linearly. Indeed, when plotted in terms of the scaled length z/Lz it is striking that

these two Qzz(z) profiles are effectively identical away from the structural oscillations at each

wall. The bent director structures represented by these profiles are exhibited particularly

clearly by the associated configuration snapshots shown in figure 7.

The observation of two distinct profile structures in these simulations is consistent with

there being a critical film thickness at which the transition between the two arrangements

takes place. For this particular set of wall-particle interaction parameters, this critical

thickness appears to lie between 4κσ0 and 6κσ0. This result places a finite limit on the

theoretical prediction [43, 44] that hybrid-anchored films with a thickness of only a few

molecular lengths do not exhibit a continuous bent-director structure. It is also consistent

with the experimental observation of Vanderbrouck et al. [5] that thin films of 5CB spun-

cast onto a silicon wafer, and thus having hybrid anchoring conditions, are stable only if

their thickness is greater than 20 nm.

In contrast, our DFT was not able to recover the continuous bend configuration for

these systems: all theory 〈P2〉(z) profiles exhibit a region of depressed order in the bulk,

which shrinks in extension as Lz increases, but is still present in the thickest film, Lz =

8κσ0. Comparing the DFT and simulation profiles here, it is evident that the density

oscillations given by DFT are somewhat overestimated, with peak positions systematically

shifted farther away from the substrates than those found in the equivalent simulations.

This suggests that theory overestimates the extent of the positional structure adopted by

these systems. The failure to observe a critical thickness here is certainly consistent with

the notion that the effective anchoring strengths pertinent to the DFT systems are greater

than those in the simulation systems. Since anchoring strength emerges from complex many

body packing and layering effects, however, it is not surprising that our second-virial level

DFT has this property.

V. CONCLUSIONS

In this paper we have presented a combined MC simulation and DFT treatment of a

HGO hybrid aligned fluid confined between parallel substrates. The anchoring can be tuned

independently at either substrate, by varying the extent to which a particle is allowed to

penetrate it. The Onsager approximation, combined with a simple Parsons-Lee density
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re-scaling, can in some cases yield semi-quantitative predictions for the density and orienta-

tional distribution of particles of elongation as small as κ = 3. Many of our profiles exhibit

fairly strong oscillations, which are indicative of layering phenomena and are expected if the

demsity is not very low, i.e., deeper into the N phase than the immediate vicinity of the I–N

transition. The same qualitative behaviour was reported by Mederos et al. [42], who went

deep into the N phase, but not by Van Roij et al. [41], who were interested mostly in the

I–N transition. Neither of these sets of authors, however, considered hybrid aligned films as

we do here. Furthermore, the solution procedure also yields the free energy, thus making

it possible to derive the effective interaction between substrates. This will be the subject

of future work. More sophisitcated theoretical approaches are of course available, such as a

weighted-density [45] or fundamental-measure [46] approximation, which would very likely

be more accurate, but are also highly non-trivial to implement.

The current theory appears very able to capture the complex positional and orientational

structure adopted within the thin LC films considered here. As such, it represents a signif-

icant advance of the type recently called for by Delabre and co-workers [7]. In the systems

we investigated, the theory appears able to describe the discontinuous structural transition

between the two main hybrid-anchored states, although the critical thickness is overesti-

mated. This latter point is to be expected though, as this thickness depends crucially on

the anchoring strengths at the two substrates. More precise tuning of this would require

direct calculation of the HNW anchoring energy, along the lines of the studies reported in

[28] and [47]. The possible interplay between this and a capillary nematisation transition

also needs to be investigated by mapping the full phase diagram of the confined fluid.

Finally, we note that the theory presented here can be straightforwardly generalised to

more sophisticated confinement geometries or surface interactions, and also to mixtures of

two or more types of hard body. As such, it could be used to determine effective inter-particle

interactions for a range of colloid-in-LC suspensions. One can alternatively envisage the same

approach being used to study the potentially very rich behaviour of a confined binary LC

mixture in which the two components have different easy axes at either substrate. This work

is in progress and will be reported elsewhere.

14



Acknowledgements

We wish to acknowledge useful discussions with C. M. Care and J. R. Henderson. This

work has benefitted from financial support from Sheffield Hallam University and the British

Council’s Treaty of Windsor programme, grant no. B-54/07.

[1] See, e.g., articles by D. Beaglehole, T. J. Sluckin and A. Poniewierski, and D. E. Sullivan

and M. M. Telo da Gama, in Fluid Interfacial Phenomena, ed. by C. A. Croxton (Wiley,

Chichester, 1986).
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FIG. 1: I–N phase diagram of the HGO fluid: ρ∗ = ρσ3
0 and κ are the reduced density and the

elongation, respectively. Solid lines: Onsager theory with Parsons-Lee density re-scaling; dashed

lines: Onsager theory [13]; filled squares: MC simulation results [22].
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FIG. 2: Reduced density ρ∗(z) (top), order parameter Qzz(z) (middle) and order parameter 〈P2〉(z)

(bottom) profiles for a hybrid film of HGO particles of elongation κ = 3, needle length κ′
S = 0.2 on

the small-z (or bottom) substrate and κ′
S = 0.0 on the large-z (or top) substrate, for ρ∗bulk = 0.28

(solid line and open circles) and ρ∗bulk = 0.34 (dashed line and filled squares). Lines are from theory,

symbols are from simulation. The lower density lies in the I phase, the higher density in the N

phase See the text for details.
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FIG. 3: Same as figure 2, but for κ′
S = 0.5 at the small-z substrate.
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FIG. 4: Same as figures 2 and 3, but for κ′
S = 0.8 at the small-z substrate.
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(e)
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FIG. 5: Configuration snapshots for hybrid films with strong homeotropic anchoring at the top

substrate (κ′
S = 0.0). Bottom substrate: (a) and (b) weakly homeotropic (κ′

S = 0.2); (c) and

(d) bistable (κ′
S = 0.5); (e) and (f) planar (κ′

S = 0.5). Snapshots (a), (c) and (e), on the left,

correspond to the bulk isotropic phase (ρ∗ = 0.28); (b), (d) and (f), on the right, to the bulk

nematic phase (ρ∗ = 0.34).
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FIG. 6: Reduced density ρ∗(z) (top), order parameter Qzz(z) (middle) and order parameter 〈P2〉(z)

(bottom) profiles for a hybrid film of HGO particles of elongation κ = 3, needle length κ′
S = 1.0

on the small-z (bottom) substrate and κ′
S = 0.0 on the large-z (top) substrate, for ρ∗bulk = 0.35.

Solid line and open circles: Lz = 4κσ0; dashed line and filled squares: Lz = 6κσ0; dotted line and

crosses: Lz = 8κσ0. Lines are from theory, symbols are from simulation.
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(c)(b)(a)

FIG. 7: Typical configuration snapshots of hybrid films HGO particles of elongation κ = 3, using

the HNW surface potential with κ′
S = 1.0 (bottom) and κ′

S = 0.0 (top). (a) Lz = 4κσ0 and

N = 1000 particles, (b) Lz = 6κσ0 and N = 1250 particles, and (c) Lz = 8κσ0 and N = 2000

particles. In all cases ρ∗bulk = 0.35.
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