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Abstract

In this paper, we use a relatively simple continuum model to investigate the effects of dielectric

inhomogeneity within confined liquid crystal cells. Specifically, we consider, in planar, cylindrical

and spherical geometries, the stability of a nematic-isotropic interface subject to an applied voltage.

Depending on the magnitude of this voltage, the temperature and the geometry of the cell, the

nematic region may shrink until the material is completely isotropic within the cell, grow until the

nematic phase fills the cell or, in certain geometries, coexist with the isotropic phase. For planar

geometry, no coexistence is found, but we are able to give analytical expressions for the critical

voltage for an electric-field-induced phase transition as well as the critical wetting layer thickness

for arbitrary applied voltage. In cells with cylindrical and spherical geometries, however, stable

nematic-isotropic coexistence is predicted, the thickness of the nematic region being controllable

by alteration of the applied voltage.
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I. INTRODUCTION

The nematic-isotropic (N-I ) phase transition is weakly first order and so there exists a

narrow temperature range over which the N and I phases coexist. In practice, however, for

most systems the weakness of the N-I surface tension and the small enthalpy of the tran-

sition render experimental stabilisation of N-I coexistence a considerable challenge. Thus,

most direct observations of the N-I interface have relied on imposition of a temperature

gradient [1–3].

The conditions for N-I coexistence can also be influenced by the presence of disclinations,

substrates or impurities, since such inhomogeneities can seed regions of one symmetry at

state points for which the other is stable in 3d bulk. For example, order parameter variation

at planar substrates has been observed in numerous experimental systems [4]. Indeed, there

are a few cases where, by sandwiching a liquid crystal between substrates preferentially wet,

respectively, by N and I phases, and imposing precise temperature control, thermally equi-

librated N-I interfaces have been obtained [5, 6]. There are also numerous continuum and

density functional treatments of liquid crystals adsorbed at substrates which show either

partial or complete wetting by an I (N ) film in the presence of a N (I ) bulk [7, 8]. Corre-

spondingly, substrate-induced order parameter variation is a common finding in computer

simulation studies of confined and adsorbed liquid crystals [9, 10], leading to observation of

phenomena such as capillary nematisation and criticality of the bulk N-I transition [11, 12].

A number of authors have also investigated the combined effects of applied bulk and

surface fields on the N-I transition and wetting film growth [13, 14] although few analytical

results have been reported. An applied orienting field can influence both surface and bulk

order and may induce a transition to the N phase even when the I phase is the global

minimiser of the bulk thermotropic energy. In practice, however, orienting fields are not

applied directly; rather, they develop due to voltages applied across the dielectric liquid

crystal contained in the device. As such, spatial inhomogeneity in the electric field (reflect-

ing any dielectric inhomogeneity) is perfectly possible and certainly must occur in situations

involving, e.g., an isotropic liquid crystal confined between substrates which induce sig-

nificant orientational order in the interfacial regions. This situation is complicated even

further in cells with very high resolution electrode patterns, where these inhomogeneities

are two-dimensional [15].
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In this paper we use a relatively simple continuum model to investigate the effect of

dielectric inhomogeneity on the phase behaviour of a liquid crystals subject to an applied

voltage. In particular, we examine the possibility of using an applied voltage to control

the relative thicknesses of N and I domains by exploiting the dielectric differences between

the two phases. We note that there is an analogy [16] to be drawn here with the shear-

induced banding induced in colloidal liquid crystalline systems [17]. In these experiments,

the system separates into N and I bands rather than adopting a continuous stress field

across the entire shear cell [18]. Unlike these colloidal systems, however, the N-I interface in

a single-component molecular system is characterised by a very small amplitude density step.

Thus, unusually, the significant dielectric discontinuity seen at this interface has a very small

associated compositional change. Consequently, formation of this particular phase boundary

does not require substantial material transport.

The remainder of this paper is structured as follows. In the next two sections, we present

the three geometries considered and detail, for each setup, the relevant contributions to the

free energy of the system. In the subsequent section we give the resultant analysis for a

planar-geometry cell. Following a description of the results obtained for this planar sys-

tem, we then determine the corresponding results for systems with cylindrical and spherical

geometries. Finally, the implications of these results are discussed.

II. GEOMETRIES

We consider liquid crystal systems with three different geometries: planar, cylindrical and

spherical. In all three geometries we consider mesogenic material to be sandwiched between

two substrates and hypothesise that, in the absence of an applied field, substrate-induced

regions of N and I phases reside within this sandwich.

In the planar geometry the liquid crystal material is sandwiched between two flat parallel

substrates (see Fig. 1(a)), one of which favours homeotropic alignment. It is assumed that a

region with N order is induced at one of the substrates due to partial or complete wetting [7].

It is further assumed that electrodes are deposited on the inner surfaces of the substrates so

that an electric field may be applied in the direction parallel to the substrate normal, the

z direction. The substrates are a distance d apart and the N material occupies a region of

thickness d∗, whilst the I phase fills the rest of the cell.
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In the cylindrical and spherical geometries (see Figs 1(b) and (c)) the liquid crystal

material fills the region between two concentric cylindrical or spherical shells, respectively.

Here, electrodes are deposited on the inner face of the outer cylinder/sphere and the outer

face of the inner cylinder/sphere. Any applied electric field, therefore, points in the radial

direction. The radii of the inner and outer cylinder/sphere are R and R+d and the nematic

region, between r = R and r = R + d∗, is taken to be adjacent to the inner cylinder/sphere.

III. FREE ENERGY

Our main concern in what follows is the effect of an applied voltage on the total thickness

of the N region. Specifically, we consider whether the dielectric discontinuity associated with

an N-I interface can be used to generate field-controllable domain thicknesses. To simplify

the description of this system, we first assume that the nematic order parameter, S, is

constant within each phase-region and that the interfaces between the N and I regions have

a finite and constant surface tension.

With the substrate adjacent to the N region inducing homeotropic alignment, the electric

field assumed to be aligned with the z-axis (in the planar case) or the local r-axis (in the

cylindrical and spherical cases) and the liquid crystal chosen to have a positive dielectric

anisotropy, the director within the N layer can be taken to lie along the z-axis (planar) or the

radial direction (cylindrical, spherical). However, the electric field also induces an increase

in order within both the N and I regions. In fact the I region becomes paranematic, that

is a state with nematic symmetry about the field-axis but with a low order parameter. If

we assume that the system remains uniaxial (a valid assumption since the homeotropically

aligned surfaces do not induce biaxiality and, in this system, the dielectric effect of the field

will tend to increase uniaxial order and reduce any biaxiality present) the liquid crystalline

order can be described by the symmetric traceless tensor,

Q = S(n⊗ n− I/3) , (1)

where I is the identity tensor. The product n⊗ n produces the three by three matrix with

ijth entry equal to ninj, the product of the ith and jth components of the director. The

total free energy of the system, F , can then be expressed as the sum of: a thermotropic

energy contribution, Ft, which describes the preference for the material to be in the N or I
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phase; an elastic distortion energy Fd; an electrostatic energy contribution, Fe, which will be

different in the paranematic and N regions due to the different permittivities of the phases;

and an interfacial energy, Fi, for the N-I interface.

In the planar geometry case there will be no distortion of the director and the interfacial

area will be unchanged as the N region changes size. Therefore, in the planar case, the

elastic contribution to the free energy will be zero and the interfacial contribution will be

constant (with respect to changes in d∗).

In general, the free energy is therefore

F = Ft + Fd + Fe + Fi =
∫

V ol
(Ft + Fd + Fe) dv +

∫

A
Fi ds (2)

where, to recap, Vol is the volume occupied by the combined N and I regions, A is the area of

the N-I interface and F denotes the appropriate free energy density contributions. Clearly,

F is dependent on the order parameters within both the paranematic and N layers, SI and

SN , respectively, and the total thickness of the N layer, d∗. Minimising F with respect to

these three variables, therefore, offers a route to determining the equilibrium states for these

systems.

A. Thermotropic energy

Following the classic Landau-De Gennes treatment [13], the thermotropic energy density

of the nematic is approximated using a truncated Taylor expansion in the tensor order

parameter,

Ft = F0 +
a

2
tr

(
Q2

)
+

b

3
tr

(
Q3

)
+

c

4

(
tr

(
Q2

))2
, (3)

where F0 is the energy density of the I phase and tr denotes the trace operator. In principle,

the coefficients a, b and c can all be temperature dependent although it is usual to assume

that a = α (T − T ∗) is linear in temperature T , while α, b and c are all constants. In this

expression, T ∗ is the supercooling limit, the temperature at which the I phase becomes

unstable.

Using the uniaxial expression for Q given in eq. (1) the thermotropic energy then becomes,

Ft = F0 +
α

3
(T − T ∗)S2 +

2b

27
S3 +

c

9
S4 = F0 + σ(S) , (4)

where the shorthand notation σ(S) will be used in later sections. The constant F0 will not

enter the energy minimisation and will therefore be neglected in future expressions. There
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are, at most, three extrema of this thermotropic energy expression, the I phase S = 0 and two

N states S+ = (−b+
√

b2 − 24 αc(T − T ∗))/4c and S− = (−b−
√

b2 − 24 αc(T − T ∗))/4c (one

stable and one unstable). There are also three significant temperatures: the temperature at

which the I phase ceases to be metastable, the supercooling limit T ∗; the temperature at

which the energy density of the I phase S = 0 and the energy density of the N phase S = S+

are equal, the clearing point, given by TNI = T ∗+b2/27ac; and the temperature above which

the N phase ceases to be metastable, the superheating limit given by T+ = T ∗ + b2/24ac.

Within the temperature range T < T+ the state S = S+ is the relevant stable N state.

With parameter values α = 1.5× 105 J m−3 K−1, b = −2.25 × 106 J m−3 , c = 4.5 × 106 J

m−3 the superheating and clearing point are T+ = T ∗+0.3125 K and TNI = T ∗+0.2778 K.

B. Electrostatic energy

Assuming an absence of permanent dipoles or free charges, the electrostatic energy of the

system is taken to derive from the dipoles induced when a voltage is applied across the cell.

The electrostatic free energy density is then,

Fe = −
∫

D.dE = −1

2
ε0(ε.E).E , (5)

where E is the electric field, D = ε0εE is the displacement field, ε0 is the permittivity of

free space and ε is the dielectric tensor.

Using Maxwell’s equations, in the planar, cylindrical and spherical cases, for a charge-free

system it is then relatively straightforward to show that the electric field in the substrate

normal direction is

Ez(z) =
1

ε0εzz(z)


 −V

∫ d
0

1
ε0εzz(z)

dz


 , (6)

for the planar case,

Er(r) =
1

ε0εrr(r)

1

r


 −V

∫ R+d
R

1
ε0εrr(r)

1
r
dr


 , (7)

for the cylindrical case, and

Er(r) =
1

ε0εrr(r)

1

r2


 −V

∫ R+d
R

1
ε0εrr(r)

1
r2 dr


 , (8)

for the spherical case. Here V is the potential difference between the two substrates (with

the higher voltage applied at the upper/outer surface) and εzz(z), εrr(r) are the zz and rr

components of the dielectric tensor which may change through the cell.

6



Writing the dielectric tensor as

ε = ε̄I + ∆ε∗Q , (9)

and assuming uniaxiality throughout the cell, eq. (1) with n = ez or n = er, depending on

the geometry, then leads to

εzz or εrr = ε̄ +
2∆ε∗S

3
, (10)

where ε̄ = (ε|| + 2ε⊥)/3 is the permittivity of the I phase and ∆ε∗ = (ε|| − ε⊥)/Sexp is the

dielectric anisotropy scaled by the order parameter at which the experimentally determined

permittivity values were taken, Sexp. Denoting the order parameter in the N phase as SN

and that in the I /paranematic phase as SI then gives, in the respective phase regions,

εN = ε̄ + 2∆ε∗SN/3 and εI = ε̄ + 2∆ε∗SI/3.

In the three geometries we consider here, there are N and paranematic regions, with fixed

permittivity tensors εN and εI , respectively. Because of the simplicity of the geometries

considered, the free energy densities eq. (5) may then be written as

Fe = −1

2
ε0εzzEz

2 , or − 1

2
ε0εrrEr

2 , (11)

for the planar and non-planar geometries, respectively. The forms of Ez, Er, εzz and εrr

are then given by eqs. (6)-(8) and eq. (10) so that the integrals needed to calculate the

electrostatic energy in the different regions can be evaluated analytically.

C. Elastic energy

The elastic energy of the material is defined in both the N and paranematic region but

a true I phase will not support equilibrium elastic distortion. We use the standard Frank

energy density for an achiral N [19]

Fd =
K11

2
(∇n)2 +

K22

2
(n.∇× n)2 +

K33

2
(n×∇× n)2 , (12)

where the Kii are the Frank elastic constants of splay twist and bend, respectively, and

the K24 saddle-splay term has been neglected since we assume the director exhibits fixed

homeotropic anchoring at the substrate and interface [19]. The elastic constants are de-

pendent on the order parameter; thus Kii = S2Lii where the Lii constants are, largely,

temperature independent.

7



For the planar case, when n = ez there is no distortion and the elastic energy density

is zero. However, for the cylindrical and spherical cases the director exhibits a splayed

structure n = er and the elastic energy density eq. (12) becomes

Fd =
L11S

2

2

1

r2
. (13)

The elastic energy, in the cylindrical and spherical geometries, can therefore be calculated by

integrating eq. (13) over the nematic and paranematic regions, where S = SN and S = SI ,

respectively.

D. Interfacial energy

The interfacial energy density can be taken to be proportional to the square of the

difference between the order parameters in the N and paranematic regions,

Fi = γ(SN − SI)
2, (14)

and therefore the interfacial energy is simply

Fi = γA(SN − SI)
2 (15)

where A is the area of the interface and γ is a surface tension parameter for the N -

paranematic interface. In the planar geometry the interfacial area is simply A = lxly,

the area of the cell. In the cylindrical case A = 2π(R + d∗)lz where lz is the extent of the

cylinder in the z direction. In the spherical case the interface area is A = 4π(R + d∗)2.

IV. PLANAR GEOMETRY

In the planar geometry shown in Fig. 1(a) the electric field expression in eq. (6) may be

evaluated analytically by setting εzz = εN in 0 < z < d∗ and εzz = εI in d∗ < z < d. The

electric fields within the N and I regions then become

FN
e = −ε0εI

2

V 2εIεN

(d∗(εI − εN) + dεN)2
, F I

e = −ε0εN

2

V 2εIεN

(d∗(εI − εN) + dεN)2
. (16)

Splitting the free energy in eq. (2) into the N and I regions and using the free energy

densities in eqs. (4), (16) and (14) then gives

F = lxly

(∫ d∗

0
σ(SN)− ε0εI

2

V 2εIεN

(d∗(εI − εN) + dεN)2
dz
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+
∫ d

d∗
σ(SI)− ε0εN

2

V 2εIεN

(d∗(εI − εN) + dεN)2
dz + γ(SN − SI)

2

)
, (17)

where lx and ly are the extents of cell in the x and y direction. Upon integration, eq. (17)

leads to

F/(lxly) = (d∗ (σ(SN)− σ(SI)) + dσ(SI))− 1

2

ε0εIεN V 2

(d∗(εI − εN) + dεN)
+ γ(SN − SI)

2. (18)

This energy has a singularity at d∗ = dεN/(εN − εI) but, since the N phase is more ordered

than the paranematic phase, we may assume that 0 < εI < εN so that the singularity occurs

for the non-physical region, d∗ > d. With the applied voltage set to zero, minimisation of

this free energy expression leads to the expected solutions SI = 0 and SN = S+. A second

minimisation of the free energy with respect to d∗ (within the constraint that 0 ≤ d∗ ≤ d)

leads to the results d∗ = 0 (i.e. no N region) if σ(SN) > σ(SI), and d∗ = d (i.e. a fully N

cell) if σ(SN) < σ(SI).

When a voltage is applied to the cell, however, the minimisation becomes more compli-

cated due to the dependence of εI and εN on SI and SN . Very little analytical progress can

be made with the full description of this situation and the free energy must be minimised

numerically (see below). However, if we assume that the applied voltage does not signif-

icantly alter the order parameter in either region then an approximate analytical solution

may be found. Assuming that the dielectric contribution to the energy is small compared

to the thermotropic contribution is equivalent to having,

ε0ε̄V
2

d
¿ dβ , (19)

where β is of the same order as the thermotropic Landau-de Gennes coefficients a, b, c.

Since ε0 = 8.854 × 1012 Fm−1 and, typically, d ∼ 10−5 m, β ∼ 106 J m−3, ε̄ ∼ 101 this is

equivalent to V ¿ 103 volts which is well above the voltages applied in typical devices. We

can, therefore, be relatively confident in using (ε0ε̄V
2)/(d2β) = δ as a small parameter. A

perturbation analysis can then be carried out using the assumption that, when δ ¿ 1, the

N and paranematic order parameters can be approximated by expansion series about the

values SN = S+ and SI = 0,

SN = S+ + δSN1 + O(δ2), (20)

SI = δSI1 + O(δ2), (21)
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Solutions for SN1 and SI1, as well as higher order terms in the expansions, can readily be

found analytically, although these expressions are lengthy and are not presented here. Using

the resulting approximations from eqs. (20) and (21), substituted into the total energy, we

then obtain the free energy as a function of d∗ only.

To illustrate the predictions of this approach, we show, in Fig. 2, plots of the free energy

as a function of domain size d∗ for various voltages but for a fixed temperature T = T ∗+0.28

K, which is between T+ = T ∗ + 0.3125 K and TNI = T ∗ + 0.2778 K so that the N phase

is metastable. Other parameter values are α = 1.5 × 105 J m−3 K−1, b = −2.25 × 106 J

m−3 , c = 4.5 × 106 J m−3, ε⊥ = 4.2, ε|| = 9.6, Sexp = 0.6 (so that ∆ε∗ = 9 and ε̄ = 6),

ε0 = 8.854× 10−12 Fm−1 and d = 1.0× 10−5 m. The shaded area, where d∗ < 0 or d∗ > d is

outside the range of physically achievable domain sizes and so can be disregarded.

Fig. 2 shows the energy plot resulting from a numerical minimisation of the full free

energy expression eq. (18) with respect to SI and SN , as well as the analytical results

obtained using both the perturbation solution (based on the expansions (20) and (21)) and

the most basic free energy expression which assumes SI = 0 and SN = S+. We note that

it is not possible to differentiate between these three sets of plots, the percentage difference

between the numerical solution and the approximate solutions being at most 0.05%. This

means that not only is the perturbation expansion solution an excellent approximation to

the numerical solution, but even the crude simplification SI = 0, SN = S+ is also extremely

accurate.

With the simplification SI = 0, SN = S+ we may go further analytically. By differenti-

ating the free energy eq. (18) with respect to d∗ we find that there are stationary points of

the energy at

d∗max =
dεN

(εN − εI)
− |V |

√
ε0εNεI

2 (εN − εI) σ(S+)
, (22)

d∗min =
dεN

(εN − εI)
+ |V |

√
ε0εNεI

2 (εN − εI) σ(S+)
, (23)

where, as indicated by the subscripts, it is possible to show (by considering d2F̄ /d(d∗)2)

that d∗max is a maximum of the energy and d∗min is a minimum of the energy. However,

these maximum and minimum points only exist when σ(S+) > 0, that is when T > TNI .

For physical significance, it is also necessary for the nematic phase to exist at least as a

metastable state and, therefore, we must also have T < T+. From eqs. (22) and (23) we
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can also see that, since εN > εI , we obtain d∗min > d and, thus, the stable equilibrium case

is never physically relevant for this system geometry. The value of d∗ corresponding to an

energy maximum, given by eq. (22), is physically relevant in some cases; these values are

indicated by the open circles in Fig. 2. From these, we see that, for cases with a total N

domain width smaller than d∗max, the N domains will shrink to leave the cell filled with the

I fluid whereas when the total N domain width is larger than d∗max the N domain will grow

and fill the cell.

The maximum point lies within the cell, that is 0 < d∗ < d, when,

Vmin = d

√√√√ 2εIσ(S+)

ε0εN (εN − εI)
< V < d

√√√√ 2εNσ(S+)

ε0εI (εN − εI)
= Vmax . (24)

Therefore, for any fixed temperature between TN−I and T+, there exists a minimum voltage

such that for V < Vmin, even a substrate-induced domain of size d∗ = d (the full cell filled

with N ) will not be able to maintain the cell in the N phase. The energy curve in Fig. 2 with

V = 7.5 Volts is such a situation where a N domain of any size will shrink to leave an I cell.

There is also a corresponding maximum voltage Vmax above which a surface domain of size

d∗ = 0 will be unstable with respect to the full phase transition of the cell from I to N. In

such cases, N order will develop at all points in the cell and, therefore, the transition from

N to I will be homogeneous and not domain driven. In other words, any applied voltage

V > Vmax will lead to a homogeneous I-N transition.

The behaviour of this field-induced seeding is summarised in the phase diagram, Fig. 3.

For temperatures between TN−I and T+ no field-induced I-N transition is possible for volt-

ages V < Vmin. At fixed T in this temperature range, however, a field-induced transi-

tion to the N phase, through domain growth, will be possible for voltages in the range

Vmin < V < Vmax. The precise value of V needed to induce this domain-growth process will

depend on the inherent domain size in the system. Thus, for substrates which are completely

wetted by a N film (leading to large d∗), a voltage close to Vmin will suffice, whereas partially

wet substrates will require V <∼ Vmax. This raises an intriguing prospect for patterned sur-

faces, that this domain growth will directly project the degree of surface-induced order into

the state adopted across the entire cell width. For applied voltages greater than Vmax(T ) a

homogeneous transition occurs in this temperature region. For temperatures greater than

T+ the N phase is not a stable state and, therefore, the field-induced transition is not pos-

sible, although, the orienting effect of the applied field will induce some paranematic order
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within the fluid.

V. NON-PLANAR GEOMETRIES

In the analysis presented in the previous section, the substrates confining the liquid

crystal were taken to be planar and parallel. In this geometry, it was found that the global

minimum of the free energy always corresponds to either a fully N or a fully I cell. For

certain narrow ranges of voltage and temperature, however, the state adopted by the system

was found to be controlled, in part, by the extent of any substrate-induced ordered domain.

Indeed, for temperatures between TN−I and T+, it was shown that discontinuous switching

from fully-N to fully-I states could be induced by simply changing the applied voltage (see

Fig. 3) but no stable equilibrium states were found involving an N-I interface.

As we shall now show, however, equivalent analysis performed for cells with a non-planar

geometry does predict arrangements corresponding to field-stabilised N-I coexistence over

the limited temperature range TN−I ≤ T ≤ T+. Specifically, we show that for cylindrical

and spherical cells it is possible to find a range of cell dimensions and voltages for which the

global free energy is minimised by a state which includes a N-I interface. This effect occurs

because, in these geometries, the electric field cannot be uniform throughout space; hence,

in some situations, the global free energy may be minimised if the region of the cell with

the stronger electric field is N while the remainder of the cell remains I.

In a non-planar geometry there is a non-zero contribution to the free energy from distor-

tions in the director field and the free energy of the N-I interface is also dependent upon

the position of the interface. Despite these additional effects, and subject to the assumption

that it is valid to ignore any change in the order parameter due to the splay deformation, it

is found that for typical values of the material parameters, a field-banded arrangement with

a N-I interface can be the stable state.

A. Cylindrical Case

If we consider a system with cylindrical geometry, with an inner cylinder of radius R and

a concentric outer cylinder of radius R+d (see Fig. 1(b)), we may follow similar arguments to

those in the previous section to show that the contributions to the free energy contributions
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are given by

Ft/lz = π [σ(SI)(d− d∗)(d + d∗ + 2R) + σ(SN)d∗(d∗ + 2R)]

Fe/lz =
πV 2ε0εNεI

εI(log(R)− log(d∗ + R)) + εN(ln(d∗ + R)− ln(d + R))

Fd/lz = πL11

[
S2

I{ln(d + R)− ln(d∗ + R)} − S2
N{ln(R)− ln(d∗ + R)}

]

Fi/lz = 2πγ(d∗ + R)(SI − SN)2 (25)

where lz is the extent of the cylinder in the z direction. Note, for consistency with the results

presented in Section IV, that in the limit of large radius, the above expressions for Ft and

Fe, scaled by the surface area of the inner sphere, asymptote to the corresponding terms

in the equivalent planar geometry expression (eq. (18)); this result can be demonstrated

analytically.

However, it is not possible to progress analytically with this set of equations. Resorting

to numerical calculations, therefore, we plot, in Fig. 4, the free energy of this system per

unit length in the z direction. Here, we have used the same temperature, cell thickness

and material parameter values as those employed in our planar-geometry calculations with,

additionally, γ = 1.0× 10−5Nm−1 and L11 = 1.0× 10−11N.

These results show that for a large inner cylinder radius the behaviour is similar to that

found for the planar case (Fig. 4(a)): a nematic region will either expand to fill the region

if d∗ is greater than some critical value, or the I layer will expand to fill the region if d∗ is

smaller than the critical value. However, when the radius R of the inner sphere is reduced,

a significant range of applied voltages exists for which the free energy has a minimum for

0 < d∗ < d, i.e. there is a stable N-I interface between the inner and outer cylinders

(Fig. 4(b)). Furthermore, other result sets (not shown here) indicate that if the radius

of the outer conductor and the applied voltage are increased sufficiently, it is possible to

achieve thick N layers. It must be emphasised, however, that such coexistence only occurs

over the narrow temperature range for which both the N and I phases are either stable or

metastable.

B. Spherical Case

If we now consider a system with spherical symmetry consisting of an inner conductor of

radius R surrounded by a concentric outer sphere of radius R + d (Fig. 1(c)) the free energy
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contributions can be expressed as

Ft =
4

3
π

[
σ(SI)

(
(R + d)3 − (R + d∗)3

)

+ σ(SN)
(
(R + d∗)3 −R3

)]

Fe = −2πε0εNεIR(d + r)(d∗ + R)V 2

εId∗(d + R) + εNR(d− d∗)

Fd = 8πL11d
∗S2

N

Fi = 4πγ(d∗ + R)2(SI − SN)2 (26)

It is again not possible to progress analytically with this set of equations. However, as in

the cylindrical case, we may plot the total energy as a function of d∗ by evaluating SI and

SN in eqs. (26) by numerical minimisation. We may also use the simple assumption that

SI = 0 and SN = S+ to simplify the total energy; as shown above, this is an extremely good

approximation to the full energy expression.

Using the same parameter values as those employed in the cylindrical case, we show,

in Figs. 5(a) and (b), energy plots for a range of voltages and for R = 50 × 10−5 m and

R = 5 × 10−5 m, respectively. As in the cylindrical case, when the radius R of the inner

sphere is reduced sufficiently, there is a significant range of applied voltages for which a

stable N-I interface develops between the inner and outer spheres.

VI. CONCLUSIONS

Using a relatively simple model of the effect of an applied voltage on the I to N phase

transition, we have investigated the stability of the N-I interface under the influence of

various electric field patterns. In the case of a planar geometry system, we have found that

the N-I interface cannot be stabilised by the effects of dielectric inhomogeneity alone. Here,

though, we have been able to find analytic expressions for the critical domain size eq. (22)

and critical voltage eq. (24) at which field-induced transitions occur. Thus, from eq. (22),

we see that the critical domain size, d∗max, is linearly proportional to the modulus of the

applied voltage and its temperature dependence is of the form −(T − TNI)
−1/2 due to the

temperature dependence of σ(S+). Therefore, as the temperature decreases towards TNI the

critical domain size decreases, eventually leading to a homogeneous transition where domains

are not necessary to seed the transition. From the minimum and maximum critical voltages

14



in eq. (24) we find that Vmin/Vmax = εI/εN so that for a weakly anisotropic materials, where

εN ≈ εI , the range of voltages which induce a domain driven phase transition will be small.

For the cylindrical and spherical geometries we have found that it is possible, for a range

of cell dimensions and voltages, to generate a stable N-I interface in the interior of the

liquid crystal region. Furthermore, we have shown that, by changing the applied voltage,

the interface position can be controlled and, so, moved to any point in the cell.

This result suggests a generally applicable route to stabilising N-I interfaces which has no

recourse to, e.g., material-specific surface treatments. Such direct access to the N-I interface

should enable assessment of the various molecular theories relating to same. Furthermore,

there is interest in being able to continuously vary liquid crystal film thicknesses in the sub-

micron range. This is particularly of interest in hybrid aligned nematic films where elastic

theory predicts qualitative changes in the Q-tensor profile as the film thickness is reduced [20]

but experiment and simulation suggest structural effects neglected by continuum methods

[21, 22].

Our findings may also have some technological application. Most obviously, our

predictions for the cylindrical geometry lead directly to the concept of active optical fibres

in which the radius of the refractive index step can be varied in time and/or distance along

the fibre. As noted above, for single-component molecular mesogens, this controllable

dielectric interface has little associated compositional change, making material transport a

secondary consideration. Alternatively, liquid crystal mixtures or even polymeric mesogen

systems could be used, so as to increase the available thermal range of N-I coexistence at

the cost of significantly slower switching times.
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FIG. 1: Cell geometry: The liquid crystalline material is sandwiched between two planar, cylindri-

cal or spherical substrates a distance d apart. The nematic layer, of thickness d∗ is taken to occur

close to the homeotropically anchored substrate.
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FIG. 2: The total free energy as a function of domain size d∗ for voltages V = 7.5, Vmin =

7.735, 8.0, 8.25, 8.5, 8.75, Vmax = 9.014 and 9.25Volts. As indicated by the arrows, for domain

sizes less than the critical size (denoted by a circle for each voltage) where the maximum energy

occurs, the system energy is reduced by shrinking the domain size to zero. For domains of size

greater than the critical size, the system energy is reduced by growing the domain size to fill the

cell. Three plots are shown for each parameter set (numerical solution of full problem and two

analytical solutions to perturbation expansions - see text for details) but they cannot be resolved

on the scale of this Figure.
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FIG. 4: The total free energy as a function of domain size d∗ for (a) inner cylinder radius R =

10× 10−5 m and voltages V = 8, 8.25, 8.5, 8.75 Volts (b) inner cylinder radius R = 3× 10−5 m and

voltages V = 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25Volts. At small R, the free energy has a minimum

within the cell, implying a coexistence or banding of the nematic and isotropic phases.
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