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Abstract

We report results obtained from Monte Carlo simulations investi-

gating mesophase formation in two model systems of hard pear-shaped

particles. The first model considered is a hard variant of the trun-

cated Stone-Expansion model previously shown to form nematic and

smectic mesophases when embedded within a 12-6 Gay-Berne-like po-

tential [1]. When stripped of its attractive interactions, however, this

system is found to lose its liquid crystalline phases. For particles of

length to breadth ratio k = 3, glassy behaviour is seen at high pres-

sures, whereas for k = 5 several bi-layer-like domains are seen, with

high intradomain order but little interdomain orientational correla-

tion. For the second model, which uses a parametric shape parameter

based on the generalised Gay-Berne formalism, results are presented

for particles with elongation k = 3, 4 and 5. Here, the systems with

k = 3 and 4 fail to display orientationally ordered phases, but that

with k = 5 shows isotropic, nematic and, unusually for a hard-particle

model, interdigitated smectic A2 phases.
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1 Introduction

In recent years, flexoelectricity has become an increasingly important fea-

ture in the design of materials for use in liquid crystal devices. Flexoelec-

tric behaviour, which leads to field-induced director distortion, results, at a

molecular level, from competition between electric and steric dipolar inter-

actions. As well as leading to modified bulk properties, flexoelectricity has

been mooted to be a possible driver for switching in devices with bistable

anchoring surfaces [2]. Indeed, it has been suggested that the switching mech-

anism of the zenithally bistable device [3] may rely, in part, on flexoelectric

behaviour.

The early studies of Meyer [4] and Prost and Marcerou [5], showed that the

mechanisms underlying flexoelectricity can be understood in two ways. In

the original explanation from Meyer, flexoelectric behavior was explained

in terms of particles with a strong anisotropy in their charge repartition.

Thus, it was shown that, upon polarization by an applied field, pear-shaped

particles exhibit a splay director distortion, whereas banana-shaped parti-

cles exhibit a bend distortion. Subsequently, Prost and Marcerou showed

that flexoelectricity could also be obtained using particles with a non-zero

quadrupole moment. This did not contradict Meyer’s original work, however,

since in reality flexoelectric mesogens are known to possess either one or both

of these properties [6].

Although well studied theoretically [7–9], few computer simulations using

flexoelectric particles have been performed to date. Whilst particle based

simulations showing ferroelectric behaviour are reasonably well established

(see, e.g., [10, 11]), models with the dipolar and/or quadrupolar symmetry
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steric interactions needed for flexoelectric behaviour are relatively scarce.

Neal and co-workers performed one such study using molecules represented

by rigid assemblies of three Gay-Berne sites [12]. One of the assemblies

considered in Ref. [12] was a triangular arrangement of mutually parallel

Gay-Berne sites, leading, overall, to approximately pear-shaped molecules.

On compression, a system of such molecules ordered from an isotropic liquid

to a smectic arrangement in which the molecular orientations in successive

layers were almost perfectly anti-parallel. Subsequently, Stelzer et al. [13]

investigated the behaviour of pear-shaped molecules using a model with two

interaction sites per particle; each particle comprised a Lennard-Jones site

embedded near to one end of a Gay-Berne site. Isotropic, nematic and smec-

tic phases were observed, local antiparallel alignment being seen in the ne-

matic phase. Measurements of the splay and bend flexoelectric coefficients

gave a non-zero splay coefficient and, to within error estimates, a zero bend

coefficient in accordance with Meyer’s theory. Equivalent simulations by Bil-

leter and Pelcovits [14], using qualitatively the same model but with different

energy parametrisations and an alternative method for the calculation of the

flexoelectric coefficients, confirmed the results of Ref. [13]. In this case, how-

ever, no stable nematic phase was found between the isotropic and (locally

antiparallel) smectic A phases.

Whilst the results from these systems proved encouraging, their reliance on

multi-site generic potentials remained a relative inefficiency. This was re-

solved somewhat in recent work by Berardi and some of the current au-

thors [1], in which a single-site model was developed, using Zewdie’s gen-

eralisation approach [15, 16], to represent tapered or pear-shaped particles.

Here, using the geometrical shape of a Bézier curve as a template for the
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particle shape, a numerically calculated mesh of contact distance values was

fitted using a truncated Stone expansion which, in turn, was employed in the

simulations themselves. Results from this study were very encouraging, as

both nematic and smectic A phases were found, and, through appropriate

manipulation of the well-depth anisotropy terms, equivalent phases with net

polar order were generated.

In this paper, we seek to explore the fundamental properties of single-site

pear-shaped models such as that used in Ref [1], by investigating mesophase

formation in systems of hard, noncentrosymmetric particles. Hard particle

simulations have proved to be an effective and efficient testbed for many of

the theories of liquid crystal physics [17], and have confirmed that shape

anisotropy alone can be sufficient for the onset of nematic and even smectic

order. Two distinct systems are described here. The first is a hard version

of the truncated Stone expansion potential described in [1]. The second

employs a novel approach, based on a parametric variant of the generalized

Gay-Berne shape parameter [18], which yields an analytical expression for

the contact distance between two pear-shaped objects.

The content of the remainder of this paper is arranged as follows. In sub-

section 2.1 we give a brief description of the truncated Stone expansion po-

tential before presenting and discussing results obtained from Monte Carlo

simulations of same. In the following subsection, we introduce the paramet-

ric approach for generating shape parameters for non-ellipsoidal particles,

and apply it to generate shape parameters for the Bézier pears considered

in Ref. [1]. Results obtained from Monte Carlo simulations of such systems

are presented in subsection 2.2.3. Finally, the two sets of simulations are

compared and discussed in Section 3.
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2 Simulations of hard pears.

2.1 The truncated Stone expansion model

2.1.1 Model Details

Our first simulations of hard pear-shaped particles used a steric version of

the potential described in Ref. [1]. This gives the interaction between two

particles, i and j, as

VHP =




∞ if rij < σ(ûi, ûj, r̂ij)

0 if rij ≥ σ(ûi, ûj, r̂ij)
(1)

where σ(ûi, ûj, r̂ij) represents the contact distance between two pear-shaped

particles with orientations ûi and ûj and r̂ij =
rij

rij
and rij is the intermolecular

vector. Following the approach of Zewdie [15, 16], this contact distance was

expressed as an expansion of the form

σ(ûi, ûj, r̂ij) ' L(ûi, ûj, r̂ij)

=
∑

L1,L2,L3

σL1,L2,L3S
∗L1,L2,L3(ûi, ûj, r̂ij) (2)

where SL1,L2,L3 is a Stone function [19], and the expansion coefficients σL1,L2,L3

are given by

σL1,L2,L3 =

∫ L(ûi, ûj, r̂ij)S
L1,L2,L3(ûi, ûj, r̂ij)dûidûjdr̂ij∫

S∗L1,L2,L3(ûi, ûj, r̂ij)SL1,L2,L3(ûi, ûj, r̂ij)dûidûjdr̂ij

. (3)

Simulations were performed with two parameterisations of this model, with

length to breadth ratios, k, of 3 and 5 respectively. In both cases the shape

parameter expansion (2) was restricted to indices {L1, L2, L3} = 1 . . . 6; the

expansion coefficients used for k = 3 were identical to those given in Ref. [1],

while those for k = 5 are listed in Table 1.
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2.1.2 Simulation Results

Our first simulations were performed on a system of 1250 particles with

elongation k = 3 using constant NPT Monte Carlo (MC) techniques. This

system was chosen since it was shown in Ref. [1] that the attractive version of

this model with elongation k = 3 has isotropic, nematic and smectic phases.

In addition to the normal positional and orientational MC moves, one fifth

of the attempted particle moves were orientation inversions, implemented

through the reversal of the appropriate ûi vector. Volume change moves

were attempted, on average, once every two MC sweeps, where one sweep

represents one attempted move per particle in the system. Within these

volume change moves, each box dimension was allowed to change indepen-

dently so as to minimise the influence of the periodic boundary conditions

during the formation of possible smectic phases [20]. Typically, run lengths of

0.5 to 1× 106 MC sweeps were used for equilibration and production phases,

but at the highest densities considered, equilibration runs were extended up

to 5 × 106 MC sweeps. Two separate simulation sequences were performed.

The first was a compression sequence starting from a low density phase with

a fully isotropic initial distribution of particle orientations. The second was

an expansion sequence, the starting configuration for which was generated by

taking a high density configuration obtained from the compression sequence

and inducing the particle orientations to align with the (0, 0, 1) direction.

This was achieved by applying a uniform field with this orientation to the

system and assuming a strong molecular coupling via a positive dielectric

anisotropy.

The equation of state and nematic, < P2 >, and polar, < P1 > order pa-

rameter data [21] obtained from these simulations are shown in Fig. 1a.
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Surprisingly, the results obtained from the compression sequence show no

spontaneous ordering, and at all densities < P2 > falls short of the values

typical of a nematic phase. In contrast, the expansion sequence (with a

field-aligned initial configuration) performed on this system has some rea-

sonably high < P2 > values, consistent with nematic order being present at

the higher densities considered. The discrepancy between these two sets of

order parameter values is also seen in the equation of state data and indicates

a failure of this system to equilibrate at densities ρ∗ > 0.30. We return to

the causes of this non-equilibration below.

An equivalent compression sequence was performed using a system of 1000

particles with elongation k = 5. This system was studied since increasing

particle shape anisotropy generally promotes mesophase formation. While

the equation of state data obtained for this system showed a slight inflection

and < P2 > attained values of 0.3 (Fig. 1b), the behaviour expected for

an isotropic-nematic transition was again absent. Configuration snapshots

from high density runs performed using this system (e.g. Fig. 2) showed

that the modest order parameter values resulted from the formation of nu-

merous bi-layer-like domains. While the local order within these domains

was very high, orientational correlations between the domains were weak.

This multi-domain structure persisted even when run-lengths were extended

significantly.

The failure of these hard-particle systems to reproduce the density-driven

nematic-isotropic transition shown by the equivalent soft particle model is

a surprising result; by contrast, the nematic-isotropic transition densities

of hard gaussian overlap model [22] are virtually identical to those of the

equivalent (soft) Gay-Berne systems [23, 24]. Indeed, the failure of our hard
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pear systems to form nematic phases could be taken as an indication that

particle shape did not contribute significantly to the mesophase formation

processes seen in Ref. [1]. To assess both this and the non-equilibration noted

above, we have measured the particle mobility in our systems by computing

the mean square displacement

〈δr2(n)〉 = 〈(rn − r0)
2〉 (4)

where rn−r0 is the displacement vector moved by a particle in n consecutive

MC sweeps and the angled brackets indicate an average over all particles

and the run length. In MC simulations with fixed maximum particle dis-

placement, Brownian diffusion dictates that 〈δr2(n)〉 should increase linearly

with n in a fluid phase. Instead, the 〈δr2(n)〉 data for k = 3 (fig 3a), show

that, as the density was increased, the mobility of the particles decreased

dramatically, indicating the onset of glassy behaviour. This observation is

certainly consistent with our earlier conclusion that equilibration was not

achieved at high densities; for both of our simulation sequences for k = 3,

the sampling of configuration space will have been poor for ρ∗ ≥ 0.30. For

the k = 5 system, the measured mobility again showed a marked decrease

with increase in density, although it did not reach the very low levels found at

k = 3 (fig 3b). We note, however, that 〈δr2(n)〉 does not distinguish between

single particle diffusion and en-masse mobility of larger assemblies such as

the bilayer domains seen in Fig. 2.

The low mobilities found at high densities in these systems can be explained

by consideration of details of the shape parameters obtained by truncating

the expansion (2) at {L1, L2, L3} = 1 . . . 6. To illustrate this, we show, in

Figs. 4, sample shape parameters for parallel and anti-parallel particle con-

figurations (i.e. (ui ¦ uj) = −1 and 1) for both k = 3 and k = 5. These reveal
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that the contact functions used in our simulations were not purely convex,

as had been supposed, but had significant ridges. We suggest that in our

k = 3 simulations, these non-convex features were sufficient to prevent parti-

cles from sliding past one another and so gave rise to locked configurations.

For the k = 5 particles, for which strong local ordering was achieved, we

note that the shape parameter for antiparallel particles (illustrated in Fig.

4d) has an equatorial ridge which presumably leads to the interlocked bilayer

structures so prevalent in Fig. 2.

These problems are similar to those encountered in Ref. [25] where simu-

lations were performed using a seven site linear hard sphere chain (LHSC)

model. This model was found to form metastable glassy states in the vicinity

of the isotropic-nematic transition due to the non-convex shapes of the par-

ticles which inhibited their ability to slide past one another. The tendency of

these systems to become irretrievably interlocked was overcome in Ref. [25]

by the use of reptation moves. This solution was not available to us here,

however, since ours is a single-site model.

Once in a stable nematic phase, the LHSC model proved to be reasonably

well behaved, exhibiting a stable nematic region and undergoing a reversible

nematic-smectic A transition. This raises the question of whether the glassy

behaviour we have observed here is simply a simulation bottleneck associated

with the isotropic-nematic transition or a genuine pre-empting of the nematic

phase by a glass. While we are not in a position to give a categorical answer

to this question, the evidence we do have suggests the latter to be the case.

All of our k = 3 simulations with ρ∗ > 0.30 (i.e. those in both the com-

pression and expansion sequences) had low particle mobilities, the effective

diffusion coefficient decreasing monotonically with increase in applied pres-

sure. This indicates that if there is a region of fluid, nematic phase-stability,
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it lies beyond the pressure values considered here; we have certainly found

no evidence that the nematic phase seen in Ref. [1] is preserved when the

k = 3 model is stripped of its attractive interactions. From this change of

phase behaviour, we infer that, for this system, the presence of attractive

interactions affects the local packing of the particles – the attractive wells,

being located at r > σ(ûi, ûj, r̂ij), provide a means by which the particles

can escape from the inter-locked arrangements that dominate the equivalent

hard particle system at high densities. We are not aware of any other model

system for which both shape anisotropy and attractive interactions are re-

quired to promote a nematic-isotropic transition. For the k = 5 hard particle

system, while the measured mobility did decrease with increase in density, it

did not drop as far as that found at k = 3. That said, the tendency of this

system to form local bilayer-like packing arrangements is in conflict with the

usual mechanisms of nematic phase formation (e.g. diverging orientational

correlations), leading us to conclude that here, too, the nematic phase is

probably never stable.

Faced with this unexpected phase behaviour, we present, in the following sub-

section, an alternative, parametric approach to developing non-centrosymmetric

single-site models. By applying this approach to the Bézier pears used as a

basis for the truncated Stone expansion models used in this subsection, we

then derive a series of pear-shaped models for different particle elongations

and perform MC simulations to investigate their ability to form mesophases.
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2.2 The parametric hard gaussian overlap model

2.2.1 Computation of the contact distance

We start with the generalised expression for the shape parameter which gov-

erns the interaction between a pair of uniaxial, but non-identical, ellipsoidal

gaussians [18]. This expression, which itself is an approximation to the hard

ellipsoid contact function for non-identical ellipsoids [26], gives the contact

distance between particles i and j of elongations li, lj and breadths di, dj as

σ(ûi, ûj, r̂ij) = σ0

[
1− χ

{
α2 (r̂ij ¦ ûi)

2 + α−2 (r̂ij ¦ ûj)− 2χ (r̂ij ¦ ûi) (r̂ij ¦ ûj) (ûi ¦ ûj)

1− χ2 (ûi ¦ ûj)
2

}]− 1
2

(5)

with

σ0 =

√
d2

i + d2
j

2

α2 =

[
(l2i − d2

i )(l
2
j + d2

i )

(l2j − d2
j)(l

2
i + d2

j)

] 1
2

χ =

[
(l2i − d2

i )(l
2
j − d2

j)

(l2j + d2
i )(l

2
i + d2

j)

] 1
2

.

If, alternatively, brackets containing the length and breadth values are grouped

as

A = (l2i − d2
i ) B = (l2j − d2

j)

C = (l2j + d2
i ) D = (l2i + d2

j),

the shape parameter can be rewritten as

σ(ûi, ûj, r̂ij) = σ0

[
1− AC (r̂ij ¦ ûi)

2 + BD (r̂ij ¦ ûj)
2 − 2AB (r̂ij ¦ ûi) (r̂ij ¦ ûj) (ûi ¦ ûj)

CD − AB (ûi ¦ ûj)
2

]− 1
2

.

(6)
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In practice, this form, being free of possible division by zero or complex

numbers, is better suited for implementation in computer simulation codes.

The limitation of the expression (6) is that it is restricted to particles with

ellipsoidal symmetry. The thrust of this subsection is to illustrate that, since

eqn.(6) is valid for any set of particle axis lengths li, lj, di, dj, it can also be

used for some situations in which these axis lengths, rather than being held

fixed, are allowed to vary parametrically.

As an illustration of this, we consider the properties of a pear-shaped particle.

When its sharp end interacts, it resembles a particle with a relatively large

l/d ratio, whereas its blunt end corresponds to an l/d ratio rather nearer

to unity. In generating smooth variation between these two limiting cases,

a multitude of parametric forms is possible: here we restrict ourselves to

making li and di simple polynomials of the polar angle (r̂ij ¦ ûi), that is

di(r̂ij ¦ ûi) = ad,0 + . . . + ad,n(r̂ij ¦ ûi)
n (7)

li(r̂ij ¦ ûi) = al,0 + . . . + al,m(r̂ij ¦ ûi)
m. (8)

Whilst this restriction limits, to some extent, the range of particle shapes

available, it has the advantage that the effect of this parametric approach on

σ(ûi, ûj, r̂ij) is transparent: through the coefficients A, B, C and D, it sim-

ply introduces higher order dependence of σ(ûi, ûj, r̂ij) on the scalar products

(r̂ij ¦ ûi) and (r̂ij ¦ ûj). On a more practical level, we note that restricting

the shape parameter expansion to polynomials in these dot products has the

benefit of making it readily usable in a molecular dynamics (MD) simula-

tion. To reflect the generalisation introduced by this approach, we name the

resultant class of model the parametric hard gaussian overlap (PHGO).
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As we show in the following subsections, by working through a specific exam-

ple, this parametric approach can be used to generalise the HGO model to

give shape parameters which approximate other convex and axially symmet-

ric particle shapes. We note, however, that since the PHGO’s departure from

the conventional HGO shape parameter is based, in part, on the interparti-

cle vector, rij, it ignores some possible close contacts and is not, therefore,

suitable for modelling particles with concave surface regions (e.g dumbells).

For systems which do satisfy the convexity criterion, however, the approxi-

mations inherent in the PHGO approach are outweighed by the advantages:

it yields an analytical form for the shape parameter, making it suitable for

either MC or MD simulation and is easy to embed into a Gay-Berne type

model; it introduces little computational overhead, beyond that required to

simulate the standard HGO model; and, since it is a simple generalisation

of the HGO model, it can readily be used to represent some or all of the

particles in a multi-component mixture or a multi-site model (indeed, ex-

tension to polydispersity and/or dynamic particle shape variation is quite

straightforward).

2.2.2 Parameterising Bézier pears

In order to test the PHGO approach, we have used it to generate shape

parameters for pear-shaped particles based on Bézier-curves (i.e. the same

target system as was employed in Ref. [1]). For this, the ideal particle shape

was first determined geometrically using a combination of two Bézier curves

as shown in Fig. 5. This geometry is very similar to that used in Ref. [1], the

exception being that we took points q2 and q3 to be coincident. This has the

advantage of making the Bézier points’ coordinates more easily scalable with
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the desired length to breadth ratio k. The coordinates of the Bézier points

used are given in Table 2.

From these points, it is possible to extract the coordinates of any point on

the curve [27]. By taking these Bézier curves to correspond to the contact

surface between a pear shaped particle i and a point probe j (i.e. taking

lj = dj = 0 in eqn.(6)), it can readily be shown that these points need to be

fitted by the particle-point shape parameter

σ(ûi, rij) =
di(r̂ij ¦ ûi)li(r̂ij ¦ ûi)

[
l2i (r̂ij ¦ ûi) + (ûi ¦ r̂ij)

2 (d2
i (r̂ij ¦ ûi)− l2i (r̂ij ¦ ûi))

] 1
2

. (9)

To achieve this, various polynomial forms were considered for the expansions

of di((r̂ij ¦ ûi)) and li((r̂ij ¦ ûi)) in eqns.(8), these being fitted numerically

using a simplex least squares minimisation method [28]. Good fits were

obtained by taking 10 terms in the particle breadth polynomial and 2 in the

length polynomial. Full sets of the coefficients obtained are given in Table 3

for particles with overall aspect ratios k = 3, 4 and 5.

In order to assess the accuracy of this fitting procedure, we present in Fig. 3a

plot comparing the target Bézier curve and the corresponding fitted shape

parameter for k = 5. The strong correspondence between these data sets,

whilst encouraging, does not guarantee that the particle-particle potential

will be as required. To assess this more fully, we computed the contact

surfaces between two pears as a function of r̂ij uniformly distributed on the

unit sphere. For this, the orientations ûi and ûj were held fixed and the three

cases ûi = ûj = (0, 0, 1), ûi = −ûj = (0, 0, 1) and ûi = (0, 0, 1), ûj = (0, 1, 0)

were considered. The parallel and anti-parallel surfaces are shown for k =

5 in Figs. 7. As required, an approximately ellipsoidal contact surface is

obtained when the two particles are parallel, and a pear shape when they

15



are anti-parallel. The orthogonal case (which is not shown since it is rather

unpreposessing), is a more severe test since here the point of contact is often

well away from the line of centres. We have found that this case gives an

asymmetrical lobe shape which we have found to be consistent with the

equivalent surface given by the models of Ref. [1]. Importantly, we note that

all three of the PHGO contact functions considered in this way are almost

perfectly convex, and, so, should not be prone to the locking-up suffered

by the truncated Stone function expansion models simulated in subsection

2.1. In the next subsection, we go on to investigate both this assertion and

the general applicability of our parametric models to molecular simulation

by performing constant NPT Monte Carlo compression sequences on PHGO

pear systems with k = 3, 4 and 5.

2.2.3 Simulation Results

In order to test our models, we have examined their phase behaviour via MC

simulations in the isothermal-isobaric ensemble using N = 1000 particles and

a series of increasing pressures. Three particle elongations, k = 3, 4 and 5,

have been studied, their phase behaviour being assessed through the variation

of the number density, ρ∗, and the polar and nematic order parameters,

< P1 > and < P2 >, respectively. The volume change scheme used here

was the same as that used with the Stone expansion model and typical run

lengths were 0.5× 106 to 1× 106 for equilibration and production.

The improved equilibration behaviour of these systems meant that the very

long runs used previously were unnecessary here. The results of these simula-

tions are illustrated by the plots presented in Figs. 8. For the sake of brevity,
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results for k = 3 system are not shown here since they are qualitatively the

same as those found for k = 4.

The behaviour of the order parameters for the two lower values of k indicates

that there was no long range orientational ordering for these systems. < P1 >

remained nearly constant at around 0.0 while < P2 > failed to reach the

values (> 0.6) characteristic of nematic order. However, for both elongations,

P (ρ∗) had an inflection suggesting proximity to a weak phase transition.

These features coincided, approximately, with the broad maxima seen in the

corresponding < P2 > curves. This suggests that even if no nematic phase is

shown by these systems, some other high density phase may have been formed

here. We note that for these systems the particle mobilities, monitored via

their mean square displacements, changed little throughout the density range

considered in these simulations.

More insight into the high density arrangements adopted by these systems

has been obtained through computation of the pair correlation functions

resolved parallel (gmol
‖ (r‖)) and perpendicular (gmol

⊥ (r⊥)) to the particle ori-

entations ûi (the superscript mol is used to indicate that molecular, rather

than director orientations were used to calculate these functions). These

are shown in Fig. 9 for k = 4, and indicate local smectic-like arrangements

with anti-parallel alignment of nearest neighbours within layers. However,

the decay of the oscillations in gmol
‖ (r‖), coupled with the low corresponding

< P2 > values, indicate the absence of long-ranged smectic order. Configura-

tions snapshots illustrate these structures more clearly. As can be seen from

Fig.11, with k = 4, upon compression, these systems formed convoluted,

space filling bilayer structures, the bilayers being planar in some regions and

highly curved in others. The presence of these curved regions makes these
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systems qualitatively different from those seen in the k = 5 truncated Stone

expansion model (recall Fig 2), where the orientations of the bilayer domains

changed discontinuously with position.

For the k = 5 PHGO pear model, a very different situation was found. While

< P1 > remained resolutely at zero for all densities, confirming an absence

of polar order, < P2 > showed the well known ‘S’ shape characteristic of an

isotropic-nematic transition and reached the values expected for an orienta-

tionally ordered phase. A corresponding plateau in the P (ρ∗) curve and a

configuration snapshot (Fig. 12) confirm this assessment. At higher densi-

ties, secondary features are apparent in both P2(ρ
∗) and P (ρ∗) indicating the

presence of a second phase transition. The nature of this third phase was

determined by computation of the pair correlation functions resolved parallel

(g‖(r‖)) and perpendicular (g⊥(r⊥)) to the director n̂ as shown in Figs. 10(a)

and (b). These graphs show that for pressures above that of the second

phase transition, g‖(r‖) became periodic, indicating the onset of a smectic

phase. Moreover, the decay of the oscillations in g⊥(r⊥) further indicates this

to be a smectic A. A snapshot configuration from this high density region

confirms this identification, a highly interdigitated bilayer smectic A2 phase

being seen, in which the molecules in adjacent layers are almost perfectly

anti-parallel. This anti-parallel arrangement is apparent from the peak split-

ting observed in g‖(r‖), the short peaks corresponding to the distinct natural

separations of particles in the two possible anti-parallel arrangements. Sim-

ilar behaviour has been observed in simulations of Gay-Berne systems with

longitudinal terminal molecular dipoles [29]. Comparison of the g‖(r‖) and

g⊥(r⊥) data obtained at different pressures in the range P = [2.4 : 3.8], shows

an interesting compressibility behaviour. Upon increasing the pressure in this

range, the system density rises and intra-layer particle separations decrease
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slightly but the bilayer separations increase (Figs. 10(a) and (b)). From the

measured g‖(r‖) data it is found that the distance between the main peaks,

which corresponds to the separation of the bilayers, increases from 7.38 to

7.66. The distance from the main peak to the first minor peak, which corre-

sponds to the strongly interdigitating ‘tail-tail’ configuration increases from

2.49 to 2.76, whereas that to the second minor peak, corresponding to the

weakly interdigitating ‘head-head’ alignment remains effectively constant at

4.85. Thus, the in-plane compression induced by this increase in pressure

leads to a 10% increase in the separation within the interdigitated bilayers

that comprise the smectic A2 phase.

3 Discussion and Conclusions

In this paper, we have investigated the mesogenic behaviour of two classes of

model hard pear-shaped particles, both based on a target shape built using

a Bézier curve. The first model considered used a truncated Stone expansion

approach to generate the particle-particle contact distance numerically. Al-

though the Gay-Berne version of this model was well behaved, giving nematic

and smectic A mesophases [1], these were not found on removal of the at-

tractive interactions. Rather, the non-convex regions of the contact surfaces

induced the particles to interlock, leading to the formation of multi-domain

and glassy phases. For this model, therefore, it appears that the nematic-

isotropic transition is not driven by particle shape alone: long-ranged ori-

entational order is only seen when the shape is softened somewhat, by the

incorporation of attractive interactions.

The second hard-pear model considered here was based on the PHGO ap-
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proach, a route to non-centrosymmetric shape parameters which we have in-

troduced in this paper. While the PHGO shape parameter is not determined

from a full evaluation of the appropriate gaussian integral, the approxima-

tion it makes, that locally a non-centrosymmetric particle closely resembles

an appropriately chosen ellipsoid, is intuitively reasonable. Furthermore, the

computational simplicity and ready transferability of the PHGO model sug-

gest that it may be of considerable utility in the generic modelling of self

assembling systems. Here, we have found that the smooth, convex contact

surfaces of a PHGO hard pear model yield stable nematic and bilayered

smectic A2 phases. Interestingly, these phases are only seen when the parti-

cle aspect ratio is increased to k = 5, whereas hard ellipsoid systems are know

to form a nematic with k values as low as 2.75 [30]. Future work exploring

the behaviour of the PHGO hard pear model will include a more thorough

study of its flexoelectric properties, and an investigation into the applicabil-

ity of the PHGO shape parameter in theoretical approaches commonly used

to study liquid crystals.
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[000] 1.90456 [011] 0.51113 [101] 0.51113
[022] 2.01467 [202] 2.01467 [033] −0.11376
[303] −0.11376 [044] 0.91479 [404] 0.91479
[055] −0.29937 [505] −0.29937 [066] 0.41523
[606] 0.41523 [110] −0.03942 [121] −0.45400
[211] −0.45400 [123] 0.59579 [213] 0.59579
[132] 0.17137 [312] 0.17137 [143] −0.27083
[413] −0.27083 [220] −0.56137 [222] −2.78379
[224] 2.41676 [231] 0.31104 [321] 0.31104
[233] 0.45382 [323] 0.45382 [242] 0.38115
[422] 0.38115 [244] −1.69388 [424] −1.69388
[246] 1.40664 [426] 1.40664 [330] −0.07836
[440] −0.17713 [442] −0.52246

Table 1: The non zero σL1,L2,L3 coefficients for the HP model and k = 5.

q x y

q1 −1
2
σ0 0.0

q2,q3 0.0 2
3
kσ0

q4
1
2
σ0 0.0

q5 1.0 −2
3
kσ0

q6 -1.0 −2
3
kσ0

Table 2: Coordinates for the pear shape Bezier points used for the PGHO
model.
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k = 3 k = 4 k = 5

ad,0 0.501852454 0.501377232 0.497721868
ad,1 -0.141145314 -0.129608758 -0.123155821
ad,2 -0.060542359 -0.074219217 0.024405876
ad,3 0.225813650 0.484166441 0.723627215
ad,4 0.832274021 0.923492941 0.389831429
ad,5 -1.015039575 -1.987232902 -3.018638148
ad,6 -2.504045172 -2.943008017 -1.951629076
ad,7 1.375313426 2.808075172 4.413215403
ad,8 3.196830129 3.815344782 2.998417509
ad,9 -0.699241457 -1.426641750 -2.241573216
ad,10 -1.430400139 -1.682476460 -1.416614353

al,0 1.498259615 1.995906501 2.493069403
al,1 -0.002027616 -0.004518187 -0.008067236

Table 3: Values of the ad,α and al,α for the PHGO model with k = 3, 4 and 5
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Figure 1: Results from constant NPT simulations of the truncated Stone
expansion model obtained using k = 3(a,b) and k = 5(c,d). The curves for
k = 3 and k = 5 correspond, respectively, to system sizes of N = 1250 and
N = 1000.
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Figure 2: Configuration snapshot for the truncated Stone expansion model
with k = 5 and P ∗ = 2.5.
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Figure 3: Particle mean square displacement curves obtained for the trun-
cated Stone expansion model with k = 3 and k = 5. These data were
obtained from constant NVT MC simulations. One sweep corresponds to N
attempted Monte Carlo moves
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(a) Parallel particles. (b) Antiparallel particles.

(c) Parallel particles. (d) AntiParallel particles.

Figure 4: Contact surfaces for the truncated Stone expansion model with
k = 3(a,b) and k = 5(c,d).
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Figure 5: Bézier point geometry corresponding to the pear shape used for
the PHGO model. For an elongation k = 3, σ0 = 1.0 and h = 2.0.
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Figure 6: Fit of the PHGO model (line) to the Bézier curve (points) for k=5.
Equivalent curves for k = 3 and 4 are similar but with better agreement.
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(a) Parallel particles. (b) Anti-parallel particles

Figure 7: Contact surfaces for the PHGO model with an elongation k = 5.
For shorter elongations, the shapes are similar but smoother.
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Figure 8: Results from constant NPT simulations of the PHGO model ob-
tained with k = 4(a,b) and k = 5(c,d) and system sizes of N = 1000 particles.
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Figure 9: Pair correlation functions gmol
⊥ (r⊥) and gmol

‖ (r‖) resolved paral-
lel and perpendicular to the molecular orientation for PHGO particles with
elongation k = 4.
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Figure 10: Pair correlation functions g⊥(r⊥) and g‖(r‖) resolved parallel and
perpendicular to the director for PHGO model particles with elongation k =
5.
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(a) isotropic (b) domain ordered

Figure 11: Configuration snapshots of systems of N = 1000 PHGO particles
with k = 4 at P ∗ = 1.80(a) and 5.00(b).

(a) isotropic (b) nematic (c) smectic

Figure 12: Configuration snapshots of systems of N = 1000 PHGO particles
with k = 5 and P ∗ = 1.00(a), 1.50(b) and 2.80(c).
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