
A CASE tool for demonstrating Z specifications

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456> and NORCLIFFE,
Allan

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/8598/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ANDREWS, Simon and NORCLIFFE, Allan (1990). A CASE tool for demonstrating Z
specifications. In: IEE Colloquium on Application of CASE Tools. IET, 5/1-5/4.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A CASE tool for demonstrating Z specifications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S Andrews and A Norclife

The CASE tool we describe is designed to enable software engineers to produce a faithful
animation of specifications written in Z. Desirable properties which we feel animations of this
kind should possess, and which have guided us in developing the tool, are the following.

1. The executable code (ie the animation) must be easy to produce.

2. The structure of the code should not be too far removed from the Z.

3. The animation should be sufficiently user friendly to enable a client to understand and
interact with it, thus facilitating the process of validating a specification against user
requirements.

The CASE tool is based around the program development tool known as CRYSTAL.
CRYSTAL is reasonably well-known in AI circles and is sold as an expert system shell by
Intelligent Environments Ltd in Richmond. It is essentially a rule-based programming language
offering excellent input, output, and menu facilities, as well as all the standard features
expected of any expert system shell. The specific advantages we see, that this environment
offers as a means of transforming Z to executable code, are as follows.

The rule-based nature of CRYSTAL means that lines of Z, in the predicate of a schema,
transform almost one-for-one into rules in CRYSTAL.

The expandable way in which rules are built up in CRYSTAL mirrors very closely the
use of the schema calculus in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ. The developer, using the tool, can faithfully transform
a Z specification starting at the schema level and finishing at the line-by-line predicate
level.

The excellent user interface that comes with CRYSTAL enables the developer to
concentrate his efforts on transforming Z instead of worrying about how to create a
friendly user interface. This is an added bonus given the fact that implementation issues
are positively avoided in formal specifications.

The animation that results can be viewed by the client at different levels. This is
possible because of the folded nature of the rule-based programming in CRYSTAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt
the highest level a system might be viewed as a menu having several options such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas

quit
initialise state
save state
load state
print state
test data invariants
operation 1
operation 2

operation n

S Andrews and A Norcliffe are both members of the School of Engineering Information
Technology at Sheffield City Polytechnic

511

Any operation chosen by the client can be systematically unfolded to discover the rules
that make it work, thus promoting the vital interaction between client, developer and
system that is necessary for requirements validation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn CRYSTAL this is feasible because
at the highest level the rules are written in English. Only at the lowest level does
English give way to code. What the client zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsees, therefore, is a faithful English
translation of the developer's Z.

To illustrate these points a short example is now considered. The following is part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 2
specification of a very simple security system that might be in operation in a building to
monitor the whereabouts of staff users. The system state consists of three subsets, in, out and
users, of type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(STAFF-ID), and is represented by the following state schema

S t a t e

i n , o u t , u s e r s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: P(STAFF-ID)

i n n out - ()
i n U out - u s e r s

4 h e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc k I nOK

A S t a t e
person-id? : STAFF-ID

person-id? e out
o u t ' - out / (person- id?)
i n ' - i n U (person- id?)
u s e r s ' - u s e r s

When the precondition is violated the CheckInOK operation will fail. A robust CheckIn
operation can therefore be defined as follows

CheckIn C CheckInOK v CheckInError

CheckInError e CheckInErrorl v CheckInError2

where the two error schemas are as follows

heckInError1

S t a t e
p e r s o p i d ? : STAFF-ID
message! : REPORT

person-id? e i n
message! - "Person a l r e a d y i n bu i l d ing "

I

4 h e c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkI nEr r o r 2

S t a t e
person-id? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: STAFF-ID
message! : REPORT

person-id? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 u s e r s
message! - "Person i s not a v a l i d use r "

At the highest level the CRYSTAL coding for this Z could be the following

CheckIn works
IF CheckInOK works
OR CheckInError works

CheckInError works
IF CheckInErrorl applies
OR CheckInErrorZ applies

CheckInOK works
person-id is entered into the system IF

AND the personjd currently belongs to the set out
AND the personjd is then removed from the set out
AND the personjd is then added to the set in
AND the set users is unchanged zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AND completion of the operation has been signalled

ChecklnErrorl applies
personjd is entered into the system IF

AND the personjd currently belong to the set in
AND an appropriate message is output

CheckInErrorZ applies
personjd is entered into the system IF

AND the personjd does not currently belong to the set users
AND an appropriate message is printed

Obviously the developer has to expand each of these individual rules further until they are
capable of being executed. But in principle this is a fairly straightforward task given the
available CRYSTAL operations, and the fact that sets, functions, relations, sequences, power
sets, bags etc can all be represented conveniently as arrays in CRYSTAL.

What zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe observe, then, is that CRYSTAL rules are not too far removed from Z and give a
very faithful transformation of the Z. The animation at this level is also capable of being
understood by a client even though he may know little or no Z. The client can thus interact
with the specification through the CRYSTAL animation and can thus contribute meaningfully to
the process of requirements validation.

With regard to the CASE tool, however, the following points are relevant. A major
disadvantage of CRYSTAL is that although at a high level it faithfully represents the Z
notation, at the lowest level the CRYSTAL code can be somewhat lengthy. For example, the
CRYSTAL transformation of a function override operation could require 50 or more lines of
code. This problem is further compounded by the fact that there is no parameter passing in
CRYSTAL ie it is not possible to write a single routine for 8 and pass the appropriate

513

parameters to it. The code must be repeated each time it is required. However, this
problem of low-level coding can be avoided by writing a "Z-function" interface to CRYSTAL
in C and work is currently in progress to create a library of Z-function routines zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, U, n, #

etc). These will eventually be amalgamated with the standard CRYSTAL function library
supplied with the shell and used in the same way in the CRYSTAL code. The result should
be a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACASE tool that software engineers can use, with relative ease, to animate specifications
written in Z.

