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Abstract 

Studies of postural coordination during performance of externally-timed interceptive actions, 

such as catching a ball, have been infrequent, with advanced visual information from a 

thrower’s actions towards a catcher, typically excluded in experimental task constraints. Yet 

evidence suggests that manipulating participant access to such information alters their hand 

movements and gaze behaviours when catching. In this study, we manipulated participant 

access to advanced information of a thrower’s actions and from ball flight while recording 

whole body kinematic and kinetic data to investigate effects on postural control during 

performance of interceptive actions. Twelve participants attempted to make or simulate 

performance of one-handed catches in three experimental conditions: when facing integrated 

videos of advanced visual information and ball flight only, videos of a thrower’s actions only, 

and of ball flight only. Findings revealed when integrating advanced visual information and 

ball flight, and when participants were provided with ball flight information only, lower limb 

adjustments were primarily used to regulate posture. However, movement was initiated 

earlier when advanced visual information was available prior to ball flight, resulting in more 

controlled action and superior catching performance in the integrated condition. When 

advanced visual information was presented without ball flight, smaller displacements were 

observed in lower limb joint angles, resulting in upward projection of the centre of mass, 

compared to a downward trajectory in the integrated video and ball flight, and ball-flight only 

conditions.  Results revealed how postural coordination behaviors are dependent on specific 

informational constraints designed into experiments, implying that integration of task 

constraints in studies of human perception and action needs careful consideration.  
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Introduction 

 Externally-timed interceptive actions, such as catching a ball with one hand, require 

precise spatiotemporal coordination between the catching arm and an approaching object in 

order to bring the intercepting limb to the right place at the right time (Savelsbergh, Whiting, 

Pijpers, & Van Santvoord, 1993). Previous studies of coordination of multi-articular actions 

have revealed that movements like interceptions with the arm are 'nested' on to the sub-

system for regulation of upright posture (Riccio & Stoffregen, 1988; Savelsbergh, Bennett, 

Angelakopoulos, & Davids, 2005). The equilibrium of vertical posture is achieved when the 

center of mass (COM) of the body is positioned over the base of support and is aligned with 

the center of pressure (COP). External perturbation can shift the projection of the COM 

closer to the borders of the base of support and the alignment between the COM and COP is 

disrupted, which may result in the loss of body equilibrium (Santos et al., 2010). Postural 

regulation is required when catching a passing ball, both to counter effects of raising an arm 

upwards and towards the object in space, but also to adjust against potential disequilibrium 

caused by the mechanical impulse of an approaching projectile acting on the hand (Tijtgat et 

al., 2013; Williams & McCririe, 1988). Indeed, previous research has shown that poor 

catchers were able to achieve the performance level of good catchers when additional support 

for postural control was provided to reduce the number of motor system degrees of freedom 

that need to be coordinated in a synergy (see Angelakopoulos, Davids, Bennett, 

Tsorbatzoudis, & Grouios, 2005; Davids, Bennett, Kingsbury, Jolley, & Brain, 2000; 

Savelsbergh, et al., 2005).  

 Theoretical frameworks dedicated to explaining how the multitude of motor system 

degrees of freedom can be regulated effectively and efficiently, such as ecological dynamics 

(Warren, 2006; Kelso, 1995), propose that synergies are formed between system components 

(i.e. parts of the body such as muscles, joints and limb segments). These synergies or ordered 
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movement patterns have been defined as soft-assembled, compensatory, low-dimensional 

relations between motor system components that emerge during performance of dynamic 

activities, constrained by information sources available in performance environments (Kelso, 

1995, Kelso, Buchanan, DeGuzman, & Ding, 1993; Riley, Shockley & Van Orden, 2012). 

Accordingly, in this study, we aimed to examine how the nature of postural coordination is 

affected by both perceptual task constraints and specificity of a required behavioural 

response. We achieved this aim by manipulating participants’ access to advanced visual 

information (defined as information available from a thrower’s movement patterns prior to 

ball flight), as well as the required action response (interceptive action vs. simulated micro-

movement) undertaken during performance. 

 Ecological dynamics provides a conceptual framework for considering human beings 

as complex adaptive systems composed of many interacting components or degrees of 

freedom (such as muscles, joints, limb segments) (Araújo, Davids, & Hristovski, 2006; 

Davids, Hristovski, Araújo, Balague-Serre, Button, & Passos, 2014; Warren, 2006). In this 

theoretical rationale for understanding human behavior, how individuals coordinate actions 

with respect to objects, events and other people, during goal-directed behaviors, has been a 

longstanding topic of investigation (see Kelso, et al. 1993). The coordination of actions with 

a performance environment is predicated on the emergence of stable, adaptive behaviors 

when motor system degrees of freedom become temporarily organized into ordered 

movement patterns (Bernstein, 1967; Kelso, 1995; Kelso et al., 1993). Perception of 

information about the world and the body constrains the emergence of these adaptive, 

functional coordination patterns in human movement systems during goal-directed activity 

(Warren, 2006; Davids, Araújo, Vilar, Renshaw & Pinder, 2013). Skilled movement 

performance emerges through the enhanced coupling of perception and action sub-systems 

via indeterminate interactions of a performer and a performance environment (Barab & 
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Kirshner, 2001; Chow, Davids, Hristovski, Araújo, & Passos, 2011; Davids, Button, & 

Bennett, 2008). Previous research has highlighted the importance of advanced information as 

a critical constraint on the emergence and regulation of postural control during human 

movement (Riccio & Stoffregen, 1988; Riccio & Stoffregen, 1991; Stoffregen et al., 1999). 

Both implicit knowledge learned from trial repetition with similar motion characteristics, or 

explicit prior warning in task constraints (e.g., perceived velocity of an approaching ball), can 

influence postural control mechanisms during catching (Tijtgat, Bennett, Savelsbergh, De 

Clercq, & Lenoir 2010, 2011) and upright standing (Aimola, Santello, La Grua, & Casabona, 

2011; de Lima, de Azevedo Neto, & Teixeira 2010). Tijtgat et al. (2012) showed that, during 

a catching task, provision of explicit advanced knowledge of ball velocity enabled a more 

functional scaling of arm movement during the transport phase, with the initial motor 

response adapting to the expected ball speed. These adaptions were absent when no advanced 

information was available and the initial response was similar regardless of ball speed. With 

the provision of advanced information, a smaller forward momentum of the rest of the body 

was produced, indicating a less pronounced postural response, which enabled the motor 

system to maintain balance during the sensitive grasping phase.  

 The importance of visual information for regulating postural behaviors was also 

highlighted by Santos, Kanekar, and Aurin (2010a, 2010b). During a predictable perturbation 

(with eyes open) individuals produced anticipatory postural adjustments, whereas in an 

unpredictable condition (with eyes shut) significantly smaller anticipatory postural 

adjustments emerged, being replaced by compensatory postural adjustments after the 

perturbation. Furthermore, centre of pressure and centre of mass changes were much greater 

in the unpredictable condition, demonstrating how anticipatory postural adjustments allow 

individuals to maintain postural stability from a perturbation. These data suggest that, with 

advanced information, earlier (re)organisation of postural control (evidenced by anticipatory 
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postural adjustments) might enable a reduction in compensatory postural adjustments. During 

catching performance, the availability of visual information is important since it provides 

greater system stability, which is functional for successfully catching a ball. 

Surprisingly, despite these findings, there has been limited research on anticipatory 

postural adjustments during performance of externally-timed interceptive actions. Existing 

research has often excluded advanced perceptual information in experiments (e.g. Eckerle, 

Berg, & Ward 2012; Kazennikov & Lipshits, 2010; Tijtgat et al., 2010, 2012, 2013) and 

typically, studies of catching behaviors have been designed so that participants are 

constrained to catch balls launched from a projection machine, to facilitate experimental 

control of flight trajectory. However, projection machines do not provide access to advanced 

visual information from a thrower’s actions. For example, Tijtgat et al. (2013) covered their 

machine with black plastic to ensure participants could not anticipate ball delivery. The 

removal of such informational constraints, although providing some experimental control, 

significantly alters the affordances (invitations for action; Gibson, 1979) available to a 

participant to regulate their actions. Skilled performers regulate interceptive actions by 

coupling them to different sources of information that become partially available at different 

times in dynamic performance contexts (van der Kamp, Rivas, Doorn, & Savelsbergh, 2008). 

For example, information prior to ball flight has been revealed as important for successful 

performance of interceptive actions (e.g., Panchuk, Davids, Sakadjian, MacMahon & 

Partington, 2013; Stone, Panchuk, Davids, North, & Maynard, 2014). This control strategy of 

adapting actions to emergent task constraints allows skilled performers to harness the 

information richness of the performance environment and supports successful behavior.  

The removal of key advanced information sources significantly alters the task 

constraints for the performer, which in turn alters the emergent movement organisation (for a 

detailed review, see Pinder, Davids, Renshaw and Araújo, 2011). Using the framework of 
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Brunswik’s (1956) theory of representative design in experiments, Pinder et al. (2011) 

highlighted two critical features within representative design: functionality of the 

informational constraints in an experiment and action fidelity. Functionality enables 

performers to regulate action with information that is representative of a performance 

environment and action fidelity allows performers to organise actions that would be required 

in a specific performance environment. Clearly, if the aim of empirical work is to investigate 

the role of initial movements and postural control during catching, then the information 

typically available when performing this task needs to be presented to participants (especially 

the movement kinematics of a ball thrower’s actions).  

Only recently have technological developments enabled perception (functionality) 

and action (fidelity) to be fully integrated, while retaining experimental control of key 

informational constraints, such as ball flight trajectory (for more detail see methods section 

and Stone et al., 2013). Stone et al. (2014), using technology that integrated visual 

information of images of an individual throwing a ball, synchronised with controlled ball 

projection from a machine (Panchuk et al., 2013; Stone et al., 2013), reported more 

successful catching behaviors in skilled catchers with the integrated technology, compared to 

using a ball projection machine only. In addition, analysis of their gaze behaviors revealed 

that more fixations were made, tracking of the ball occurred earlier, and for a longer period of 

time, when advanced visual information was available for the catchers. Analysis of kinematic 

measures of hand movements revealed a smaller maximum velocity and quicker time to reach 

maximum grip aperture, allowing for a more controlled action of the hand, when advanced 

visual information was combined with ball flight-only, compared to when a ball was 

projected without advanced visual information available. Findings suggested that perception 

and action need to be carefully coupled during studies of externally timed interceptive 

actions, an important experimental constraint, given that in many investigations of 
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interceptive actions, participants are frequently required to make reductionist, simplified 

micro-movement responses to simulate actions (e.g., McRobert, Williams, Ward & Eccles, 

2009; Vignais et al., 2009).  To highlight this issue, Stone et al. (2014) also examined the 

emergence of simulated catching actions in a condition with visual presentation of a 

thrower’s actions only (without ensuing ball flight-only). When simulating catches, 

participants did not organise the same arm/hand movements observed when they performed 

catching actions. Arm and hand movements were initiated much later and at a higher 

velocity, with grip aperture values being greater when simulating catching actions. Clearly, 

micro-movements do not successfully simulate dynamics interceptive actions like one-

handed catching. 

Taken together, these findings demonstrate how both vision of a thrower’s actions and 

ball flight can act as critical informational constraints on successful performance of 

interceptive actions. The data suggest the need to maintain functional couplings between 

perception and action, which help to regulate postural control during performance of 

externally-timed interceptive actions. To address this issue, we investigated how visual 

information from an image of a ball thrower and during ball flight, along with the specific 

actions produced, affected postural control and coordination of attempted interceptions in 

participants during a one-handed catching task. To achieve our empirical aims, participants 

completed a one-handed catching task in three conditions: (i) integrated video-ball flight, 

when advanced visual information from a ball thrower (i.e. video) and ball flight were 

combined, (ii) ball flight-only, when only ball flight information was available, and (iii) 

video-only, when participants were only presented with advanced visual information from 

videos of a thrower’s movement kinematics and were required to simulate a catching action. 

These three conditions allowed i) a representative design with advanced visual information 

(functionality of informational constraints) and unrestricted coupling of movement response 
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(action fidelity). Condition ii) removed functionality (no advanced information) but 

maintained fidelity (actual catch) and condition iii) maintained functionality (advanced 

perceptual information) but removed action fidelity by making participants simulate the 

action.   

Based on Brunswik’s (1956) theory of representative design, and previous findings 

reported by Stone et al. (2014), we developed two main hypotheses. First, we expected that 

coordination of postural control and interceptive movements would be initiated earlier when 

advanced visual information and ball flight were combined (integrated video-ball flight), 

compared to a ball flight-only condition, due to advanced visual information providing more 

specifying affordances, resulting in a better-timed and more controlled movement in skilled 

catchers. We also predicted that during a simulated action (video-only), whole body 

movements would occur later and a smaller advanced postural adjustment would be produced 

compared to when a ball is projected. The removal of information from ball trajectory was 

also expected to affect perception-action coupling, with limited postural adjustments being 

required due to the removal of ball impact and the need to actually intercept an object. 

 

Method 

Participants 

 Twelve (10 Male, 2 Female; mean age 24.3 ± 4) skilled right-handed catchers 

volunteered for the study. Participants were classified as skilled catchers since they had at 

least 5 years’ experience in competitive sports that involved catching projectiles such as 

cricket, Australian Rules Football and handball (obtained by a sport participation 

questionnaire). During a pre-test they were also required to successfully catch at least 16 out 

of 20 (M = 18.1 ± 1) balls at 50 km/h from the ball flight-only machine. Skill level was also 

confirmed by overall catching success rate during the experimental task (M = 91.3 ± 8.6%). 
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Institutional ethics approval was granted by a Research Ethics Committee and all participants 

provided informed consent.  

 

Apparatus 

 A custom-built apparatus (see Stone et al., 2013, for a detailed description) integrated 

a ball projection machine (Spinefire Pro 2, Spinfiresport, Tennis Warehouse, Victoria, 

Australia) with a PC (Windows XP, Microsoft, USA), video projector (BenqMP776s, Benq, 

Australia) and a freestanding projection screen (Grandview, Grandview Crystal Screen, 

Canada) with a 15 cm whole cut into the screen. This enabled a video to be projected onto the 

screen and synchronised with ball projection. Videos of an actor throwing a ball were 

captured from the participant’s viewing perspective (see Figure 1). The criteria for a video to 

be selected for presentation were: in a filmed throw, the ball had to hit a target area of 1 m x 

1 m at a speed of 50 ± 2 km/h measured using a radar gun. Five videos were selected to 

ensure the actor’s throw remained consistent across all trials. Three conditions, each with 30 

trials, were created; A video-only condition where a video of a ball being thrown was shown 

with no ball being projected; A ball flight-only condition, where balls were projected from a 

machine without an accompanying video of a throw; finally, an integrated video-ball flight 

condition which synchronised videos of a throwing action with ball flight-only from a 

machine. Final Cut Pro software (Apple, California, USA) was used to edit footage so that 

the spatial location of ball release occurred at the same position in each trial. Time to ball 

release was recorded and aligned within the software to ensure accurate synchronisation of 

the image of the thrower’s release of the ball and its projection from the machine.  

 Kinematic data from participants were collected using a VICON MX System 

consisting of 10 MX-T-40S cameras recording data at 500 Hz. Markers were placed using a 

kinematic gait model and marker set (Plug-In-Gait, VICON, Peak, Oxford, UK) on the 7
th
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cervical vertebrae, 10
th

 thoracic vertebrae, clavicle, sternum, right back, left and right 

shoulder (Acromio-clavicular joint), left and right upper arm, left and right elbow (lateral 

epicondyle), left and right forearm, left and right wrist a and b, left and right finger (dorsum 

of the hand just below the head of the second metacarpal), left and right anterior superior iliac 

spine, sacral, left and right lateral epicondyle of knee, left and right thigh, left and right ankle 

(lateral malleolus along), left and right tibia, left and right toe (second metatarsal head), and 

left and right heel (calcaneous at the same height above the plantar surface of the foot as the 

toe marker). Two additional markers were placed on the end of the right distal phalanges of 

the index finger and thumb. A 14-segment model consisting of feet, shanks, thighs, pelvis, 

thorax/abdomen, upper arms, lower arms and hands was created using VICON Nexus Plug-

in-Gait. Kinetic data were collected using a force plate (AMTI OR6) at 1000Hz, which was 

synchronised with VICON Nexus. 

 

Procedure 

 First, an overview of the apparatus was provided and sport participation 

questionnaires completed by participants. Without synchronised videos, three practice trials 

at a ball velocity of 50 km/h were performed, followed by a 20-trial pre-test of participant 

catching skill. Using the Plug-in-Gait guidelines, reflective markers were attached using 

double-sided tape. Five further trials were performed with videos of a thrower’s actions 

available to enable participant familiarisation with equipment. Thirty trials in each of three 

blocked conditions were undertaken in a counterbalanced design: ball flight-only, integrated 

video-ball flight, and video-only. Participants were asked to catch the balls during ball flight-

only and the integrated video-ball flight conditions. They were asked to simulate a catch 

during video-only trials by timing and placing their hand at the location where they expected 

the ball to arrive, had it been projected. Participants were asked to attempt to catch the ball 
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with their dominant (right) hand while standing 7 m away from the screen, starting in a 

relaxed position with their hand by their side and feet shoulder width apart. The ball (mid-

pressed tennis balls, 66mm diameter) was placed into the projection machine and the 

apparatus was activated after a random interval between 0-3 seconds; depending on the 

experimental condition, the video and/or ball were projected. The only instructions given to 

participants were to attempt to catch the ball or simulate a catching action, which enabled 

analysis of emergent behaviors. Two researchers independently recorded the outcomes of 

catching performance for each trial to ensure reliability. In order to prevent fatigue, 

participants were given a 2-5 minute break between blocks. No discomfort or impediment 

was reported when catching the ball using the equipment. Acoustic information from the 

apparatus was removed by having participants wear earplugs.   

 

Data Processing and Analysis 

 During integrated video-ball flight and ball flight-only conditions, each performance 

outcome was recorded as a catch or drop, with success rate expressed as a percentage of trials 

(after Stone et al., in press). Kinematic and kinetic data of participant catching 

actions/simulations were recorded and analysed off-line using VICON Nexus software and 

MS Excel. Kinematic and kinetic data were smoothed using a Butterworth filter (set to 8Hz 

and 20Hz respectively). Of 1,080 trials recorded across all participants, 56 trials (5.1%) were 

removed from analysis due to technical faults. The onset of movement was calculated by 

calculating the forward acceleration of the right hand marker with a velocity threshold change 

of 5m/s or greater, with all trials realigned to this point (Ton) (after Stone et al., in press). 

Each trial was analysed from 300 ms before to 800 ms after Ton (based on Tijtgat et al., 

2013). All joint angles, centre of pressure (COP) and centre of mass (COM) are expressed 

relative to their baseline values (averaged between 500 and 300ms before Ton). 
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 Joint angle data were produced using the Plug-in-Gait (PIG) model. The model 

consisted of fourteen body segments, pelvis, femur (2), tibia (2), feet (2), humerus (2), radius 

(2) hands (2) and thorax. Angular displacement (°) of flexion/extension was calculated on the 

right side for ankle, knee, hip, shoulder, elbow, wrist and the spine and thorax. In the sagittal 

plane, the positive sign corresponds to flexion and the negative to extension.  

 Displacement of COP in the anterior-posterior direction was calculated using the 

approximation method (Winter et al., 1996).  

COP = My + Fx * d/Fz 

 My = moment in sagittal plane. Fz and Fx are the vertical and anterior components of 

ground reaction force (GRF) and d is the distance from the origin of the force platform to the 

surface. Body mass and height with seven anthropometrical measures, leg length, knee, 

ankle, elbow and wrist width and shoulder offset and hand thickness for each participant were 

entered into the PIG model. These measures with kinematic data were used to calculate the 

body’s COM position. COM in the sagittal (COMx), front (COMy) and transverse (COMz) 

planes were analysed. Timing of displacement onset in COP (COP-Onset), COMx (COMx-

Onset), COMy (COMy-Onset) and COMz (COMz-Onset) was initially determined by a 

trained researcher and confirmed by an acceleration rise of the signal of 0.5 m/s
2
 (Santos et 

al., 2010b; Tijtgat et al., 2013). Peak displacements in COP (Peak-COP) and each plane of 

COM, (Peak-COMx, Peak-COMy and Peak-COMz) and respective times were calculated 

(Time-to-peak-COP, Time-to-peak-COMx, Time-to-peak-COMy and Time-to-peak COMz) 

and used as an indication of postural control (Santos et al., 2010b). Time from COP Onset to 

Peak-COP was calculated by subtracting Time-to-peak COP from COP-Onset and temporal 

changes in displacement of COP are presented as an average over 50 ms intervals (see Figure 

2). Descriptive statistics for the performance outcomes of successful catches and dropped 

balls in the ball-flight-only and integrated video-ball flight conditions for both COP and 



Running head: Perception-Action Couplings Regulate Postural Adjustments 

 

14 

COM variables are also presented (Table 1). With three participants successfully catching all 

the balls during the integrated video-ball flight condition, mean values for nine participants 

were used to calculated the values for dropped catches in these conditions. Each of these 

measures provided insights into participants’ regulation of posture during performance of the 

catching action.  

Mean displacement values of each angle were calculated for 4 epochs to examine 

segmental control (using criteria of Santos et al., 2010b). Epochs 1 and 2 were based on 

methods from previous studies of anticipatory postural adjustments (Shiratori & Latash, 

2001; Santos et al., 2010b). Epochs 3 and Epochs 4 were selected on the corrective postural 

control adjustments observed in the trunk and leg muscles during catching (Tijtgat et al., 

2013).  

 The epochs used were aligned to Ton with epoch 1 (Ep1) -200 ms to -50 ms, epoch 2 

(Ep2) -50 ms to +100 ms, epoch 3 (Ep3) +100 ms to 250 ms and epoch 4 (Ep4) +250 ms to 

400 ms. Epochs 1 and 2 are considered to reveal advanced postural adjustments, with 3 and 4 

showing compensatory postural adjustments. These epochs were used for statistical analysis 

and a temporal evaluation is also presented for each angle averaged over 50 ms intervals.  

 

Statistical Analyses 

A dependent measures t-test was performed on catching performance outcome data 

observed in integrated video-ball flight and ball-flight only conditions. Multiple repeated 

measures ANOVAs (Condition (3) x Variable) were used to analyse COP-onset, COMx-

onset, COMy-onset, COMz-onset, Peak-COP, Peak-COMx, Peak-COMy, Peak-COMz, Time 

to Peak COMy Time to Peak COMx and Time to Peak COMz.  
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Multiple two-way repeated measures ANOVAs were used (Condition (3) and epochs 

(4)) to analyse joint angles (Ankle, Knee, Hip, Spine, Thorax, Shoulder, Elbow, Wrist). A 

Greenhouse-Geisser correction was applied to any violations of sphericity with the repeated 

measures variables. Post-hoc testing was used to further analyse any main effect differences 

using a Bonferroni correction. If an interaction was present, simple effects analysis, with a 

Bonferroni correction was applied. Mean and standard error data are presented with all times 

displayed in ms. Partial eta squared (ηp
2
) is used for effect size estimations of ANOVA main 

effects with Cohen’s d presented, when appropriate, for post-hoc analyses.  

 

Results 

Catching Performance Outcomes 

 Performance condition affected catching performance outcomes t(1, 11) = 2.285, p 

< .05, d = .79 with catching success being greater in the integrated video-ball flight condition 

(94.7% ± 4.8 % of balls caught)  than in the ball flight-only condition (88% ± 11.1%).  

 

COP and COM 

Statistical outcomes for analysis of both COP and COM measures are summarised in 

Table 1. Two significant effects of conditions on COP were revealed. First, performance 

condition had a main effect on COP-Onset (p < .05, ηp
2
= .40), with post-hoc tests showing 

that in the ball flight-only condition, COP-Onset emerged significantly later than in the 

integrated video-ball flight condition (p < .001, d = 2.1). Second, performance condition 

affected the time difference between COP-Onset to Time-of-Peak-COP (p < .05, ηp
2
= .31) 

with post-hoc tests showing a smaller time difference in the ball flight-only condition 

compared to the integrated video-ball flight condition (p < .05, d = 1.3).  
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Changes in COMz and COMy were observed between conditions, with COMz-Onset 

being affected by performance condition (p < .001, ηp
2 

= .56). All COMz-Onset values 

emerged before Ton, with post-hoc tests revealing that this effect emerged earlier in the 

integrated video-ball flight condition than in the ball flight-only (p < .05, d = 1.3) and video-

only conditions (p < .05, d = 1.24). There was also a main effect of performance condition on 

Peak-COMz  (p < .05, ηp
2
  = .26) with post-hoc tests showing a smaller peak displacement for 

Peak-COMz emerging in the integrated video-ball flight condition compared to the video- 

only condition (p < .05, d = .80). Performance condition also affected Time-to-peak-COMz 

(p > .05, ηp
2 

= .30) with post-hoc tests showing that the Time-to-peak-COMz emerging in the 

ball flight-only and video-only conditions occurred later than  in the integrated video-ball 

flight condition (p = .046, d = 1.1, p < .05, d = .88 respectively).  

There was also a main effect of performance condition on COMy-Onset (p < .05, ηp
2 

= .35). Post-hoc tests showed that in the integrated video-ball flight condition, COMy-Onset 

emerged before Ton and differed in value in the ball flight-only (p < .05, d = .82) and video- 

only (p < .05 d = .86) conditions, with their onsets emerging after Ton. Performance condition 

had a main effect on Time-to-peak-COMy (p < .05, ηp
2
 = .28). Post-hoc tests showed that 

Time-to-peak-COMy emerged earlier during the integrated video-ball flight condition than in 

both the ball flight-only (p = .071, d = .76) and video-only (p = .052, d = .72) conditions (see 

Figure 3). 

 

Angles 

Postural Control - Hip, Knee, Ankle, Spine and Thorax 

Performance condition had a main effect on ankle displacement values, F(2, 22) = 

19.11, p < .000, ηp
2 

= .64. Post-hoc tests showed in the ball flight-only (4.0°  ± .8°) and  

integrated video-ball flight (5.2° ± 1.1°) conditions, ankle displacement values were greater 
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than in the video-only (0.1° ± 0.1°) condition (p < .000, d = 2.10 and p < .05, d = 1.90 

respectively)(see figure 4). Epochs had a main effect on ankle displacement values F(1.08, 

11.79)  19.89, p < .001 ηp
2 

= .64. Post-hoc tests showed differences between ankle 

displacement values at all epochs, with greater ankle displacement values observed as time 

increased; Ep1 (1.0° ± 0.2°) displayed smaller displacement values than Ep2 (1.9° ± 0.4°), 

Ep3 (3.8° ± 0.7°) and Ep4 (5.8° ± 1.1°) (all p’s < .05, d = .84, d = 1.50, d = 1.70 

respectively). Ankle displacement values in Ep2 were smaller than in Ep3 (p < .05, d = .89) 

and Ep4 (p < .05, d = 1.34). Ep3 also revealed smaller ankle displacement values than Ep4 (p 

< .05, d = .63). There was also a significant performance condition x epoch interaction, 

F(1.30, 14.29) = 23.15, p < .000, ηp
2  

= .68.  

Performance condition had a main effect on knee displacement values F(2, 22) = 

7.93, p < .05, ηp
2
 = .42. Post-hoc tests showed that the ball flight-only (5.8° ± 1.6°) and  

integrated video-ball flight (6.0° ± 1.7°) conditions revealed greater knee displacement values 

than the video-only condition (-0.1° ± .1°, both p’s < .05, d = 1.30, d = 1.31 respectively). 

Epochs also affected knee displacement values F(1.07, 11.78) = 16.53, p < .001, ηp
2 

= .60. 

Post-hoc tests showed that, as time increased, magnitude of knee displacement values 

increased, (Ep1 1.0°  ± 0.4°; Ep2 2.0° ± 0.6°; Ep3 4.9° ± 1.2°; Ep4 7.9° ± 1.8°; with knee 

displacement values in each epoch significantly different from each other, p’s < .05). There 

was also a condition x epoch interaction F(1.41,  15.51) = 8.32, p = < .05, ηp
2 

= .43.  

A summary of descriptive statistics for significant interactions of joint angle x epoch 

is presented in Table 2. Analysis showed that during the video-only condition, both ankle and 

knee displacement values did not change across epochs (both p > .05). In contrast, in the ball 

flight-only condition, ankle and knee displacement values increased as time progressed (both 

p < .05). Similarly, during the integrated video-ball flight condition, ankle displacement 

values increased across all epochs (p < .05), with increases in all epochs at the knee, apart 



Running head: Perception-Action Couplings Regulate Postural Adjustments 

 

18 

from Ep1 and Ep2 (p > .05) and Ep3 and Ep4 (p > .05). During Ep1 and Ep2 (anticipatory 

epochs) greater increases in ankle displacement values were seen in integrated video-ball 

flight condition than ball flight-only condition (Ep1 p < .05, d = 1.30, Ep2  p < .05, d = 

1.01 ). Greater knee displacement values were observed at Ep1 in the integrated video-ball 

flight condition than in the ball flight-only condition  (p < .05, d = 1.02). During the final 

three epochs, ankle displacement values in the video-only condition were consistently smaller 

than in the ball flight-only condition (Ep2, p < .05, d = 1.37; Ep3, p < .001 d = 2.05; Ep4, p 

< .001, d = 2.02) and in the integrated video-ball flight condition (Ep2,  p < .05, d = 1.5; Ep3, 

p < .001, d = 1.95; Ep4,  p < .000, d = 2.25). Similar observations were noted for knee 

displacement values which were smaller in the video-only condition than the ball flight-only 

condition (Ep2 p < .05, d = 1.38; Ep3,  p < .05, d = 1.44; Ep4,  p < .05, d = 1.43) and the 

integrated video-ball flight condition (Ep2,  p = .056, d = 1.12; Ep3,  p < .05, d = 1.41; Ep4,  

p < .05, d = 1.65).  

Performance condition had no main effect on hip displacement values F(1.13, 12.42) 

= 1.90, p > .05, or epochs F(1.02, 11.23) = 2.05, p > .05. There was also no displacement x 

epoch interaction F(1.21, 13.32) = 2.79, p > .05. 

Performance condition and epochs had no main effect on thorax displacement values 

F(2, 22) = 1.74, p > .05, ηp
2 

= .14 and F(1.14, 12.51) = 3.24, p > .05 respectively. There was 

also no performance condition x epochs interaction F(1.79, 19.72) = 1.11, p > .05,  ηp
2 

=  .09. 

Performance condition did not have a main effect on spine displacement values F(2, 

22) = 1.76, p  > .05, ηp
2 

= .14, and nor did Epochs F(1.06, 11.65) = .53, p > .05. There was 

also no performance condition x epochs interaction, F(2.02, 22.25) = .81, p > .05.  

 

Catching Arm 
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Performance condition had no effect on shoulder displacement values F(1.23, 13.58) 

= .39, p > .05, and nor did Epochs F(1.41, 15.55) = 100.73, p < .000, ηp
2  

= .90. Shoulder 

displacement values differed from one another at all epochs (p < .001), with shoulder 

displacement values increasing as time progressed (Ep1 4.0 ± 1.2°; Ep2 8.5 ± 1.5°; Ep3 25.0 

± 2.1°; Ep4 39.3 ± 2.1°). A significant performance condition x epochs interaction was 

observed, F(1.62, 17.80) = 4.69, p < .05, ηp
2
 = .30 (see figure 4).  

Performance condition had no main effect on elbow displacement values F(2, 22) 

= .46, p > .05, ηp
2 

= .04. There was a main effect of Epochs on elbow displacement values 

F(5.41, 13.28)  = 46.92, p < .000, ηp
2
 = .81. Post-hoc tests showed elbow displacement 

values at Ep1 (5.4 ± 1.0°) were smaller than in Ep2 (16.8 ± 2.1°, p < .000, d = 2.01), Ep3 

(34.0 ± 3.8°, p < .000 d = 2.94) and Ep4 (34.6 ± 4.4°, p < .000 d = 2.65). At Ep2 elbow 

displacement values were smaller than in Ep3 (p < .000 d =1.60) and Ep4 (p < .001 d = 

1.49). There was also a performance condition x epochs interaction F (2.05, 22.50) = 3.56, p 

< .05, ηp
2
 = .25. 

 Performance condition did not have a main effect on wrist displacement values F(2, 

22) = .18, p > .05, ηp
2
 = .02. Epochs revealed a main effect on wrist displacement values 

F(1.22, 2.06) = 54.49, p < .000, ηp
2
 = .83. Ep1 (6.0 ± 1.2°) revealed smaller wrist 

displacement values than Ep2 (17.4 ± 2.5°, p < .000, d = 1.69), Ep3 (24.7 ± 3.4° p < .000, d = 

2.15) and Ep4 (25.9 ± 3.1°, p < .000, d = 2.4). Values of wrist displacement at Ep2 were 

smaller than Ep3 (p < .001, d = .70) and Ep4 (p < .000, d = .86). A condition x epochs 

interaction was present F(2.06, 22.63) = 6.31, p < .05,  ηp
2
 = .36 (see Figure 5). 

 Simple effects analysis revealed limb displacement changes in all three conditions 

(see Table 2 for descriptive statistics). Shoulder displacement values increased in each epoch 

as time progressed (p <.05), apart from in the ball flight-only condition at Ep1 and Ep2 

(p > .05). Elbow displacement increased, as time increased, in both integrated video-ball 
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flight and ball flight-only conditions, in all epochs (p < .000, p < .05 respectively) apart from 

Ep3 and Ep4 (p > .05). Elbow displacement values in the video only condition differed across 

epochs (p < .05), other than in comparisons between Ep2 and Ep4 (p > .05) and Ep3 and Ep4 

(p > .05). At the wrist, changes were observed in the ball flight-only condition in all epochs 

(p < .001), apart from in comparisons between Ep3 and Ep4 (p >.05). In the video only 

condition the wrist displacement values epochs were again different across all epochs (p 

<.05) apart from in comparisons between Ep3 and Ep4 (p >.05) and during integrated video-

ball flight condition the wrist displacement values were all different, increasing as time 

progressed (p < .05), apart from Ep2 and Ep4, Ep3 and Ep4 (p <.05).   

At Ep1 increased displacement values were observed in the integrated video-ball 

flight condition, compared to ball flight-only condition, at the shoulder (p < .05, d = 1.14), 

elbow (p < .05 d =1.43) and wrist (p < .01, d = 1.82). The integrated video-ball flight 

condition also revealed greater wrist displacement values at Ep1 than in the video-only 

condition (p < .05, d = .88). At Ep2 shoulder displacement values were greater in the 

integrated video-ball flight condition compared to the ball flight-only condition (p < .05, d = 

1.45). No differences in shoulder displacement values were observed during Ep3 (p > .05). 

However, at Ep4, the integrated video-ball flight condition revealed smaller shoulder 

displacement values than in the ball flight-only condition (p < .05, d= .81).  

 

Discussion 

 In this experiment we examined how manipulating access to advanced visual 

information from the image of a thrower’s actions, and to vision of ball flight, constrained the 

organisation of interceptive actions and postural control during performance in a one-handed 

catching task. Results showed these manipulations produced significant changes in 

movement patterns, postural regulation behaviors and performance success rates of 
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participants observed under the three different conditions. These findings demonstrated that 

postural control and interceptive actions are sensitive to the specific perceptual informational 

constraints present during performance. Our data confirmed that, not only are interceptive 

actions directly linked to such perceptual information sources, but so too are the anticipatory 

postural adjustments that precede these movements.  

Although similar movement patterns were observed in the two conditions when a ball 

was physically intercepted by participants (integrated video-ball flight and ball flight-only), 

changes in COM and COP behaviors, as well as lower limb joint angles, emerged later when 

advanced visual information sources were removed. This finding supports our first 

hypothesis that postural regulation behaviors would emerge earlier in the integrated video-

ball flight condition, compared to when only ball flight was available. When video and ball 

flight information were combined, advanced postural adjustments emerged prior to onset of 

the catching arm, suggesting that participants adapted earlier to the specific postural control 

requirements of the catching task. The importance of earlier movement initiation during 

interceptive actions was highlighted when the data were split into catches and drops. It 

appears that during the integrated video-ball flight conditions earlier movements for COP, 

COMx, COMy and COMz onsets and time to peak resulted in successful catches. In the ball 

flight-only condition there was also earlier COP, COMy and COMz onsets during successful 

catches compared to dropped catches. Yet as the second hypothesis proposed, during a 

simulated action (video-only condition), limited postural control movements from the lower 

limbs emerged. Indeed, directional changes emerged upwards in COMz, when catching 

actions were simulated, compared to a downwards direction in conditions when catches were 

coordinated. This observation provides support for an ecological dynamics perspective 

proposing that humans, considered as complex adaptive systems, are capable of functionally 

altering their behaviors to achieve performance outcomes. Participants in this experiment 
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displayed an emergent tendency to harness processes of perception and action in adapting 

their movement patterns with respect to available information in a performance environment 

(Warren, 2006; Davids et al., 2014). 

 When performing, or simulating, a one-handed catching action, participants showed 

the same sequence of postural adjustment initiation in each condition with COP-Onset 

emerging first followed by changes in COMz, COMy and COMx. Yet the timing of these 

sequences, in relation to the initiation of movement of the catching arm (Ton), differed across 

conditions. During the integrated video-ball flight condition, COP-Onset, COMz-Onset and 

COMy-Onset emerged before the initiation of movement of the catching arm. This 

observation suggests that, with access to advanced visual information, anticipatory postural 

adjustments can emerge prior to the coordination of an interceptive movement with the 

catching arm. Yet when this visual information source was removed (in the ball flight-only 

condition), despite COMz-Onset emerging prior to initiation of movement of the catching 

arm, a much shorter time frame was seen (-18 ms). Consequently, COMy-Onset emerged 

after initiation of movement of the catching arm. This observation suggests that anticipatory 

postural adjustments, emerging when only ball flight information is available, differed to 

when advanced visual information and ball trajectory information were combined. These data 

support those reported by Tijtgat et al. (2013), who showed no clear evidence of advanced 

postural adjustments during catching when advanced visual information was not available to 

a catcher. With added affordances that the videos provide, participants were exposed to richer 

informational constraints that allowed them to more accurately anticipate ball release and 

organise advanced postural control adjustments accordingly, which ultimately resulted in 

improved catching performance. 

 This proposal is further supported by differences observed in the timing between 

initiation of COP-Onset to Time-to-peak-COP. This transition period took longer when 
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representative perceptual and action constraints were combined, in contrast to conditions 

when the images of a thrower’s action or ball flight information were removed, suggesting a 

more controlled change in COP under the former task constraints. Santos et al. (2010b) 

proposed that the CNS might not only control the magnitude of COP-peak displacement but 

also the timing of this peak to maintain functional balance. The findings of our study showed 

that, in the integrated video-ball flight condition, COP-Onset emerged earlier than when 

advanced perceptual information was removed (ball-flight only). However, both peaks 

occurred at similar time points. This observation suggests that under more predictable 

performance conditions, when advanced visual information enables a more accurate 

anticipation of ball flight-only, then more time is available for COP to reach its peak, which 

allows a smoother and more controlled action to emerge. Without the affordances picked up 

from the advanced visual informational constraints, participants were required to rely on ball 

flight information only to constrain their actions, resulting in a more reactive response and 

may account for the decreased catching performance. It could be argued that these behaviors 

have limited functionality in typical performance environments, which are enriched with 

informational constraints. After all, as Whiting (1991) argued long ago: action is not the same 

as reaction. 

Lower limb joint flexion-extension patterns seemed primarily responsible for COM and 

COP displacement during the two conditions in which participants were required to 

physically catch the ball (ball flight-only, and integrated video-ball flight conditions). In 

these conditions, participants used a combination of movements in the ankle, knee and hip 

joints.  The findings suggest the lower limb joints (in integrated video-ball flight and ball 

flight-only conditions) played a key role in minimising upper body displacement,  enabling 

the upper body to stay vertical in orientation to help ensure the head and eyes remained 

stable, allowing a functional behavior that affords tracking of a ball. Yet differences observed 
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in lower limb displacement values, and their magnitudes in the integrated video-ball flight-

only and the ball flight-only conditions, provide further evidence of the importance of 

advanced visual information in postural control and performance accuracy. During integrated 

video-ball flight, flexion of the ankle and knee began before the initiation of movement of the 

catching arm (Ton). In contrast, when access to these visual information sources was not 

available (i.e., when only ball flight information was presented), lower limb displacement 

emerged at an equivalent time to arm movement (see Figure 5). This is an important 

observation, since in line with previous research (Santos et al. 2010b), it seems that 

perception of sources of advanced visual information is one of the main behavioral strategies 

used to regulate postural control. In addition, the earlier movements observed when advanced 

visual and ball flight information sources were combined may allow the body and head/eyes 

to be prepared and stabilised in a functional position when the ball is released. This 

behavioral strategy may enable earlier tracking of the ball and a smoother and more 

controlled movement of the catching arm, both of which are associated with more accurate 

catching performance (Panchuk et al., 2013; Stone et al., 2014). This proposal is supported by 

kinematic data from the catching arm which revealed that displacements of the shoulder, 

elbow and wrist emerged earlier during the integrated video-ball flight condition compared to 

when ball flight information only was available. 

The simulated catching action, when only advanced visual information was presented 

(video-only), produced considerably different movement patterns in relation to the two 

conditions that required actual interception of the ball. Participants showed minimal changes 

in the lower limbs with an upward Peak-COMz. Without the need to control for the impact of 

the ball, participants allow COMz to rise with the movement of the arm. Knowledge that 

interception of an object is not required significantly affects postural control as well as arm 

movement characteristics and gaze behaviors of participants (see also data reported in Stone 
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et al., in press). This is an important finding if researchers are attempting to use simulated 

actions to test the role of anticipation in human behavior. The findings show that movement 

patterns will be adapted, depending on the specificity of the task constraints presented to 

participants. Action fidelity is a particularly important methodological issue, given the 

growing use of virtual environments within research and training contexts (e.g. Fink, Foo, & 

Warren, 2009; Chan, Leung, Tang, & Komura, 2011; Vignais et al., 2009). These virtual 

environments allow varying levels of immersion by the participant and simulated actions are 

commonly used. The data presented here suggests researchers and practitioners need to 

ensure representative designs which allow the greatest level of immersion possible so that 

adequate feedback is available to elicit the same postural responses as required in the 

performance environments that are simulated 

The findings observed in all three conditions added support for van der Kamp et al.’s 

(2008) proposal that both advanced information prior to ball release and ball trajectory 

information are essential for successful catching performance. Here we have demonstrated 

that these information sources are also important for anticipatory postural regulation to 

support the performance of interceptive actions during upright stance. The findings have 

theoretical implications by highlighting the precise coupling between perception and action to 

regulate behaviors of different movement sub-systems.  

 Data on adaptations to postural regulation behaviors and the kinematics of the 

catching arm in the three conditions suggested that the catching action was 'nested' on the 

task of postural regulation (see Riccio & Stoffregen, 1988). This coordination strategy 

reduced the number of system degrees of freedom that the CNS needed to regulate in an 

“umbrella” control strategy, with posture being dependent on the task being performed. For 

example, when participants attempted to mediate the potentially destabilizing effects of ball 

impact on the hand, postural regulation behaviors were adapted during interception compared 
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to when the same participants performed the simulated catching action. This observation 

suggests that postural control and the nested catching action were integrated and organised 

together, forming a new synergy from the re-organised motor system degrees of freedom. 

These results support the proposal that the two sub-systems of postural control and 

interception should not be considered as functioning independently, requiring two separate 

control mechanisms. Rather posture is regulated continuously in order to facilitate the 

performance of other nested actions, such as reaching into space to catch a passing ball (often 

referred to as supra-postural goals, see Riccio & Stoffregen, 1988; Riccio & Stoffregen, 

1991; Stoffregen et al., 1999).  

  In addition the findings pose significant challenges for research that neglects the 

careful consideration of an action component (by using micro-movements) (e.g. Aglioti, 

Cesari, Romani & Urgesi, 2008; Abreu et al., 2012; Tomeo, Cesari, Aglioti & Urgesi, 2012) 

or which excludes availability of advanced perceptual information sources for participants. 

Removal of either component, which is common in research, will alter the informational 

constraints and fail to capture the dynamic, emergent nature of interceptive actions. Finally, 

practitioners that rely on ball flight-only machines to train performers may wish to reconsider 

the design of their practice environments considering the findings presented here. 

In conclusion, we observed emergent perception-action couplings in three conditions with 

varying informational constraints during performance of a one-handed catching task. The 

data support the tenets of ecological dynamics, the theoretical rationale used to frame our 

investigation of coordination. The findings however could also be interpreted through 

alternative theoretical explanations such as the theory of event coding (TEC) (Hommel, 

Müsseler, Aschersleben & Prinza, 2001).  For example, the evidence of advanced postural 

adjustments supports TEC’s proposal that human action is anticipatory in nature and 

regulates human behavior (Hommel, 2009). The findings also support the importance of 
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considering the intentions and goal-directed actions of participants, a key component of TEC 

over previous cognitive based theories of human perception and action which have seen 

actions as merely by products of perception (Hommel, 2009). Our findings showed that 

simulated actions resulted in considerably emergence of distinct movement patterns under 

different informational constraints, such as when ball flight information was available and 

actual interception of an object was required. Further, when visual information of a thrower’s 

action was not available to participants, despite a similar movement strategy and postural 

control mechanism, the timing of such activation was delayed and prevented effective use of 

anticipatory postural adjustments, decreasing system stability and resulting in impaired 

catching performance. Further work should be undertaken to compare kinematic and kinetic 

patterns emerging in trials resulting in successful and dropped catches which could provide 

further insight into functional coordination strategies needed for performance of this kind of 

interceptive action. Additionally, it would be important to examine how changes in ball 

velocity, participant stance and other manipulations to informational constraints affect 

coupling of perception and action in performance of dynamic interceptive actions. 
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Table 1. COP and the three directions of COM ANOVA and post-hoc outputs for Onset, peak and time to peak between each of the three 

performance conditions (Video-Ball- integrated video-ball flight; Ball-Only- ball flight-only).  

 df f p ηp
2
 

Video-Ball 

(M ± SE) 

Ball-Only 

(M ± SE) 

Video-Only 

(M ± SE) 

Video-Ball (M ± SE) Ball-Only (M ± SE) 

        Catch Drop Catch Drop 

COP            

Onset (ms) 1.4, 14 7.55 <.05 .407 -356 ± 49
**

 -36 ± 37
**

 -232 ± 86 -361 ± 52 -337 ± 112 -41 ± 36 -29 ± 38 

Peak Displacement 

(mm) 
2, 22 0.12 >.05 .011 -17 ± 16 -15 ± 12 -17 ± 8 

 

-17 ± 18 

 

-21 ± 21 

 

-15 ± 11 

 

-25 ± 15 

Time to Peak (ms) 2, 22 1.04 >.05 .086 190 ± 56 244 ± 43 308 ± 70 182 ± 57 230 ± 104 232 ± 42 284 ± 63 

Peak – Onset (ms) 2, 22 4.86 <.05 .316 546 ± 75
*
 255 ± 43

*
 539 ± 99 552 ± 73 567 ± 78 273 ± 41 313 ± 46 

COM Onset            

COMy (ms) 1.2, 13.3 5.79 <.05 .345 -93 ± 50
*ab

 18 ± 24
*a

 153 ± 105
*b

 -97 ± 53 -6 ± 64 4 ± 32 25 ± 35 

COMz (ms) 2, 22 9.04 <.01 .559 -111 ± 27
*ab

 -18 ± 11
*a

 -19 ± 13
*b

 -115 ± 23 -41 ± 34 -21 ± 15 -8 ± 15 

COMx (ms) 1.1, 13.4 0.90 >.05 .142 17 ± 46 61 ± 41 203 ± 159 12 ± 49 23 ± 21 61 ± 47 62 ± 30 

COM Peak Displacement            

COMy (mm) 2, 22 1.28 >.05 .104 -7 ± 7 -4 ± 8 -14 ± 5 -6 ± 6 -9 ± 8 -5 ± 8 -3 ± 8 

COMz (mm) 2, 22 3.80 <.05 .257 -3 ± 9
*
 -1 ± 12 20 ± 7

*
 -3 ± 9 2 ± 11 -3 ± 12 2 ± 13 

COMx (mm) 1.2, 13 0.90 >.05 .760 -1 ± 14 -11 ± 13 -8 ± 6 1 ± 13 -9 ± 15 -10 ± 13 -11 ± 14 

COM Time to peak            

COMy (ms) 2, 22 4.23 <.05 .278 224 ± 53
*
 352 ± 43 366 ± 59

*
 220 ± 52 231 ± 69 361 ± 44 286 ± 79 

COMz (ms) 2, 22 4.67 <.05 .298 201 ± 42
*ab

 374 ± 50
*a

 329 ± 42
*b

 194 ± 40 234 ± 57 387 ± 45 315 ± 88 

COMx (ms) 2, 22 1.28 >.05 .104 369 ± 54 424 ± 51 332 ± 42 391 ± 56 347 ± 87 421 ± 48 445 ± 66 

Post-hoc testing: 
 a
 denotes significant comparison between Video-ball and Ball-Only conditions, 

b 
denotes significant comparison between Video-Ball and Video-Only 

conditions, *p < .05, **p < .001 
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Table 2. Summary of descriptive statistic for ankle, knee, shoulder, elbow and wrist at each 

epoch (VBP- integrated video-ball flight-only; BPO- ball flight-only only; VO- video 

only). 

 Ep1 Ep2 Ep3 Ep4 

 M ± SE (°) M ± SE (°) M ± SE (°) M ± SE (°) 

Ankle     

VBP 2.4 ± 0.7 4.1 ± 1.0 6.3 ± 1.3 8.3 ± 1.5 

BPO 0.3 ± 0.1 1.4 ± 0.4 5.0 ± .1.0 9.3 ± 1.9 

VO 0.2 ± 0.1 0.2 ± 0.1 -1.0 ± 0.2 -0.1 ± 0.3 

Knee     

VBP 2.7 ± 1.0 4.2  ± 1.5 7.2 ± 2.1 9.8 ± 2.4 

BPO 0.2 ± 0.1 1.7 ± 0.5 7.4 ± 2.1 14.0 ± 4.0 

VO 0.1 ± 0.1 0.02  ± 0.1 -0.02 ± 0.1 -0.04 ± 0.2 

Shoulder     

VBP 9.4 ± 3.1 13.8  ± 3.0 25.0 ± 2.7 33.2 ± 3.5 

BPO 0.7 ± 0.4 2.6 ± 1.1 22.24 ± 3.0 44.6 ± 4.6 

VO 1.9 ±  1.2 8.9 ± 2.5 27.6 ± 4.0 40.1 ± 5.6 

Elbow     

VBP 9.7 ± 2.2 20.5 ± 3.4 32.8 ± 4.6 33.0 ± 4.1 

BPO 1.7 ± 0.5 14.2 ± 1.3 38.8 ± 4.0 39.0 ± 4.4 

VO 4.8 ± 1.5 15.8 ± 3.3 30.3 ± 5.9 31.8 ± 7.3 

Wrist     

VBP 10.5 ± 1.5 20.2 ± 2.7 22.1 ± 2.9 23.7 ± 3.2 

BPO 2.1 ± 1.2 15.2 ± 3.0 28.3 ± 5.4 29.6 ± 4.8 

VO 5.4 ± 1.9 16.7 ± 3.3 23.6 ± 3.7 24.4 ± 3.5 
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Figure 1. An example of three screen shots of the advanced visual information projected onto 

the screen.  
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 Figure 2. Temporal evaluation of COP from -300ms to +800ms for the three performance 

conditions. Each point represents COP displacement in the sagittal plane with backward (+) 

and forward (-). Each time point is averaged over 50-ms intervals (e.g. -200 ms is -201 to -

150 and so on) with standard errors presented. The dotted vertical line shows Ton. 
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Figure 3.  a). Peak displacement and b). Time to peak displacement in COMx, COMy and 

COMz during the three performance conditions (M ± SE). (VBP- integrated video-ball flight-

only; BPO- ball flight-only only; VO- video only) 
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Figure 4. Temporal evaluation (from -300ms to + 800ms in relation to Ton) of the a)ankle, b) 

knee, c) hip, d) spine and e) thorax during the three performance conditions. Each point 

represents angular displacement in the sagittal plane with flexion (+) and extension (-). Each 

time point is averaged over 50 ms intervals (e.g. -200 ms is -201 to -150 and so on) with 

standard errors presented. The dotted vertical line showed Ton. VBP- integrated video-ball 

flight-only; BPO- ball flight-only only; VO- video only. 
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Figure 5. Temporal evaluation (from -300ms to + 800ms in relation to Ton) of the a) 

shoulder b) elbow and c) wrist during the three performance conditions. Each point 

represents angular displacement in the sagittal plane with flexion (+) and extension (-). Each 

time point is averaged over 50 ms intervals (e.g. -200 ms is -201 to -150 and so on) with 

standard errors presented. The dotted vertical line shows Ton. 

 

 

 

 

 

 


