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Optimisation of Maintenance Scheduling Strategies on the Grid

Alex Shenfield, Peter Fleming, Jeff Allan and Visakan Kadirkaathan

~ Abstract— The emerging paradigm of Grid Computing pro- dependable, consistent, pervasive, and inexpensivesatzes
vides a powerful platform for the optimisation of complex com-  high-end computational capabilities” [2]. Grid Computing
puter models, such as those used to simulate real-world logistics is differentiated from conventional distributed compagtioy

and supply chain operations. This paper introduces a grid- . - . .
based optimisation framework that provides a powerful tool its emphasis on co-ordinated resource sharing and problem

for the optimisation of such computationally intensive objective ~SOlving in dynamic, multi-institutional virtual organtsans
functions. This framework is then used in the optimisation of [3]. These resources include software packages, compute
maintenance scheduling strategies for fleets of aero-engines, resources, sensor arrays, data and many others.
a computationally intensive problem with a high-degree of  The purpose of this paper is to introduce a grid enabled
stochastic noise. Lo . .
framework for optimisation of maintenance schedules. This
|. INTRODUCTION frameyvork vyill then be used .to assist Qecision maker; in
planning maintenance scheduling strategies for aeraiesgi
A fundamental shift in emphasis within the aero-enginghjs problem presents many challenges due to to its highly
manufacturing industry is leading to the adoption of powerstgchastic nature.
by-the-hour contracts, where airlines make regular fixed section Il will introduce evolutionary algorithms and give
payments to the engine manufacturers based on the hodrgrief overview of their application to scheduling probem
flown by an engine and, in return, the manufacturers ofection 11l will introduce Grid Computing and the core
the engine retain the responsibility for servicing and mainconcepts used in our optimisation framework. The MEAROS
tenance. As a result of this, the accurate prediction Qfimulation package used by Rolls-Royce to model the oper-
support costs over the life-cycle of an engine is of the upstional life-cycle of engines will be introduced in Section
most importance. However, aero-engines operate in a highly, and the simple cost model used in this study will also
complex and unpredictable environment, and as such it jfe outlined. Section V will describe the implementation of
impossible to produce a deterministic model for these sUppeur framework, and then Section VI will show its application
costs. Instead, stochastic simulations can be performed {9 the planning of maintenance schedules for aero-engines.

provide cost estimates. It is also important for the engingection VII will present our conclusions and outline some
manufacturers to devise maintenance scheduling strategjgeas for further work.

to minimise support costs and thus enable more competitive

pricing of these contracts. I[I. AN INTRODUCTION TO EVOLUTIONARY
Soft Computing techniques such as Neural Networks, ALGORITHMS

Fuzzy Logic, and Evolutionary Computation have been usedl. Evolutionary Algorithms

to solve many complex real-world engineering problems. Eyolutionary Algorithms (EAs) are an optimisation tech-
These techniques provide the engineer with a new set Afque utilising some of the mechanisms of natural selection
tools that often out-perform conventional methods in arega). EAs are an iterative, population based method of op-
where the problem domain is noisy, stochastic or ill-definedimisation that are capable of both exploring the solution
However, in the cases of Neural Networks and EVOlutionarypace of the prob|em and exp|oiting previous generations of
Computation especially, these tools can be computatipnalbolutions. Exploitation of the previous generation of tiols
Intensive. is performed by a selection operator. This operator gives

Grid Computing offers a solution to the computationallypreference to those solutions which have high fitness when
intensive nature of these techniques. The Grid Computingeating the next generation of solutions to be evaluated.
paradigm is an emerging field of computer science that aingsxploration of the solution space is performed by a mutation
to offer “a seamless, integrated computational and collab@perator and a recombination operator and helps to ensure
rative environment” [1]. lan Foster defines a computationahe robustness of the algorithm by preventing the algorithm
grid as “a hardware and software infrastructure that pewid from getting stuck in local optima.

Evolutionary Algorithms evaluate candidate solutions
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to their population based nature. Because EAs maintaintle complexity of the parallel EA as each of these parameters
population of candidate solutions, each generation casitaiaffects the efficiency of the algorithm and the quality of the
more information about the shape of the fithess landscapeerall solution.
than would be available to conventional, non-population
based methods such as hill-climbing [5]. Il GRID TECHNOLOGIES

Evolutionary Algorithms have been used to solve problems The concept of Grid Computing is not new. As far back
across many different disciplines. GAs have been used &s 1969 Len Kleinrock suggested:
such diverse fields as Economics and Social Theory [6], “we will probably see the spread of ‘computer
Robotics [7] and Art [8]. For many non-trivial real-world tilities’, which, like present electric and telephone
applications the evaluation of the objective function is-pe utilities, will serve individual homes and offices
formed by computer simulation of the system. For example,  5cross the country.” [16]
in the optimisation of controller parameters for gas tuebin
aero-engines [9], a computer model of the engine is used 9
calculate the values of the objective functions for a givela
controller design.

The use of computer simulations to evaluate the objecti

However, it is only recently that technologies such as the
obus Toolkit [2] have emerged to enable this concept to be
chieved. The Globus Toolkit is an open-source, community-
based set of software tools to enable the aggregation of
. : K ompute, data, and other resources to form computational
fuqcUon leads to some NEW 1SSUes. T‘.) ensure that th? reSUifds. Since version 3, the Globus Toolkit has been based
galne.d from the evolutionary algorithm_ are meanlngfulm the Open Grid Services Architecture (OGSA) introduced
the simulation must be complex enough to capture all t_r{% the Globus Project. OGSA builds on current Web Service
relevant dynamics of the true system. However, assumi ncepts and technologies to support the creation, mainte-

tbhat this level OftC?.mpITIX'ty Its ob_tame;t\aleizt;]\e S|mulatma|yt_ nance, and application of ensembles of services maintained
e very computationally intensive. As EAs are popula |ori||Jr¥ virtual organisations [17].

based methods, the simulation must be run many times.
a typical evolutionary algorithm this could involve rungin A. Web Services

the simulation 10,000 times. A Web Service is defined by the W3C as “a software sys-

B. Scheduling Applications of Evolutionary Algorithms ~ tem designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in

Finding good solutions to industrial scheduling problem machine-processable format (specifically WSDL). Other

is_of great importance, since both production rateg ANl stems interact with the Web service in a manner prescribed
plant costs are dependent on work schedules. Evolution

. ) . DY its description using SOAP messages” [18]. Web Services
algorithms have had some success in solving the canonlcal b g ges” [18]

: .are accessible through standards-based internet prstocol
Job-Shop Sphedulmg Prgblem [10], [1.1]’ a problem that_ 'Buch as HTTP and are enabled by three core technologies
representative of industrial tasks ranging from assemgbli 19]:
cars, to scheduling aircraft maintenance. Recent foculsen t t .
EC community has been on generating robust and flexible ® Simple Object Access Protocol (SOAP)
job shop schedules [12]. Other scheduling problems solved * We_b Services De_sc_rlpnon I__anguage (WSDL) )
by EAs include planning maintenance for the (UK) national * Universal Description, Discovery, and Integration

grid [13] and university course timetabling [14]. (UDDI)
_ _ These technologies work together in an application as
C. Parallel Evolutionary Algorithms shown in Figure 1. The Web Service client queries a UDDI

The computationally intensive nature of the evaluatiofiegistry for the desired service. This can be done by service
process has motivated the development of parallel evelutioname, service category, or other identifier. Once this servi
ary algorithms. Early proposals for the implementation ofas been located the client queries the WSDL document to
parallel EAs considered two forms of parallelisation whicHind out how to interact with the service. The communication
still apply today: multiple communicating populations,dan between client and service is then carried out by sending and
single-population master-slave implementations [15]. receiving SOAP messages that conform to the XML schema

The decision between which of these two types of parafound in the WSDL document.
lelisation to implement must consider several factorshsuc
as ease of implementation and use, and the performanc mpicaion ™ CSeies T N
gained by parallelisation. Single-population parallelsEdxe et Serce LT > e
often the easier to implement and use, as experience gain¢ | _ § § §
with sequential EAs can be easily applied to these. In oo <M | @ " |
cpntr.ast, the |mplementat|on and use of.mult|ple commu- @ 1 ‘
nicating populations based parallel EAs involves choosing
appropriate values for additional parameters such as siz
and number of populations, frequency of migration, and the Fig. 1. Interaction between Web Service Technologies
number of individuals involved in migration. This increase




B. Open Grid Services Architecture after 100 passes. In practice this means that the benefit from

The Open Grid Services Architecture forms the basi§/nning more than 100 passes of the model is outweighed
for the Globus Toolkit. OGSA represents computationapy the additional computational cost.
resources, data resources, programs, networks and degaba<
as services. These services utilise the Web Services te« 1510
nologies mentioned in Section IlI-A. There are three mail
advantages to representing these resources as services:

1) It aids interoperability. A service-oriented view ad-
dresses the need for standard service definition mec
anisms, local/remote transparency, adaptation to loc
OS services, and uniform semantics [17].

2) It simplifies virtualisation. Virtualisation allows for
consistent resource access across multiple heterog
neous platforms by using a common interface to hid
multiple implementations [17].

3) It enables incremental implementation of grid function-
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Fig. 2. Plot of the Standard Deviation of Aggregate Mainterea Cost
IV. LIFE-CYCLE SIMULATION OF Against Number of Runs of the Model

AERO-ENGINES

The Modular Engine Arisings, Repair and Overhaul Sim- Originally MEAROS was used for predicting the number
ulation (MEAROS) package was developed to enable Roll®f spares needed to maintain a set level of operational
Royce and the Ministry of Defence to evaluate the operatio@yailability. However, many of the parameters in the model
maintenance and supply of aircraft engines [20]. Althoughre customisable (such as the failure distributions of rengi
designed for the aero-engine manufacturing industry, th®odules, the stock levels, and the maintenance scheduling
simulation can equally be applied to ships, land vehicles arstrategies used) and can therefore be optimised with respec

power generation [21]. to some objective (for instance the support costs or the
The data collected during a simulation run falls into thre@perational availability).
main categories: In this study we have chosen to use the maintenance

« Operations Reports which describe the nature of the scheduling strgtegy In our optimisation beca_use this 'S one
. : . . - of the few easily modifiable parameters affecting operation
operations undergone by the engines in the simulation _.. -, .. ) .
availability and support costs once an engine has gone in to
(such as number of hours flown). : . . . S
- . : service. Maintenance in the simulation is performed after a
« Arisings Reports which detail events that cause an_ . . : - .
. . arising occurs. The main causes of arisings are either the
engine to be taken out of service. . . . ; X i
4 ) . . expiry of ahard-life! or an in-service failure such as foreign
« Maintenance Reportswhich detail what maintenance biect d 2
actions were taken (such as the reconditioning o? ject amag_e_[ 0]. .
scrapping of engine modules) and the times that the Once an arising occurs, the engine must be removed from
occuefe dg 9 tfe aircraft wing and the module that caused the arising must
' be reconditioned or replaced. However, as the removal of the
The modelling capability of the MEAROS software isengine from the wing is one of the most expensive parts of a
extensive. The software can be used to model the operatigypical maintenance shop visit, this provides the grourmsvcr
of fleets of engines with an arbitrary number of modulesvith the chance to perform opportunistic maintenance on the
[20]. Theoretically there is no limit to the size of fleetstthaother modules in the engine. If one of the other modules in
can be modelled by the software, however in practice thigie engine has exceeded #sft-life? then it should also be
is limited by the computational effort needed to model largeeconditioned or replaced whilst the engine is removed from
numbers of engines. the wing. [22] have shown that, for relatively small engine
Results produced by the simulation contain a lot ofnodule costs, there is likely to be an optimum value of soft-
stochastic noise due to the probabilistic models used tife which minimises the maintenance cost of an engine.
simulate component failures. As such, the simulation has ®oft-lives that are too low result in engine modules being
be run multiple times and averaged to reduce the effect eéconditioned or replaced during every maintenance shop
this noise. Figure 2 shows that the standard deviation of the

aggregate maintenance cost reduces with the number of runlg—lard—lives are usually assigned to safety critical comptsiand repre-
sent the age at which that component must be replaced.

_Of the model._ It can also be Se‘_en_ from_ Figure_ 2 _that the 250t lives represent the age whereby a component shouldolteces at
improvement in the standard deviation tails off signifitant the next opportunity.



visit, whilst soft-lives that are too high result in cheajpet and when the results of those evaluations are returned to the
more frequent shop visits. master node.

_ Tabl.e | shows a simple cost mode! devgloped in conjun%_ Service-Oriented Architecture

tion with Rolls-Royce for a hypothetical five module aero- _ )

engine. The costs given represent the costs of removal and/Ve have chosen to implement our Grid-enabled framework

reconditioning of the modules in the engine. for optimisation using evolutionary algorithms in a Seevic
Oriented Architecture (SOA). We have implemented the
TABLE | framework using the Java programming language, primarily
COSTMODEL AND WEIBULL DISTRIBUTION PARAMETERS due to the portability of the code. This means that the
components of the framework can easily be run across
Cost | Scale | Slope various heterogeneous platforms.
Engine | 3000 | N/A | N/A A service-oriented architecture is essentially a coltecti
Module 1 | 200 | 1000 | 1 of services that communicate with each other in order to
Module 2 | 1000 | 800 | 2.5 | "
Module 3 | 900 | 700 3 perform a complex task. SOA is an approach to building
Module 4 | 800 [ 2000 2 loosely-coupled, distributed systems that combine sesvic
Module 5 | 1200] 1500 | 15 to provide functionality to an application. IBM sees SOA

as key to interoperability and flexibility requirements fty
vision of an on demand business [23].
V. IMPLEMENTATION OF A GRID BASED The SOA approach to grid computing is well suited to the
OPTIMISATION FRAMEWORK kind of master-worker parallelism used in our optimisation
framework. This service-oriented architecture view ofdgri
computing has the client acting as the master node, and
In section II-C it was found that there are two types of posthe service acting as the worker. In the implementation
sible parallelisation strategies for evolutionary altums: of the optimisation framework (see Fig. 4) there are two
multiple communicating populations, and single-popofati gifferent types of service. One service type exposes the
master-slave implementations. In the implementation af operations of the evolutionary algorithm to the client, #mel
grid-enabled framework for optimisation using evolutipna qther provides the ability to run evaluations of the objeti
algorithms we have decided to parallelise our evolutiomdy fynction on the resources of the computational grid.
gorithm using the single-population master-slave impleme
tation. This is also known as distributed fitness evaluatic
or global parallelisation. This model uses the master-ework .
paradigm (see Fig. 3) from parallel computing. éw

A. Parallelisation of the Evolutionary Algorithm

Create Service Instances

Generation to Results of Send individuals
b evaluation for evaluation

Evaluation
L Resource 1

=5 Evaluation
I:I Resource 2
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= .

GA Client hd
Evaluation

Resource n

Master Node

Fig. 3. The Master-Worker Programming Paradigm Fig. 4. The Implementation of the Optimisation Framework
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A master-slave parallel evolutionary algorithm uses  This SOA approach also provides flexibility both in how
single population maintained globally by the master nocthe optimisation framework is used and in the maintenance
and parallelises the evaluation of the objective functign bof the framework. The provision of the components of the
distributing the population amongst the worker processeBamework as services means that it is simple to add new
These are then assigned to the available processors fonctionality to the system, and to improve upon existing
execution (in the ideal case, one individual per processoffunctionality, by adding new services. In the context of our
The evolutionary operators - selection, recombination angptimisation framework, this functionality could be ariyid
mutation - are then applied globally by the master node tbom the implementation of additional evolutionary opera-
form the next generation of the population. tors, to the distribution and management of the objective

This model is particularly well suited for the paralleligast  function evaluation.
of EAs as the evaluation of the objective function requires Providing the optimisation framework as services also
only the knowledge of the candidate solution to be evalyatetheans that the functionality can be accessed via the HTTP
and therefore there is no need for inter-communication b@rotocol. This means that the services can be easily inte-
tween worker processes. Communication only occurs wheayrated into an Internet portal so as to be accessible by any
the individuals are sent to the worker processes for evaluat device with a capable web browser (such as a PDA).



This SOA approach is used in providing access to grithat is appropriate for the problem under consideration. As
resources via the Globus Toolkit (see section 1lI-B). Theéhe decision variables in the problem considered in this
Globus Toolkit has become a fundamental enabling techngbaper are continuous it is intuitive to use a real-valued
ogy for grid computation, letting people carry out computarepresentation [5].
tions across geographically distributed resources in areec  Selection in our algorithm was performed using Stochastic
way. The success of the Globus Project has meant that tbmiversal Sampling [26] which guarantees sampling with
project has become one of the driving forces in developingero bias and minimum spread, and is generally considered

standards for grid computing. superior to other selection schemes for many problems [27].
) ) The extended intermediate recombination operator and BGA
C. The White Rose Grid mutation operator from [28] were used to introduce variatio

The White Rose Grid [24] is a multi-institutional computa-into the population and prevent the evolutionary process fr
tional grid launched in 2002 by the universities of Sheffieldstagnating.
York and Leeds. The main objective of the White Rose It is important to note that the implementation of our
Grid project is to support e-Research by providing userSrid-based optimisation framework in a Service-Oriented
with access to large amounts of heterogeneous compuaechitecture (see Section V-B) provides a high degree of
resources. The White Rose Grid currently consists of fivelexibility in the choice of algorithm architecture, repeesa-
high-performance compute nodes located at three differetion, and evolutionary operators used. This flexibility mea
sites (see Figure 5), and in 2003 was awarded the statusibfs simple to adapt our framework to other optimisation
e-Science Centre of Excellence. problems.

B. Results

We have used our grid-enabled optimisation framework for
the optimisation of maintenance scheduling strategiessacr
a fleet of aero-engines (see Section VI-A for details of the EA
implementation). As mentioned earlier, we chose to modify
the maintenance scheduling strategy in the optimisation
process because it is one of the few parameters affecting
the support costs and operational availability that islgasi
) changeable. It is inexpensive to vary when compared to post-
production design changes, and can be quickly implemented
across an engine range [29].

The evaluation of candidate solutions in our optimisation
routine was performed using the MEAROS engine life-cycle
model (see Section IV) in conjunction with the simple cost
model shown in Table I. The MEAROS model was used to
simulate the operation of a fleet of 25 engines over a 10
year period, and was averaged over 100 passes of the model
to reduce the stochastic noise in the simulation (see Figure

L . . . 2). Evaluation of a single candidate solution using the abov
The three participating institutions in the White Rose Gri onfiguration took in the order of 1.5 seconds on a Intel
consortium reserve 75% of their grid resources for USeISantium 4 based PC running at 3.0GHz

within their institution and allocate the remaining 25% to The EA was run multiple times with a population size

other_ users of t_he grid. These institutions are connecte_d %¥50 individuals. However, as similar results were obteine
the high banawidth Yorkshire and Humberside Metropohta@rom each execution of the algorithm, the following results

Area Network (YHMAN). are from a single (representative) run of the EA only. Figure

Fig. 5. The Topology of the White Rose Grid

VI. ALGORITHM IMPLEMENTATION AND 6 shows that the mean value of the population (the solid
RESULTS line in the figure) exhibits convergence after around 15-
) ) ) 20 generations. It can also be seen from Figure 6 that the

A. Evolutionary Algorithm Implementation diversity of the population (each individual is shown by

For the optimisation results presented in Section VI-B dot in the figure) is significantly reduced as the search
a genetic algorithm architecture with real valued repreprogresses. Using one-at-a-time (OAT) sensitivity aralys
sentations of the decision variables was used. Fogel af@D], it is possible to show that the final solution produced
Ghoziel [25] have shown that there is no intrinsic advantagey the EA is optimal (since varying the decision variables
in choosing one bijective representation over another, afloes not yield a superior solution).
though particular representations may be more computation Our grid-based optimisation framework uses the resources
ally tractable or efficient for certain problems. Consedlyen of the White Rose Grid (see Section V-C) to perform
modern EA practice emphasises choosing a representatithie distributed evaluation of candidate solutions. Talble |
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multiple communicating populations (for instance Island o
Diffusion EAS).

The grid-based framework described in this paper is
best suited to computationally expensive objective fuomcti
evaluations, such as the one described in this paper. This is
due to the communication overheads involved in executing
the objective function evaluations in a distributed manner
and for some computationally trivial objective functiosst
may result in a degradation in performance compared with
a sequential EA run on a single machine. These overheads
are due to the way in which job submission and man-
agement is performed in a grid computing environment.
Whilst further work will be conducted into determining
the scale of problems for which this framework is most
effective, it is expected that further research and devel-
opment of grid-middleware, job submission services, and
job management services will provide a reduction in these
communication overheads. This will allow our framework
to provide increased performance for less computationally
intensive problems. However, this framework is not intehde

shows a representative set of total execution times frogy replace sequential EAs in cases where the performance of
the optimisation of maintenance scheduling strategies f@fie sequential EA is satisfactory.

our aero-engine problem, running for 30 and 50 generations

respectively. As Table Il shows, the use of our grid-

VIIl. ACKNOWLEDGMENT

based optimisation framework has considerably reduced the _
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problem.

TABLE Il
EXECUTION TIMES FOR THEOPTIMISATION OF MAINTENANCE
SCHEDULING STRATEGIES

Local Machine Computational Grid

30 generations| 50 generations| 30 generations| 50 generations

1974 seconds| 3358 seconds| 873 seconds | 1423 seconds

VII. CONCLUSIONS AND FURTHER WORK

gineers at Rolls-Royce PLC and Data Systems & Solutions.

REFERENCES

[1] M. Baker, R. Buyya, and D. Laforenza, “Grid and grid teologies for
wide-area distributed computingSoftware: Practice and Experience
vol. 32, no. 15, pp. 1437 — 1466, 2002.

[2] I. Foster and C. Kesselman, “The Globus Toolkit,” The GRID:
Blueprint for a New Computing Infrastructyre Foster and C. Kessel-
man, Eds. Morgan Kaufmann, 1999, ch. 11, pp. 259 — 278.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of tigt g
Enabling scalable virtual organizationslhternational Journal of
Supercomputer Applicationsol. 15, no. 3, pp. 200 — 222, 2001.

[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning Reading, MA.: Addison-Wesley, 1989.

Table Il has shown that significant reductions in the[s] z. Michalewicz and D. B. FogeHow to Solve It: Modern Heuristics

execution times of optimisation routines can be achieved
by using our grid-based optimisation framework. Whilst thel®
implementation of the framework described in this paper has
concentrated on the application of an evolutionary alganit
to a single objective maintenance problem, our framework
is easily extensible (due to the use of a service-oriented ar
chitecture approach) to both multi-objective problems tnd
the implementation of alternative optimisation methodshsu
as ant-colony optimisation or particle swarm optimisation
Further work is planned to extend this optimisation frame-
work to perform multi-objective optimisation of schedule
for complex logistic and supply chain operations. Anothe
area that has been identified for further work is comparieg th
performance of the global parallelisation strategy usetim
paper to other parallelisation strategies, such as thasg us

Berlin: Springer, 2000.

] R. Axelrod, “The evolution of strategies in the iterat@disoner’s
dilemma,” in Genetic Algorithms and Simulated Annealihhg Davis,
Ed. Morgan Kaufmann, 1987, pp. 32 — 41.

[7] D. Pratihar, K. Deb, and A. Ghosh, “A genetic-fuzzy apgeb for

mobile robot navigation amongst moving obstacleisiternational

Journal of Approximate Reasoningol. 20, no. 2, pp. 145 — 172,

1999.

[8] K. Sims, “Artificial evolution for computer graphics,Computer
Graphics vol. 25, no. 4, pp. 319 — 328, 1991.

9] P. J. Fleming, R. C. Purshouse, A. J. Chipperfield, I. Aff@ri and
H. A. Thompson, “Control systems desing with multiple objeesiv
An evolutionary computing approach,” iWorkshops of the 15th IFAC
World Congress2002.

10] L. Davis, “Job shop scheduling with genetic algorithihis, Proceed-
ings of the First International Conference on Genetic Algons J. J.
Grefenstette, Ed. New Jersey: Lawrence Erlbaum Associa885,
pp. 136 — 140.

[11] K. Mesghouni, S. Hammadi, and P. Borne, “Evolutionaryoaithms

for job-shop schedulingnternational Journal of Applied Mathemat-

ics and Computer Scienceol. 14, no. 1, pp. 91 — 103, 2004.

3These times are from single runs on both a local machine anden tfi12] M. T. Jensen, “Generating robust and flexible job shdgedales using

White Rose Grid. However, similar results were obtained fronitipia

executions of the optimiser.

genetic algorithms,JEEE Transactions on Evolutionary Computatjon
vol. 7, no. 3, pp. 275 — 288, 2003.



[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

W. B. Langdon, “Scheduling planned maintenance of th&onal
grid,” in Evolutionary Computing - AISB Workshager. Lecture Notes
in Computer Science, T. C. Fogarty, Ed., vol. 993. Berlin:iigyper-
Verlag, April 1995, pp. 132 — 153.

R. Lewis and B. Paechter, “Application of the groupingngtic
algorithm to university course timetabling,” Proceedings of the Fifth
European Conference on Evolutionary Computation in Cokuioinal
Optimization (EvoCOR)ser. Lecture Notes in Computer Science,
G. R. Raidl and J. Gottlieb, Eds., vol. 3448. Berlin: Springerlag,
2005, pp. 144 — 153.

E. Cant'u-Paz and D. E. Goldberg, “On the scalability pzrallel
genetic algorithms,Evolutionary Computationvol. 7, no. 4, pp. 429
— 449, 1999.

L. Klienrock, “UCLA press release,” 1969. [Online]. Aiable:
http://www.lk.cs.ucla.edu/LK/Bib/REPORT/press.html

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Ged/ges for
distributed system integrationfEEE Computervol. 35, no. 6, pp. 37
— 46, 2002.

W. W. Group, “Web services architecture,” February 20@ewed 18
October 2006. [Online]. Available: http://www.w3c.ordg?iws-arch
D. A. Chappell and T. JewellJava Web Services O'Reilly, 2002.
“Mearos model description version 8.31,” Rolls-Royegernal Doc-
ument, 2002.

J. P. M. Argyle, “Optimisation of operational cost wittpglication
to an aerospace engine system,” Ph.D. dissertation, Uitiven$
Sheffield, 2006.

J. Crocker and U. D. Kumar, “Age-related maintenance u&relia-

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

bility centred maintenance: A case study on aero-engiraljability
Engineering and Systems Safetgl. 67, pp. 113 — 118, 2000.

M. Colan, “Service oriented architecture expands thision

of web services: Part 1,” IBM,” DeveloperWorks paper, 2004,
viewed 18 October 2006. [Online]. Available: http://iwww-
128.ibm.com/developerworks/library/ws-soaintro.html

“White rose grid website,” viewed 18 October 2006. [@el].
Available: http://www.wrgrid.org.uk

D. B. Fogel and A. Ghoziel, “A note on representationd &ariation
operators,”"IEEE Transactions on Evolutionary Computatjorol. 1,

no. 2, pp. 159 — 161, 1997.

J. E. Baker, “Reducing bias and inefficiency in the skédecalgo-
rithm,” in Proceedings of the Second International Conference on
Genetic AlgorithmsJ. J. Grefenstette, Ed. New Jersey: Lawrence
Erlbaum Associates, 1987, pp. 14 — 21.

P. J. B. Hancock, “An empirical comparison of selection moels in
evolutionary algorithms,” inEvolutionary Computing - AISB Work-
shop ser. Lecture Notes in Computer Science, T. C. Fogarty, &dl., v
865. Berlin: Springer-Verlag, April 1994, pp. 80 — 94.

H. Muhlenbein and D. Schlierkamp-Voosen, “Predictive models for
the breeder genetic algorithm |: Continuous parameter opéiiaon,”
Evolutionary Computationvol. 1, no. 1, pp. 25 — 49, 1993.

J. P. M. Argyle and J. Tubby, “Integrated logistics sagpoptimisa-
tion,” Rolls-Royce PLC, Tech. Rep. RRUTC/Shef/R/02006020

A. Saltelli, K. Chan, and M. ScotSensitivity Analysis John Wiley

& Sons, 2000.



