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The Ptychographical Iterative Engine (PIE) algorithm is a recently developed novel

method of Coherent Diffractive Imaging (CDI) that uses multiple overlapping diffrac-

tion patterns to reconstruct an image. This method has successfully produced high

quality reconstructions at both optical and X-ray wavelengths but the need for accu-

rate knowledge of the probe positions is currently a limiting factor in the production

of high resolution reconstructions at electron wavelengths. This paper examines the

shape of the search landscape for producing optimal image reconstructions in the

specific case of electron microscopy and then shows how evolutionary search methods

can be used to reliably determine experimental parameters in the electron microscopy

case (such as the spherical aberration in the probe and the probe positions).
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I. INTRODUCTION

There has recently been considerable interest in Coherent Diffractive Imaging (CDI), a

method by which the intensity of one or more diffraction patterns scattered from an object

are processed in order to produce an image of that object. The main field of application

for this technique is in the imaging of structures at the atomic scale using X-rays or elec-

trons since, in these cases, it is both difficult and expensive to manufacture good quality

lenses of significant numerical aperture. Currently the best aberration-corrected high-energy

(200 - 300keV) electron microscopes can only achieve a resolution of approximately 0.05nm1

despite using electron wavelengths of around 0.002nm. The problem is that the electron

lens is required to re-interfere beams which have travelled over substantial laboratory-scale

distances (millimetres or centimetres), thus placing extreme demands on its accuracy and

physical stability. In contrast, the advantage of diffractive imaging is that the path differ-

ences between interfering wave components scattered to different angles by the object are

of the order of the atomic separations themselves. Diffraction is therefore experimentally

robust and intensity data can be recorded (albeit at low intensity) up to very large scattering

angles: i.e. we can, in principle, generate a diffraction-limited ‘diffractive lens’ with a very

large numerical aperture and hence much better resolution.

In order to produce an image from a Fraunhofer (or Fresnel) diffraction pattern we need

to know both its modulus and phase (in order to back-propagate the wave to the object plane

via an inverse Fourier transform) - though in practice it is only actually possible to measure

the intensity. However, there are now several well-established methods for recovering the

phase of a diffraction pattern from its intensity alone. Most of these methods concentrate

on the case where either the size of the object is approximately known or when the illumi-

nation incident upon the specimen is of a known extent, and a review of the computational

approaches - called iterative phase-retrieval methods - applicable when these or similar con-

ditions are fulfilled can be found in Marchesini2. In this paper we are concerned with an

approach in which many diffraction patterns are recorded from adjacent (but overlapping)

areas of an extended object. This principle of using shifting illumination to unlock the

phase problem was first postulated by Hoppe3–6 and is called ptychography: for a review see

Rodenburg7. Under these circumstances there are both direct (though mathematically ill-

conditioned) deconvolution methods8,9 and modified iterative phase-retrieval ptychography
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methods10–12 for solving the phase problem, the latter being extremely efficient, convergent

and noise-insensitive. From a microscopists point of view, ptychography also has the great

advantage of being able to image objects of any lateral size.

Initially a major limitation of iterative phase-retrieval ptychography was the requirement

to have very detailed knowledge of the modulus and phase structure of the illuminating

beam (i.e. the probe), with this having to be calculated from estimates of experimental

parameters13. This is particularly demanding in the case of electron diffractive imaging,

where the use of a condenser lens to focus the illumination into a localised area is a require-

ment, but where the phase of the illumination cannot be measured directly.

However, since this early work, the great redundancy within the ptychographical data set

has been shown to allow for the solution of both the object function and the illumination

function, at least provided the illumination is substantially localised (so that the Nyquist

sampling condition of the diffracted intensity is still satisfied). If the probe positions are

known accurately then two techniques have been proposed. One involves projecting alter-

natively onto two sets (the known diffraction pattern moduli and a set that ensures that

the associated exit waves are consistent with a constant object and probe)12,14; another is

a variation15 on the original serial weighted update PIE algorithm16: these have been com-

pared by Schropp et al.17. A more general approach uses a non-linear optimisation iterative

search technique11,18,19, which can in principle cope with any form of measurement error, in-

cluding errors in the probe positions, assuming the initial experimental conditions lie within

a reasonable error envelope. We have found that in the case of electron microscopy achiev-

ing high accuracy in the relative probe positions (<0.1nm) is extremely difficult because

of specimen drift (movement induced by thermal gradients in the microscope column and

stage) and the presence of hysteresis in the beam shift coils20. This result is unexpected,

since in high-resolution annular dark field imaging (ADF) it is routinely possible to raster

scan the beam with sub-atomic precision; however, in testing five electron microscopes from

three leading manufacturers, we have found that when the beam shift is large (1-10nm) - as

required for ptychography - the accuracy of the probe positioning is poor and irreproducible.

In this paper we first examine the shape of the search landscapes for finding an opti-

mal image reconstruction (a minimum in the error metric) in the specific case of electron

microscopy, and discover that it certainly contains many local minima even in the absence

of noise. In this context, the illumination function is created by a slightly defocused beam
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cross-over and can be parametized by a limited number of variables: the angular size (or

numerical aperture) of the lens aperture, the spherical aberration constant of the lens and

the degree of defocus. We also examine the search space for probe position inaccuracy which,

as described above, currently seems to be the biggest single source of error for electron pty-

chography. We go on to show how an evolutionary approach to this optimisation problem in

this context can reliably determine the global minimum in the error metric. The specimen

object and probe wave function used in these simulation experiments are shown in Figure 1,

and it can be seen that both the modulus and phase of the specimen object contain highly

structured information.
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FIG. 1: Images of the object and probe used throughout this paper: (a) shows the

intensity of the object, (b) shows the phase of the object, (c) shows the intensity of the

probe used to generate the diffraction data, and (d) shows the phase of the probe. In both

(a) and (b) a region of 150 by 200 pixels is highlighted. This region contains highly

structured data and will be used when comparing the results of the reconstructions

produced by the evolutionary approach outlined in this paper.
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II. ITERATIVE PHASE-RETRIEVAL PTYCHOGRAPHY

The fundamental concepts of iterative phase-retrieval were first proposed and demon-

strated computationally by Gercheberg and Saxton21. Essentially these algorithms use both

measured data and a priori knowledge about the experimental set up to iteratively refine

guesses about the complex wavefield until the guessed wavefield matches the recorded data

and the a priori knowledge about the experiment. For iterative phase-retrieval ptychog-

raphy the essential constraint is that, as the illumination (i.e. the probe) is moved across

the object, all the measured diffraction patterns (Fraunhofer or Fresnel) must be consistent

with a single object transmission function: the key is the redundancy in the data resulting

from the overlap of adjacent illumination areas on the object. The particular algorithm

we employ is called a ptychographical iterative engine (PIE)10 and uses a weighted update

function16 to account for soft-edged probes. An extended version of this algorithm, ePIE15,

can solve for the illumination function as well as the object function, but only provided that

the probe positions are known very accurately: so far inapplicable in electron microscopy

given inherent experimental errors. In all that follows we therefore use the PIE algorithm.

III. EFFECTS OF PARAMETRIC UNCERTAINTY IN ITERATIVE

PHASE RETRIEVAL PTYCHOGRAPHY

A. Uncertainty in Characterising the Illumination Function

First we consider uncertainty arising from limited knowledge of the probe function. As-

suming the absence of astigmatism, which is relatively easy to remove experimentally, we

need accurate values for the defocus, spherical aberration and aperture size of the probe

forming lens in the STEM (scanning transmission electron microscope) configuration. Whilst

aperture size can usually be calibrated within a few percent using the diffraction pattern

from a known crystal, it is more difficult to get precise estimates for defocus and spherical

aberration. The optical model we use to generate the probes used in this paper can be found

in Kirkland22.

Faulkner and Rodenburg23 have shown that inaccuracies in any of these characteristic

parameters can have a seriously detrimental effect on the quality of the reconstruction pro-

duced by the algorithm. However, whilst they showed that the scaled diffraction space error
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produced by the algorithm improves monotonically as the value of a given parameter be-

comes more accurate, we have now found that this is only true across a limited range around

the true value. Figure 2 shows that the search landscape is actually highly multi-modal when

considering a large range of uncertainty.
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FIG. 2: Search landscapes for the characteristic probe forming parameters over extended

ranges: (a) shows the search landscape for the aperture value over an extended but

experimentally possible range of errors, (b) shows the search landscape for the value of

spherical aberration, and (c) shows the search landscape for the value of defocus. As can

be seen from the figure, (a) is highly multimodal whilst (b) and (c) are better behaved.

Further simulations have also shown that the assumption that the error decreases mono-

tonically is also untrue if uncertainty exists in multiple probe forming parameters. This

cumulative experimental uncertainty was investigated using a simulated 3 by 3 grid of diffrac-

tion patterns (generated by stepping a model of a STEM probe across an image and recording

the diffraction data) and looking at the cumulative effects of both small and large errors on

the search landscape after 200 iterations of the PIE algorithm. Known errors were applied

simultaneously to two of the characteristic parameters under consideration whilst the third

was varied across a range of possible values (from approximately -15% to +15% of its true

value). This allowed us to study the effect of varying the aperture size (for example) on
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the search landscape whilst the spherical aberration and defocus simultaneously exhibited

both small errors (plus and minus 5% of their true values) and large errors (plus and minus

10% of their true values). The results of this experimental model are shown in Figure 3

(with the vertical lines on each plot representing the true value of each parameter). These

results show that only the aperture size is insensitive to cumulative uncertainty in the other

characteristic parameters. Both spherical aberration and defocus can be seen to be highly

sensitive to this cumulative uncertainty, with the true parameter value not recoverable from

either of these figures.
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FIG. 3: Error landscapes for the characteristic parameters over large ranges with

cumulative experimental uncertainty: (a) shows the effects of this cumulative uncertainty

on the error when the aperture size is varied across a range of possible values, (b) shows

the effects of this uncertainty on the error when the spherical aberration is varied across a

range of possible values, and (c) shows the effect of this cumulative uncertainty on the

error when the defocus is varied across a range of possible values. The vertical lines on

each plot show the true value of the parameter.

7



B. Uncertainty in the Positions of the Illumination Functions

Faulkner and Rodenburg23 have shown that the PIE algorithm is highly sensitive to para-

metric uncertainty in the probe positions, although in varying only one probe position at a

time they concluded that the scaled diffraction space error produced by the PIE algorithm

decreased monotonically around the true value of the illumination function position and is

thus straightforward to correct using conventional optimisation methods such as gradient

descent. However, further simulations presented here show that this is only the case when

uncertainty exists in a single position - a situation that has proved to be highly unlikely

experimentally (especially when collecting diffraction data from many illumination func-

tion positions). When uncertainty exists in multiple illumination function positions, the

cumulative effects lead to false minima such as those shown in Figure 4.
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FIG. 4: Effect of multiple probe positions offsets on the scaled diffraction space error: (a)

shows the three dimensional surface plot of this error landscape whilst (b) shows the

contour plot of this error landscape. The minimum error in this experiment is found at [2,

-6].

In this experiment the illumination function used was of the form of a defocussed (STEM)

probe (see Figure 1 for the modulus and phase of the probe wave function), as employed

in practical electron ptychographical experiments. A 3 by 3 grid of diffraction patterns

was generated by stepping the simulated STEM probe across an object and at each point

calculating the diffraction pattern by recording the intensity of the Fourier transform of the

exit wave emanating from the object (i.e. the product of the probe function at that position

and the complex specimen transmission function). Random offsets in the range plus or
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minus 5 pixels were then applied in both x and y directions to the recorded positions of

every probe except the central one so as to simulate inaccurately known probe positions.

The position of this central probe was then varied by increments of one pixel to cover the

range minus 10 pixels to plus 10 pixels from its true value in both x and y directions, and

the value of the scaled diffraction space error was recorded. As can be seen from Figure

4, the minimum error is found when the offset of the central probe from its true position

is at [2, -6] pixels. This shows that the cumulative effect of uncertainty in multiple probe

positions can lead to complex behaviour.

IV. EVOLUTIONARY REDUCTION OF PARAMETRIC UNCERTAINTY

Having explored the problem space in Section III and established its complexity, we will

now introduce an evolutionary approach to resolving this parametric uncertainty that is

robust to the complex and interdependent nature of the error landscape. This evolutionary

approach is then used to resolve the two main sources of error in the reconstruction process:

the accuracy of the probe forming characteristic parameters (such as the spherical aberration

and defocus) and the knowledge of the probe position information used to generate the set

of diffraction data.

A. Introducing an Evolutionary Approach to Resolving Parametric

Uncertainty

Evolutionary Algorithms (EAs) are a novel optimisation technique utilising concepts from

natural selection24 to provide a highly robust search method capable of finding global op-

tima in even complex and multi-modal search landscapes. They are both an iterative and

population based search method that mimics nature to both explore the solution space of

a problem and exploit promising solutions discovered in previous generations. Exploration

of the search landscape is performed using recombination and mutation operators that in-

troduce an element of randomness into the search and help ensure the robustness of the

algorithm by preventing premature convergence to local optima. Exploitation of promising

solutions from the previous generation is performed using a selection operator that ensures

preference is given to those solutions that have high fitness values when creating the next
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generation. In this way we can ensure that the most promising solutions are more likely to

make up a significant proportion of the next generation, thus promoting convergence.

The evolutionary approach to resolving parametric uncertainty in iterative phase retrieval

methods introduced in this paper is based around evolutionary algorithms with the capa-

bility to use both integer and real valued representations for the decision variables. Fogel

and Ghoziel25 have shown that there is no intrinsic advantage in using one representation

over another and so modern EA practice emphasises choosing a representation that fits the

problem under consideration26. In this case that means using an integer representation for

the evolutionary refinement of probe positions (see Section IVC) and a real-valued repre-

sentation for the optimisation of the characteristic parameters used to model the probe (see

Section IVB).

Selection in our algorithm was performed using Stochastic Universal Selection27 since it

guarantees sampling with zero bias and is therefore considered superior to other selection

schemes for the majority of applications28. Recombination and mutation were performed

using Simulated Binary Crossover and Polynomial Mutation29 respectively since these vari-

ation operators have been shown to perform well in both the optimisation of real-valued

variables and the optimisation of integer variables30.

B. Evolutionary Discovery of Probe Characteristics

Figure 5 shows a reconstruction using an incorrect probe model generated using character-

istic parameters with 2.5% errors in them (a value that is not unlikely under experimental

conditions). This Figure shows that, even with these small amounts of uncertainty, the

resulting reconstruction is of extremely poor quality with many probe artefacts.

The evolutionary approach to resolving parametric uncertainty introduced in this paper

has been used to refine information about the characteristic parameters used to model the

illumination function. In this case, upper and lower bounds are set for each parameter

based on the estimated precision of the experimentally obtained values. The evolutionary

algorithm is then used to obtain accurate values for these probe forming parameters.

Figure 6 shows the progress of our evolutionary approach to resolving uncertainty in

the characteristic probe forming parameters. Again we use a 3 by 3 grid of diffraction

patterns. We have then simulated large potential margins of error in each of the parameters
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a) Object intensity
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FIG. 5: A reconstruction using a probe model formed with typical experimental errors in

the characteristic parameters (this image shows the dotted area from Figure 1). This

reconstruction has 2.5% errors in the aperture size, the spherical aberration, and the

defocus values used to model the probe. Note that the contrast in this image has been

rescaled so that 1% of the data is saturated at low and high intensities to make it suitable

for publication.

used in our model by using maximum and minimum bounds for each parameter of plus

and minus 25% respectively. Although it is unlikely that the estimated precision of the

values would be so poor in a real world experimental situation, using such large ranges

provides a good demonstration of the power of our evolutionary approach. Accurate values

for these characteristic probe forming parameters are then found by running the evolutionary

algorithm for 100 generations.
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FIG. 6: The progress of our evolutionary approach to reducing uncertainty in the

characteristic probe forming parameters. Full convergence can be seen after around 70

generations.

Figure 7 compares the reconstruction produced using the parameters found by our evo-
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lutionary approach after 100 generations to the true intensity and phase of the object. This

Figure just shows the areas highlighted on Figure 1 where the presence on highly structured

information can cause problems for the reconstruction process if there are any inaccuracies

in the input information. As can be seen from comparing the reconstructed intensity and

phase to the true intensity and phase, the evolutionary algorithm has recovered extremely

good values for the probe forming parameters (within 0.2% of the true values). There are

no probe artefacts like we can see in Figure 5.
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FIG. 7: A comparison of the true object and the reconstruction produced by using the

characteristic probe forming parameters found by the evolutionary approach: (a) and (b)

show close ups of the true intensity and phase of the object respectively, whilst (c) and (d)

show the intensity and phase of the reconstructed object. Note that this figure shows the

dotted area from Figure 1.

C. Evolutionary Refinement of Probe Position Information

In this Section our evolutionary approach to the resolution of parametric uncertainty

will be used to refine the probe position information and thus improve the results of the

reconstruction; this is important as, in the case of scanning transmission electron microscopy

especially, it can be difficult to obtain highly accurate information about the position of the
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specimen stage. A set of simulated diffraction patterns is generated using a 3 by 3 grid of

STEM probes with known intensity and phase. Uncertainty is then introduced into the probe

position information by applying random offsets of between plus and minus 5 pixels to both

the x and y directions of each probe position. Figure 8 shows the resulting reconstruction

from using this incorrect data. Both the intensity and phase reconstructions can be seen to

lack clarity as a result of this uncertainty.
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FIG. 8: Reconstruction using uncertain probe positions (this image shows the dotted area

from Figure 1). This reconstruction has randomly applied offsets in the range of plus and

minus 5 pixels to every recorded probe position in both x and y, representing realistic

experimental errors. Note that the contrast in this image has been rescaled so that 1% of

the data is saturated at low and high intensities to make it suitable for publication.

The inaccurate probe position information used in the reconstruction shown in Figure

8 is then refined using the evolutionary approach outlined in Section IVA to minimise the

scaled diffraction space error produced by the PIE algorithm after 200 iterations. As can

be seen from Figure 9, the algorithm converges to a minimum after around 70 generations.

Figure 10 shows a comparison of the true object and the reconstruction after the refinement

of the probe position information. Comparing Figures 8 and 10 shows that the refinement of

these probe positions has much improved the clarity and detail of the image in both intensity

and phase. By further looking at the exact offsets found by this evolutionary refinement of

the probe positions we can see that we have successfully recovered the true relative probe

positions.
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FIG. 9: The progress of our evolutionary approach to reducing uncertainty in the probe

positions. Convergence can be seen after around 70 generations.
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c) Reconstructed object intensity
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b) True object phase
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d) Reconstructed object phase
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FIG. 10: A comparison of the reconstruction produced by using the probe positions found

by the evolutionary approach and the true object: (a) and (b) show a close up of the

intensity and phase of the reconstructed object respectively, whilst (c) and (d) show the

true intensity and phase of the object. Note that this figure shows the dotted area from

Figure 1.
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V. CONCLUSIONS

The results presented in this paper have shown that evolutionary optimisation techniques

can be effectively used for the resolution of parametric uncertainty in iterative ptychography.

Using this approach, we were able to successfully recover and refine information about

both the positions of the illumination functions used to generate the diffraction data and

the characteristic parameters used to model these illumination functions. This enhanced

information has resulted in substantial improvements in the quality of the reconstructions

produced by the PIE algorithm, with noticeably higher levels of detail and clarity in the

resulting images.

A key factor in the speed of this technique is the estimated precision of the experimental

parameters. Although Section IVB has shown that our evolutionary approach can find

optimal values for the characteristic parameters over large ranges of uncertainty, knowing

the bounds on the parameters with higher precision can very significantly reduce the time

taken by the algorithm to obtain good results. For this reason, it is still important to take

the utmost care when obtaining the experimental data as this will result in much better

performance of the algorithm.
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