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Abstract The emerging paradigm of Grid Computing provides a powerful platform for

the optimisation of complex computer models, such as those used to simulate real-world

logistics and supply chain operations. This paper introduces a Grid-based optimisation

framework that provides a powerful tool for the optimisation of such computationally

intensive objective functions. This framework is then used in the optimisation of main-

tenance scheduling strategies for fleets of aero-engines, a computationally intensive

problem with a high-degree of stochastic noise, achieving substantial improvements in

the execution time of the algorithm.
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Introduction

A fundamental shift in emphasis within the aero-engine manufacturing industry is

leading to the adoption of power-by-the-hour contracts, where airlines make regular

fixed payments to the engine manufacturers based on the hours flown by an engine

and, in return, the manufacturers of the engine retain the responsibility for servicing

and maintenance. As a result of this, the accurate prediction of support costs over the

life-cycle of an engine is of the utmost importance. However, aero-engines operate in a

highly complex and unpredictable environment, and as such it is impossible to produce

a deterministic model for these support costs. Instead, stochastic simulations can be

performed to provide cost estimates. It is also important for the engine manufacturers

to devise maintenance scheduling strategies to minimise support costs and thus enable

more competitive pricing of these contracts.

Soft Computing techniques such as Neural Networks, Fuzzy Logic, and Evolution-

ary Computation have been used to solve many complex real-world engineering prob-

lems. These techniques provide the engineer with a new set of tools that often out-

perform conventional methods in areas where the problem domain is noisy, stochastic
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or ill-defined. However, in the cases of Neural Networks and Evolutionary Computation

especially, these tools can be computationally intensive.

Grid Computing offers a solution to the computationally intensive nature of these

techniques. The Grid Computing paradigm is an emerging field of computer science

that aims to offer “a seamless, integrated computational and collaborative environ-

ment” (Baker et al, 2002). Ian Foster defines a computational Grid as “a hardware and

software infrastructure that provides dependable, consistent, pervasive, and inexpen-

sive access to high-end computational capabilities” (Foster and Kesselman, 1999). Grid

Computing is differentiated from conventional distributed computing by its emphasis

on co-ordinated resource sharing and problem solving in dynamic, multi-institutional

virtual organisations (Foster et al, 2001). These resources include software packages,

compute resources, sensor arrays, data and many others.

The purpose of this paper is to introduce a Grid-enabled framework for optimisation

of maintenance schedules. This framework will then be used to assist decision makers

in planning maintenance scheduling strategies for aero-engines. This problem presents

many challenges due to to its highly stochastic nature.

Section 1 will introduce evolutionary algorithms and give a brief overview of their

application to scheduling problems. The core concepts of Grid computing used in our

optimisation framework will be introduced in Section 2, and, in Section 3, a brief

summary of related work will be given. The MEAROS simulation package used by

Rolls-Royce to model the operational life-cycle of engines will be introduced in Section

4, and, in Section 5, the implementation of our Grid-based optimisation framework

will be described. Section 6 will demonstrate the application of our framework to the

planning of maintenance schedules for aero-engines, whilst Section 7 will discuss the

results obtained using our framework and present some conclusions and ideas for further

work.

1 An Introduction to Evolutionary Algorithms

1.1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are an optimisation technique utilising some of the

mechanisms of natural selection (Goldberg, 1989). EAs are an iterative, population

based method of optimisation that are capable of both exploring the solution space

of the problem and exploiting previous generations of solutions. Exploitation of the

previous generation of solutions is performed by a selection operator. This operator

gives preference to those solutions which have high fitness when creating the next gen-

eration of solutions to be evaluated. Exploration of the solution space is performed by

a mutation operator and a recombination operator and helps to ensure the robustness

of the algorithm by preventing the algorithm from getting stuck in local optima.

Evolutionary Algorithms evaluate candidate solutions based on pay-off information

from the objective function, rather than derivative information or auxiliary knowledge.

This ensures that EAs are applicable to many different problem domains, including

those where conventional optimisation techniques (such as hill-climbing) may fail. Evo-

lutionary Algorithms are also robust in the presence of noise due to their population

based nature. Because EAs maintain a population of candidate solutions, each gener-

ation contains more information about the shape of the fitness landscape than would
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be available to conventional, non-population based optimisation methods (Michalewicz

and Fogel, 2000).

Evolutionary Algorithms have been used to solve problems across many different

disciplines. EAs have been used in such diverse fields as Economics and Social Theory

(Axelrod, 1987), Robotics (Pratihar et al, 1999) and Art (Sims, 1991). For many non-

trivial real-world applications the evaluation of the objective function is performed

by computer simulation of the system. For example, in the optimisation of controller

parameters for gas turbine aero-engines (Fleming et al, 2002), a computer model of the

engine is used to calculate the values of the objective functions for a given controller

design.

The use of computer simulations to evaluate the objective function leads to some

new issues. To ensure that the results gained from the evolutionary algorithm are mean-

ingful, the simulation must be complex enough to capture all the relevant dynamics

of the true system. However, assuming that this level of complexity is obtainable, the

simulation may be very computationally expensive. As EAs are population based meth-

ods, the simulation must be run many times. In a typical evolutionary algorithm this

could involve running the simulation 10,000 times.

1.2 Scheduling Applications of Evolutionary Algorithms

Finding good solutions to industrial scheduling problems is of great importance, since

both production rates and plant costs are dependent on work schedules. Evolutionary

algorithms have had some success in solving the canonical Job-Shop Scheduling Prob-

lem (Davis, 1985; Mesghouni et al, 2004), a problem that is representative of industrial

tasks ranging from assembling cars, to scheduling aircraft maintenance. Recent focus

in the EC community has been on generating robust and flexible job shop schedules

(Jensen, 2003). Other scheduling problems solved by EAs include planning mainte-

nance for the (UK) national grid (Langdon, 1995) and university course timetabling

(Lewis and Paechter, 2005).

1.3 Parallel Evolutionary Algorithms

The computationally expensive nature of the evolutionary algorithm evaluation process

has motivated the development of parallel EAs. Early approaches to the implementa-

tion of parallel evolutionary algorithms can be classified into two categories which

still apply today: single-population, globally parallel EA implementations and EA im-

plementations with multiple communicating populations (Cantú-Paz and Goldberg,

1999).

Single-population parallel evolutionary algorithms consist of a single panmictic1

population maintained globally. This form of parallelism may be effectively exploited

using the well established Master-Worker paradigm from parallel computing (see Fig-

ure 1). Typically the evaluation of candidate solutions in the algorithm is distributed

amongst the worker nodes whilst the master node applies the evolutionary operators,

such as selection and variation, centrally to the whole population (Fogarty and Huang,

1991). Chipperfield and Fleming (1995) also describe a similar scheme where both the

1 A panmictic population is one where all individuals are potential partners, i.e. there are
no geographical restrictions to the mating of pairs of individuals.
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evaluation of candidate solutions and the variation operators are performed by the

worker nodes.

Master Node 

Worker 1 Worker 2 Worker n

Fig. 1: The Master-Worker Paradigm

These single-population, globally parallel EAs represent an important case of paral-

lelism because they are functionally equivalent to serial EAs. This means that existing

EA theory and design guidelines can easily be applied to their use (Cantú-Paz and

Goldberg, 1999). Although this type of strategy does not exploit all the parallelism

inherent in the evolutionary algorithm, substantial improvements in performance can

be achieved - especially in cases where the evaluation of candidate solutions is sig-

nificantly more computationally expensive that the evolutionary operators themselves

(Chipperfield and Fleming, 1995).

Evolutionary algorithms with multiple communicating populations can be further

divided into those that implement a coarse-grained parallelism and those that imple-

ment a fine-grained parallelism. Algorithms that implement a coarse-grained paral-

lelism (also known as island or migration EAs) introduce a degree of geographical

isolation into the search. The population is divided up into multiple subpopulations

(known as demes), with each subpopulation evolving independently (Chipperfield and

Fleming, 1995). Periodically migration occurs to allow an exchange of information be-

tween subpopulations (Rivera, 2001). Figure 2 shows an example of a coarse-grained

island EA using a ring topology, although it should be noted that other topologies and

interconnections are equally applicable.

Fine-grained parallel EAs (also known as diffusion EAs) treat the population as a

single continuous structure (Chipperfield and Fleming, 1995). In these diffusion EAs

a grid is formed to cover the population surface, and each member of the population

is assigned to a node in that grid (with each node ideally hosted on a separate pro-

cessor). The evolutionary operators are then applied to individuals in the same local

neighbourhood (usually chosen to be the adjacent nodes). Rivera (2001) notes that

the topology of the network in diffusion EAs strongly determines the behaviour of the

algorithm.

The decision as to which of these forms of parallelisation to implement must con-

sider several factors, such as ease of implementation and use, and the potential per-

formance gains from parallelisation. Single-population parallel EAs are often easiest to

implement and use, since experience gained with sequential EAs is directly applicable.

In contrast, the implementation of parallel EAs with multiple communicating popu-

lations requires the consideration of extra design choices. For instance, the use of an

island model EA requires the algorithm designer to choose the number of demes, the
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sub-population 1sub-population 1

sub-population 2sub-population 2sub-population 4sub-population 4

sub-population 3sub-population 3

migration

island (or )deme

Fig. 2: A Coarse-Grained Island Evolutionary Algorithm in a Ring Topology

population topology, and the mutation rate, as well as choosing values for the standard

evolutionary parameters. This increases the complexity of the parallel EA since each

of these parameters influences the efficiency of the algorithm and the quality of the

overall solution. Whilst some authors have reported improved convergence using EAs

with multiple communicating populations (Grosso, 1985; Tanese, 1987; Starkweather

et al, 1991), it should be noted that this is heavily dependent on the values chosen for

the extra parameters.

2 Grid Computing Technologies

The concept of Grid computing is not new. As far back as 1969 Len Kleinrock suggested:

“We will probably see the spread of ‘computer utilities’, which, like present

electric and telephone utilities, will serve individual homes and offices across

the country.” (Klienrock, 1969)

However, it is only recently that technologies such as the Globus Toolkit (Foster

and Kesselman, 1999) have emerged to enable this concept to be achieved. The Globus

Toolkit is an open-source, community-based set of software tools to enable the aggrega-

tion of compute, data, and other resources to form computational grids. Since version

3, the Globus Toolkit has been based on the Open Grid Services Architecture (OGSA)

introduced by the Globus Project. OGSA builds on current Web Service concepts and

technologies to support the creation, maintenance, and application of ensembles of

services maintained by virtual organisations (Foster et al, 2002).

2.1 Web Services

A Web Service is defined by the W3C as “a software system designed to support inter-

operable machine-to-machine interaction over a network. It has an interface described

in a machine-processable format (specifically WSDL). Other systems interact with the
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Web service in a manner prescribed by its description using SOAP messages” (W3C

Working Group, 2004). Web Services are accessible through standards-based internet

protocols such as HTTP and are enabled by three core technologies (Chappell and

Jewell, 2002):

– Simple Object Access Protocol (SOAP)

– Web Services Description Language (WSDL)

– Universal Description, Discovery, and Integration (UDDI)

These technologies work together in an application as shown in Figure 3. The Web

Service client queries a UDDI registry for the desired service. This can be done by

service name, service category, or other identifier. Once this service has been located

the client queries the WSDL document to find out how to interact with the service. The

communication between client and service is then carried out by sending and receiving

SOAP messages that conform to the XML schema found in the WSDL document.

Web Service 

Client

Application Service

WSDL 

document

Web Service 

Logic

HTTP request

HTTP response

SOAP processor

UDDI registry

Fig. 3: Interaction between Web Service Technologies

2.2 Open Grid Services Architecture

The Open Grid Services Architecture forms the basis for the Globus Toolkit. OGSA

represents computational resources, data resources, programs, networks and databases

as services. These services utilise the Web Services technologies mentioned in Section

2.1. There are three main advantages to representing these resources as services:

1. It aids interoperability. A service-oriented view addresses the need for standard

service definition mechanisms, local/remote transparency, adaptation to local OS

services, and uniform semantics (Foster et al, 2002).

2. It simplifies virtualisation. Virtualisation allows for consistent resource access across

multiple heterogeneous platforms by using a common interface to hide multiple

implementations (Foster et al, 2002).

3. It enables incremental implementation of Grid functionality. The provision of Grid

functionality via services means that the application developer is free to pick and

choose the services that provide the desired behaviour to their application.
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3 Related Work

Tan et al (2003) and Fung et al (2004) have both developed parallel evolutionary com-

puting environments in Java to solve single-objective optimisation problems. However,

neither of these environments is well suited for use in a large-scale, multi-site compu-

tational Grid. The distributed evolutionary computing system proposed by Tan et al

(2003) is based on the island model of parallel EAs (see Section 1.3) and uses a small

number of peers to host multiple communicating populations. Whilst in theory the

island model should scale well to larger numbers of peers, Fernandez et al (2003) have

shown that this scalability is difficult to exploit in practice. Fung et al (2004) propose a

Java-based parallel platform for evolutionary computation using a Distributed Shared

Memory (DSM) architecture. This architecture is unsuitable for use in a large-scale,

multi-site computational Grid due to its tightly coupled nature.

Tanimura et al (2002) have proposed a middleware system for enabling evolutionary

optimisation in a Grid computing environment. This system requires the application

designer to develop suitable evolutionary operators and implement them according to

a common set of interfaces. Tanimura et al (2002) use this middleware system to solve

a single-objective optimisation problem by constructing a parallel simulated annealing

algorithm. Abdalhaq et al (2002) also use the concept of Grid computing to perform

single-objective optimisation using evolutionary computation by developing a Black

Box Optimisation Framework (BBOF) in C++ to optimise a computer simulation of a

single-objective forest fire propagation problem. This optimisation process is run on a

single compute cluster managed by the Condor resource management system. Herrera

et al (2005) have also implemented a Grid-Oriented Genetic Algorithm (GOGA). This

GOGA is based on the fully connected island model of parallel evolutionary compu-

tation and, as such, suffers from the problems outlined in Section 5.1. Herrera et al’s

(2005) grid-oriented genetic algorithm uses the GridWay (Distributed Systems Archi-

tecture Group, Universidad Complutense de Madrid, 2007) meta-scheduling framework

to distribute and manage subpopulations in a small Grid testbed made up of 4 ma-

chines.

Xue et al (2004) and Song et al (2004) have implemented a single-objective ge-

netic algorithm in a service oriented architecture to solve a 2D aerodynamic design

optimisation problem. Their approach is similar to that taken in this paper; however,

the distributed evaluation of candidate solutions in Song et al (2004) is performed

using a single compute cluster located at a single site, whereas the evaluation of candi-

date solutions described in this paper uses computational resources located at multiple

geographically distributed sites. Another SOA approach to the implementation of par-

allel evolutionary algorithms is that taken by Lim et al (2007). Lim et al (2007) have

implemented a hierarchical parallel evolutionary algorithm in a distributed computa-

tional Grid, with multiple subpopulations distributed across the Grid resources. The

evaluation of candidate solutions in these subpopulations is then performed using the

Master-Worker paradigm previously illustrated in Figure 1. This approach suffers from

the potential problems outlined in Section 5.1 later, and, although results are presented

for the execution times of the EA, not much information is given about the quality of

the final solutions produced by the optimiser.
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4 Life-Cycle Simulation of Aero-Engines

The Modular Engine Arisings, Repair and Overhaul Simulation (MEAROS) package

was developed to enable Rolls-Royce and the Ministry of Defence to evaluate the op-

eration, maintenance and supply of aircraft engines (Rolls-Royce, 2002). Although

designed for the aero-engine manufacturing industry, the simulation can equally be

applied to ships, land vehicles and power generation (Argyle, 2006). The modelling

capability of the MEAROS software is extensive and can be used to model the op-

eration of fleets of engines with an arbitrary number of modules (Rolls-Royce, 2002).

Theoretically there is no limit to the size of fleets that can be modelled by the software;

however, in practice this is limited by the computational effort needed to model large

numbers of engines.

Results produced by the simulation contain a lot of stochastic noise due to the

probabilistic models used to simulate component failures. As such, the simulation has

to be run multiple times and averaged to reduce the effect of this noise. Figure 4

shows that the standard deviation of the aggregate maintenance cost reduces with the

number of runs of the model. It can also be seen from Figure 4 that the improvement

in the standard deviation tails off substantially after 100 passes. In practice this means

that the benefit from running more than 100 passes of the model is outweighed by the

additional computational cost.
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Fig. 4: Plot of the Standard Deviation of Aggregate Maintenance Cost Against Number of
Runs of the Model

Originally MEAROS was used for predicting the number of spares needed to main-

tain a set level of operational availability. However, many of the parameters in the

model are customisable (such as the Weibull slope parameters of the failure distribu-

tions of engine modules, the stock levels, and the maintenance scheduling strategies
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used) and can therefore be optimised with respect to some objective (for instance the

support costs or the operational availability).

Maintenance in the simulation is performed after an arising occurs. The main causes

of arisings are either the expiry of a hard-life2 or an in-service failure such as foreign

object damage (Rolls-Royce, 2002). Once an arising occurs, the engine must be removed

from the aircraft wing and the module that caused the arising must be reconditioned

or replaced. However, as the removal of the engine from the wing is typically the most

expensive part of a maintenance shop visit, this provides the ground crew with the

chance to perform opportunistic maintenance on the other modules in the engine. If

one of the other modules in the engine has exceeded its soft-life3 then it should also

be reconditioned or replaced whilst the engine is removed from the wing.

5 A Grid-Based Framework for Optimisation Using

Evolutionary Algorithms

5.1 Parallelisation of the Evolutionary Algorithm

In Section 1.3 two categories of possible parallelisation strategies for evolutionary algo-

rithms were described: single-population, globally parallel EAs and EAs with multiple

communicating populations. A major drawback with EAs that use multiple commu-

nicating populations is the difficulty in setting the extra parameters needed. Whilst

guidelines exist in the literature for choosing some of these parameters (such as the mi-

gration rate and migration interval), no general guidelines were found for the optimal

number of subpopulations to use. In fact results presented in Shenfield (2007) suggest

that the optimal number of subpopulations varies from problem to problem, and thus

no general guidelines can be given.

The number of subpopulations has been shown to be a key factor in the quality

of the final solutions produced by a parallel evolutionary algorithm (Shenfield, 2007).

However, in a Grid computing environment the number of subpopulations and pop-

ulation structure may be determined by the configuration of the Grid resources and

may therefore not be optimal for the problem under consideration. For this reason it

was decided to use the single-population master-slave implementation, since it does

not require the choice of these extra parameters. The single-population parallel model

also allows experience from implementing sequential EAs to be easily applied.

5.2 Implementation in a Service-Oriented Architecture

We have chosen to implement our Grid-enabled framework for optimisation using evo-

lutionary algorithms in a Service-Oriented Architecture (SOA). The service-oriented

architecture approach to Grid computing is well suited to the kind of master-worker

parallelism chosen for our optimisation framework since the client can act as the master

node (by generating and varying the population), and the service can act as the worker

(by evaluating the individual candidate solutions). A key advantage to providing the

2 Hard-lives are usually assigned to safety critical components and represent the age at which
that component must be replaced.

3 Soft-lives represent the age whereby a component should be replaced at the next oppor-
tunity.
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components of our optimisation framework as services is that the functionality can be

accessed via the HTTP protocol, thus allowing the services to be easily integrated into

an Internet portal and accessed by any device with a web browser (such as a PDA).

In the implementation of our optimisation framework (see Figure 5) there are two

different types of service. One service type exposes the operations of the evolutionary

algorithm to the client, and the other provides the ability to run evaluations of the

objective function on the resources of a computational Grid. These services interact

(as shown in the pseudo-code listed in Figure 6) to provide a flexible grid-enabled

optimisation framework.

These services are written in Java and deployed using the open source Apache Tom-

cat/Apache Axis web service development platform. Apache Tomcat provides a robust,

cross-platform web application container to host the web service, whilst Apache Axis

provides a SOAP (Simple Object Access Protocol) engine that enables web services

and web service clients to process SOAP messages sent across a network. Whilst these

tools require a degree of customisation for the specific environment they are used in,

they do greatly simplify the development of both web services and web service clients.

For example, Apache Axis provides a library of utility functions to enable web service

clients to connect to web services by simply providing the service location (i.e. the

URL), and also to automatically convert Java (or C++) RPCs (Remote Procedure

Calls) to SOAP messages to enable the client to interact with the target service.
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Fig. 5: The Implementation of the Optimisation Framework

The Evolutionary Algorithm Web Service

For the results presented in Section 6.1, our optimisation framework was used in a Ge-

netic Algorithm architecture with real valued representations of the decision variables.

Fogel and Ghoziel (1997) have shown that there is no intrinsic advantage in choosing

one bijective representation over another, although particular representations may be
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Fig. 6: Pseudo-code Describing the Interaction Between Services

more computationally tractable or efficient for certain problems. Consequently modern

EA practice emphasises choosing a representation that is appropriate for the problem

under consideration. As the decision variables in the problem considered in this pa-

per are continuous it is intuitive to use a real-valued representation (Michalewicz and

Fogel, 2000).

Selection in our algorithm was performed using Stochastic Universal Sampling

(Baker, 1987) which guarantees sampling with zero bias and minimum spread, and

is generally considered superior to other selection schemes for many problems (Han-

cock, 1994). The extended intermediate recombination operator and BGA mutation

operator from (Mühlenbein and Schlierkamp-Voosen, 1993) were used to introduce

variation into the population and prevent the evolutionary process from stagnating.

It is important to note that adding additional functionality (such as alternative

evolutionary operators) to an optimisation routine using our framework can easily be

accomplished simply by implementing additional services.
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The Evaluation Grid Service

The distribution and management of computational tasks across a diverse set of dis-

tributed heterogeneous resources is a key issue in Grid computing. Many resource

management systems exist to address the problem of scheduling at a local level, but

the dynamic and decentralised nature of computational Grids provides additional chal-

lenges not addressed by these systems.

The evaluation grid service shown in Figure 5 provides the ability to evaluate

multiple candidate solutions in parallel using the resources of the White Rose Grid (see

Section 5.3). To do this it uses an application-centric meta-scheduler4 to distribute the

objective function evaluations across the available resources with the aim of minimising

the mean response time of jobs through the system (i.e. maximising the throughput

of objective function evaluations). This application-centric approach is similar to that

taken by the AppLeS project (Berman et al, 1996). However, a key difference is in

the use of response time information from previously completed generations to provide

estimates of the computational capacity of the available resources, rather than explicitly

querying the computational resources for their status (a process that can be both

complex and time intensive). Results presented in Shenfield (2007) have shown that this

approach performs extremely well in complex distributed and dynamic environments

(such as computational Grids).

Our evaluation grid service exposes three methods to the Grid-enabled optimisation

client (as shown in the pseudo-code in Figure 6):

1. findResources() - this method queries a database to discover what Grid resources

are available and obtain some initial information about their states.

2. distributeSolutions(resources, solutions) - this method uses the application-

centric meta-scheduler outlined above to calculate the optimal workload allocation

(i.e. the optimal number of candidate solutions to send to each resource) with

respect to the mean response time of jobs through the system, for a given set of

resources. This optimal workload allocation is calculated using elements of queueing

theory (see Kleinrock (1975) for more details) to minimise the mean response time

for the evaluation of candidate solutions. It then transfers these candidate solutions

to the Grid resources using either SFTP (the Secure File Transfer Protocol) or

GridFTP5.

3. evaluateSolutions() - this method starts a job manager daemon on the Grid

resources to manage the objective function evaluations. It does this by using the

local resource management system (in the case of the White Rose Grid resources

this would be Sun Grid Engine) to run as many instances of the evaluation func-

tion as there are candidate solutions. These evaluation function instances are then

queued by the local scheduler and run when appropriate compute resources become

available. The results are then returned to the client.

4 Meta-scheduling is an approach where jobs are submitted via local resource management
systems rather than directly to the actual machines themselves.

5 GridFTP offers potential performance benefits when dealing with large data-sets, but
requires the administrators of the Grid resources to provide a GridFTP server.



13

5.3 The White Rose Grid

The White Rose Grid (The White Rose University Consortium, 2007) is a multi-

institutional computational Grid launched in 2002 by the universities of Sheffield, York

and Leeds. The main objective of the White Rose Grid project is to support e-Research

by providing users with access to large amounts of heterogeneous compute resources.

The White Rose Grid currently consists of five high-performance compute nodes lo-

cated at three different sites (see Figure 7 for an overview of the network topology),

and in 2003 was awarded the status of e-Science Centre of Excellence.

Leeds Grid Nodes

Sheffield Grid Node

York Grid Node

JANET

2Gbps

2Gbps
2Gbps

Fig. 7: An Overview of the Network Topology of the White Rose Grid

The three participating institutions in the White Rose Grid consortium reserve

75% of their Grid resources for users within their institution and allocate the remain-

ing 25% to other users of the Grid. The current Grid resources available are outlined

in Table 1. These resources are connected by the high bandwidth Yorkshire and Hum-

berside Metropolitan Area Network (YHMAN), and are managed at a local level by

Sun Grid Engine. However, there is currently no production quality grid-level meta-

scheduler available to enable a scientist or engineer to transparently utilise all these

multi-institutional resources.

6 Maintenance Scheduling Strategy Optimisation

We have used our Grid-based optimisation framework to optimise the aero-engine main-

tenance scheduling strategy across a fleet of aircraft with the aim of minimising the
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Table 1: White Rose Grid Resources

Sheffield
Iceberg Iceberg is a compute cluster consisting of 320 2.4GHz AMD Opteron proces-

sors running the Scientific Linux operating system. 160 of these processors
are available for general use, whilst the other 160 are reserved for the GridPP
project (The GridPP Project, 2007).

York
Pascali Pascali consists of a large memory cluster for jobs with big memory require-

ments and a Beowulf cluster with 24 nodes. The Beowulf cluster is based
on dual core AMD Opteron processors, with each node comprising of two
processors. These clusters run the Scientific Linux operating system.

Leeds
Maxima Maxima is a constellation of shared memory SMP systems based on Sun

Fire 6800 and V880 servers. This node offers 60 UltraSPARC III processors
running the Solaris operating system.

Snowdon Snowdon is a cluster of 128 dual Intel Xeon processor based compute nodes.
This Grid node offers a total of 256 processors for dedicated batch use and
runs the Linux operating system.

Everest Everest is a cluster based on AMD Opteron dual core processors running the
Linux operating system. It consists of 66 dual processor Sun V20z servers and
8 quad processor Sun V40z servers.

total maintenance cost. The maintenance scheduling strategy consists of a set of soft-

lives for the modules in the engine which determine when opportunistic maintenance

is performed (see Section 4 for more details). Crocker and Kumar (2000) have shown

that, for relatively small engine module costs, there is likely to be an optimum value

of soft-life which minimises the total maintenance cost of an engine. This is because

soft-lives that are too low result in engine modules being reconditioned or replaced dur-

ing every maintenance shop visit; whilst soft-lives that are too high lead to cheaper,

but more frequent, shop visits6 (since high soft-lives result in very little opportunistic

maintenance being performed).

The maintenance scheduling strategy was chosen for optimisation because it is one

of the few parameters affecting support costs that is easily modifiable once the engine

has gone into service. It is inexpensive to vary when compared to post-production

design changes and can be quickly implemented across an engine range (Argyle and

Tubby, 2002).

Our optimiser used a floating point representation for each of the five decision

variables (i.e. engine module soft-lives) that made up a single candidate solution. The

lower and upper bounds on these decision variables were 0 hours and 5000 hours7

respectively. The evaluation of candidate solutions in our optimiser was performed

using the MEAROS engine life-cycle model described in Section 4, in conjunction with

the simple cost model shown in Table 2. This cost model was developed in partnership

with Rolls-Royce and represents a hypothetical five module aero-engine. The costs

given are for the removal and reconditioning of the modules in the engine, whilst the

6 And, as noted in Section 4 the removal of the engine from the wing is typically the most
expensive part of a maintenance shop visit.

7 This upper limit of 5000 hours was chosen as it accounts for over 99% of failures for the
engine module with the longest life.
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scale and slope parameters of the Weibull distribution represent the characteristic life

of a module and the failure distribution of a module respectively.

Table 2: Cost Model and Weibull Failure Distribution Parameters

Cost Scale Slope

Engine 3000 N/A N/A
Module 1 200 1000 1
Module 2 1000 800 2.5
Module 3 900 700 3
Module 4 800 2000 2
Module 5 1200 1500 1.5

The MEAROS model was used to simulate the effect of a given set of soft-lives on a

fleet of 25 engines over a 10 year period, and, as mentioned in Section 4, the results were

averaged over 100 passes of the model so as to reduce the effects of stochastic noise in

the simulation. Evaluation of a single candidate solution using the above configuration

took in the order of 1.5 seconds on a Intel Pentium 4 based PC running at 3.0GHz.

The evolutionary algorithm web service described in Section 5.2 was used to ini-

tialise the population and to perform selection and variation (with a recombination

rate of 0.8 and a mutation rate of 0.1) on each generation, and the evaluation grid

service was used to distributed the evaluation of candidate solutions amongst the re-

sources of the White Rose Grid (see Section 5.3). As many computational resources at

the universities of Sheffield, Leeds and York were used during the optimisation process

as the site policies and local schedulers would allow, with the application-centric meta-

scheduler described briefly in Section 5.2 (and in more detail in Shenfield (2007)) used

to maximise the throughput of objective function evaluations through the available

resources.

6.1 Optimisation Results

The EA was run multiple times with a population size of 50 individuals. However, as

similar results were obtained from each execution of the algorithm, the results presented

in Figure 8 and Figure 9 are from a single representative run of the EA only. Figure

8 shows that the mean value of the population (the solid line in the figure) exhibits

convergence after around 15-20 generations. It can also be seen from Figure 8 that

the diversity of the population (each individual in the population is shown by a dot

in the Figure) is substantially reduced as the search progresses. Using one-at-a-time

(OAT) sensitivity analysis8 (Hamby, 1994), it is possible to show that the final solution

produced by the EA is optimal - since varying the final set of decision variables (i.e.

the set of soft-lives that make up the maintenance scheduling strategy) produced by

the optimiser does not yield a better solution.

8 One-at-a-time sensitivity analysis involves varying each of the soft-lives that make up the
best solution produced by the optimiser one after the other (whilst keeping the other soft-lives
constant at the value found by the optimiser) and observing the influence of the changes on
the model output.
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Fig. 8: Plot of Cost of Maintenance Scheduling Strategy Against Number of Generations

Figure 9 shows the distributions of the engine module soft-lives from the 30 genera-

tions after the optimiser has converged with the quartile values marked on the plots by

vertical lines. It can be seen from Figure 9 that both the soft-lives found by the opti-

miser and the inter-quartile ranges of their distributions are relatively high for modules

1 and 5. This is because the failure distributions for these modules indicate that they

fail randomly9 and nearly randomly, respectively. Assigning soft-lives to these compo-

nents will therefore just increase the overall maintenance cost. Modules 2, 3, and 4 are

all assigned lower soft-lives by the optimiser, indicating that preventative maintenance

of these components can reduce the overall cost. Modules 2 and 3 should be replaced

often, since they have relatively short characteristic lives, whilst module 4 has a much

longer characteristic life and therefore should not be replaced as much. Analysis of the

model output indicates that module 4 rarely causes arisings.

Table 3 shows the average execution times from the optimisation of the aero-engine

maintenance scheduling problem described in this paper. These results are averaged

over 5 runs for both the single workstation results and the results obtained using our

Grid-based framework for optimisation using evolutionary algorithms. The execution

times from our Grid-based optimisation framework were taken at different times of

the day, so as to reduce the effect of system load10 on the results presented in Table

3. The best execution times obtained by our Grid-based optimisation framework were

521 seconds to evaluate 30 generations, and 897 seconds for 50 generations (these

results were taken on a Sunday morning). As Table 3 shows, the use of our Grid-

based optimisation framework can considerably reduced the time taken to optimise

the aero-engine maintenance scheduling problem considered here.

9 A failure distribution with a slope of one indicates a component will fail randomly.
10 System load was typically lowest in the early morning and at weekends, and highest in the

afternoon.
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Fig. 9: Optimised Soft-Lives for a Five Module Aero-Engine

Table 3: Execution Times for the Optimisation of Maintenance Scheduling Strategies

Single Workstation Computational Grid

30 generations 50 generations 30 generations 50 generations
1981 seconds 3372 seconds 826 seconds 1354 seconds

7 Discussion, Conclusions and Further Work

The aero-engine model used for the maintenance scheduling strategy optimisation pre-

sented in this paper represents a simplified version of a real-world system (primarily

due to computational constraints encountered in previous work (Argyle, 2006)). How-

ever, the speed up obtained using our Grid-based optimisation framework will enable

the optimisation of larger scale models - such as those applied to bigger fleets of aircraft

or those with higher fidelity models of engines (i.e. those comprising of a larger num-

ber of modules). This speed-up also enables a decision maker to run the optimisation



18

process multiple times with alternative cost models to get a clearer understanding of

the problem space.

Whilst the implementation of the framework described in this paper has concen-

trated on the application of an evolutionary algorithm to a single objective maintenance

problem, our framework is easily extensible to both multi-objective problems and to

the implementation of alternative optimisation methods such as ant-colony optimisa-

tion or particle swarm optimisation. This extensibility is a result of implementing the

components of our framework as services and is an important advantage of the Grid

computing approach taken here. Grid computing is not just about increased computa-

tional speed, but also about providing transparent on-demand access to computational

resources (ranging from computer processors to software) by taking a service-oriented

view of application architectures. This approach also greatly simplifies the maintenance

of our system, allowing upgrades to take place without impacting on the end user. Fur-

ther work is planned to extend this optimisation framework to perform multi-objective

optimisation of schedules for more complex logistics and supply chain operations.

The Grid-enabled optimisation framework proposed here is primarily suited to com-

putationally expensive objective function evaluations, such as the one described in this

paper. This is due to both the communication overheads inherent in evaluating candi-

date solutions in a distributed manner and the high overall utilisation of the available

Grid resources. Figure 10 shows the effectiveness of our framework as the complexity

of the objective function increases. In this experiment each generation consisted of 50

individuals, and the computational complexity of the objective function evaluation was

varied. No evolutionary operators were applied between generations since the compu-

tational expense of these operators is minimal. Multiple runs of the experiment were

performed, and the results averaged.
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Fig. 10: A Plot of Evaluation Time Against Objective Function Complexity
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As can be seen from Figure 10, using this Grid-enabled framework for optimisation

of computationally trivial objective functions may result in a decrease in performance

when compared to a sequential EA. However, for objective functions that take over

0.5 seconds to evaluate a single individual, substantial savings can be achieved in the

total execution time of the algorithm. The results presented in this Section also show

that the potential speed-up that can be achieved by a problem increases with the

computational complexity of the objective function evaluations. This is because as the

complexity of the problem increases, the amount of time spent waiting for the jobs to

run becomes less significant and thus the potential speed-up increases. We can see from

Figure 10 that the combined overheads of communication time and time spent waiting

for the job to be run by the local scheduler are in the order of 20 seconds, although

this may change as the load on the system varies.

It is expected that further research and development into Grid middleware, resource

management systems, and network infrastructure will result in reductions in the com-

munication overheads present in the proposed framework. Negotiating Service Level

Agreements (SLAs) with the resource providers would also guarantee a minimum level

of service for the objective function evaluations, enabling the proposed framework to

provide increased performance for less computationally expensive problems. However,

this framework is not intended to replace sequential EAs in cases where the perfor-

mance of sequential EAs is satisfactory.
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