
Computational steering of a multi-objective evolutionary 
algorithm for engineering design

SHENFIELD, Alex <http://orcid.org/0000-0002-2931-8077>, FLEMING, Peter 
and ALKAROURI, Muhammad

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/8309/

This document is the Submitted Version 

Citation:

SHENFIELD, Alex, FLEMING, Peter and ALKAROURI, Muhammad (2007). 
Computational steering of a multi-objective evolutionary algorithm for engineering 
design. Engineering Applications of Artificial Intelligence, 20, 1047-1057. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Computational Steering of a Multi-Objective Evolutionary Algorithm for

Engineering Design

Alex Shenfield ∗, Peter J. Fleming, Muhammad Alkarouri
Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK

Abstract

The execution process of a evolutionary algorithm typically involves some trial-and-error. This is due to the difficulty in setting the

initial parameters of the algorithm - especially when little is known about the problem domain. This problem is magnified when

applied to many-objective optimisation, as care is needed to ensure that the final population of candidate solutions is representative

of the trade-off surface. We propose a computational steering system that allows the engineer to interact with the optimisation

routine during execution. This interaction can be as simple as monitoring the values of some parameters during the execution

process, or could involve altering those parameters to influence the quality of the solutions produced by the optimisation process.

The implementation of this steering system should provide the ability to tailor the client to the hardware available, for example

providing a lightweight steering and visualisation client for use on a PDA.

Key words: Computational Steering, Evolutionary Multi-Objective Optimisation, Decision Making, Engineering Design.

1. Introduction

Decision making in engineering design can often be aided
by using evolutionary algorithms to solve multi-objective
optimisation problems. Typically, these multi-objective
evolutionary algorithms are run non-interactively. The
decision-maker (DM) will set the initial parameters of the
algorithm and then execute it. During this execution pro-
cess, which can often take hours or days to complete, user
interaction, if any, is limited to the occasional plotting of
the intermediate solutions and the possible termination
of the algorithm if it appears to have failed (for example,
if the algorithm does not show convergence). When the
execution has finished the solutions produced by the algo-
rithm are assessed and, if the results are not satisfactory,
the parameters of the algorithm are adjusted and it is run
again. This process of repeated execution of the multi-
objective evolutionary algorithm leads to an inefficient use
of resources, and possibly also to inferior solutions.

∗ Corresponding Author.
Email addresses: a.shenfield@sheffield.ac.uk

(Alex Shenfield), p.fleming@sheffield.ac.uk (Peter J. Fleming),
m.alkarouri@sheffield.ac.uk (Muhammad Alkarouri).

As the process of setting the initial parameters of the al-
gorithm can be difficult, especially if little is known about
the problem domain, the re-execution of the algorithm with
altered parameters is common. Unfortunately, the evolu-
tionary computation community is still some way from pos-
sessing anything more useful than ‘rules-of-thumb’ when it
comes to the setting of these initial parameters (Bullock
et al., 2002). One potential solution to this problem is to
allow the decision maker to interact with the optimisation
routine during execution. This is known as computational
steering, and may be as simple as allowing the decision
maker to monitor the values of some parameters in the op-
timisation process and, if necessary, to adjust others. In
this way, the decision maker could influence the quality of
the solutions produced by the optimisation process.

Research into interactive evolutionary computation has
mostly focussed on partial or complete human evaluation
of solutions produced by an evolutionary search (Parmee,
2002). This technique has mainly been applied to those
problems that rely on a subjective evaluation of the fitness
of a particular solution, such as the evolutionary design
of computer graphics (Sims, 1991) or music (Biles, 2003).
There is little research into the computational steering of
evolutionary computation at run-time, and the research

Preprint submitted to Engineering Applications of Artificial Intelligence 18 December 2006



that exists (Bullock et al., 2002) focuses solely on the single-
objective case.

This paper aims to show that computational steering of
a multi-objective evolutionary algorithm can provide im-
proved performance in both the execution speed of the al-
gorithm and in the quality of the solutions the algorithm
produces. Section 2 briefly outlines the ideas behind com-
putational steering, and then, in section 3, evolutionary
algorithms are introduced and their suitability to multi-
objective optimisation is highlighted. Section 4 describes
the implementation of our computational steering system.
In section 5 our computational steering system is applied
to a many-objective (see section 3.3) aircraft controller de-
sign problem. The main results from section 5 are sum-
marised in section 6 and some conclusions about the use
of our computational steering system in optimisation using
multi-objective evolutionary algorithms are drawn.

2. Computational Steering

Computational steering is defined as an approach that
improves the integration of simulation and visualisation in
the computational process, allowing the engineer or sci-
entist to control the succession of steps required to solve
engineering and computational science problems (Johnson
et al., 1999). The desire to interact with their simulations
is nothing new for engineers and scientists. In 1987, the Vi-
sualization in Scientific Computing Workshop reported:

“Scientists not only want to analyse the data that re-
sults from super-computations; they also want to in-
terpret what is happening to the data during super-
computations. Researchers want to steer calculations in
close to real time; they want to be able to change param-
eters, resolution, or representation, and see the effects.
They want to drive the scientific discovery process; they
want to interact with their data.” (McCormick et al.,
1987)

Currently, the majority of computational steering sys-
tems are applied to large simulations involving compute-
intensive models. One area of application is in computa-
tional fluid dynamics (CFD) where lattice-Boltzmann sim-
ulations can be used to understand the behaviour of meso-
scale fluid systems (Chin et al., 2003). Examples of such
systems occur in everyday life, for example in detergents,
milk and blood. In this application, computational steering
is used to overcome the limitations of the simulate-then-
analyse approach, such as having a fixed number of time
steps in the simulation. Another area of application of com-
putational steering is in medical science. The SCIRun com-
putational steering system (SCIRun, 2006) has been used
in EEG simulation and visualisation (Johnson et al., 2004)

and to plan operations by performing interactive visualisa-
tion of tumours. This planning and simulation is of great
benefit to surgeons as it allows them to practice the oper-
ations they are to perform.

The visualisation of the intermediate results of the com-
putational process is extremely important. It must allow
the engineer or scientist to efficiently extract the relevant
information from the data (Parker et al., 1997), so as to
be able to make an informed choice about which aspects of
the process to adjust. The complexity of the visualisation
should be able to be tailored to the hardware available to
the user (for example, a lap-top computer, Personal Digital
Assistant (PDA), etc.) (Brooke et al., 2003).

For an application to be ‘steerable’ it must have a point
in the control loop of the program where it can be inter-
rupted and steering tasks can be performed. This point is
commonly termed a break-point and should allow some or
all of the following tasks to occur (Brooke et al., 2003):

(i) The retrieval of the current parameter set.
(ii) The alteration of one or more parameters.
(iii) The retrieval of the current results set (which can

then be passed to a visualisation routine).
(iv) The taking of a ‘snap-shot’ of the application (often

referred to as a checkpoint) to allow the system to be
restarted from this point.

The first three tasks in this list form the basis of the com-
putational steering process (i.e. the alteration of simulation
parameters in response to the results currently being pro-
duced by the simulation). The support of checkpointing in
large-scale complex simulations may be difficult, however,
and this decision should be left up to the application user.

3. Evolutionary Algorithms in Engineering Design

3.1. Background on Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a stochastic optimi-
sation technique utilising some of the mechanisms of nat-
ural selection (Goldberg, 1989). They offer an iterative,
population-based method, capable of both exploring the
solution-space of the problem and exploiting information
contained in previous generations of candidate solutions.
The exploration of the solution-space is typically carried
out by a variation operator such as mutation, whilst the
exploitation of previous candidate solutions is mostly per-
formed by the selection operator. The recombination op-
erator can arguably be said to perform both exploration
and exploitation. The trade-off between the exploration of
undiscovered regions of the solution-space and the exploita-
tion of promising areas already discovered is extremely im-
portant for the performance of the algorithm. Obtaining a

2



good balance between exploration and exploitation for the
problem faced is a ‘black-art’ (Purshouse, 2003). One so-
lution would be to use a priori knowledge about the prob-
lem landscape; however this may not be possible for many
real-world problems, as this information may be unknown.

The stochastic nature of the exploration operators helps
to ensure the robustness of the algorithm by preventing it
from becoming stuck in local optima. This, combined with
the use of objective function pay-off information (rather
than derivative information or other auxiliary knowledge)
ensures that EAs are applicable to many areas in which
conventional optimisation methods struggle.

3.2. Multi-Objective Optimisation and EAs

Many real-world optimisation problems involve the sat-
isfaction of multiple, often conflicting, objectives. The gen-
eral form of a multi-objective optimisation problem can be
described by an objective vector f and a corresponding set
of design variables x; as can be seen in (1). Note that here
minimisation can be assumed with no loss of generality.

min
f

(x) = (f1(x), . . . , fn(x)) (1)

In this case it is unlikely that a single ideal solution will
be possible. Instead, the solution of a multi-objective opti-
misation problem often leads to a family of Pareto optimal
points, where any improvement in one objective will result
in the degradation of one or more of the other objectives.

A set of non-dominated solutions 1 generated by the op-
timiser is known as an approximation set (Zitzler et al.,
2003). Three measures of the quality of this approximation
set can be considered (Purshouse, 2003). These are illus-
trated graphically in Figure. 1, and listed below.

– Proximity. This is a measure of how close the approxi-
mation set is to the true Pareto front.

– Diversity. This is a measure of the distribution of the
approximation set both in the extent and uniformity of
that distribution.

– Pertinency. This criteria measures the relevance of the
approximation set to the decision maker (see section
3.4).

Conventional multi-objective optimisation techniques of-
ten fail to satisfy these criteria. For example, the goal-
attainment method (Gembicki, 1974) and the weighted-
sum method (Hwang and Masud, 1979) both only provide
single solutions to the optimisation problem - thus failing
to provide a diverse distribution of solutions. However, EAs
are well suited to this kind of multi-objective optimisation,

1 A solution is termed non-dominated if there is no other solution
in the solution set that is superior in all objectives.

Objective 1

O
b

je
c
ti
v
e

 2

Pareto
front

objective vector

pertinency of the
solutions, i.e. the
region of interest

dominated objective-space

proximity
diversity ROI

and
in

Fig. 1. The Ideal Solution to a Multi-Objective Optimisation Problem

because they search a population of candidate solutions
(Deb, 2001). This enables the EA to achieve diversity in its
solution-set.

3.3. Many-Objective Optimisation

Theoretical evolutionary multi-objective optimisation
(EMO) studies generally consider a small number of ob-
jectives, with most of the published literature in the EMO
field focussing on the bi-objective case. However, real-
world applications of optimisation in engineering design
often require a large number of objectives to be dealt with,
leading to a growing interest amongst the research com-
munity in the area of many-objective optimisation 2 . The
increased scale of a many-objective optimisation problem
means that the pertinency (see Figure. 1) of the candidate
solutions, i.e. focussing on those solutions in the decision
maker’s region of interest (ROI), is especially important
so as to avoid overwhelming the decision maker. This is a
major issue because a global trade-off surface for a prob-
lem with many conflicting objectives would contain many
Pareto-optimal solutions, most of which may not be in the
decision maker’s ROI (Purshouse, 2003).

3.4. Decision Making in Engineering Design

The main role of the decision maker in evolutionary
multi-objective optimisation is usually to select a single

2 The phrase many-objective has been suggested in the Operations

Research (OR) community to refer to problems with more than the
standard two or three objectives (Farina and Amato, 2002).

3



solution from the potentially infinite Pareto-optimal solu-
tion set, according to some criteria. In practice the DM is
usually only interested in a sub-set of the trade-off surface,
thus there is little or no benefit in representing parts of the
trade-off surface that lie outside this region of interest. Al-
lowing the DM to focus the search on relevant areas of the
solution space increases the efficiency of the optimisation
process and reduces the amount of irrelevant informa-
tion that the DM has to consider (Fleming et al., 2005),
thus preventing the DM from becoming overwhelmed (see
section 3.3).

DM preferences can be incorporated into the optimisa-
tion process in three ways; a posteriori, a priori, and pro-
gressively. A posteriori methods of preference articulation
involve the DM selecting a compromise solution from the
global set of Pareto-optimal solutions. A priori preference
articulation and progressive preference articulation aim to
achieve a good representation of the trade-off surface in the
DM’s ROI. They do this by concentrating the optimiser on
a sub-set of the global trade-off surface. In a priori artic-
ulation of preferences the DM expresses their preferences
before the start of the optimisation process. However, often
the DM may not be sure of their preferences prior to opti-
misation, and by stating preferences a priori the DM may
not investigate some areas of the search space that merit
attention. A better method is progressive articulation of
preferences, where the DM can express preferences during
the search and thus incorporate information that becomes
available during the search process.

The first scheme for progressive preference articulation in
multi-objective evolutionary algorithms was introduced by
Fonseca and Fleming (1998). It extended the Pareto-based
ranking scheme to allow preferences to be expressed during
the run of a multi-objective evolutionary algorithm. These
preferences are used in a modified version of dominance
which combines Pareto-optimality with a preference opera-
tor to rank the candidate solutions in a multi-objective evo-
lutionary algorithm. This progressive articulation of pref-
erences is a limited form of computational steering. The
preferences can be altered during the running of the algo-
rithm. However, these are the only variables in the optimi-
sation process it is possible to alter.

The ability for the DM to computationally steer the op-
timisation routine is desirable due to the large amount of
time such optimisation routines often take to complete. By
giving the DM the ability to observe the progress of the
optimisation process and to alter the parameters as the al-
gorithm runs, the DM can act to improve the quality of
the solutions produced by this optimisation process. For
example, if the optimisation routine is struggling to find
solutions of interest to the DM, then the DM could alter
the mutation rate, change the bounds on the decision vari-
ables, or express design preferences to try to improve the
quality of the solutions produced by the algorithm.

4. Implementation

4.1. Steering of the Multi-Objective Evolutionary

Algorithm

Before we can implement computational steering in our
application, we need to check that the application is ‘steer-
able’. In section 2 it was noted that for computational steer-
ing to be applied to an application there must be a suitable
break-point in its control loop where the program can be
interrupted and the steering operations performed.

Our optimisation routine contains an ideal break-point
due to its iterative nature. This point occurs between the
generations of the algorithm, and provides a convenient
place to retrieve the current candidate solutions and param-
eter set, and to alter those parameters that are appropriate
(see Figure. 2). However, if there are no steering tasks to
be performed then the optimisation routine will continue
to the next generation.

Procedure SteeringEA:

initialise()

evaluate()

while not finished:

selection()

recombination()

mutation()

evaluate()

end

end Break-point -
perform steering tasks

Fig. 2. Pseudo-Code Illustrating the Positioning of a Break-Point in
the Control Loop of the Optimiser

Because the next generation of candidate solutions pro-
duced by our optimisation routine only relies on the cur-
rent generation of candidate solutions and the current pa-
rameter set it is also simple to implement a checkpointing
system. This will take the form of a ‘snap-shot’ of our algo-
rithm, taken at the break-point, consisting of the current
parameter set and the current generation of candidate so-
lutions. If the optimisation routine is to be restored from
this point it is a simple matter to reload this ‘snap-shot’
and continue the optimisation process.

The actual computational steering of our optimisation
process can be achieved in two ways. The first of these is by
adjusting the parameters of the algorithm. These parame-
ters control the behaviour of the algorithm and can affect
both the rate of convergence and the quality of the solu-

4



tions produced. For example, reducing the exploratory ef-
fects of mutation in the algorithm by lowering the mutation
rate will reduce the amount of new genetic material com-
ing in to the population in each new generation, and thus
increase convergence. However this increase in the rate of
convergence will come at the risk of converging to a local
optimum.

Some other parameters that we can adjust in our steer-
ing system are the upper and lower bounds on the deci-
sion variables, the population size (either by increasing the
number of immigrants or increasing the number of solutions
produced by selection), and the fitness assignment method.
These parameters all affect the behaviour of the algorithm
in different ways. For instance, tightening or loosening the
bounds on the decision variables allows the engineer to fo-
cus or widen the search in decision space, while increasing
the number of immigrants in the population can force the
algorithm out of local optima because it introduces new
genetic material.

The engineer can alter the probability of a solution being
carried over to the next generation by changing the method
by which fitness is assigned. For example, if an exponential
fitness assignment method is used, then the highest ranked
solution will form a proportionally larger part of the next
generation compared to a linear fitness assignment method.

The second way of steering the optimisation process is
to use progressive preference articulation (see section 3.4)
to alter the goals and priorities for the objectives, and thus
affect the areas of the search space that the algorithm fo-
cuses on. The areas of the search space that the algorithm
focuses on are defined by the ROI of the DM. This ROI is
defined by the preferences specified by the DM, and the al-
gorithm focuses on this ROI by assigning a higher rank to
those solutions that are in this region. Once a satisfactory
value has been achieved for one of the objectives, the objec-
tive in question can be constrained to be at least as good as
that value. All the potential solutions that do not meet this
criterion are ranked worse than those that do, and there-
fore the algorithm is steered away from values that violate
that constraint. Reducing the region of interest in this way
can accelerate the optimisation process and improve the
quality of useful solutions.

One possible alternative to computational steering for
tuning key parameters in evolutionary computation is the
concept of Nested Evolution. This was introduced for a dif-
ferential evolution (DE) algorithm in Babu et al. (2004),
and consists of an inner optimisation loop and outer opti-
misation loop. The inner loop aims to solve the problem,
whilst the outer loop optimises the key parameters of the
inner loop (with the objective of minimising the number of
generation the inner loop runs for). The main drawback of
this method is that, as the inner loop is a population based
evolutionary optimiser, a large number of function evalu-
ations may be needed to tune the key parameters in the

inner loop. Many non-trivial, real-world problems require
the use of computationally intensive computer simulations
to evaluate the candidate solutions produced by the opti-
miser, and it is therefore desirable to keep the number of
function evaluations to a minimum. For this reason it was
felt that computational steering was a better choice than
nested evolution.

4.2. Visualisation

As mentioned in section 2, visualisation is a key compo-
nent of computational steering. The visualisation method of
any computational steering system must be able to present
the user with enough relevant information for the user to
guide the process. Therefore, the visualisation method for
the intermediate results of our multi-objective evolutionary
algorithm must be able to display high-dimensional data
sets, as we are dealing with many objectives.

The visualisation of high dimensional data sets in an
intuitive manner is extremely difficult. While scatter dia-
grams provide a fundamental tool for visualisation of lower
dimensional data - allowing the eye to see such features as
clustering, outliers and linearity/nonlinearity - they do not
generalise easily to more than three dimensions (Wegman,
1990). Many techniques have been proposed to solve this
problem (ATKOSoft, 1997), but this paper will focus on
two of the most common techniques.

Scatter plot matrices (see Figure. 3) are a commonly
used technique in the visualisation of high dimensional data
sets. They provide a visualisation technique that facilitates
rapid scanning of many dimensions; however discovery of
high dimensional patterns can be complicated by the dis-
connected representation of multiple aspects of the same
point in high dimensional space (Carr et al., 1986). The
representational complexity of these scatter plot matrices
is high (O(n2)), because they project n dimensions onto
n × (n − 1) scatter plots. This means that this technique
will not scale well to large numbers of variables. This high
representational complexity also means that this technique
will be unsuitable for on a device with limited screen size,
for example that of a PDA.

Parallel Coordinate Plots (Inselberg, 1985) are another
commonly used technique for visualising high dimensional
data. They allow the visualisation of high dimensional data
in a simple two dimensional representation. Instead of hav-
ing the axes orthogonal to each other, as in Cartesian ge-
ometry, the axes are placed in parallel. Thus a point in n

dimensional space will be represented as a line that bisects
n parallel axes (see Figure. 4). Figure. 5 illustrates the map-
ping between the Cartesian system and the corresponding
representation in parallel coordinates, where points A and
B in the Cartesian system are represented by lines in the
parallel coordinate plot.

5



M
P

G
A

cc
el

er
at

io
n

D
is

pl
ac

em
en

t
W

ei
gh

t

MPG Acceleration Displacement Weight

2000 4000200 40010 2020 40

2000

3000

4000

5000

100

200

300

400

10

15

20

25
10

20

30

40

Fig. 3. A Scatter Plot Matrix Representation of a Four Dimensional
Data Set

MPG Acceleration Displacement Weight
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

C
oo

rd
in

at
e 

V
al

ue

Parallel Coordinate Plot of Car Features

Fig. 4. A Parallel Coordinate Plot Representing a Four Dimensional
Data Set

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 Point A

Point B

Objective 2

O
b

je
c

ti
v

e
 1

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Point A

Point B

Objective

O
b

je
c

ti
v

e
 V

a
lu

e

Fig. 5. Mapping Between the Cartesian System and the Correspond-
ing Parallel Coordinate Plot

Parallel Coordinate plots have a lower representational
complexity than scatter plot matrices. The representational
complexity of parallel coordinates is O(n) (where n refers
to the dimensionality of the data), as each line bisecting
the axes of the plot represents a single point in high dimen-
sional space. Parallel coordinates lose no data in the repre-
sentation process; this in turn ensures that there is a unique
representation for each unique set of data. The main weak-

nesses of this method are that it requires multiple views to
see different trade-offs and it can be difficult to distinguish
individual points if many data points are represented.

Parallel Coordinate plots were chosen to perform the vi-
sualisation of the data in our computational steering system
due to their ease of interpretation and the ability to dis-
play all the appropriate data on a screen of limited size, for
example on a PDA. To overcome the potential problem of
having difficulty distinguishing individual points when the
display is cluttered, we will only represent those candidate
solutions that fit our modified definition of Pareto optimal-
ity (see section 3.4). This will prevent the plot from becom-
ing cluttered without removing any of the useful data, i.e.
the candidate solutions in the ROI of the DM.

4.3. A PDA Implementation

In our application domain of Engineering Design, it
would be especially useful for an engineer working on a
many-objective optimisation problem to be able to check
on the progress of the algorithm from the field. An ideal
client for this computational steering system would provide
low-cost, portable access to the system.

The implementation of this steering client can be effec-
tively realised by using a PDA enabled with a wireless con-
nection. The low cost involved in the use of a PDA-based
client would allow a wide uptake of this steering system by
engineers in the field, whilst the portability of a PDA-based
client would enable the engineer to check on the progress
of the optimisation routine and alter parameters from any-
where with access to the internet. This would be especially
useful in the case of a long running optimisation process
that may take days to complete.

This PDA-based steering system was implemented in two
parts. The first part was the design of a steering-enabled
multi-objective evolutionary algorithm web service. This
service provides the ability to adjust the parameters of the
optimisation routine as well as allowing the execution of
the multi-objective evolutionary algorithm for a given num-
ber of generations. The second part of the implementation
was the development of a PDA-based client to interface
with the steering-enabled multi-objective evolutionary al-
gorithm web service. Due to issues with scarcity of memory
and computational power, this client has to be lightweight
whilst still providing the desired functionality.

The PDA-based client connects wirelessly to the steering-
enabled multi-objective evolutionary algorithm web ser-
vice. The decision maker can then choose whether to initi-
ate a new optimisation routine or continue a previous one.
The DM can then adjust the parameters of the optimisa-
tion process and run the multi-objective evolutionary al-
gorithm for a given number of generations. The results are
displayed in the PDA client as a parallel co-ordinate plot

6



of the objectives (see Figure. 6). The DM can then use this
information to improve the optimisation process.

Fig. 6. A PDA Based Implementation of the Steering Client for our
Multi-Objective Evolutionary Algorithm

5. Results

A many-objective aircraft controller design problem from
literature (Tabak et al., 1979) was chosen to illustrate the
computational steering process of the multi-objective evo-
lutionary algorithm. This problem involves the design of
controller gains to obtain rapid and precise roll response to
aileron inputs. There are 8 objectives:

(i) Control Effort
(ii) Bank Angle at 2.8 seconds
(iii) Side Slip Deviation
(iv) Spiral Root
(v) Roll Damping Root
(vi) Dutch Roll Damping Ratio
(vii) Dutch Roll Damping Frequency
(viii) Bank Angle at 1 second

Firstly we attempted to solve this problem using a multi-
objective evolutionary algorithm with common values for
the parameters. We ran this algorithm for 100 generations
with no preference articulation (see Figure. 7 and Fig-
ure. 8). We then reduced the mutation rate and tightened
the bounds on some of the decision variables (those that
can be seen to contribute to an unsatisfactorily large value
for Objective 3) and reran the algorithm (again for 100 gen-
erations - see Figure. 9).

Altering the parameters of the multi-objective evolution-
ary algorithm improved the results produced by the algo-
rithm, but the solutions are still not satisfactory. We then

1 2 3 4 5 6 7 8
−500

0

500

1000

1500

2000

2500

3000

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − no preference articulation

Fig. 7. Results of the Initial Execution of the Multi-Objective Evo-

lutionary Algorithm

1 2 3 4 5 6 7 8

−20

−10

0

10

20

30

40

50

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − no preference articulation

Fig. 8. A Close Up View of the Results of the Initial Execution of

the Multi-Objective Evolutionary Algorithm

1 2 3 4 5 6 7 8

−20

−10

0

10

20

30

40

50

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − no preference articulation

Fig. 9. Results of the Re-execution of the Multi-Objective Evolu-
tionary Algorithm

7



incorporated a priori preference articulation into the multi-
objective evolutionary algorithm (see section 3.4) and ran
this MOEA with a priori preference articulation for 100
generations. The results produced by the algorithm with a

priori preference articulation are shown in Figure. 10.

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − a priori preference articulation

Fig. 10. Results of the Multi-Objective Evolutionary Algorithm with
a priori Preference Articulation

As we can see, the incorporation of a priori preference
articulation helps the algorithm to achieve better results.
This is because the initial preferences given to the algorithm
impose a strict ROI (see section 3.4) on which to focus the
search. However, these solutions can be further improved
by computational steering of the optimisation process. The
computational steering of our MOEA was carried out using
the steering-enabled web service described in section 4.3,
however a desktop implementation of the steering client
was used so as to produce the figures in this publication.
The results were confirmed using the PDA client.

Figure. 11 is a parallel co-ordinates representation of
the 8 objectives after having executed the steering-enabled
multi-objective evolutionary algorithm for 20 generations.
The dashed line represents the initial goal values for the al-
gorithm and therefore the solutions shown on the plot are
those that satisfy the initial design specifications, i.e. are
within the ROI defined by the DM.

We know from domain knowledge that it is important to
keep the control effort (Objective 1) small. This is because
high gains can cause sensitivity to sensor noise and may
lead to saturation of control actuator response. We will
therefore constrain this objective to be at least as good
as it is at the moment. This plot also shows that we can
tighten the goals on objectives 5, 6, 7, and 8. We then run
the multi-objective evolutionary algorithm for another 10
generations (see Figure. 12).

A decision is now made to isolate the best solution (see
Figure. 13) with respect to the Roll Damping Root (Objec-
tive 5). This objective is of primary importance for aileron
response. We would like to have this objective provide a

1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − after 20 generations

Fig. 11. Results of the Multi-Objective Evolutionary Algorithm after
20 Generations using our Computational Steering Client

1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − after 30 generations

Fig. 12. Results of the Multi-Objective Evolutionary Algorithm after
30 Generations using our Computational Steering Client

fast well damped response. The mutation rate of the multi-
objective evolutionary algorithm is then turned down so
as to generate multiple solutions that are close to this (see
Figure. 14).

This provides the decision maker with multiple solutions
to choose from. The DM then picks the best solution with
respect to the Bank Angle at 2.8 seconds (Objective 2) as
this ensures that the speed and steadiness of the basic roll
response does not drop off with time (see Figure. 15).

6. Conclusions and Further Work

Figure 16 shows the ‘best’ solution produced by each of
the runs of the multi-objective evolutionary algorithm 3 .

3 The results presented in this paper are from a single run of each

MOEA, however similar results were obtained from repeated exper-
iments

8



1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − after 30 generations

Fig. 13. Isolating a Solution from our Steered Multi-Objective Evo-

lutionary Algorithm

1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − after 40 generations

Fig. 14. Results of the Multi-Objective Evolutionary Algorithm after

40 Generations using our Computational Steering Client

1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Objective

S
ta

nd
ar

di
se

d 
O

bj
ec

tiv
e 

V
al

ue

Optimisation Results − Final Solution

Fig. 15. The Final Solution Chosen by Decision Maker from our
Steered Multi-Objective Evolutionary Algorithm

The solutions plotted for the first three MOEA runs are
those chosen by the decision maker a posteriori (see sec-
tion 3.4) according to the preferences of the DM. The fourth
solution plotted on the graph is the final solution achieved
by our computational steering system (see Figure. 15).

1 2 3 4 5 6 7 8
−10

−8

−6

−4

−2

0

2

Objective
S

ta
nd

ar
di

se
d 

O
bj

ec
tiv

e 
V

al
ue

Summary of ‘Best’ Solutions

 

 

MOEA run 1
MOEA run 2
’A Priori’ MOEA
Computational Steering

Fig. 16. The Solutions Chosen by the Decision Maker from the Pareto
optimal sets produced by each of the MOEAs

As we can see from Figure 16, both of the runs of the
MOEA with no preference articulation have produced so-
lutions that minimise objective 5 very well. However, this is
at the expense of achieving satisfactory values for objective
2 (bank angle at 2.8s) and objective 8 (bank angle at 1s).
These objectives are important to ensure a good response
from the controller.

The solution selected by the DM from the run of the
MOEA with a priori preference articulation is a superior
solution (from the DMs point of view) because, although
objective 5 is larger, objectives 2 and 8 are much more
satisfactory.

The solution achieved using our computational steering
system provides the best response of all the solutions. It is
the most successful solution in minimising objectives 2 and
8, whilst still achieving good values for the other objectives.
Our computational steering system also produced this so-
lution in fewer generations than the other MOEA runs (40
generations, compared to 100 generations from each of the
other algorithms).

Therefore we can conclude that significant gains in both
the execution speed of the MOEA (i.e. the number of gener-
ations needed to find good solutions) and the quality of the
solutions produced by the MOEA can be achieved by using
computational steering to guide the optimisation routine.
By using both progressive preference articulation (Fonseca
and Fleming, 1998) and steering of parameters, such as
population size and mutation rate, we can avoid the need
for repeated execution of the multi-objective evolutionary
algorithm. This improves the efficiency of the optimisation
process.

9



The results produced by computational steering of
the optimisation routine are an improvement over those
achieved without using steering. This is largely due to
the ability to alter the goals progressively. However, being
able to alter the mutation rate and other parameters is
also an important factor. For instance, in order to pro-
duce multiple solutions in close proximity to each other
(see Figure. 14), we were able to reduce the mutation rate
which decreased the amount of variation produced in the
next generation of candidate solutions.

The ability to control the population size of the algorithm
also proved useful, as we were able to use large population
sizes initially, so as to cover a large area of the search space,
and then reduce the population size to allow for quicker
execution of the algorithm.

Although altering the bounds on the decision variables
was unnecessary in the case of our example, providing the
ability to do so is potentially useful. By changing the upper
and lower bounds the decision maker is able to guide the
search in decision space, as well as guiding the search in ob-
jective space using preference articulation. By loosening the
bounds on certain decision variables, the DM can expand
the search to include previously ignored areas, whereas by
tightening the bounds the DM can constrain the area of
decision space searched by the optimiser.

This computational steering process for evolutionary op-
timisation may allow the user to gain some insight into
the optimisation process. As has been noted in the intro-
duction to this paper, the evolutionary computation com-
munity possesses little more than ‘rules-of-thumb’ when it
comes to setting the initial parameters of an evolutionary
algorithm (Bullock et al., 2002). By using computational
steering of the evolutionary optimisation process, it may
be possible to further understand the effects and interac-
tions of the different parameters in the algorithm. This is
an area for further work.

Acknowledgment

The authors gratefully acknowledge the financial support
of the Engineering and Physical Research Council in the
UK under Grant Number GR/R67668/01 and input from
the engineers at Rolls-Royce Plc and Data Systems & So-
lutions.

References

ATKOSoft, 1997. Survey of visuali-
sation methods and software tools.
http://europa.eu.int/en/comm/eurostat/research/

supcom.96/30/result/a/visualisation methods.pdf.
Babu, B. V., Angira, R., Nilekar, A., 2004. Optimal design

of an auto-thermal ammonia synthesis reactor using dif-

ferential evolution. In: Proceedings of Systemics, Cyber-
netics and Informatics (SCI2004). IIIS Press.

Biles, J. A., 2003. Genjam in perspective: A tentative tax-
onomy for ga music and art systems. Leonardo: Journal
of the International Society for the Arts, Sciences, and
Technology 36 (1), 43 – 45.

Brooke, J. M., Coveney, P. V., Harting, J., Jha, S., Pickles,
S. M., Pinning, R. L., Porter, A. R., 2003. Computational
steering in realitygrid. In: Cox, S. (Ed.), Proceedings of
the U.K. e-Science All Hands Meeting.

Bullock, S., Cartlidge, J., Thompson, M., 2002. Prospects
for computational steering in evolutionary computation.
In: Bilotta, E., Groß, D., Smith, T., Lenaerts, T., Bul-
lock, S., Lund, H. H., Bird, J., Watson, R., Pantano,
P., Pagliarini, L., Abbass, H., Standish, R., Bedau, M.
(Eds.), Artificial Life VIII Workshop Proceedings. MIT
Press, pp. 131 – 137.

Carr, D. B., Nicholson, W. L., Littlefield, R. J., Hall, D. L.,
1986. Interactive color display methods for multivariate
data. In: Wegman, E. J., DePriest, D. J. (Eds.), Statisti-
cal Image Processing. Dekker, New York, pp. 215 – 250.

Chin, J., Harting, J., Jha, S., Coveney, P. V., Porter,
A. R., Pickles, S. M., 2003. Steering in computational
science: Mesoscale modelling and simulation. Contempo-
rary Physics 44 (5), 417 – 434.

Deb, K., 2001. Multi-Objective Optimization using Evolu-
tionary Algorithms. John Wiley and Sons, New York.

Farina, M., Amato, P., 2002. On the optimal solution defini-
tion for many-criteria optimization problems. In: Keller,
J., Nasraoui, O. (Eds.), Proceedings of the NAFIPS-
FLINT International Conference. pp. 233 – 238.

Fleming, P. J., Purshouse, R. C., Lygoe, R. J., 2005. Many
objective optimization: An engineering perspective. In:
Coello, C. A. C., Aguirre, A. H., Zitzler, E. (Eds.), Pro-
ceedings of the International Conference on Evolution-
ary Multi-Objective Optimization (EMO2005). Vol. 3470
of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, pp. 14 – 32.

Fonseca, C. M., Fleming, P. J., 1998. Multiobjective op-
timization and multiple constraint handling with evolu-
tionary algorithms - Part I: A unified formulation. IEEE
Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans 28 (1), 26 – 37.

Gembicki, F. W., 1974. Vector optimization for control with
performance and parameter sensitive indices. Ph.D. the-
sis, Case Western Reserve University, Cleveland, Ohio.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley.

Hwang, C.-L., Masud, A. S. M., 1979. Multiple Objective
Decision Making - Methods and Applications. Vol. 164 of
Lecture Notes in Economics and Mathematical Systems.
Springer-Verlag, Berlin.

Inselberg, A., 1985. The plane with parallel coordinates.
The Visual Computer 1, 69 – 91.

10



Johnson, C. R., MacLeod, R., Parker, S. G., Weinstein, D.,
2004. Biomedical computing and visualization software
environments. Communications of the ACM 47 (11), 64
– 71.

Johnson, C. R., Parker, S. G., Hansen, C., Kindlmann,
G. L., Livnat, Y., 1999. Interactive simulation and visu-
alization. IEEE Computer 32 (12), 59 – 65.

McCormick, B. H., DeFanti, T. A., Brown, M. D., 1987. Vi-
sualization in scientific computing. Computer Graphics
21 (6).

Parker, S. G., Johnson, C. R., Beazley, D., 1997. Compu-
tational steering software systems and strategies. IEEE
Computational Science and Engineering 4 (4), 50 – 59.

Parmee, I., 2002. Improving problem definition through
interactive evolutionary computation. Artificial Intelli-
gence for Engineering Design, Analysis and Manufactur-
ing 16 (3), 185 – 202.

Purshouse, R. C., 2003. On the evolutionary optimisation
of many objectives. Ph.D. thesis, Department of Auto-
matic Control and Systems Engineering, University of
Sheffield, Sheffield, UK, S1 3JD.

SCIRun, 2006. Scirun: A scientific com-
puting problem solving environment.
Http://software.sci.utah.edu/scirun.html.

Sims, K., 1991. Artificial evolution for computer graphics.
Computer Graphics 25 (4), 319 – 328.

Tabak, D., Schy, A. A., Giesy, D. P., Johnson, K. G., 1979.
Application of multiobjective optimization in aircraft
control system design. Automatica 15, 595 – 600.

Wegman, E. J., 1990. Hyperdimensional data analysis using
parallel coordinates. Journal of the American Statistical
Association 85 (411), 664 – 675.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M.,
da Fonseca, V. G., 2003. Performance assessment of mul-
tiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7 (2), 117 –
132.

11


