
Measuring the inertial properties of a tennis racket

GOODWILL, Simon <http://orcid.org/0000-0003-0638-911X>, SPURR, James,
KELLEY, John <http://orcid.org/0000-0001-5000-1763> and HAAKE, Steve 
<http://orcid.org/0000-0002-4449-6680>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/8207/

This document is the Published Version [VoR]

Citation:

GOODWILL, Simon, SPURR, James, KELLEY, John and HAAKE, Steve (2014). 
Measuring the inertial properties of a tennis racket. Procedia Engineering, 72, 569-
574. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


 Procedia Engineering   72  ( 2014 )  569 – 574 

1877-7058 © 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University
doi: 10.1016/j.proeng.2014.06.098 

ScienceDirect

The 2014 conference of the International Sports Engineering Association 

Measuring the inertial properties of a tennis racket 

James Spurra*, Simon Goodwillb, John Kelleyb, Steve Haakeb 
aInternational Tennis Federation,Bank Lane, Roehampton, London, SW15 5XZ, UK 

bCentre for Sports Engineering Research (CSER), Sheffield Hallam University, Collegiate Campus, Sheffield, S10 2BP, UK 

Abstract 

Simple and bifilar pendulum were used to measure the mass moments of inertia of three tennis rackets. The pendulum setups 
were filmed using an off-the-shelf camcorder, with a stopwatch in view to provide timing data. The measurement accuracy was 
assessed using calibration rods of known mass moment of inertia. The simple pendulum method was found to be most accurate 
(<1.0 % difference to theoretical value) when a square profile rod was used as a pivot. The bifilar pendulum was found to be 
very accurate (0.0% difference to theoretical value) but sensitive to non-parallel support wires. A Babolat Racket Diagnostic 
Centre (RDC) was assessed using four calibration rods, of known mass moment of inertia. Measurement agreement was greater 
than 99.0% for mass moments of inertias within the range of 220 – 380 kg·cm2. 
 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University. 
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1. Introduction 

The performance of a tennis racket is, in part, determined by its mass and mass moments of inertia (MMOI). 
Brody et. al (2002) describe how an ideal racket exists for every player, but that the best specification is ultimately 
a compromise. For example, when considering a racket’s mass and MMOIs, a heavier, high MMOI racket will be 
more powerful (Cross (2006), Cross and Bower (2006)), but requires more effort to swing. Lighter, low MMOI 
rackets are more maneuverable, but less stable and forgiving with mishit shots (Brody (2002).  
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1.1. The mass moments of inertia of a tennis racket 

Figure 1 illustrates the three MMOIs of a tennis racket – transverse, lateral and polar. Transverse MMOI is 
measured about the lateral, in-plane axis of the racket. It is used for racket selection and customization, as this 
rotation is synonymous with a tennis swing. However, a tennis racket has six degrees of freedom – three axes of 
translation and rotation. Therefore, modifying one MMOI will, in all likelihood, affect the other MMOIs. 

 

Fig. 1. The mass moments of inertia of a tennis racket. 

The MMOIs are the measures of resistance to rotation about the principal axes through the center of mass 
(COM). However, the ‘tennis standard’ of MMOI is taken at an origin in the racket handle, four inches from the 
racket butt. MMOIs can be translated using the ‘parallel axis theorem’: 

 = +            (1) 
 
Where I1 is the measured MMOI (kg·cm2), I2 is the translated MMOI (kg·cm2), M is the mass of the racket (kg) 

and L is the distance between the two locations (cm). The translated transverse, lateral and polar MMOIs are 
colloquially known as ‘swingweight’, ‘spinweight’ and ‘twistweight’, respectively. 

Swingweight customization is nowadays common for players seeking to maximize performance. Brody (1985) 
commented that, prior to his investigation; the importance of MMOI was unknown in tennis, despite a relatively 
simple measurement concept. Since then, several authors have expanded on his work (Brody (2002), Goodwill 
(2002), Fauteux-Brandt (2013), Brody (2005)). Choppin et. al. (2013) found a relationship between the transverse 
MMOI, swing style (‘flat’ or ‘wristy’) and the position of the ‘ideal point’ – the impact location of maximum 
outbound ball velocity. However, he advised caution before modifying the transverse MMOI, as it would likely 
change the lateral and polar MMOIs also. 

This paper investigates the measurement techniques to measure the three MMOI’s of a tennis racket. 

1.2. Measuring the mass moments of inertia 

MMOIs are measured by setting the racket up as a simple (Brody (2002), Goodwill (2002), Brody (2005)). or 
bifilar pendulum (Fauteux-Brandt (2013)) and measuring the oscillation period (figure 2). Goodwill measured 
transverse MMOI at the racket butt using a simple pendulum and the equation: 

 =            (2)
  

where T is the period of oscillation (s), g is gravity (cm·s2), M is the mass of the racket (kg) and L1 is distance 
from the pivot to the racket’s COM (cm). He used a thin, light cylindrical rod attached at the racket butt to act as a 
pivot.  

Fauteux-Brault (2013) measured the MMOI of a cricket bat using a bifilar set up and the equation: 
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=            (3) 
 
where b is the horizontal distance from one support wire to the racket’s COM (cm) and L2 is the length of the 

support wires (cm) (see figure 2). 
 

 

Fig. 2. Measuring MMOIs with a) simple pendulum (swing perpendicular to page) and b) bifilar pendulum (rotation about long axis). 

Commercial devices, (e.g. the Babolat Racket Diagnostic Centre (RDC) (Babolat, France)), use a horizontal 
clamp arrangement to measure swingweight. Two springs, attached at a pivot four inches from the racket butt, 
create simple harmonic motion, from which the oscillation period can be measured. These machines use electronic 
timing to calculate swingweight. 

1.3. Measurement error 

Brody (1985, 2002) and Goodwill (2002) timed between 10 and 80 oscillations by eye. Timing error decreases 
with the number of oscillation measured, but Goodwill conceded that 50 oscillations was a practical limit. Jardin 
(2007) investigated the optimization of MMOI measurement using a bifilar pendulum jig from the aerospace 
industry. He explored several sources of error, concluding that: 

 
 The objects COM should be centered to the support wires. An off-center COM would result in 

‘precessional’ motions to the rotation required. Assuming competent set up, this effect is negligible. 
 Using a high wire length to wire separation ratio reduces any error associated with non-parallel wires. 
 The mass and strain dynamics of the support wires, and any effect from anchoring the wires, will have 

negligible effect for ‘long’ supports wires. 
 
Measurement error in devices, such as the Babolat RDC, can increase over time, due to drift in the electronic 

components. Calibration rods can be used to periodically check the machine, but these must be sourced separately.  

2. Method 

Calibration rods of known MMOIs were measured with a Babolat RDC, simple and bifilar pendulum. The 
swing-, spin- and twistweights of three tennis rackets (ITF Development racket, Gamma Big Bubba racket and 
Tecnifibre TFlight 66 racket) were also measured with the pendulum and RDC. 

Each pendulum test comprised five trials of 50 oscillations. The trials were filmed using a Panasonic HDC-SD9 
handycam, filming at 25 frames per second. A Samsung Galaxy S4 smartphone was used to provide timing data to 
1/100th second, with the screen kept in-shot for the 50 oscillations. The oscillation periods for each trial were then 
calculated via playback of each video. For the simple pendulum, the MMOIs at the pivot were calculated using (2) 
with the MMOI at the COM and swingweights and spinweights (rackets only) calculated using (1). For the bifilar 
pendulum, the MMOIs were calculated using (3). 
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2.1. Babolat RDC method 

Four calibration bars were made using thinned walled aluminium tubing. The specifications of the rods were 
calculated using the equation: 
  = [3( + ) + ]         (4) 

 
where m is the mass of the rod (kg), r1 is the outer radius (cm), r2 is the inner radius (cm)  and l is length (cm) 

(specifications can be found in Table 1). The four rods and three rackets were measured in a Babolat RDC, with 
mean values taken from 10 trials. Rotating the racket by 90° permitted spinweight measurements. 

2.2. Simple pendulum method 

A stainless steel rod was used to create a calibration object with an MMOI of 162.59 kg·cm2 and swingweight 
369.21 kg·cm2, calculated using the equation: 

 
 =            (5) 

 
where m is the mass of the rod (0.57600 kg) and l is length (29.00 cm). Mass was measured using a Mettler-

Toledo PR503DR scale. Lengths were measured using a 100 cm steel rule. 
Three pivots – two cylindrical steel rods of diameter 0.20 cm, and lengths 15.00 cm and 10.00 cm and a square 

profile rod with sides 0.40 cm and length 10.00 cm - were trialed using Goodwill’s method (2002). Each pivot was 
attached to the calibration object in turn, using approximately 5 gr. of glue applied with a glue gun. The square rod 
was orientated to rest on one corner. Once secured, the pivot was rested on two lengths of Bosch aluminium 
profile, with a separation of approximately 8.00 cm. The square pivot was then attached to the butt of each racket 
in turn. The pivot was positioned in two orientations to measure both transverse and lateral swings. 

2.3. Bifilar pendulum method 

A stainless steel rod was used to create a calibration object with an MMOI of 7.97 kg·cm2, calculated using the 
equation: 

 
 = (3 + )          (6) 

 
where m is the mass of the rod (0.11350 kg), r is the radius (0.40 cm) and l is length (29.00 cm). The radius was 

measured using a set of Mitutoyo 500-191U veneer calipers. 
The rod was attached to two 60.00 cm length of ‘Mylon’ wire (0.03 cm diameter and mass 0.008 kg) with a 

spacing of 27.20 cm – an inset of 0.90 cm at either end of the rod. The wires were anchored by wrapping excess 
length around the threads of two M10 bolts. The bolts were attached to Bosch aluminium profile with the same 
spacing of 27.20 cm. Two further pendulum arrangements were measured, with the anchor positions first moved 
apart by 1.0 cm (0.5 cm each side) and then moved closer together by 1.0 cm. The three rackets were then set up, 
using the widest string holes of the racket frame to tie off the support wires. The M10 bolts were repositioned to 
the racket widths for each test. The racket was twisted about its long axis to induce oscillations. 

3. Results 

Table 1 shows the specifications of the four calibrations bars, theoretical swingweights and the measured 
swingweights from the Babolat RDC. 
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Table 1. Calibration rod specifications, theoretical swingweight and mean Babolat RDC swingweight measurements 
  Bar 1 Bar 2 Bar 3 Bar 4 
Mass (kg), m 0.48348 0.49961 0.54226 0.58578 
Outer radius, r2 (cm) 1.91 1.91 1.91 1.91 
Inner radius, r1 (cm) 1.58 1.58 1.58 1.58 
Length, l (cm) 49.00 50.70 55.00 59.50 
COM to grip pivot, (cm) 14.34 15.19 17.34 19.59 
Theoretical MMOI, (kg·cm2) 97.5 107.8 137.5 173.7 
Theoretical swingweight, (kg·cm2) 196.9 223.1 300.6 398.5 
Mean Babolat RDC swingweight, (kg·cm2) 201.1 224.2 299.8 404.9 
 

Figure 3 shows the Babolat RDC measured swingweights plotted against the difference between RDC and 
theoretical values, for the four calibration bars. A 2nd order polynomial fit is plotted with two linear plots to 
represent ±1% error. 

 

Fig. 3. Babolat RDC error values for four calibration rods with ±1% error plotted as dashed lines. 

Table 2 shows the swingweight and spinweight for the three rackets measured with the Babolat RDC. 
 
Table 2. Babolat RDC swingweight and spinweight measurements for three rackets 

ITF Big bubba Tecnifibre ITF Big bubba Tecnifibre 
RDC swingweight 

 333 445 198  
RDC spinweight 

 348 463  

 
Table 3 shows the simple pendulum swingweight measurements for the calibration object using three pivots. 

The measured values are compared to the theoretical value for the calibration object. 
 
Table 3. Simple pendulum swingweight measurements for the calibration object using three different pivots with standard deviations and 
comparison to theoretical values. 
 Pivot type Long, cylindrical Short, cylindrical Square 
Mean swingweight (kg·     

    
Mean - theoretical swingweight (kg·  -  -  -  
% difference -1.8% -1.8% -0.8% 
 

Table 4 shows the simple pendulum swingweights and spinweight measurements for the three rackets. The 
values are compared to the measurements from the Babolat RDC shown in table 2. 

 
Table 4. Simple pendulum swingweight and spinweight measurements for three rackets using the square pivot with standard deviations and 
comparison to Babolat RDC values. 

ITF Big bubba Tecnifibre ITF Big bubba Tecnifibre 
Mean swingweight 

     
Mean spinweight 

    

Standard deviation    Standard deviation    
Mean - RDC 

 -  -  -   
Mean - RDC 

 -  -  -  

% difference -0.4% -1.7% -0.9%  % difference -0.3% -1.6% -0.7% 
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Table 5 shows the bifilar pendulum MMOI measurements for the calibration object and three rackets. The 

values for the calibration object are compared to the theoretical values. 
 
Table 5. Mean bifilar MMOI measurements for the calibration rod and rackets with standard deviation and comparison to theoretical values. 
  Calibration object Rackets 

  Parallel strings 
Anchors 

 
Anchors 

 ITF Big Bubba Tecnifibre 
Mean MMOI        

       
Measured - theory  -   - - - 
% difference 0.0% -3.8% 3.8% - - - 

4. Discussion 

The 2nd order polynomial fit in figure 3 predicts the device is capable of measuring MMOIs to within 1% of the 
theoretical value over an approximate range of 220 – 380 kg·cm2. Two of the rackets measured were outside of this 
range. 

Filming the simple and bifilar pendulum proved an easy method to maintain high repeatability across multiple 
measurements, proven by the low standard deviations for all measurements. The method also permitted repeat 
measurement of individual trials, helping to reduce human error in timing the pendulum swings. 

The three pivots trialed with the calibration object and simple pendulum show that the error is highest when 
using a cylindrical rod. This may be because the cylindrical rod creates a rolling pivot point, raising the axis of 
rotation about the knife edge. 

Comparing the racket measurements for the simple pendulum and Babolat RDC showed the greatest agreement 
for the ITF Development racket. The lesser agreement for the other rackets is probably due to the Babolat RDC 
being less accurate for measurements outside of the range stated above. 

The bifilar pendulum proved very accurate for the calibration object, although the results show a marked 
increase in error when the support wires were not parallel. The measurements of polar MMOI for the rackets are 
assumed to be of the same accuracy to the calibration object, as there was no theoretical value to compare against. 

5. Conclusion 

A simple and bifilar pendulum can be used in conjunction with a video camera to measure the MMOIs of a 
calibration object to within 1% of the theoretical value. The simple pendulum method used by Goodwill (2002) 
shows greatest agreement when a square pivot is used. The bifilar pendulum provides a novel measure of the polar 
moment of inertia of a tennis racket, but care must be taken to ensure the support wires are parallel. The Babolat 
RDC is an effective method to measure the MMOIs of a tennis racket, but accuracy is subject to drift in the 
electronic components – especially for MMOIs values at the extremes of the measurement range. 
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