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Abstract 

Finite element analysis is often applied to further our understanding of the mechanics of sports equipment. The aim of this 
research was to develop and validate a finite element model of a cricket ball/bat impact. The ball model was independently 
validated against experimental data for normal impacts on a fixed rigid surface, at speeds up to 35 ms-1. Finite element models 
were produced for two bat geometries, with ball/bat impact simulations compared to experimental data. A rigid body model was 
also applied to each bat. The validation experiment involved projecting a ball at 30 ms-1 normal to a freely suspended bat, at a 
range of locations on the long axis. The finite element models were in good agreement with the experimental data in terms of 
apparent coefficient of restitution. The rigid body model failed to accurately predict apparent coefficient of restitution for all 
impact locations along the length of the blade. The finite element modelling techniques presented here could be applied to aid 
the design and development of cricket bats. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University. 
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1. Introduction 

Cricket is a popular sport with a rich history, and the first rules were laid down in 1788. Despite the sport's 
popularity, cricket bats have seen relatively little technical development in comparison to other sporting 
implements, such as tennis rackets, golf clubs and field hockey sticks. The lack of development is due to the rules 
restricting alteration to materials, Law 6 states that the blade and handle shall be made solely of wood (Marylebone 
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Cricket Club). Willow is selected for the blade, with cane for the handle. Wood is an orthotropic material which 
means the mechanical properties change in the longitudinal, transverse and radial directions (Kretschmann, 2010). 
For a cricket bat the longitudinal axis of the willow is aligned with the longitudinal axis of the blade to maximise 
strength and stiffness (Subic and Cooke, 2003). As a consequence of material restrictions, most cricket bat 
developments are geometry related. An accurate model could aid developers in predicting the effect of changes to 
the design of a bat. 

A number of authors have developed cricket ball/bat impact models of varying complexity. James et al. (2012) 
presents a rigid body model of a cricket bat based on Newtonian mechanics. Smith and Singh (2008) present a 
finite element (FE) model of a cricket ball/bat impact. A linear viscoelastic material model was applied to the ball, 
with material coefficients selected to provide agreement with a load-time curve for a ball impacting a load cell at 
27 m/s. A linear elastic material model was applied to the handle of the bat and a linear orthotropic material model 
was applied to the blade. The FE model for the ball/bat impact was shown to be in good agreement with 
experimental data, in terms of the rebound speed of the ball. However, despite independent characterisation of the 
ball for an impact on a fixed rigid surface, the material coefficients applied to the ball required further adjustment 
to achieve the level of fit presented for the ball/bat model. 

The aim of this study was to develop and validate an FE model of a cricket ball/bat impact. Models were 
developed for two cricket bat designs. A rigid body model was also applied to both bats.  

2. Methods 

2.1. Bat properties 

Two Gunn & Moore cricket bats were used in this study, one with a concaved profile on the rear of the blade 
(IconTM) and the other with a flatter profile on the rear of the blade (FlareTM) (Table 1). A bifilar pendulum 
arrangement (Walker, 1991) was used to measure the moment of inertia (MOI) of each bat. The structural 
properties of the bats - when suspended from a long string - were measured by means of modal analysis. The 
experiment consisted of ‘tapping’ the bats with a hand-held cricket ball and sampling the frequency response with 
an accelerometer (4.2 kHz piezoelectric transducer), placed away from any nodes of vibration. The signal was 
sampled at 2,000 Hz and then converted from the time to the frequency domain using the Fast Fourier Transform 
(FFT) function in MATLAB (MathWorks, MATLAB R2012b). The blade was also struck at small intervals along 
its length while the signal was observed to locate the point which excited the lowest amplitude vibrations in the 
bat, defined here as the Nodal Sweet Spot. The Nodal Sweet Spot was located ~0.225 m from the toe, for both bats. 

Table 1 Inertial and structural properties of the two bats used in this study. 

 Mass 

(kg) 

Distance of Centre of Mass from Toe 

(m) 

Moment of Inertia 

(kgm2) 

Mode 1 frequency 

(Hz) 

Mode 2 frequency 

(Hz) 

Icon 1.074 0.335 0.0464 153 460 

Flare 1.202 0.332 0.0505 139 454 

2.2 Ball and bat impact experiments  

Cricket ball (Reader, Club Training ball) elasticity was assessed by measuring coefficient of restitution (COR) 
for normal impacts on a fixed rigid surface (Figure 1a). In this instance, COR is defined as the ratio of rebound to 
inbound ball velocity. The ball was fired from a bowling machine (BOLA, UK) without spin, at velocities from 10 
to 35 ms-1. Impacts on the ball's seam were discarded as they result in a lower stiffness in comparison to impacts 
away from the seam (Carre et al. 2004).  
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Figure 1 Experimental setup for impact testing a) ball/plate and b) ball/bat (view from above) 

Bat performance was assessed by firing a non-spinning ball against the freely suspended bat while measuring 
apparent coefficient of restitution (ACOR) (Figure 1b). ACOR is defined as the ratio of rebound to inbound ball 
velocity; it represents the intrinsic power of the bat and is a simpler measure than ball/bat COR as the recoil speed 
of the bat is not required (Cross, in press). Freely suspended conditions were selected as the frequency response is 
comparable to when handheld (Brooks, Mather and Knowles, 2006). The mean inbound ball velocity was 30 ms-1, 
with a standard deviation of 1.1 ms-1. Impact position was varied along the longitudinal axis of the bat, from 0.1 to 
0.5 m from the toe.  

Impacts for both experiments were filmed with a high-speed video camera (Phantom V4.3, Vision Research), 
operating at 1,600 Hz. The acquired footage was manually digitised using in-house software (Centre for Sports 
Engineering Research) to obtain the inbound and rebound velocity of the ball. The uncertainty associated with 
manual digitisation was likely to be up to 0.2 m/s, based on previous work (Allen et al., 2009, Wiart et al., 2011).  

2.1. Finite element models 

Three models were developed using ANSYS/LS-Dyna i) Ball/plate impact, ii) Ball/bat impact (Flare model) 
and iii) Ball/bat impact (Icon model). A viscoelastic material model (MAT_VISCOELASTIC (LSTC, 2012)) 
consisting of a bulk modulus k and a time dependent shear modulus was applied to the ball 

 ( ) = + ( )       (1) 
 

where G0 and G  are the instantaneous and long-term shear modulus respectively,  is the decay constant and t 
is time. The viscoelastic model has previously been applied to model solid sports balls (Smith and Duris, 2009 
Allen et al., 2012), including cricket balls (Smith and Singh, 2008). Starting with the material coefficients applied 
by Smith and Singh (2008) the values were systemically adjusted to provide good agreement with the experimental 
data in terms of COR (Table 2).  

Table 2 Material coefficients used in the finite element ball models. Plate-tuned 1 corresponds to the coefficients in Smith and Duris (2009). 

Ball model Density 

(kg/m3) 

Bulk modulus 

(MPa) 

Instantaneous shear modulus 

(MPa) 

Long-term shear modulus 

(MPa) 

Decay constant 

Plate-tuned 1 851 134 43.4 11.5 10500 

Plate-tuned 2 851 134 62 11.5 13000 

Bat-tuned 851 134 37 11.5 13000 
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The ball was meshed with 10,976 8-node brick elements, following a convergence study that indicated 
relatively low dependency of COR on mesh density. A fully constrained rigid material model (MAT_ RIGID 
(LSTC, 2012)) was used for the plate which was also meshed with 8-noded brick elements. Ball/plate impacts were 
simulated at velocities from 10 to 30 m/s at increments of 5 m/s, resulting in a total of 5 simulations. 

Computer Aided Design (CAD) geometry for the bats was provided by the manufacturer. The majority of the 
bat was meshed with quadrilateral elements. Tetrahedral elements were applied to the far ends of the blade and 
sections of the handle. A linear orthotropic material model (MAT_ORTHOTROPIC_ELASTIC (LSTC, 2012)) 
was applied to the blade and a linear elastic material model (MAT_ELASTIC (LSTC, 2012)) was applied to the 
handle. Starting with the material coefficients applied by Smith and Singh (2008) the density and modulus values 
were systematically adjusted so the inertial and structural properties of the models corresponded to those of the 
actual bats (Table 3). The inertial properties of the bat models were within 1% of those of the actual bats. Modal 
analysis simulations were used to determine the structural stiffness of the bat models. The 1st modes for both bat 
models matched those of the actual bats. The Flare model under predicted the 2nd mode by 12 Hz and the Icon 
model over predicted the 2nd mode by 25 Hz. Ball/bat impacts were simulated at 30 m/s from 0.10 to 0.45 m from 
the toe at 0.05 m increments, resulting in 8 simulations per bat.  

Table 3 Material coefficients applied to the finite element models of the bats. L = Longitudinal, T = Transverse and R = Radial. 

 Density (kg/m3) Young's modulus (GPa) Shear modulus (GPa) Poisson's ratio 

  EL ET ER GLT GTR GRL TL RL RT 

Willow - Icon 435 6.650 0.442 3.530 0.665 0.067 0.665 0.015 0.160 0.600 

Cane - Icon 520 5.000 - 0.300 

Willow - Flare 490 6.650 0.442 3.530 0.665 0.067 0.665 0.015 0.160 0.600 

Cane - Flare 595 5.000 - 0.300 

2.2. Rigid body model 

A rigid body model (James et al. 2012) was applied to both bats to predict the rebound velocity of the ball, 
 =        (2) 

 
where vb is the inbound velocity of the ball, mb is the mass of the ball, M is the mass of the bat, z is the impact 

distance from the centre of mass (COM), I is the MOI of the bat and e is the COR. A fixed value for COR accounts 
for energy losses in the ball. The value for e was obtained from the experimental data for the ball/plate impacts, at 
10 m/s. Ball elasticity for an impact on a rigid plate was assumed to be equivalent to ball elasticity for an impact on 
a fully constrained cricket bat. A value of 30 m/s was used for the inbound ball velocity in the model. 

3. Results 

Figure 2 shows results for the ball/plate impact. The experimental data shows COR decreased as inbound 
velocity increased. Applying the material coefficients from Smith and Singh (2008) resulted in the FE model over 
predicting COR, while increasing G0 with the experimental data. 
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Figure 2 Results for the ball/plate impact. The model results correspond to Plate-tuned 2 in Table 2. 

Figure 3 shows the results for the ball/bat impacts. The experimental data shows ACOR was dependent on the 
impact location on the blade. A region of high ACOR exists around the Nodal Sweet Spot for both bats. Higher 
values of ACOR can also be observed for the Flare, in comparison to the Icon. Initially, the materials coefficients 
determined from the bat/plate simulations (Plate-tuned 2) were applied to the ball/bat impact models. The plate-
tuned ball model, however, resulted in the FE models for the ball/bat impact under predicting ACOR in 
comparison to the experimental data. Decreasing G0, as done by Smith and Singh (2008), resulted in good 
agreement between the FE models and experimental data. The rigid body model failed to predict ACOR along the 
length of the blade. The model was in good agreement with the experimental data for impacts up to ~0.25 m from 
the toe, while ACOR was over predicted for impacts further along the blade. 

 
 
 
 
 
 
  
 
 
 

 

 

Figure 3 Results for the ball/bat impact a) Icon and b) Flare. Material coefficients for the ball in the FE model were Bat-tuned in Table 2. e for 
the rigid body model was 0.46 ± 5%. Node corresponds to the Nodal Sweet Spot. 

4. Discussion  

Finite element models were able to accurately predict ACOR along the length of two cricket bat designs. The 
experimental data showed both bats to have the highest ACOR in a region approximately 0.15 to 0.30 m from the 
toe, a region which contains the Nodal Sweet Spot. Performance deteriorated as the impact moved closer to the 
ends of the blade, in agreement with Bower (2012). As maximum ACOR was not at the point with the highest 
effective mass (COM) energy dissipation to bat vibration played an important role. The point which results in the 
lowest energy losses to bat vibrations is likely to lie between the nodes of the 1st and 2nd modes (Brooks et al., 
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2006; Eftaxiopoulou et al., 2012). The rigid body model over predicted ACOR for impacts greater than ~0.25 m 
from the toe, as it cannot account for energy dissipation in the bat. As players typically strike the ball in a region 
less that 0.25 m from the toe, the rigid body model has potential to be applied to predict ball rebound velocity for 
actual cricket strokes. Further work could involve validation of both modelling techniques for a range of bat 
designs. 

The results presented in this study are limited to an impact speed of 30 m/s. Further work could involve 
validation of both modelling techniques for a range of impact speeds. Both the rigid body and FE models showed 
relatively high sensitivity to the elasticity of the ball. Further work could focus on a more appropriate method for 
characterising ball elasticity specifically for ball/bat impact models.  

5. Conclusion  

Ball rebound from a freely suspended cricket bat was shown to be dependent on impact location on the long 
axis. The application of rigid body modelling techniques resulted in an over prediction of ACOR for impacts 
greater than approximately 0.3 m from the toe of the bat. Finite element modelling techniques were able to 
accurately predict ACOR along the length of the blade. The FE modelling techniques presented here could be 
applied to the design and development of cricket bats.  
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