
Neural-network approach to modeling liquid crystals in
complex confinement

SANTOS-SILVA, T, TEIXEIRA, P.I.C., ANQUETIL-DECK, C. and CLEAVER,
Doug <http://orcid.org/0000-0002-4278-0098>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/8170/

This document is the Accepted Version [AM]

Citation:

SANTOS-SILVA, T, TEIXEIRA, P.I.C., ANQUETIL-DECK, C. and CLEAVER, Doug
(2014). Neural-network approach to modeling liquid crystals in complex confinement.
Physical Review E, 89 (5), 053316. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A neural network approach to modelling liquid crystals

in complex confinement

T. Santos-Silva1, P. I. C. Teixeira2,3, C. Anquetil-Deck4∗ and D. J. Cleaver4

1Faculdade de Engenharia, Universidade Católica Portuguesa

Estrada de Taláıde, P-2635-631 Rio de Mouro, Portugal

2Instituto Superior de Engenharia de Lisboa

Rua Conselheiro Emı́dio Navarro 1, P-1950-062 Lisbon, Portugal

3Centro de F́ısica Teórica e Computacional

Faculdade de Ciências, Universidade de Lisboa

Avenida Professor Gama Pinto 2, P-1649-003 Lisbon, Portugal

4Materials and Engineering Research Institute, Sheffield Hallam University

Pond Street, Sheffield S1 1WB, United Kingdom

(Dated: 19 April 2014)

1

Abstract

Finding the structure of a confined liquid crystal is a difficult task since both the density and

order parameter profiles are non-uniform. Starting from a microscopic model and density-functional

theory, one has to either (i) solve a non-linear, integral Euler-Lagrange equation, or (ii) perform

a direct multi-dimensional free energy minimisation. The traditional implementations of both

approaches are computationally expensive and plagued with convergence problems. Here, as an

alternative, we introduce an unsupervised variant of the Multi-Layer Perceptron (MLP) artificial

neural network for minimising the free energy of a fluid of hard non-spherical particles confined

between planar substrates of variable penetrability. We then test our algorithm by comparing

its results for the structure (density-orientation profiles) and equilibrium free energy with those

obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo

simulation results. Very good agreement is found and the MLP method proves competitively

fast, flexible and refinable. Furthermore, it can be readily generalised to the richer experimental

patterned-substrate geometries that are now experimentally realisable but very problematic to

conventional theoretical treatments.

PACS numbers: 68.08.-p, 64.70.mf, 61.30.Hn

∗Present address: Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmo-

spheric Aerosol Research Department (IMK-AAF), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-

Leopoldshafen Germany.

2

I. INTRODUCTION

In a world suffused with images, displays are paramount. Of these, liquid crystal (LC)

devices (LCDs) have a huge market share [1]. LCs are a state of matter intermediate between

solid and liquid; they retain some of the order of a solid, but are free to flow as a liquid

[2]. In particular, their constituent particles, which are typically elongated, all point, on

average, in the same direction, termed the director; the extent of this alignment is given by

the LC order parameter.

The director orientation is determined by effects external to the LC itself. All current

LCDs are basically light valves that rely, for their operation, on the competing actions

of bounding surfaces – known as anchoring – and applied fields on the director (see, e.g.,

[3, 4]). Typically an LC layer is sandwiched between suitably prepared substrates, which may

favour the same (symmetric) or different (hybrid) alignments. An electric field is then used

to deviate the orientational order profile from that induced by the substrates alone. Two

examples are the conventional (and highly successful) twisted-nematic (TN) cell [4] found in

most TV screens, and the more recent hybrid aligned nematic (HAN) cell of Bryan-Brown

et al. [5, 6]. The latter has led to a practical realisation of a bistable device: unlike the TN

cell, a bistable device has two optically distinct, stable states and an applied voltage is only

needed when switching between them, with consequent substantial energy savings.

Applications of LCDs beyond displays include sensors. For example, it has been shown

that a LC film deposited at the air-water interface can be switched in and out of the HAN

state by varying the surfactant concentration in the water, thereby providing an easy-to-read

surfactant detector [7]. LC confinement is also pertinent to some of the many fascinating LC

colloid systems devised in recent years [8], where the LC matrix is squeezed to microscopic

dimensions when the colloidal particles self-aggregate.

In order to predict the behaviour of a confined LC we need to find its structure. A

theorist will start by selecting an appropriate model; which should be simple enough to be

amenable to computation, and yet capture the relevant features of the real system. One such

popular model is hard ellipsoids between hard walls. It is also necessary to write down a

suitable free energy (Helmholtz or Gibbs, as the case might be) for the system, on the basis

of a statistical mechanical theory such as Onsager’s, which we shall encounter below. The

equilibrium state is, then, that which minimises the free energy. Because the system is non-

3

uniform, the free energy is a functional of the density-orientation profile – i.e., it depends

on the density, director and order parameter at each point in the region occupied by the

LC – and minimisation is difficult. Two major routes are then possible: (i) functionally

to differentiate the free energy and thereby derive a non-linear, integral Euler-Lagrange

(EL) equation, which must then be solved; or (ii) to perform a direct multi-dimensional

free energy minimisation. Route (i), essentially in the form of Picard iteration [9], has been

used by many workers including ourselves [10, 11]; it is easier to implement, but may fail

to converge, converge very slowly,or converge to a local minimum, especially if the density-

orientation profile is strongly non-uniform and the initial guess is not carefully made. Route

(ii) basically uses variants of the conjugate-gradient scheme [12, 13]; it is more reliable, less

dependent on the quality of the initial guess, and possibly somewhat faster, but harder to

implement.

To our knowledge, only systems that exhibit spatial variability along one dimension have

been investigated by microscopic theory. Whereas this comprises the most popular device

geometries including the TN and hybrid HAN cells, it is now possible to pattern substrates

along either one or two dimensions, and thereby create novel, more versatile aligning layers

for LCs [14–17]. Various of these complex substrates have found application in bistable LCDs

such as the zenithally bistable nematic [6], post-aligned bistable nematic [18] and square well

array [19, 20] devices. If one wishes to study these using the microscopic theorist’s premiyer

formalism, density-functional theory (DFT), one ends up needing to represent the density-

orientation profile – which is a function of at least two angles, in addition to the spatial

coordinates – on a very large grid of points. Moreover, the interactions between any two

particles at any positions and with any orientations, need to be specified by a potentially

huge interaction kernel, computation of which requires very fast processors and/or very large

RAM. Ideally one would like to have a toolbox that would permit fast, accurate and reliable

calculation of the structure of a LC layer confined between substrates of many different

patterns, in either symmetric or hybrid combinations. This would help guide researchers as

to what configurations might be more promising for applications without actually having to

manufacture them – the latter is a laborious and often expensive endeavour.

We therefore seek an alternative route to minimising the free energy of a confined fluid of

non-spherical particles. ‘Minimisation’ is, of course, one particular realisation of the more

general problem known as optimisation. Of the many available optimisation techniques,

4

one that, to our knowledge, has not yet been exploited in the context of LC modelling is

artificial neural networks (ANN). ANNs are a class of learn-by-example systems that have

some features in common with biological neurones [21]. Biological neurones fire (or not)

depending on the input (usually neurotransmitters) they receive (see figure 1). Some ANNs

mimic this behaviour by making artificial units compute an affine transformation for their

input vector, followed by some monotonic activation function.

The main difficulty in solving a particular problem is representation, i.e., designing a

neural network that is rich enough that its output is able to reproduce a function of the

required complexity. In fact, in general the representation of the solution is itself a con-

straint. In this paper, we describe an approach to learning the density-orientation profile of

a confined LC within the framework of an ANN. We focus on a particular type of ANN –

the Multilayer Perceptron (MLP) – which has been shown to be a universal approximator

for all Borel-measurable functions [22]. This makes the MLP a good candidate for tackling

the representation problem. Furthermore, the MLP is a well-studied learning system, for

which many algorithms have been developed to speed up convergence. This paper does

not concern the use of acceleration algorithms: rather, its main aim is to determine whether

MLP networks are applicable to, and may offer an alternative way of addressing the problem

of,calculating the structure of a confined LC. This requires modifying the MLP to perform

unsupervised learning, as the value of the equilibrium free energy is not known a priori.

We do not claim that the MLP we developed is the best method for any one particular

application – our aim was just to add another tool to the theorist’s toolbox.

The remainder of this paper is organised as follows: in section II we describe general

features of ANNs and introduce their terminology. Then in section III we recapitulate the

model and density-functional theory (DFT) that we have used previously to study confined

LCs [11, 23, 24], and show how our particular minimisation problem can be solved using

ANNs. In section IV we test our algorithm by contrasting its performance with that of

the standard iterative solution of the EL equations, for a number of different boundary

conditions. Validation of the two methods is then achieved through comparison with Monte

Carlo (MC) simulation data. Finally, in section V, we discuss the potential and limitations

of our ANN approach, and outline some directions for future research.

5

II. NEURAL NETWORKS

A. Generalities

Artificial Neural Networks (ANNs) can learn and exhibit global behaviour that is able

to model real-world problems, although the learning is local to very simple units. These

properties are shared by many other networks that use local interactions, such as Markov

Models [25] or Bayesian Networks [26]. ANNs differ from these other approaches in their

network architecture, and in how the units receive information, process it, send it to their

neighbours, and learn from the information they receive and from the consequences of their

action. Neurones within ANNs (henceforth referred to as ‘units’ use laws that are inspired

by biological neurones, hence their name. Interactions between ANN units may, in general,

be represented as a graph (cyclic or not). The influence of one unit on another is usually

governed by some factor, usually called a weight. Weights code the interactions between

units.

There are several types of ANN, and each type uses specific rules. Some of these rules are

no longer biologically-inspired, and have evolved to other, more efficient, forms. ANNs may

be regarded as models of some unknown target function, and two major ANN categories

may be considered: supervised and unsupervised. The former are applicable when there

is knowledge of the solution of the target function, for some particular learning examples;

supervised ANNs learn these examples and their solutions, and use the consequent knowl-

edge to predict for unlearned examples [27]. The latter category, unsupervised learning, is

applicable when there is no prior knowledge of the solutions for the learning examples; these

networks learn directly from data, and try to capture features and/or some kind of organ-

isation within same. This learned knowledge is subsequently organised into self-generated

categories and, after learning, the system is able to categorise any new examples it receives

[29]. In addition to these major ANN categories, there are also some ANNs that are in-

tended for storing and retrieving content-addressable information, i.e., information that is

fully retrieved by providing the system with some small detail or tag.

The Multi-Layer Perceptron (MLP) is a type of supervised ANN that requires the user to

define some energy function (or cost function) expressing how far the MLP is from learning

the desired response for the learning examples. A typical energy function is the sum of the

6

quadratic error over all learning examples [27]. The MLP represents unit interactions as

weights, and assumes that the energy function may be expressed as a differentiable function

of its weights. Learning is achieved, e.g., by using the gradient descent rule, although

second-order methodologies (based on the Hessian matrix) may also be used. MLPs have

been successfully employed to learn and model complex non-linear systems [30]. Besides the

fact that MLPs can represent any Borel-measurable function (which includes all functions

of practical interest), they have also been shown to be able to learn any function that they

are able to represent [28].

The MLP may be seen as a directed graph, with several layers of units. The first layer

of units receives the input; the last layer of units produces the output. Intermediate layers

perform increasingly complex computations, such that the output of the units within a layer

acts as input to the units in the next layer.

In order to use an MLP, we must sample some input data examples (the training set), and

provide these samples to the real-world complex system to be modelled, thereby capturing

the response vector of the real-world system to each element of those data (desired response

vectors). As MLP is a learn-by-example algorithm, it learns by being fed each instance of

the training set and iteratively tuning its weights according to the error between the MLP

response vector (output layer response) and the desired response vector to that particular

instance.

B. Terminology

We use xl as the input vector for layer l, wli as the weight vector of unit i in layer l, gli

as the net input of unit i in layer l, given by gli = wli · xl, and ali as the output of units i

in layer l, given by ali = ϕ (gli), where ϕ is some activation function. Whenever labelling

the layer is irrelevant, we omit the subscript l. In a MLP, each layer feeds the next layer (if

there is one), so input vector xl usually corresponds to output vector al−1. We also use y

as the overall output vector of the neural network (y = almax
), and s for some sample that

feeds the first layer (s = x1). We denote by d the desired response vector. We also use y(s)

and d(s) when we explicitly want to express those vectors as functions of the sample.

Figure 2 shows the topolopy of a MLP with 3 units in the input layer, 5 units in the

hidden (intermediate) layer and 2 units in the output layer. Input layer units do not perform

7

computations, they just provide input for the hidden layer. Each unit in the hidden and

output layers computes gli = wli ·xl, and then ali = ϕ (gli). A typical choice for the activation

function is the logistic mapping: ϕ (x) = 1/ (1 + e−x). Other options include the hyperbolic

tangent, the sine, or no activation function (linear unit).

The MLP uses gradient descent in order to update its weights. In general, ∆wlij =

−η∂E/∂wlij, where wlij is the weight value between the jth unit in some layer l− 1 and the

ith unit in the next layer l, E is the cost function to be minimised, and η is a small learning

factor. A typical choice for E is:

E =
∑

s∈{training set}

∑

i

[yi (s)− di (s)]
2 (1)

where i indexes the components of vectors y(s) and d(s). As samples are presented sequen-

tially, the gradient descent rule is applied to the error of a given sample. Therefore, for a

single iteration, the energy may be taken to be

E =
∑

i

(yi − di)
2 . (2)

The classic MLP learning method uses pre-computation of the delta term δli = −∂E/∂gli

in order to make computation of ∂E/∂wlij more efficient. ∂E/∂wlij is easily computed from

δli, as
∂E

∂wlij

=
∂E

∂gli
·
∂gli
∂wlij

= −δi · xlj = −δi · a(l−1)j, (3)

where a(l−1)j stands for the output of unit j in the previous layer [21]. After finding the

delta terms in some layer l + 1, those in the preceding layer l are easily computed from

δli = ϕ′ (gli)
∑

k∈{l+1}

δ(l+1)k w(l+1)ki, (4)

where k represents each unit in layer l + 1. Note that the time taken to compute all of the

delta terms increases only quadratically with the number of units. If we choose the logistic

mapping as our activation function, ϕ (x) = 1/ (1 + e−x), we may observe an interesting

property: ϕ′ (gi) = ai (1− ai). Therefore, after finding the delta terms in the output layer,

their values can be very efficiently backpropagated from the output layer to the hidden

layers. Delta terms in the output layer are also efficiently computed using:

δoi = [di (s)− yi (s)] yi (s) [1− yi (s)] , (5)

where δoi represents the delta terms in the output layer.

8

III. MLP CALCULATION OF THE EQUILIBRIUM DENSITY-ORIENTATION

PROFILES OF A CONFINED NEMATIC LIQUID CRYSTAL

A. Model and theory

The model and theory that we use have been extensively described in our earlier pub-

lications [11, 23, 24], to which we refer readers for details. In short, following established

practice in the field of generic LC simulation [31], we consider a purely steric microscopic

model of uniaxial rod-shaped particles of length-to-breadth ratio κ = σL/σ0, represented by

the hard Gaussian overlap (HGO) potential [32]. For moderate κ, the HGO model is a good

approximation to hard ellipsoids (HEs) [33, 34]; furthermore, their virial coefficients (and

thus their equations of state, at least at low to moderate densities) are very similar [35, 36].

From a computational point of view, HGOs have the considerable advantage over HEs that

the distance of closest approach between two particles is given in closed form [37]. Particle–

substrate interactions have been modelled, as in [23, 24, 38], by a hard needle–wall (HNW)

potential (figure 3): particles see each other as HGOs, but the substrates see a particle as a

needle of length L (which need not be the same at both substrates, or in different regions

of each substrate). Physically, 0 < L < σL corresponds to a system where the molecules are

able to embed their side groups, but not the whole length of their cores, into the bounding

walls. This affords us a degree of control over the anchoring properties: varying L between

0 and σL is equivalent to changing the degree of end-group penetrability into the confin-

ing substrates. In an experimental situation, this might be achieved by manipulating the

density, orientation or chemical affinity of an adsorbed surface layer. In what follows, we

characterise the substrate condition using the parameter L” = L/σL.

We choose a reference frame such that the z-axis is perpendicular to the substrates, and

denote by ωi = (θi, φi) the polar and azimuthal angles describing the orientation of the long

axis of a particle. Because, for unpatterned substrates, the HNW interaction only depends

on z and θ, it is reasonable to assume that there is no in-plane structure, so that all quantities

are functions of z only. The grand-canonical functional [39] of an HGO film of bulk (i.e.,

overall) density ρ at temperature T then writes, in our usual approximations [11, 23, 24],

βΩ [ρ(z, ω)]

Sxy

=
∫

ρ(z, ω) [log ρ(z, ω)− 1] dzdω

9

−

(

1− 3
4
ξ
)

ξ

2(1− ξ)2

∫

ρ(z1, ω1)Ξ(z1, ω1, z2, ω2)ρ(z2, ω2) dz1dω1dz2dω2

+ β
∫

[

2
∑

α=1

VHNW (|z − zα0 |, θ)− µ

]

ρ(z, ω) dzdω, (6)

where Sxy is the interfacial area, µ is the chemical potential, ξ = ρv0 = (π/6)κρσ3
0 is the

bulk packing fraction, zα0 (α = 1, 2) are the positions of the two substrates, Ξ(z1, ω1, z2, ω2)

is now the area of a slice (cut parallel to the bounding plates) of the excluded volume of two

HGO particles of orientations ω1 and ω2 and centres at z1 and z2 [40], for which an analytical

expression has been derived [37]. ρ(z, ω) is the density-orientation profile in the presence of

the external potential VHNW (z, θ); it is normalised to the total number of particles N ,
∫

ρ(z, ω) dzdω =
N

Sxy

≡ M, (7)

and is related to the probability that a particle positioned at z has orientation between

ω and ω + dω. This normalisation is enforced through the chemical potential µ, which is

essentially a Lagrange multiplier.

Three remarks are in order. Firstly, note that each surface particle experiences an envi-

ronment that has both polar and azimuthal anisotropy, as a consequence of the excluded-

volume interactions between the particles in addition to the ‘bare’ wall potential. Secondly,

because we are dealing with hard-body interactions only, for which the temperature is an

irrelevant variable, we can set β = 1/kBT = 1 in all practical calculations (we retain it

in the formulae for generality). Thirdly, and finally, the prefactor multiplying the second

integral in equation (6) is a simplified implementation of the Parsons-Lee density re-scaling

[41], which amounts to (approximately) summing the higher virial coefficients. In the spirit

of [42], this prefactor is a function of the bulk density, and not of the local density, which

should be valid provided the density does not exhibit sharp spatial variations. Equation (6)

is, thus, the ‘corrected’ Onsager approximation to the free energy of the confined HGO fluid,

which we expect to perform better for particle elongations κ ≪ ∞ inasmuch as structure is

determined by location in the phase diagram. We do not expect, however, to see any new

structure that is not captured by the Onsager approximation, since what we are doing is

simply rescaling density. More sophisticated approaches exist (see, e.g.,[12, 13]), but our

purpose here, as stated above, has been to introduce a new calculational tool, so we apply

it to the simplest possible microscopic treatment of anchoring phenomena that yields fairly

good results [11, 23, 24].

10

Minimisation of the grand canonical functional can be performed either directly on equa-

tion (6) (route (ii) above) or, as in our earlier work, by first analytically deriving, and then

numerically solving, the EL equation for the equilibrium density-orientation profile (route

(i) above):

δΩ [ρ(z, ω)]

δρ(z, ω)
= 0 ⇒ log ρ(z, ω) = βµ−

(

1− 3
4
ξ
)

(1− ξ)2

∫ ′

Ξ(z, ω, z′, ω′)ρ(z′, ω′) dz′dω′, (8)

where the effect of the wall potentials has been incorporated through restriction of the range

of integration over θ:

∫ ′

dω =
∫ 2π

0
dφ
∫ θm

π−θm
sin θ dθ =

∫ 2π

0
dφ
∫ cos θm

− cos θm
dx, (9)

with

cos θm =











1 if |z − zα0 | ≥
L
2

|z−z0|
L/2

if |z − zα0 | <
L
2

, (10)

zα0 being, we recall, the position of substrate α. In either case, the solution is the density-

orientation profile ρ (z, ω) that minimises Ω [ρ(z, ω)]. In the next subsection we propose a

variant of a MLP ANN, which we denote Minimisation Neural Network (MNN), developed

in order to follow route (ii).

B. MLP minimisation

The MNN that we have designed to minimise the grand canonical potential comprises, in

common with most MLPs, an input layer, one or more hidden layers, and an output layer.

Our MNN receives as input a position and an orientation, specified by (z, θ, φ), and outputs

the expected value of the density-orientation profile at that point, ρ(z, θ, φ).

First, note that, as in earlier work [11, 23, 24], integrations are performed by Gauss-

Legendre quadrature by means of the algorithm due to Chrzanowska [43]; here we have used

64 z points, 16 θ points and 16 φ points. Therefore, it is enough that our MNN be able

to estimate densities from a discrete set of (z, θ, φ) that are triplets of the chosen Gaussian

abscissae. Input is coded by referencing (z, θ, φ) by their index within the quadrature. The

MNN receives (z, θ, φ) coded in a 64-bit string: the first 32 bits code the z-position, by

setting to ‘1’ the correct bit and to ‘0’ the remaining bits; likewise, θ is coded by 16 bits

and φ by the other 16 bits. This 64-bit input is fed into the input layer, along with an

11

extra constant input (set to ‘1’) that is required for any perceptron (in order to model its

threshold) [44]. The input layer thus has 65 units.

The output layer constructs a linear combination of hidden-layer outputs, followed by

application of an activation function. The form of the activation function should mirror, as

closely as possible, the distribution of the target values, densities in our case. We observe

that, in this problem, the expected distribution for the logarithm of the density is more or

less uniform. This justifies our choice of the exponential activation function for the output

layer. Neural Networks with an exponential activation function for the output layer have

been applied previously in the context of information theory, mainly to estimate probability

density functions [46, 47].

Each unit inside a hidden layer receives input from all units in the previous hidden layer, or

(in the case of the first hidden layer) from all units in the input layer. Each hidden layer unit

has its own combining weights. After combining inputs, each unit uses the logistic function

as its activation function. The number of units inside each hidden layer is a parameter of

the MNN. For the case of a single hidden layer, we explain in section IV how we chose the

number of units..

The objective is to make the MNN learn its weights such that the MNN output (the

density-orientation profile ρ(z, θ, φ) at the Gaussian abscissae triplets) minimises the grand-

canonical potential Ω [ρ(z, θ, φ)]. To achieve this, we use backpropagation learning with

momentum. The momentum is a parameter that holds memory of the previous learning

steps, and provides step acceleration if the gradient direction does not change in the course

of several iterations. Momentum must not be greater than 1, because this leads to divergence

of the learning process (it would mean that past learning steps would exponentially gain more

weight, rather than being progessively ‘forgotten’). We denote the momentum parameter

by α, and the learning step parameter by η.

We start by rewriting equation (6) in terms of discretised position and orientation vari-

ables, as

Ω =
1

2

∑

i,j



giyi

(

M

γ

)2

Kijgjyj



+
∑

i

{

giyi
M

γ

[

log

(

yi
M

γ

)

− 1

]}

, (11)

where indices i and j label points in the space of discretised variables (z, θ, φ), gi and gj

are the scaling factors of Gaussian quadrature [45], y(z, θ, φ) = ρ(z, θ, φ)/N , Kij is the

12

interaction kernel:

Kij =

(

1− 3
4
ξ
)

ξ

(1− ξ)2
Ξ(zi, θi, φi, zj , θj, φj), (12)

and we have defined γ =
∑

m gmym. For a particular input k,

∂Ω

∂yk
=

Mgk
γ

[

−
M

γ2

∑

ij

giyiKijgjyj +
M

γ

∑

i

giyiKik

−
1

γ

∑

i

giyi log

(

yi
M

γ

)

+ log

(

yk
M

γ

)]

. (13)

Therefore, the gradient of Ω with respect to the weights w
(o)
i connecting the ith unit in the

hidden layer with the output layer, when the MNN is stimulated with input k, is given by

∂Ω

∂w
(o)
i

=
∂Ω

∂yk

∂yk
∂O(o)

∂O(o)

∂w
(o)
i

=
∂Ω

∂yk
yk

∂

∂w
(o)
i

∑

j

ajw
(o)
j =

∂Ω

∂yk
ykai, (14)

where a
(h)
i denotes the output of the ith hidden-layer unit upon stimulation by input k, and

O(o), the net output (before application of the activation function) of the output layer, is a

linear combination of its (hidden-layer) inputs. Note that, because the activation function

is exponential, ∂yk/∂O
(o) = yk.

For the weights w
(h)
ij connecting the ith input-layer unit and the jth hidden-layer unit,

we have

∂Ω

∂w
(h)
ij

=
∂Ω

∂yk

∂yk
∂O(o)

∂O(o)

∂aj

∂aj

∂O(h)
j

∂O(h)
j

∂w
(h)
ij

=
∂Ω

∂yk
ykw

(h)
ij aj (1− aj)

∂

∂w
(h)
ij

∑

i′,j′
xi′w

(h)
i′j′

=
∂Ω

∂yk
ykw

(h)
ij aj (1− aj) xi, (15)

where Oj stands for the net output of the jth hidden-layer unit and we use the logistic

activation function a
(h)
j = 1/

[

1 + exp
(

−O(h)
j

)]

.

We define the momentum learning function as

mij(0) = 0, (16)

mij(t+ 1) = αmij(t)− η
∂Ω

∂wij

, (17)

where t is the iteration number (‘time’). The MNN internal weights are initialized randomly

in the range (−1, 1) (uniform distribution), and are updated according to ∆wij = mij(t).

We define epoch as the process of activating the MNN with every point of the input space,

one at a time, and making the consequent updates of the weights. Note that the greatest

13

computational expense in determining ∂Ω/∂w
(h)
ij at input k, is that incurred in performing

the summation
∑

ij giyiKijgjyj Fortunately, this expression does not depend on k, and so it

need only be computed once in each epoch, the result then being applied to every point of

the input space.

IV. RESULTS

We tested our algorithm by considering a fluid of HGO particles of elongation κ = 3,

sandwiched between two semi-penetrable walls a distance Lz = 4κσ0 = 12σ0 apart. The

density-orientation profile ρ(z, ω) was computed for different values of the reduced bulk

density ρ∗bulk ≡ ρbulkσ
3
0 and of the reduced needle length L∗ ≡ L/σ0.

The EL equation was solved by the Picard method, as described in [9–11], until the

convergence errors, defined as (i) the sum of the absolute values of the differences between

consecutive iterates of ρ(ω, z) at 64×16×16 = 16384 points: and (ii) the difference between

the surface tensions in two consecutive iterations, were less than 10−3. The mixing parameter

was set at 0.9. The MNN was always started from a random intitial guess for ρ(ω, z), the

density-orientation profile (corresponding to an isotropic distribution), so as not to bias the

outcome. Most calculations were performed for a single hidden layer, which is guaranteed

to be able to represent any Borel-measurable functions [22]; this turned out to be sufficient

in most cases (but not all, see below).

In an attempt to ascertain a more comprehensive picture of the merits of our ANN

approach, we have also implemented a conjugate gradient-based solver for our confined LC

system. This is also a direct minimisation method – a more conventional variant of route

(ii). However, this alternative scheme proved unreliable in most situations, failing to find

the equilibrium density-orientation profile except when provided with an initial guess that

was very close to the optimal solution. Therefore, for this particular problem, the conjugate-

gradient approach does not seem to offer a practical alternative to the EL and ANN routes

considered in more depth.

14

A. Fine-tuning the parameters

MNN uses three parameters: h, the number of units within its hidden layer (besides the

constant unit, set to 1); α, the momentum coefficient; and η, the learning step. α is required

to be in range [0, 1). h is not known, but could be several tens to hundreds or thousands of

units. η is usually smaller than 1, but there are no further requirements.

The first step was to fine-tune these parameters. For this purpose we ran two rep-

resentative experiments with different mean densities, ρ∗bulk = 0.28 (corresponding to

the bulk isotropic (I) phase) and ρ∗bulk = 0.35 (corresponding to the bulk nematic (N)

phase), performing MNN learning with every combination of α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and

η ∈ 0.1, 0.4, 0.7, 1.0 ; h ∈ 10; 25, 50, 100, 150, 200, 250. We let the network run for 5000

epochs (except when it diverged), and inspected the final results. We found that the time

taken to process each learning epoch increased in proportion to the number of hidden units;

even so, we decided to compare the results of different runs after a set number of epochs,

rather than after a set learning time.

We chose L∗ = 1, which induces parallel anchoring and is typically more demanding

numerically than homeotropic anchoring. Results are collected in tables I-III. Tables I and

II show, for two ρ∗bulk values, the grand canonical potential, Ω, obtained for the full set of

h, η and α considered. In table III, summary data are presented showing the 1000- and

2000-epoch Ω values from batches of 10 equivalent runs with h = 10 and a range of η and α

values. From these we conclude that:

1. The probability of divergence increases with h, η, α and ρ∗bulk. We also observe that

for small h (less than 25) learning is fairly robust - there are no instances of repeated

divergence, although in batches of 10 simulations, see table III, there were occasional

simulations that diverged for η = 1.0, α = 0.9.

2. learning speed increases with η and α (as expected). Provided that h ≤ 25 we may,

if convergence speed is important and occasional divergence can be accommodated,

set η = 1.0 and α = 0.9. If, alternatively, divergence must be avoided, we should set

η = 0.7 and α = 0.9.

3. Given that they yield very similar average results, either h = 10 or h = 25 could

be chosen. Our results suggest that h = 25 may perform slightly the better of the

15

two, but the reduced computation time per epoch (and, hence, shorter overall time)

could be an argument for choosing h = 10. That said, it is known that using a larger

number of units leads to higher representation power. We therefore decided to select

h = 25 in our subsequent calculations using the MNN to determine the density profile

to alternative boundary condition problems.

In summary, in what follows we employ (except where otherwise indicated) h = 25, η = 1.0

and α = 0.9. Convergence of the MNN was deemed to have been achieved if the difference

(defined as in [11]) between two solutions 1000 iterations apart was less than 10−4.

B. MNN vs iterative solution

We next assessed our new MNN method by comparing its results for the structure of a

symmetric film with those obtained by standard iterative solution of the EL equation (8),

and with computer simulations (NVT Monte Carlo for N = 1000 particles), where available

Details of the simulations are given in [23, 24].

Once ρ(ω, z) has been found, we can integrate out the angular dependence to get the

density profile,

ρ(z) =
∫

ρ(z, ω) dω, (18)

and use this result to define the orientational distribution function (ODF) f̂(z, ω) =

ρ(z, ω)/ρ(z), from which we can calculate the orientational order parameters in the

laboratory-fixed frame [10]. These are the five independent components of the nematic

order parameter tensor, Qαβ = 〈1
2
(3ω̂αω̂β − δαβ)〉. In the case under study there is no

twist, i.e., the director is confined to a plane that we can take as the xz plane and

Qyy = Qyz = 0. The three remaining order parameters, Qxy, Qzz and Qxz (because Qαβ is

traceless, Qxx = − (Qxx +Qzz)), are in general all non-zero owing to surface-induced biaxi-

ality, see our earlier work for L∗ = 1 [11]. This effect has not been neglected in the present

treatment, but in what follows we show results for Qzz only, as it (i) allows one readily

to distinguish between homeotropic and planar states; and (ii) is usually the largest order

parameter (in absolute value). It is given by

Qzz(z) =
∫

P2(cos θ)f̂(z, ω) dω. (19)

16

Figures 4–11 show the density and order parameter profiles from EL and MNN inimisation

of the free energy, compared with MC simulation data. There is very good agreement

between EL and MNN at the lower (isotropic) density, for all values of the reduced needle

length L∗. At the higher (nematic) density, however, there is again perfect agreement for

L∗ = 0, 1/3 and 1; for L∗ = 2/3, EL minimisation predicts alignment of the LC parallel to

the walls, as seen in simulations [23], whereas MNN with a single hidden layer predicts

homeotropic alignment, which is metastable for this value of L∗. Indeed, we expect a

crossover from homeotropic to planar equilibrium alignment at L∗ ≈ 0.5 [23], so it is not

altogether surprising that convergence to the absolute free energy minimum should be harder

in this range, where bistability is often observed in simulations. Use of a MNN with two

hidden layers, however, allowed us to reach the correct equilibrium state at little extra

computational cost, in three out of ten attempts, all starting from different random initial

guesses for ρ(ω, z). In figure 9 we plot both the metastable and true equilibrium profiles,

for which the free energy (in reduced units) is, respectively, 8.937 and 8.783. In the latter

case there is again perfect agreement between the EL and MNN results. Note that the

metastable state is also a solution of the EL equation, for a different choise of initial gueess.

C. Assessment of computational costs

In order to contrast the performances of MNN minimisation vs iterative solution of the

EL equation, we ran three different codes on a laptop computer with a CPU of 2.20 GHz

and 2 GB RAM, under the MS Windows Vista operating system. The confined HGO fluid

parameters are κ = 3, L∗ = 1, ρbulk = 0.35, corresponding to the most demanding case of

a bulk N phase between fully impenetrable walls. The EL code was run until the error,

defined as the sum of the absolute values of the differences between consecutive iterates

at 64 × 16 × 16 = 16384 points, was less than 10−2; the MNN was run for 1000 or 2000

iterations.

A Standard iterative solution of the EL equation coded in C: runtime for 711 iterations is

436 minutes; final free energy is 8.965674.

B MNN coded in C, using h = 25, the Kij matrix is computed on the fly: runtime for 1000

iterations is 150 minutes. Using a pre-stored K would be faster, but by far not as fast

17

as Matlab because Matlab uses machine code optimised for matrix calculation.

C MNN coded in Matlab, using h = 25 and pre-stored Kij matrix: runtime for 1000

iterations is 4 minutes. The Kij matrix, which is reusable for any simulation with the

same model parameters, takes an additional 38 minutes to generate.

Storing the Kij matrix has obvious advantages in processing time, but we must remember

that Kij is a huge matrix that uses 512 MB storage for this problem, making this approach

very difficult to scale up to higher dimensions – the size of Kij increases quadratically with

the number of Gaussian quadrature points included in any extra dimension.

Simulations of typesB andC are algorithmically equivalent, the only difference is whether

or not matrix Kij is pre-stored, so the final free energies are the same. Results depend on

the MNN parameterization, see table III; for η = 0.7, α = 0.9, the mean and median final

free energy are, respectively, 8.959473 and 8.958575. This is within less than 0.1% of the

EL result.

V. DISCUSSION AND CONCLUSIONS

We have developed and implemented a MNN for the grand-canonical functional of con-

fined hard non-spherical particles. This has been tested for the HGO fluid treated at the

level of the simple Onsager approximation with a ‘bulk’ Parsons-Lee scaling. Results were

found to be in very good agreement with those from iterative solution of the EL equation,

provided we use two hidden layers. Our MNN appears, however, to be substantially faster,

which fact, coupled with its reliability, makes it a strong candidate for solving the structure

of confined fluids. Speed and economy of memory storage are of particular importance if

one wishes to consider systems where there is spatial variation in more than one dimension,

or where the particles are biaxial, in which cases the EL-based method becomes at worst

inapplicable, at best extremely expensive on computer resources. To see why this is so, con-

sider a stripe-patterned substrate: now each particle needs to be specified by one additional

spatial coordinate, say x, along the plane of the substrate. Hence the interaction kernel

Kij, equation (12), would depend on two additional variables, xi and xj; if we choose the

number of integration points along x to be, e.g., nx = 32, then Kij would grow by a factor of

n2
x = 1024. The same comment applies if the particles are biaxial, where now the additional

18

coordinate is the third Euler angle, χ. By contrast, our MNN is sufficiently fast that Kij

can be computed ‘on the fly’, with substantial RAM savings.

The MNN method as presented is general and can be applied to any functional of the

density-orientation profile; we have tested it for the simplest possible, Onsager-like approxi-

mation to the free energy of a fluid of hard rods. More sophisticated theoretical approaches

are of course available, such as a weighted-density [42] or fundamental-measure [48, 49] ap-

proximation, which would very likely be more accurate, i.e., reproduce simulations more

closely, but our purpose, as stated above, was just to develop a new solution algorithm and

assess its performance.

Our method can be fine-tuned in a number of ways, which might yield further perfor-

mance/reliability gains. In particular more work needs to be done to ensure that we always

converge to the true absolute minimum of the free energy, even when there are competing

metastable states.

1. Symmetries. For systems with symmetric substrate conditions we may reduce the

storage requirements by using an interaction matrix of size (nz/2) × nz (where nα is

the number of discrete values of coordinate α); indeed, equivalent efficiencies can be

achieved where there are any other planes of symmetry. Thus, if we assume that there

are planes of symmetry perpendicular to the x, z and φ axes, the interaction matrix

will scale as N = (n2
x/2) × (n2

z/2) × n2
θ × (n2

φ/2). Its size will then be N times the

8 bytes that are needed for representing high-precision floating-point numbers. For

nx = nz = 32, nθ = nφ = 16, this yields a total RAM requirement of 64 GB, which is

achievable with high-end computational hardware and/or parallelisation.

2. Network topology. So far we have studied the impact on learning speed of varying the

number of units within each layer, the learning rate and momentum factor, but not of

increasing the number of hidden layers.

3. Training algorithm. Several methods can be used to improve the training speed of

a standard MLP. Amongst these, the commonest and most successful are the conju-

gate gradient algorithms and quasi-Newton algorithms. The network employed in our

ANN is not a standard MLP, and in order to benefit from these algorithms it would

be necessary to adapt them to an unsupervised network. Quasi-Newton algorithms

include BFGS, one-step secant, and Levenberg-Marquardt algorithms. These base

19

their weight update functions on the Hessian matrix, rather than the gradient of the

energy. In a very large data set, finding the Hessian matrix is extremely time- and

memory-consuming, which renders the Quasi-Newton approach unfeasible on a stan-

dard computer. We have adapted the conjugate-gradient algorithm to compute the

error gradient of the free energy for our unsupervised network (instead of the quadratic

error of a standard MLP). We then used the Fletcher-Reeves update to compare the

learning speed with that obtained with our backpropagation algorithm. This algo-

rithm, like Polák-Ribiere and Powell-Beale, requires a line-search to determine the

minimum energy in a particular direction. This line-search is itself extremely time-

consuming, and our experiments with Fletcher-Reeves have shown an overall learning

speed slower than backpropagation. Moreover, convergence seemed more likely to

become trapped in local minima. One possible solution would be to implement a

scaled-conjugate-gradient algorithm [50]; these have been designed with the aim of

avoiding the time consuming line-search of standard conjugate-gradient algorithms.

Given the above, the MLP approach would appear to offer a significant opportunity in

the context of complex LC alignment calculations. There is no prospect of conventional

iterative approaches being able to deal with cases with in-plane substrate variation, so this

alternative is very welcome.

Acknowledgements

We thank D. de las Heras, L. Harnau, M. Schmidt and N. M. Silvestre for discussions.

This work was funded by the British Council under Treaty of Windsor grant no. B-54/07;

by the Portuguese Foundation for Science and Technology (FCT), through contracts no.

PTDC/FIS/098254/2008, Projecto Estratégico “Centro de F́ısica Teórica e Computacional

2011-2011” PEst-OE/FIS/UI0618/2011, and EXCL/FIS-NAN/0083/2012; and by the UK

Engineering and Physical Research Council, Grant No. GR/S59833/01.

[1] http://www.displaybank.com/eng/.

[2] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University

Press, Oxford, 1992).

20

[3] B. Jérôme, Rep. Prog. Phys. 54, 391 (1991).

[4] T. J. Sluckin, Contemp. Phys. 41, 37 (2000).

[5] G. P. Bryan-Brown, E. L. Wood and I. C. Sage, Nature 399, 338 (1999).

[6] C. V. Brown, M. J. Towler, V. C. Hui and G. P. Bryan-Brown, Liq. Cryst. 27, 233 (2000).

[7] N. A. Lockwood and N. L. Abbott, Current Opinion in Coll. Interf. Sci. 10, 111 (2005).

[8] P. Poulin, H. Stark, T. C. Lubensky and D. A. Weitz, Science 275, 1770 (1997).

[9] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London,

1986).

[10] M. M. Telo da Gama, Molec. Phys. 52, 611 (1984).

[11] A. Chrzanowska, P. I. C. Teixeira, H. Eherentraut and D. J. Cleaver, J. Phys.: Condens.

Matter 13, 4715 (2001).

[12] D. de las Heras, L. Mederos and E. Velasco, Phys. Rev. E 68, 031709 (2003).

[13] D. de las Heras, E. Velasco and L. Mederos, J. Chem. Phys. 120, 4949 (2004).

[14] J. P. Bramble, S. D. Evans, J. R. Henderson, C. Anquetil, D. J. Cleaver and N. J. Smith, Liq.

Cryst. 34, 1059 (2007).

[15] Y. Yi, V. Khire, C. Bowman, J. Maclennan and N. Clark, J. Appl. Phys. 103, 093518 (2008).

[16] C. Anquetil-Deck and D. J. Cleaver, Phys. Rev. E 82, 031709 (2010).

[17] C. Anquetil-Deck, D. J. Cleaver and T. J. Atherton, Phys. Rev. E 86, 041707 (2012).

[18] S. Kitson and A. Giesow, App. Phys. Lett. 80 3635 (2002).

[19] C. Tsoktas, A. J. Davidson, C. V. Brown and N. J. Mottram, App. Phys. Lett. 90 111913

(2007).

[20] G. G. Wells and C. V. Brown, Appl. Phys. Lett. 91, 223506 (2007).

[21] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice-Hall, 1998).

[22] K. Hornik, M. Stinchcombe and H. White, Neural Networks 2, 359 (1989).

[23] P. I. C. Teixeira, F. Barmes and D. J. Cleaver, J. Phys.: Condens. Matter 16, S1969 (2004).

[24] P. I. C. Teixeira, F. Barmes, C. Anquetil-Deck and D. J. Cleaver, Phys. Rev. E 79, 011709

(2009).

[25] H. Bourlard, N. Morgan and S. Renals, Speech Comm. 11, 237 (1992).

[26] J. Gutiérrez and Ali S. Hadi, Expert Systems and Probabilistic Network Models (Springer-

Verlag, Berlin, 1997).

[27] P. J. Cheng and S. C. Lin, Int. J. Machine Tools and Manufacture 40, 1185 (2000).

21

[28] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms

(Spartan, Washington DC, 1962).

[29] N. Intrator, Neural Computation 4, 98 (1992).

[30] M. Gardner and S. Dorling, Atmospheric Environment 34, 21 (2000).

[31] C. M. Care and D. J. Cleaver, Rep. Prog. Phys. 68, 2665 (2005).

[32] M. Rigby, Molec. Phys. 68, 687 (1989).

[33] J. W. Perram and M. S. Wertheim, J. Comput. Phys. 58, 409 (1985); J. W. Perram, J.

Rasmussen, E. Praestgaard and J. L. Lebowitz, Phys. Rev. E 54, 6565 (1996).

[34] M. P. Allen, G. T. Evans, D. Frenkel and B. M. Mulder, Adv. Chem. Phys. 86, 1 (1993).

[35] V. R. Bhethanabotla and W. Steele, Molec. Phys. 60, 249 (1987).

[36] S. L. Huang and V. R. Bhethanabotla, Int. J. Mod. Phys. C 10, 361 (1999).

[37] E. Velasco and L. Mederos, J. Chem. Phys. 109, 2361 (1998).

[38] D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001).

[39] R. Evans, Adv. Phys. 28, 143 (1979).

[40] A. Poniewierski, Phys. Rev. E 47, 3396 (1993).

[41] J. D. Parsons, Phys. Rev. A 19,1225 (1979); S. D. Lee, J. Chem. Phys. 78, 4972 (1987).

[42] A. M. Somoza and P. Tarazona, J. Chem. Phys. 91, 517 (1989); E. Velasco, L. Mederos and

D. E. Sullivan, Phys. Rev. E 62, 3708 (2000).

[43] A. Chrzanowska, J. Comput. Phys. 191, 265 (2003).

[44] W. McCulloch and W. Pitts, Bull. Math. Biophys. 7, 115 (1943).

[45] See, e.g., W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes

in C : The Art of Scientific Computing, second ed. (Cambridge University Press, Cambridge,

1993).

[46] D. F. Specht, Neural Networks 3, 109 (1990).

[47] D. S. Modha and Y. Fainman, IEEE Trans. Neural Networks 5, No. 3 (1994).

[48] H. Hansen-Goos and K. Mecke, Phys. Rev. Lett. 102, 018302 (2009).

[49] R. Wittmann and K. Mecke, J. Chem. Phys. 140, 104703 (2014).

[50] M. F. Møller, Neural Networks 6, 525 (1993).

22

α

h η 0.1 0.3 0.5 0.7 0.9

10 0.1 1.18672 1.144328 1.137906 1.138144 1.155396

10 0.4 1.143171 1.137942 1.138922 1.148959 1.138407

10 0.7 1.137403 1.135984 1.146504 1.139451 1.135816

10 1.0 1.136813 1.138326 1.135614 1.135183 1.134833

25 0.1 1.155936 1.146062 1.139696 1.137812 1.151736

25 0.4 1.142638 1.138965 1.137261 1.149138 1.140928

25 0.7 1.137169 1.136048 1.147395 1.137414 1.136469

25 1.0 1.135599 1.139655 1.135423 1.134769 1.134763

50 0.1 1.161899 1.147519 1.139771 1.138908 1.150827

50 0.4 1.143001 1.1393 1.137638 1.14981 1.145919

50 0.7 1.13813 1.136625 1.14542 1.138345 1.136331

50 1.0 1.135791 1.139874 1.13528 1.135041 1.134815

100 0.1 1.153975 1.143765 1.141101 1.138393 1.150638

100 0.4 1.142178 1.139652 1.137911 1.149062 1.141389

100 0.7 1.138173 1.136224 1.146931 1.138316 1.135955

100 1.0 1.135891 1.13979 1.135491 1.16345 1.134821

150 0.1 1.151959 1.143478 1.141839 1.139804 1.148809

150 0.4 1.141686 1.140083 1.138062 1.147389 1.139929

150 0.7 1.138489 DIVERGED 1.144011 1.138239 1.136154

150 1.0 DIVERGED 1.139816 1.135752 1.135015 1.135209

200 0.1 1.150801 1.143571 DIVERGED 1.137666 1.149625

200 0.4 1.141804 1.139046 1.13702 1.147081 1.140075

200 0.7 DIVERGED DIVERGED 1.144176 1.138129 DIVERGED

200 1.0 DIVERGED 1.139729 1.135639 DIVERGED 1.135132

250 0.1 1.153768 1.142571 1.140022 DIVERGED 1.148498

250 0.4 1.140632 DIVERGED DIVERGED 1.147263 DIVERGED

250 0.7 DIVERGED DIVERGED 1.143332 DIVERGED DIVERGED

250 1.0 DIVERGED 1.138431 1.13553 DIVERGED DIVERGED

TABLE I: Grand canonical potential Ω after 5000 epochs, for κ = 3, L∗ = 1, ρ∗bulk = 0.28 (bulk I

phase) and different choices of α, h and η.

23

α

h η 0.1 0.3 0.5 0.7 0.9

10 0.1 9.101475 8.971296 8.955008 8.963734 9.023824

10 0.4 8.966737 8.962024 8.962016 8.999954 8.955046

10 0.7 8.952314 8.954215 8.966831 8.951803 8.968915

10 1.0 8.959308 8.965214 8.94864 8.967841 8.948766

25 0.1 9.032404 8.977229 8.954232 8.965194 9.030154

25 0.4 8.974211 8.953414 8.971946 8.99511 8.962507

25 0.7 8.970363 8.959918 8.979666 8.950231 8.959656

25 1.0 8.950319 8.961905 8.957792 8.958059 8.957027

50 0.1 9.09479 8.959672 8.964864 8.962899 9.015685

50 0.4 8.976157 8.953012 8.952501 8.99655 8.96172

50 0.7 8.961037 8.961134 8.973959 8.969405 8.958759

50 1.0 8.949888 8.972432 8.958441 8.947867 DIVERGED

100 0.1 9.091432 8.97678 8.96335 DIVERGED 9.031278

100 0.4 8.972937 8.962469 8.966482 9.013989 8.972309

100 0.7 8.969883 DIVERGED 8.985739 8.960194 DIVERGED

100 1.0 DIVERGED 8.952872 8.948058 DIVERGED 9.149149

150 0.1 9.065501 8.957815 DIVERGED 8.963453 9.03997

150 0.4 8.985513 DIVERGED DIVERGED 8.994269 DIVERGED

150 0.7 DIVERGED DIVERGED 8.985764 DIVERGED DIVERGED

150 1.0 DIVERGED 8.962265 DIVERGED DIVERGED DIVERGED

200 0.1 9.077518 DIVERGED DIVERGED 8.963536 9.034062

200 0.4 8.961021 DIVERGED DIVERGED 9.014442 DIVERGED

200 0.7 DIVERGED DIVERGED 8.981122 DIVERGED DIVERGED

200 1.0 DIVERGED 8.9528 DIVERGED DIVERGED DIVERGED

250 0.1 9.057811 8.990148 DIVERGED DIVERGED 9.008942

250 0.4 DIVERGED DIVERGED DIVERGED 8.995841 DIVERGED

250 0.7 DIVERGED DIVERGED 8.981818 DIVERGED DIVERGED

250 1.0 DIVERGED 8.952725 DIVERGED DIVERGED DIVERGED

TABLE II: Same as table I, but for ρ∗bulk = 0.35 (bulk N phase).
24

η = 1.0, α = 0.9 η = 1.0, α = 0.7 η = 0.7, α = 0.9 η = 0.7, α = 0.7

1000 2000 1000 2000 1000 2000 1000 2000

Mean 8.964565* 8.957609* 8.968601 8.965057 8.961541 8.959473 8.970223 8.962241

Median 8.960294 8.958088 8.969784 8.965568 8.960423 8.958575 8.970974 8.962251

Maximum DIVERGED DIVRGED 8.975090 8.971631 8.970380 8.968318 8.977538 8.972639

Minimum 8.949732 8.948179 8.955962 8.952717 8.951463 8.949201 8.957841 8.951727

St. deviation 0.016548* 0.008898* 0.006345 0.006298 0.006714 0.006718 0.006962 0.006562

TABLE III: Grand canonical potential Ω values after 1000 and 2000 MNN epochs, for h = 10 and

different choices of momentum and learning step parameters. The HGO model parameters are

κ = 3, ρ∗bulk = 0.35 (bulk N phase) and L∗ = 1 (impenetrable walls). Statistics are compiled from

batches of 10 runs; * means that one run diverged and was not included in the calculations.

25

(a)

(b)

FIG. 1: (a) A neurone fires (or not) on the basis of the stimuli it receives from other neurones. (b)

An artificial neurone weights the inputs it receives and generates an output. It must be designed

so as to produce the desired output.

26

FIG. 2: Example of MLP with 3 units in the input layer, 5 units in the hidden (intermediate) layer

and 2 units in the output layer.

σ

0σz

L

wall

θ

L

FIG. 3: The HNW potential: the molecules see each other (approximately) as uniaxial hard

ellipsoids of axes (σ0, σ0, κσ0), but the wall sees a molecule as a hard line of length L, which need

not equal κσ0. Physically, this means that molecules are able to embed their side groups into the

bounding walls. Varying L is therefore equivalent to changing the wall penetrability, which can be

done independently at either wall.

27

0 1 2 3 4 5 6
z/σ0

-0.5

0.0

0.5

1.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0
ρ∗ (z

)

ρ*
=0.28, theory, Euler-Lagrange solution

ρ*
=0.28, MC simulation

ρ*
=0.28, theory, neural network minimisation

FIG. 4: Density ρ∗(z) (top) and order parameter Qzz(z) (bottom) profiles for a symmetric film

of HGO particles of elongation κ = 3, for ρ∗bulk = 0.28. The needle length is L∗ = 0 on both

walls, inducing homeotropic anchoring (only one half of system is shown). Lines are from theory

using the standard solution of the EL equation (solid) and our MNN (dashed), symbols are from

simulation. This density lies in the isotropic phase.

28

0 1 2 3 4 5 6
z/σ0

-0.5

0.0

0.5

1.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0
ρ∗ (z

)

ρ*
=0.35, theory, Euler-Lagrange solution

ρ*
=0.35, MC simulation

ρ*
=0.35, theory, neural network minimisation

FIG. 5: Same as figure 4, but for ρ∗bulk = 0.35. This density lies in the nematic phase.

29

0 1 2 3 4 5 6
z/σ0

-0.5

0.0

0.5

1.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5
ρ∗ (z

)
ρ*

=0.28, theory, Euler-Lagrange solution

ρ*
=0.28, MC simulation

ρ*
=0.28, theory, neural network minimisation

FIG. 6: Density ρ∗(z) (top) and order parameter Qzz(z) (bottom) profiles for a symmetric film

of HGO particles of elongation κ = 3, for ρ∗bulk = 0.28. The needle length is L∗ = 1/3 on both

walls, inducing homeotropic anchoring (only one half of system is shown). Lines are from theory

using the standard solution of the EL equation (solid) and our MNN (dashed), symbols are from

simulation. This density lies in the isotropic phase.

30

0 1 2 3 4 5 6
z/σ0

-0.5

0.0

0.5

1.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0
ρ∗ (z

)

ρ*
=0.35, theory, Euler-Lagrange solution

ρ*
=0.35, MC simulation

ρ*
=0.35, theory, neural network minimisation

FIG. 7: Same as figure 6, but for ρ∗bulk = 0.35. This density lies in the nematic phase.

31

0 1 2 3 4 5 6
z/σ0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
ρ∗ (z

)

ρ*
=0.28, theory, Euler-Lagrange solution

ρ*
=0.28, MC simulation

ρ*
=0.28, theory, neural network minimisation

FIG. 8: Density ρ∗(z) (top) and order parameter Qzz(z) (bottom) profiles for a symmetric film of

HGO particles of elongation κ = 3, for ρ∗bulk = 0.28. The needle length is L∗ = 2/3 on both walls,

inducing parallel anchoring (only one half of system is shown). Lines are from theory using the

standard solution of the EL equation (solid) and our MNN (dashed), symbols are from simulation.

This density lies in the isotropic phase.

32

0 1 2 3 4 5 6
z/σ0

-0.5

0.0

0.5

1.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5
ρ∗ (z

)
ρ*

=0.35, theory, Euler-Lagrange solution
ρ*

=0.35, MC simulation
ρ*

=0.35, theory, neural network minimisation (metastable)
ρ*

=0.35, theory, neural network minimisation (stable)

FIG. 9: Same as figure 8, but for ρ∗bulk = 0.35. This density lies in the nematic phase. MNN results

were calculated using two two hidden layers, η = 1.0 and α = 0.97. The meatastable profiles are

for homeotropic alignment, the true equilibrium profiles are for planar alignment.

33

0 1 2 3 4 5 6
z/σ0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
ρ∗ (z

)

ρ*
=0.28, theory, Euler-Lagrange solution

ρ*
=0.28, MC simulation

ρ*
=0.28, theory, neural network minimisation

FIG. 10: Density ρ∗(z) (top) and order parameter Qzz(z) (bottom) profiles for a symmetric film

of HGO particles of elongation κ = 3, for ρ∗bulk = 0.28. The needle length is L∗ = 1 on both walls,

inducing parallel anchoring (only one half of system is shown). Lines are from theory using the

standard solution of the EL equation (solid) and our MNN (dashed), symbols are from simulation.

This density lies in the isotropic phase.

34

0 1 2 3 4 5 6
z/σ0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Q
zz

(z
)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0
ρ∗ (z

)

ρ*
=0.35, theory, Euler-Lagrange solution

ρ*
=0.35, MC simulation

ρ*
=0.35, theory, neural network minimisation

FIG. 11: Same as figure 10, but for ρ∗bulk = 0.35. This density lies in the nematic phase.

35

