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Gait Parameter Estimation

from a Miniaturised Ear-Worn

Sensor using Singular Spectrum Analysis and
Longest Common Subsequence

Delaram Jarchi, Charence Wong, Richard M Kwasnicki, BernlgdeGarry Tew and Guang-Zhong
Yang, Fellow, |EEE,

Abstract—This paper presents a new approach to gait anal-
ysis and parameter estimation from a single miniaturised ea
worn sensor embedded with a triaxial accelerometer. Singar

The use of accelerometers for gait analysis has been eastadli
since more than a decade ago. For example, Aminian et al.tuged
accelerometers, one on the heel and the other on the trunletéat

spectrum analysis (SSA) combined with the longest common walking patterns [4]. Recently, a range of wireless devitas been
subsequence (LCSS) algorithm has been used as a basis fortgaideveloped due to the popularity of miniaturised MEMS-basedti-

parameter estimation. It incorporates the information from all
axes of the accelerometer to estimate parameters includirgying,
stance and stride times. Rather than only detecting local fures
of the raw signals, the periodicity of the signals is also taén into
account. The proposed method for capturing major gait everg

such as the heel contact and toe off is validated with a high-

speed camera, as well as a force-plate instrumented treadhi
The results have been validated with data from ten older
adults demonstrating the accuracy of the analysis framewdk.

Considering the average estimates of gait parameters relat

to the left and right foot, the absolute mean errors are 35.5
milliseconds for the swing time, 36.9 milliseconds for thetance
time and 17.9 milliseconds for the stride time. In addition,the

method has been applied to a set of healthy subjects and patits

with lower limb trauma to evaluate the clinical value of the snsor
and its analysis framework in a free living environment.

Index Terms—Singular Spectrum Analysis (SSA), Longest

Common Subsequence (LCSS), gait, e-AR (ear-worn activity

recognition) sensor.

I. INTRODUCTION

axis accelerometers integrated with low-power wirelesbedded
platforms. This includes a study on gait analysis that mpldtsensors
including accelerometers, gyroscopes and pressure sensog used
to detect heel contact and toe off with good accuracies [5].

For data analysis, acceleration signals for walking candmssified,
for example, using a wavelet-based fractal analysis mef@pd his
allows clustering of walking patterns from different patiegroups
such as those with Parkinson’s disease.

One of the major research topics in the use of these sensors is

how to balance the complexity (e.g. the number of sensonsinest
and their practical embodiment) against the reliabilitgd amderlying

information content of the platform. Naturally, the use ofltiple

sensors provides more information that is directly or iedily related
to the gait patterns. However, this complicates systemgdesi

terms of cross-node communication, synchronisation, aodeffing.

It also affects user compliance. Furthermore, consistimement of
multiple sensors is difficult, thus affecting the reliatyiland accuracy
of the system. Such an approach, therefore, still tends tarieed

to laboratory experiments.

Integrating all sensing capabilities into a single wirslegnsor
node has clear advantages, particularly for patient studiist-
ing research has shown that detection of certain spatipdesh
gait parameters is possible with single accelerometeraietarunk
accelerations can be used to predict the subsequent stiggleles

S!STEMATlC evaluation of bipedal locomotion, or 'gait analy ang left/right steps, allowing estimation of step lengtidl avalking

is’, can provide useful information regarding human bioha-
ics, behaviour and pathology. Traditionally, this task @nducted
subjectively with a set of predefined observation-basedopots.
This has recently been replaced by more objective techsigoloy-
ing optical tracking, multiple cameras and force plates édidated
gait laboratories for detailed gait measurements. Recdwarges
in wearable sensing have further improved the practical aistne
technique, allowing small wireless sensors to be intedrateo
wearable, prosthetic, and assistive devices [1][2][3].

speed [7][8]. Changes in gait cycle variability have beeplaed
in musculoskeletal disorders [9]. For detailed gait arialysther
parameters such as swing and stance durations are alsgedkqui
Thus far, the detection of toe off with a single acceleromist@oorly
studied, and most studies are limited to multiple sensofigorations
[10][11][12].

With the constraint of using a single sensor, prior resebeshalso
been directed to the issue of optimal sensor placement witem
interest in patient cohort comparisons. To this end, it isessary to

The major advantage of such sensing technologies is in ilisyab address the practical requirements of: 1) ease of senszemént; 2)

for long-term continuous monitoring of the patient in a fi®eng
environment, rather than specialised laboratory settilgaddition,
specific context-aware gait monitoring systems can be dpeel to
help understand the progression of disease, assess thaceffi€
treatment and the rehabilitation process, and predict theetoof
adverse events such as unstable gait patterns that maydedaght
probabilities of falls in elderly patient groups.
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consistency and repeatability; 3) the underlying infolioratcontent
of signals. Such a problem can be treated as a feature selecti
problem with a multi-objective function by incorporatinget above
considerations and other system related constraints.

Previous research has shown that by placing the sensorcdoehin

the ear, most of the above constraints can be satisfied [tLa]sd
takes advantage of the intrinsic capabilities of the skélbbne in
transmitting both high and low-frequency waves to the amami
which can be picked up by the sensor. This, in essence, nepesd

the mechanism of how humans control gait and balance. Based o

this concept, we have developed an ear worn activity retiogn{e-
AR) sensor by using the body sensor network (BSN) platforaj. [tt
has been shown that gait-related force estimations, inmgudeight
acceptance and impulse can be derived. This has been ealidéth
a force-plate instrumented treadmill for both normal éptnts and
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Fig. 1. The light-weight version of e-AR sensor (left), axadsorientations
defined for this paper (middle) and how the sensor is worn eretir (right).

patients after knee surgery [15].

Thus far, the algorithms used for gait pattern analysis ianédd
to extraction of peaks in the raw acceleration signals madstifind
only heel contacts. Therefore it is necessary to extrach tstel Fig. 2. The_raw acceleration signa_\Is and the correspondmages for the
contacts and toe off events from acceleration signals witturate 'arge heel strikes captured by the high speed camera.
validation using e.g. synchronised video or force-plaiateel data.
Detection of heel contacts and toe off events has been useauiy
different clinical applications. These applications urd# improving
the gait of stroke patients for Functional Electric Stintida (FES),
evaluating pathological gait impairments, investigatiprgscription
footwear effects on quality of the gait for rehabilitationyestigating
influence of increasing age on gait parameters and obsemaayery
of orthopedic patients after lower limb surgery.

The purpose of this paper is to provide a robust technique
detailed gait analysis by addressing the current drawbackigle
accelerometer-based approaches.(limiting the study to detection
of heel contacts on)y The proposed method is model-free and based X = [x4] = [x1,X2, ..., X
on Singular Spectrum Analysis (SSA) for time-series anglys in-

[18][19]. Generally, the SSA algorithm consists of two matages:
decomposition and reconstruction.

Decomposition This stage consists of two steps called embedding
and singular value decomposition (SVD).
Embedding: In this step, by using the delayed version of the input
f[,Hne-series, a multidimensional matrix named trajectorgtnr is
created. Therefore, the time-seriebaving the length is converted
into anl x k matrix as the trajectory matrix:

A . . S S S - Sk—
corporates a time-series matching approach called Lor@mstmon 8(1) S; Sz I;kl
Subsequence (LCSS) to enhance the noise-resilience ofdpeged s2 83 8'4 e Skt (1)

algorithm. Detailed validation of the proposed method whigh- =
speed cameras and a force-plate instrumented treadmitbigded. : : : . :
The results have shown the importance of estimated gaitrieas SI_1 81 Si41 ... Sn-1
in clinical applications such as monitoring recovery afargery. . . .
The remainder of the paper is structured as follows. In sedfi Wherék = n — 1+ 1 and [ is the window length (embedding
details on experimental setup and sensor placement aredsstibed. dimension) { < I < n). Vectorsx; = [si—1, i, ., sit1-2]" form
This is followed by an introduction to the SSA and LCSS algoris (1€ columns of the trajectory matrix and are calldégged vectors.
to be used. In Section IIl, detailed experimental resultbaiidation 't IS evident from Equation (1) that the elements of all thagtinals
are provided. Finally, Section IV concludes the paper byrsanising + j = constant of the trajectory matrix are the same. Therefore,

the main contribution of the paper, its limitations and i future  the trajectory matrix is a Henkel matrix. . .
pap o Sngular value decomposition (SVD): In this step SVD is applied to

improvements. ’ . X :
the trajectory matrix to represent it as a sum of rank-onertsiegonal
elementary matrices. L& = XX7 and assume\;, o, ..., \; are
II. METHODS eigenvalues ofS in decreasing order of magnitudes; (> A2 >
A. Sensor Hardware and Placement ,..,> A1 > 0) and the corresponding eigenvectors afeus, ..., u;.
If v; = XTu; /v, then it is possible to write the trajectory matrix

In this paper, an e-AR sensor is used for recording the aet&la
signals arising from the gait patterns. The sensor is basethe _
BSN platform which contains an 8051 processor that has a P2 G X=Xi+Xo 4.+ Xa (2)
transceiver (Nordic NRF24E1), a 3D accelerometer (Analegi@®s whered = argmax \; > 0 and X; = v/ \;ju;v?. The vectoru; is
ﬁDFi(oLISr?w(t)e)r l:?atztgs [Eg]P.ﬁg\ﬂ éﬁtmg: gﬁ{igi?oln%?}ﬁ;gahgimghrtheith left eigénvector, the vector; is theith right eigenvector, and
a mass of 7.4 gthat allows the recordings of mobility information the collection(v/;, s, vi) is called theith eigentriple of the SVD

and can be used in healthcare and sports applications isshdwg. g} Eggﬁt:gg e(nz\Zé;gre g;)i\r/(gse(iﬂgncgr rg]s,(ep)gr%?r-lzegreiﬁ C?;ILO trrec:)itlon
.1' In this figure, the axes orientation of the e-AR sensor aowl i Reconstruction In this step, the eigentriples are grouped into
is worn by the user are also shown.

disjoint subsets. By setting the indices for subséisl;, ..., I,,), the
elementary matrices of each group are summed together as:
B. Sngular Spectrum Analysis

. . . o X =Xy +o+ X5, 3)
SSA is a model-free technique that can be applied to timesser , , o ] ) ]

data to decompose it into a number of orthogonal componghesse Wherel; = i1, ..., i;,. The original trajectory matrix can be written
components include slowly varying trend, oscillatory anwsteuc-  @s the sum of all the resulted matricKs, :
tureq noise [1.7]. SSA ha§ b.een sgccessfull.y.used in manjp.aﬁ.phs X =X7, 4.+ X1, (4)
of times series analysis including denoising and predictiBor
example, it has been applied to bio-signals such as singangh Grouping of the eigentriples depends on the applicationtaecdfore
respiratory signals and the source signals are effectisefyarated there are no general rules in practice for grouping. The fatep

as:



of the SSA algorithm is the diagonal averaging in which thalfin  To locate the gait events, an experiment is first performemghiich
elementary matrix, which is the sum of all elementary masiin the e-AR signals are synchronized with a Photron FASTCAM SA3
the group is transformed into a time-series of lengtlEach element high-speed camera operating at 250 Hz. Then the gait evenésted
of the resulted time-series is computed using the averatfeeghatrix from the images are used to locate the events on the sigrmataake
elements over the diagonal j = constant. Considering a general the synchronisation possible, two big heel strikes areoperéd in
I x k matrix, theqgth element of the time-series is given by averaginthe experiment. These heel strikes produce large peakeie-thR
over the diagonal + j = ¢ + 2. The reconstruction step of SSAsignals. Finding the corresponding image of each large {seiaédpful
algorithm is potentially useful for time-series denoisifithe SSA to resample the accelerometry data linearly to the higledpamera
algorithm for time-series reconstruction based on gragipine set of rate. Three experiments are performed using a subjectngatii the
elementary matrices given the corresponding indices ismanized treadmill having the following situations:

in Algorithm 1. The input to this algorithm is the originahte-series . Constant speed, zero incline

(s), the set of indices() to group the elementary matrices and the | |ncreased speed, zero incline

embedding dimension)( Then the output is the reconstructed time- | |ncreased incline, constant speed

series based on grouping the corresponding elementarycesatr . AR

As an example, the results for increasing incline and cohstpeed
are shown in Figs. 2 and 3. In Fig. 2, the raw accelerationadsgare
C. Longest Comm(.)n. Sub.sequencle ) ) shown, which illustrates two clear peaks. The correspandimges
seriesa with discrete time |nQex varying betwee.inan(jp. Slmllarly 2. After resampling, two gait cycles are selected and theeyaints
b and denote the time-serigs with discrete time index varying are located on the acceleration signals. In Fig. 3, the twisecutive
between1 and g. In addition, leta;,b; be thei"" sample of time- gait cycles and the images given by the high-speed camertnéor
seriesa andb respectively. . main gait events (RHC, LHC, RTO and LTO) are shown.
_The Longest Common Subsequence (LCSS) algorithm has beefy, symmary, by using the output of all the experimeats,it will
initially used for string matching applications [20]. It fibeen e eyplained in detail, for detection of heel contatite signals of the
subsequently extended to measure the similarity of two-8BT&S  anterior-posterior (AP) and superior-inferior (SI) axéssd be used
having different length [21], [22]. The algorithm uses_dym@ iy which there are local minimum peaks in both axes. To deiterm
programming and matching regions in time and space. Theigleayhich heel contact corresponds to the left and which oneeaitt,
to avoid matching the regions that are distant or degenefidie the acceleration signal of the medio-lateral (ML) axis igdisThe
recursive formulation of the LCSS is defined in [22] as follow  mean value of the acceleration amplitudes from one RHC toée

LCSS (al,b]) = LHC is larger than the mean value of the acceleration anggiifrom
the LHC to the RHC For detection of toe off events, the best axis

0 i p<l or g<l, to use is the ML axis. The accelerations of ML axis are segetent
1+ LCSS (apfl bqfl) if {dLP(aw bg) <e¢ and qsing RHC; gnd the toe-off events are then detgcted. The RT@i
e T lp—ql<é, first local minimum after the LHC, and the LTO is a local maximu
before the LHC (due to slightly different appearance of ti#Cls on
otherwise the ML axis, throughout the paper, this local maximum is mefé

M {Lcsss,e(affl, b?)

LCSS.(af, b ") to a local maximum before the main valley of the ML axis cycle

®)
wherep and ¢ are the length of time-series andb respectively,

anddrp(ap,by) is any Lp-norm of the(a, — by). The constant
provides the flexible control of the matching region in timéaile

the constant is a threshold for matching in space. The value give
as the output of the LCSS depends on the length of its inpug-tim
series. Therefore the similaritys . of the two series is measured by

normalizing the output of the LCSS as:
_ LCSS (a7, bY)

o) = 0

(6)

D. Gait Parameter Estimation

segmented from RHC to the LHC). Since raw accelerations @isy,n
there maybe many local maxima/minima points. Thereforstesd
of directly locating the toe-off events on the raw accelerst, a
number of gait cycles are grouped and by using differentrtiectes
VD, LCSS and peak detection), toe-off events are estindte
act these events are located on enhanced gait cycles wéscift in
more accurate estimations than locating them on raw acatiles.
Therefore, using all the axes we will be able to locate thergs

gait events (RHC, LHC, RTO and LTO) and then to estimate the

gait parameters based on the extracted time stamps. In lthevifag
a methodology is explained to estimate all the gait pararmmete

« Trend Removal

For estimation of gait parameters, the gait signals needeto b Tne e-AR acceleration signals usually contain artefact iha

segmented from the acceleration data recorded using tHe geAsor.
In many traditional experiments, the acceleration sigraas often
labelled manually. However in applications that requiratoaious
monitoring, the gait signals should be automatically segett In
[23] a method has been proposed to discriminate walkingiicti

from non-walking. This method based on SSA can be further ex-

tended for automatic gait segmentation using acceleraiigmals.

In order to estimate the gait parameters, the essentialkeygaiits
need to be located on the signals. These events include higit
contact (RHC), left heel contact (LHC), right toe off (RTQ)caleft
toe off (LTO).

Algorithm 1 SSA for time-series reconstruction
S = SSAG, I = (i1, ...,7p),l)
- Create trajectory matriX, see Equation (1)

created by head motion. This artefact is added to the acreler
eter data as a trend that can be removed by the SSA algorithm.
To remove the trend of the signal, SSA is applied into the e-AR
signals. The first eigentriple that relates to the trend efdhta

is selected, its elementary matrix is formed and then it edus

to reconstruct a time-series. This time-series is sulecafiom

the original signalln the following the signal of the AP axis

(s2) is used and its trend is removed by the SSA:

s2 «— AccY(AP)
S = SSA(s2,I = (1),1), see Algorithm 1 @)

gQZSQ—S

wheres is the trend of the signal of AP the axis; is the

- Apply SVD onto theX to find X; (v/Ai, u;, v]) acceleration signal of AP axis after trend removal. Sinae th
- Group elementary matriceX; = Z;F’:il X; SSA algorithm is based on linear combination of elementary
matrices related to eigentriples, the trend removal canlée a

- Perform diagonal averaging a{; to constructs
returns performed in another way by grouping all eigentriples excep




the first one as:
S2 = SSA(s2, I = (2,...,1),1) (8)

The above equation is used to remove the trend from all. axes
When SSA is applied to the new signahfter removing
trend from AP axiy the first two eigenvectors correspond
to the most dominant oscillation of the signal. If there is no
artefact by head motion then the reconstructed signal after
removing the trend is the same signal shifted around zero
to have a mean value of zero or very close to zero. In Fig.
4., the gait signal from the AP axis is shown before and
after trend removal. In this figure, the generated eigemglu
are shown for each signal separately after applying the SSA
algorithm. It is evident that the first eigenvalue beforentre
removal has a large value that after normalization makesroth
eigenvalues very close to zero. However after trend removal
the first two eigenvalues have close values related to thé mos
dominant oscillation of the signal from the AP axis. In the
next step these two first eigenvectors from the AP axis are
reconstructed using SSA which helps to find the RHC and LHC.

Detection of RHC and LHC °
To detect the RHC and LHC, the signal of the AP axis
is used to find an intervain time domain for detection of
heel contactsAfter removing the trend from the AP axis, a
peak detection method is applied to the dominant osciliatio
of AP axis (obtained by reconstructing the signal using the
first two largest eigenvalues) to find the local maximum and
local minimum points. Most existing methods have applied
the peak detection method to the raw signals to find the heel *
contacts [24][11][15][7]. There are also some methods dase
autocorrelation analysis to estimate the gait cycle camiig
variations in the speed of walking [8].

Here the objective of applying the peak detection method
to the first dominant oscillation of the AP signal is to exploi
the periodicity of the signal in detecting RHC/LHC, not only
relying on the explicit peaks in the data. This is importamt i
that not all of the heel contacts produce distinctive peakihié
AP/VT signals. Therefore we do not rely only on the amplitide
of the signal and apply a peak detection method to extract the
RHC and LHC. Since walking generates repetitive pattehes, t
analysis of periodic features of the signal will reveal intpat
informationregarding periodicity othe underlying systenThe
periodicity of the accelerations is taken into account Hab a
the amplitudes of accelerations in two axes (AP and SI) are
used to detect heel contacts towards more accurate estiraati

Once the local maxima and minima of the dominant oscillation
of the AP signal have been found, if there is some deviation
on dominant oscillationwhich forms two very close local
maximum points, a local minimum in between may appéar.
an example it can be seen from Fig. 5 that the amplitude of such
local minimum can be close to the amplitude of each local max-
ima. Therefore it is an invalid point as the local minimummioi
The same situation may happen in which invalid local maximum
and several close local minima points are form@dsimple
process is performed to remove invalid local maxima/minima
After finding all these extrema of the first dominant oscitiat
of the AP axis, a further validation process is performed. In o
order to estimate the LHC and RHC more accurately, a short
interval is constructed using the corresponding local méani
points of the dominant oscillationSince after removing the
trend from AP or VT axis the signal is centered around zero, it
is beneficial to add the mean of the accelerations beforel tren
removal to reconstruct the accelerations centered ardugid t
mean. Then the signals of the AP and VT axesfter trend
removal and mean correctipare multiplied in each specified
interval pased on the detected local minima of the dominant
oscillation and the point that gives the minimum value is
considered as the index of heel contact.

After finding the heel contacts, the signal of the ML axis is
used to determine the left/right heel contacts (RHC/LH@stF
three local minimum indices (given by using the dominant
oscillation of AP axis) are selected. If the mean amplitudel®
of the signal of the ML axis from the first local minimum’s
index to the second one is bigger than the mean value from
the second to third one, the first local minimum is RHC, the
second one is LHC and the third one is RHC. In a similar
manner if the mean amplitude value of the signal of the ML
axis from the first local minimum’s index to the second one
is smaller than the mean value from the second to third one,
the first local minimum is LHC, the second one is RHC and
the third one is LHC. In Fig. 6, the signal of the ML axis, the
dominant oscillation of the signal from AP axis and its local
minima/maxima points for determination of RHC and LHC are
shown. Therefore, the dominant oscillation of AP axis is used
for determination of intervals which contain the time indsx
the heel contacts. Then based on these intervals, heelct®nta
are extracted using accelerations of both AP and Sl axes.
Finally, ML axis is used for determination of RHC and LHC.

Extraction of gait cycles

In this step, the information given by the previous step is
used to segment the signal from the ML axis. Segmentation is
important for finding the toe-off points, as the synchrotisa
experiment showed that the ML axis is the best axis to
estimate toe-off points. Therefore the signal of the ML asis
segmented between each two consecutive RHCs.

Applying SVD

Since the acceleration signals can be noisy for practicgli-ap
cations, filtering of the raw signals is required.

The proposed technique in this paper is to apply SVD on a
number of gait cycles (segmented from one RHC to the next
RHC, with possible length extensipmusing the ML axis) and
extract the main gait cycle:

$1(RHC(i) : RHC(i) 4 q — 1) co

X.— : -
51 (RHC(i+ N —1): RHC(i+ N — 1) +q — 1) cN',()
9

[U,=, V] = SVD(X?) (10)

g. = vi/norm(vy) (11)
whereq = max{ RHC(i+j+1)— RHC(i+j)} +1, s

j=0,...,N—1 all i
is the acceleration sign]al of ML axis (after trend removad an
mean correction); (j = 0, ..., N — 1) denotes each individual
gait cycle X. is an (IV x g) matrix of N gait cycles, SVD
performs singular value decompositioR,HC' (i) denotes the
time-point index of the*” RHC, v, is the first vector (having
the largest eigenvalue) of th& matrix which contains the
right singular vectors ang. is considered to be the main gait
cycle. The main gait cycle is used as a template in the next
step to estimate the toe-off events and also re-align the gai
cycles to obtain enhanced (filtered) gait cycles.

Applying LCSS

For every N groups of gait cyclesthe main gait cycleg.
which is obtained by applying SVD on th& gait cycles,

is compared to each individual cycle and their similarity
value is estimated by the LCSS algorithm. If the similarity
given by the LCSS is less than a specified threshold, then
the corresponding gait cycle is removed. All the other gait
cycles are then resampled to produce the enhanced gaiscycle
The re-sampling technique used in this study uses the point
correspondence of the main gait cycle and the raw cycle. It
keeps only the samples corresponding to the main gait cycle.



o Detection of RTO and LTO

As the synchronisation results suggest, the RTO event is theAlgorithm 2 Gait parameter estimation

first local minimum peak after the LHC and the LTO is a local -Segment the gait signals from the acceleration data
maximum before the LHC. However detection of RTO and LTO -s1 <— AccX (ML), s3 «— AccY (AP), s3 +— AccZ(SI)
from raw gait cycles are difficult since there maybe severcdll -Detect RHC and LHC

maxima or minima points. One strategy that practically fbun ¥ = SSA(s2, 1 = (2,3),1) dominant oscillation

to be very effective, is to estimate the RTO and LTO from the [imin imaz] = Detect-local-min-magy) returns indices
main gait cycleg. (obtained for everyV groups of gait cycles) ~ APPly constrainty (imin) < 0 andy(imaz) > 0,

by considering the expected shape of the gait cycle and imgply ~ remove invalid local peaks

LCSS algorithm as detailed in below. 81 = SSA(s1, 1 = (2,...,1),1) + mean(s1) trend removal

Here for detection of LTO on the main gait cycle, it is S2 = SSA(s2, I = (2,...,1),1) + mean(sz) trend removal

estimated based on a peak before the maximum of LHCs (in S3 = SSA(s3, I = (2, ...,1),!) + mean(s3) trend removal

time domain based on the time stamps) frgrouped cycles.  for n=1:num (length(im)) number of local minima

RTO is detected om. as the first peak after the minimum of ¢ = S2(imin () = 71 : tmin(n) + 71) X S3(Imin () = 71 : imin(n) + 71)
LHCs in time domain for theV grouped cycles. h(n) = min(q)

Detection of LTO has shown to be more difficult than RTO due end

to different appearance of LHC on the ML axis which creates Determine left/right heel contacts:RHC, LHC= 1,k =1,i =1 : num — 2
extra local maxima/minima before LHC that are not related to  if mean(s1(h(2) : k(i +1))) > mean(s1(h(i + 1) : h(i + 2)))

LTO (see Figs. (3 and 7)). Therefore, for a more robust dietect RHC(j) = h(i),j =j+1

of LTO, a template based on expected shape of cycles from €se LHC(k) = h(i),k=k+1

ML axis is constructed and the point on the main gait cycle = 1,...,length(RHC) -1, j=0: N —1

ge Which is related to the first peak of the template, using the -Segment the ML axis dat@s;) using RHC(i + j) : RHC(i +j) +q— 1
point correspondence output of LCSS, is considered as tle LT -Group NV gait cycles into a matrixXc

Ten extracted main gait cycles (red color) and the constcuct -Apply SVD on the matrix to get the main gait cyale., see eq. (9-11)
template (blue color) with the results from LCSS algorithra a  similarity = LCSS(ge, ¢;)

shown in Fig. 7. The last point of the each main gait cycle is if (Smilarity< 72) remove the raw cycle, find the next one

based on the maximum of LHCs for all grouped cycles. From otherwise Re-align the raw cycle by resampling

Figs. (3 and 7), the importance of using a template for a more -Detect LTO(i + j)

robust detection of LTO can be seen. Gvp? (otg)?

Finally after detecting representative LTO and RTO on thinma -~ Set template” = azexp “1  +azexp ** o
gait cycle, by applying the LCSS method, the corresponding find the local maximum of the. beforeg; = max fOH C]\gl J{J)
point of the peaks for LTO and RTO are located on each ORI

A -which is the corresponding point of the first local maximufrite
raw cycle. Therefore, RTO and LTO are not directly located template ong. using LCSSr, go(1 : 1))

on raw gait cycles. They are first located on the main gait . the corresponding poirn the raw cyclec; usingLCSS(g., c;)
cycle g, then on the raw cycles based on the outputs of _Detect RTO(i + j)

LCSS. LTO is detected op. using a template and applying find first local minimum of theg. aftermin LHC (i + j)

LCSS CCSS(r,gc(1 : gs)),see Algorithm 2) and RTO §=0,..,N—1

is detected ong. using a peak detection technique. Then find the corresponding poirtn the raw cyclec; usingLCSSg., c;)
LTO and RTO are located on the enhanced cycle which is -Extract the time stamps using tieH C (i), LHC (i), LTO(i), RTO(i)
obtained by resampling the raw gait cycle based on the main estimate the gait parameters, e.g. swing, stance and itrids

2
2

gait cycle and the point correspondence output of LCSS
(LCSS(ges cj), see Algorithm 2). E. Real-time detection of gait events

For some applications such as generating locomotion foa-par
‘glegic patients using FES, it is necessary to detect gaittsve real
ime. In this section a general framework is proposed fot tieze
etection of heel contacts. The proposed method can bededen
M future studies for detection of both heel contact and dife-
events with proper validation to be used in appropriate iagfibns.
o An experiment is performed in which the acceleration sigree
Left swing time:t,(LHC(i)) — ts(LTO()) recorded using the e-AR sensor (e-AR lite version which hesak

» Estimating gait parameters
Once all the gait events (RHC, LHC, RTO and LTO) hav
been detected from the accelerometer signals, it is pessi
to estimate the gait parameters using the corresponding ti
stamps. These parameters include:

— Right swing timet,(RHC(i + 1)) — ts(RTO(i)) time clock) with sampling frequency of 100 Hz from a healthpjgct
— Left stance time(LTO(i + 1)) — ts(LHC(i) walking along the corridor and turning at the end of corridor
— Right stance time; (RT'O(i)) — ts(RHC(i)) continue walking. The raw accelerations of three axes apevistin

— Left stride time:ts(LHC (i + 1)) — ts(LHC/(

: e um i) Fig. 8(a). As evident from this figure and confirmed experitaty)
Right stride timet,(RHC (i + 1)) — ts(RHC (1

) the turning period creates smoothed accelerations on S| axi

In Fig. 8(b) a window with the size of 300 samples (from ti&
where ¢5(.) denotes the corresponding time stamp given theample to the800*" sample) from AP axis is used to create an initial
time-point index of its input time-serieg, denotes the index trajectory matrix representing a subspace basedJordl, and V
of the event, theri + 1 is the index of the next event. Othermatrices {; = 1, ..., 30) (see Appendix). For another window of 300
important gait parameters can be obtained using the estimasamples having zero overlap with the first window as showrhé t
heel contacts and toe-off events. In this paper we definetéipe sFig. 8(b), theU”, X", and V" matrices are updated to estimate the

asymmetry as: new trajectory matrix using the 30 first eigenvectors, themolumns
— step asymmetry: from (k+1)*" column to the(2k)*" column are used to reconstruct
the signal of AP axis in the new segment without applying tBAS
ts(LHC(3)) — ts(RHC(i)) algorithm (see Appendix). This is equivalent to applyingAS8 the
ts(RHC(i+ 1)) — ts(LHC(i)) trajectory matrix obtained from the second window. It canseen

from Fig. 8(b) that subspace learning is effective for restarction
The Pseudo-code for the estimation of gait parameters isrshoof the acceleration signals by projecting the trajectoryrixdo the
in Algorithm 2. learned subspace.
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Fig. 6. Top row: The signal of the AP axis and its dominant oscillation,
and the local minimum and maximum points are shown. It canelea $rom
this plot that there are no distinctive peaks for all the hewitacts.Bottom
row: The signal from the ML axis is used to determine the left agttrheel
contacts.

To find the heel contacts the signal of AP axis is used. The
dominant oscillation plus the trend of the AP axis is formeainf
the first window (of size 300 samples) to create the initiddspace
(r =1,...,3). Since the sampling frequency is low we move each
window by one point. Then for each new time point the trajgcto
matrix is re-generated based on:

Xt = [xi;] = [x1,%2, ..., Xk]
Fig. 3. Top row: Example 3-axis e-AR signals corresponding to two 51 S9 s3 Skl Sk
consecutive gait cyclesSecond and third rows: The images given by the )
high-speed camera for main gait events which are shown asiogvs on the S22 83 54 Sk Sktl (12)
signal of ML axis. Xi=|] % 5 85 Skl Sk+2
St Si+1 Si42 Sn—1 Sn
Raw signal from anterior—posterior (AP) axis . -1 T
2 200 ‘ ‘ ‘ ‘ l3. L X' = [X" " (x2 0 xk) [xk(2) xk(3) ... xk(l) sn] "] (13)
g 2200 I
: o — y : R Where X'~', X" are the trajectory matrix of the previous and
Eroctod e [Sampe namer 10" eigenvaluie number  CUITENt iteration (see Equation (1)) angl is the new time point. The
2600 E | g the f|r§t elgenvector‘ . ) R 3 ) _ )
s iteration indext increases as new new poisyt is arrived. Therefore,
£ 2400f 1 based on the Appendix tHg”, =, andV" matrices will be updated
5 WW\N for each new trajectory matrix constructed using the neve thaint.

. .
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Fig. 4. The signal of the AP axis, before and after trend reaahawnd the

corresponding eigenvalues.

dominant oscillation

AP axis T
local minimum

®  local maximum

I
4000

I I I I
3200 3400 3600 3800

time [sample number]

L
2800 3000 4200 4400

Fig. 5. The dominant oscillation of AP axis and the local minima arakima
points. The invalid local minima/maxima points for detentiof heel contacts
should be removed.

A matrix considering the second and third largest eigerslis
generated to find the new point of the dominant oscillatioseba
on the learning algorithm. In this step there is no need toyapp
the diagonal averaging as in the SSA algorithm since onlytone
point is added to the system at each iteration to extract atimaes
point of the dominant oscillatioify,,) from the last element of the
constructed matrix (matrix in Algorithm 3). The matrixY does
not need to be constructed for all its elements since only(ihreelast)
element is enough to estimate the new point of dominantlatoih
however for simplicity of understanding, its formulatios $shown
in Algorithm 3. The differentiation of the two consecutiveipts of
dominant oscillation has a value very close to zero at locakima
and minima points. A constraint can be set to detect a poirthen
AP axis having a negative value for the dominant oscillafjlmcal
minimum) and a value very close to zero for the differentiatbf
dominant oscillation (see Fig. 8(c)). Then a window with iee of
7 centered at the detected local minimum of the dominant lagiocih
has been formed to detect the local minimum point using b&raAd
S| axes representing one heel contact. An example is showangin
8(d) where the right and left heel contacts are detected iardine
manner in whichr is set to 30 samples. Also we implemented the
algorithm using Matlab software (version R2012a(7.1489)7with
64-bit) on a CPU Intel Core (version i7-2600 with 8-core rumgnat
3.4GHz) and for processing 600 samples (as shown in Fig. 8),



Algorithm 3 Real time detection of heel contacts
- create theU, X and 'V based on the trajectory matrix
X(}j = [x1,..,%Xg), [; =1,...,3,sett =0
- for each new time poing,, do the following
-t=t+1
- update the trajectory matrix
Xj = [Xgl(XQ i xp) [x£(2) x5 (3) -+ xx (1) 5n]7]
- updateU”, =" and V" based onX}j (as matrixC, see Appendix)
r=1,..,3
Y =U"(;,2:3)2"(2:3,:)V"(k +1: 2k,:)Tas dominant
oscillation, yn = y (1)
calculatey; = yn — yn—1
if (y1 ~ 0 andy, < 0)
detect local minima from multiplication of AP and Sl axis
using a window with the size of
- update the learned subspace

the elapsed time was obtained as 4.988205 seconds. Sintenthe
difference for arrival of each new sample is 10 millisecontie
whole processing time obtained (4.988205 seconds) is hess the
total timing required for arrival of all measurement80§ x 10
milliseconds = 6 seconds). That means a real-time implestient
of algorithm.

The error of subspace reconstruction based on the norrH of
matrix (see Appendix) is calculated for each new trajectogtrix.
It can be seen from Fig. 8(e) that the error of reconstruagdrigher
for the AP axis at the points that the subject is turning wiieeee are
small changes in the AP axis signal with more changes for taiS.
Although the use of LCSS helps to get more accurate estinmfar
toe-off events, for real-time applications they can alsddoated on
the ML axis as the first peak after each detected heel contacts

The objective in this section was to propose a method thabean
used for real-time detection of gait events using SSA as & lias
future studies. The advantage is that it is not necessarpply &SA
sequentially to the data segments instead to use the leauhsgpace
a nd projecting the trajectory matrix.

Also using subspace learning and the reconstruction etr@ i
possible to detect changes in the walking behavior. The g
framework in this section requires proper validation uspngssure
sensing platform in future studies for online detection ait g@vents.
In the next section, the method explained in Section II-Defstima-
tion of gait parameters is validated using three differeataigets.

I1l. EXPERIMENTAL RESULTS
In order to validate the proposed method for gait parameter e

mation,threesets of experimental data have been analysed. The fi

dataset has been used to validate the accuracy of the estimait
parameters versus force-data while the seamdithirddatasets have
been used to investigate tfieasibility of gait parameters estimation
for future clinical applications. In the following sectisnthe results
of applying the proposed method to the datasets are pravided

A. Validation of estimated gait parameters

For validation of gait parameters estimated by analysiegetf\R
signals, a laboratory-based experiment has been performeithe
experiment 10 healthy adults walked on a force-plate instnted
treadmill (Gaitway Treadmill, Kistler Instrument Corp.,mkerst

USA) at a speed of 3.2 km/h for 20 minutes. After each 2 minute

interval, the treadmill incline was increased by 2Petection of gait
events using an inclined treadmill is more difficult thanikontal line
treadmill since walking on an inclined treadmill resultsiismoothed
accelerations that make it more difficult to detect the geénés. In
this experiment the gait parameters are mainly validatethdimed
treadmill since only 10% of the data are related to straigalking
on the treadmill.

The raw acceleration signals given by the high-speed e-ARase
having a sampling frequency of 130 Hz were segmentedliminute
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Fig. 7. Ten extracted main gait cycles (red color) segmented to tisémum
of LHCs in time domain for their correspondiny grouped cycles and the
constructed template (blue color) with the point corresfgmte output of
LCSS to detect LTO on the main gait cycle. The Minimum Bougdinvelop
(MBE) is shown in grey color which is a region that covers aditahing areas
within § in time ande in space.

of incline, the gait parameter estimation method as expthim
Section II-D is used to estimate the essential gait parasegnce

for eachl minuteof the data, the percentage of the incline is constant,
15 gait cycles(N) have been selected and the parameters are then

estimated. Therefore, the trend of the gait signals are riérsioved

then RHC and LHC are estimated. The SVD is applied to 15 gait

cycles.For grouping gait cycles, the parametein Equation (9) is

set to 310 The LCSS is then evaluated by having the main gait cycle

derived by SVD and that from the raw data as the input.

The value ofr, parameter in Algorithm 2 controls the number of
pl&carded cycles. The value ¢f is set to be 0.65 in this study, which
IS empirically defined. Therefore, after segmenting the ggcles
using the estimated RHCs from the ML axis, the cycles tha¢ thess
than 0.65 similarity based on the point correspondenceubuatpthe
LCSS will be removed. To apply the SSA algorithm, the embegldi
dimension is set to be 100 in this study.

In the LCSS algorithm, the value of the parameter which
represents matching in the space can be set to half of thdasthn
deviation of the input time-series which has been shown twige
good results [22]. The warping lengthin the LCSS algorithm is a
percentage of the time-series length. Based on the givegriexgnts
in [22], the performance of the warping from 5% to 20% of thedi
series length is evaluated. By increasing the value),othe space
arch will be larger and less accurate results will be nbthiln the
proposed algorithm, the LCSS algorithm is called for twdedént
purposes:

« Finding the similarity of the main gait cycle and each rawleyc
(to remove less useful cycles based on similarity value)asaol

to locate the RTO/LTO detected using main gait cycle on each

raw cycle.

« To find the LTO on the main gait cycle, based on a predefined

template, to be located later on each raw cycle.
For the first purpose, the value of thas set to 0.3 multiplied by

windows For each minute, which also related to the same percentage minimum of the standard deviation of the two input tinegies.
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Fig. 11. The peaks detected as LTO and RTO for the 5 healthiisadre
shown in white colour which create a trace in the verticabaxi

By using the resampling technique, based on the main gali¢ cyc
and output of LCSS, the gait cycles are enhanced. The resrdts
shown in Fig. 10. In this figure, cycles from eathminutedata are
selected, then all the cycles towards the end of the expatitma/e

The value of thed is set to 0.15 multiplied by the minimum sizebeen added to a matrix and their corresponding 2D patteneéted.

of its inputs (15% of the time-series length). For the tengpfain
Algorithm 2, a;,b; and 2z% are set to 10, 40 and 60@y,b2 and
2z2 are set to 10, 120 and 600 where the time indestarts from
1 to 150. Since the template length is about half the cycld®)(3
then for the LCSS algorithm (second purpose) éhis set to 0.30
multiplied by the minimum size of its inputs (30% of the tireeries

It can be seen from this figure that the enhancement of thecygeli
preserves the overall trend of gait peaks while making itega®
estimate the essential gait events. For the 5 healthy asldtan in
Fig. 10, the estimated LTO and RTO indices are shown in white i
Fig. 11. Having the index of all gait events, the gait pararete.g.
swing, stance and stride) for the left and right foot arenestéed.

length) andk is set to 1.5 multiplied by the minimum of the standard The same gait parameters are also estimated using the fatae d

deviation of the two input time-series.

Force plate detection of heel contact and toe-off was peédron the

The RTO and LTO are estimated using the output of LCSS ameadmill sampled at 500 samples/s. The algorithm was imeieed

the peaks of the main gait cycle. In Fig. 9, three example rgoles
and the corresponding main gait cycles are shown. The lastyele

in Matlab (The Mathworks Inc.) to partition force tracesaimight and
left steps. A threshold of 10% of bodyweight was used to deitez

is removed due to a very low similarity value to the main ggitle heel contact, and 5% was used to determine toe-off. Theagvedy

while the first raw cycle has a big similarity to the main gaitle. large thresholds were needed to account for the increasied oo

In the middle plot of the Fig. 9, it can be seen why we choose the force traces caused by the moving belt. Trials in whicéreh
detect the peaks from the main gait cycle rather than the smlec was no clear separation of consecutive strides (i.e. whenfromt

to ensure the robustness of the algorithimsaddition LTO can be foot contacted either the anterior or posterior forcegla¢fore the
better detected using the predefined template and applyg €SS rear-foot left the same plate) were discarded.

algorithm as shown in Fig..7 For each subject having the same percentage of inctind per
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Fig. 10. The raw gait cycles and the enhanced signals by LEESSSA. The results are shown for 5 healthy adults walkinghentteadmill. In each

plot, the raw cycles (top) and the enhanced ones (bottomn) fh® ML axis are grouped together having an increased aeimgle as the gait cycle number
increases. The created images of the consecutive cyclessareshownThe first half of cycles are shown in blue and the second hatééh

minutg, there is one estimation from the e-AR and one estimation

using the force data. The corresponding Bland Altman pldefsicted
in Fig. 12. for right/left swing, right/left stance and rigleft stride

times. In Table |, the mean and standard deviation of the relativ
and absolutedifference between estimations are shown. It can t

seen from this table and Bland Altman plot (Fig. 12.) that Itlest
estimation is for the stride time3he absolute error of estimations
for each subject in different incline degree is shown in Eig). There
are some outliers for some subjects, in which the visualeatpn of
accelerations fot0'" subject shows ML accelerations very much fa
away normal ones that can be due to inconsistent/incorratiking
of the person on the treadmill. Also for this subject due tecdid
of many gait cycles less estimated values are obtained.

TABLE |
THE MEAN AND STANDARD DEVIATION OF THE DIFFERENCE BETWEEN THE
ESTIMATED GAIT PARAMETERS (IN SECONDY USING EAR AND FORCE DATA
[ relative error absolute error
Parameter mean SD mean SD
left swing 0.0231 0.0348 | 0.0332  0.0253
right swing 0.0082 0.0605 | 0.0379  0.0478
left stance | —0.0271 0.0380 0.0358 0.0299
right stance| —0.0095 0.0563 | 0.0380  0.0426
left stride —0.0034 0.0281 | 0.0175 0.0222
right stride | —0.0013  0.0285 | 0.0183  0.0218

Bland Altman plot — left swing

Bland Altman plot — right swing
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Fig. 13. The absolute error of gait parameters for each subject LesiAR
having the force data as the reference. The mean absoluie Y@t each
subject is shown.

B. Gait Analysis for Rehabilitation
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Fig. 14. Demonstration of changes in gait patterns and detected Rid@s
LHCs 3 and 6 months post operative. (a) The raw and enhanagdscygf

AP axis 3 months post-operative. (b) The raw and enhancekscyaf S
axis 3 months post-operative. (c) The raw and enhancedpfIAP axis 6

Estimation of gait parameters has been used in many studliesrionths post-operative. (d) The raw and enhanced cycles akiSI6 months

quantify the differences between healthy subjects anceipiatiwith
gait impairments. One important application in gait anialyis to
monitor recovery of orthopedic patients after surgery. inigvthe
information from wearable or ambient sensors, the estithaft
parameters as useful features can be used to monitor ri¢dudmil
of orthopedic patients. By analysis of signal charactiessof accel-
erations, more features can be obtained. Adding more ufsdtures
is helpful to create reliable monitoring systems for relittion.

For the next experiment the e-AR lite sensor a the samplir

frequency of 100 Hz was used to record the acceleration Isigna
three axes. The data was recorded from patients who wereagcg
from reconstructive surgery following severe lower liméuma (open
tibial fracture). This cohort were assessed in a clinicéirsg using

post-operative.
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the 6 minutes walk on a 15m corridor. Data was recorded 3 nsonthig. 15. (a) step time asymmetry estimated for 5 patients 3 and 6 raonth

and 6 months post-operative.

after operation. (b,c) raw and enhanced cycles of AP axisdmonths

The accelerations from AP and Sl axes for one patient 3 andp6st-operative. (d) raw and enhanced cycles of AP axis friveadthy subject.

months post-operative are shown in Fig. 14. The detectedatef
right heel contacts are shown as asterisks in this figurearit le

seen from this figure that despite of a big level of asymmetry

walking, the algorithm can detect heel contacts. This istduasing
all three axes in determination of heel contacts. In factNteaxis
for determination of the side of heel contact (left/rightays an
important role which prevents invalid detection of heeltemts. The

lsensing platform as the reference. This enables creatirgjiable

system for home based monitoring of rehabilitation.

IV. DISCUSSION ANDCONCLUSION

gait cycles of AP and Sl axis are segmented from the RHCs with In this paper, a new method is proposed for estimating gait
a window of 200 sample size. The enhanced cycles by using tharametersusing e-AR device In this study, the gait parameter
LCSS algorithm are also shown. It can be seen from this figuae t estimation is based on the combined use of SSA and LCSS. Other

the gait cycles are changing in shapes in different time tpadfter
operation which can be used for extraction of additionakuiess.

gait features such as spatial features (signal amplitudeshéel
contacts events) are also derived. Experimental validdtas shown

This can be done in future studies by using appropriate t@®pl the practical value of the method for healthcare applicatio

matching approaches having the template for normal galesy@s

The accuracy of the algorithm for gait parameter estimatson

another example the raw cycles and enhanced cycles of AFaxis validated using a force-plate instrumented treadmill. &w®fing on
one patients 3 months and 6 months post-operative are shownthe clinical application and the purpose of estimating garameters,

Fig. 15(b,c). The AP axis cycles for healthy subjects arevshm
Fig. 15(d). These figures show the importance of direct a@imlgf
accelerations for monitoring rehabilitation.

the reliability of gait variables can be more assessed. fulsides
test-retest reliability assessments and obtaining ired intra-class
correlation coefficients (ICC) for further analysis. In &gtoh, the re-

The proposed method has been applied to five healthy subjeststs for patients with lower limb trauma are provided to destrate

and five patients to estimate the step time asymmetry. Fohé&adthy
subjects, the mean and standard deviation of the step asyynweze
obtained as 1.0082 and 0.0309 respectively. In Fig. 15¢m)eéch

the practical use of the sensor in none-lab environment.
It is worth noting that for gait analysis using wearable tech
nologies, it is important to reduce the number of sensorsnsure

patient the estimated step time asymmetry are shown for 36andsimplicity while maintaining reliability and accuracy dfig system.
months post-operative. As it can be seen from this figure,stap This is particularly relevant in clinical applications féong term

time asymmetry is approaching to 1 in 6 months post-operativ

continuous monitoring of patients, as well as the elderlgypation.

In forthcoming studies, we further validate the sensor dmel tin this paper, information from reference technologieshsas a

analysis framework for free living environments having ga@e

high-speed camera and a force-plate instrumented trelautmsilbeen



used to validate the estimated gait parameters derived fhame-
AR sensorln addition a real time implementation is proposed to be
further improved in future studies which require onlineeddion of  [1]
gait eventsFrom the results derived, it is evident that the proposed
method in this paper for accelerometry based gait analysssthe
following advantages.

« Use of a single light-weight ear worn sensor

« All processing can be performed on-node and therefore fsigni

icantly reduces wireless-transmission overhead
« Ergonomic design of the sensor to ensure long-term patierig]
compliance

Another important feature of the proposed algorithm is tioat
the filtering process, there are no strong assumptions ostdtistics  [4]
of the signals. In summary, we have developed a practical gai
analysis platform that is suitable faoth laboratory and free-living
environments The results derived demonstrate the practical clinical5]
value of the method.

The proposed method in this paper can provide a framework for
accelerometry based gait analysis using a single senscrette
clinically reliable future monitoring systems. (6]

V. APPENDIX

The SVD of the trajectory matrix can be written as:
Xy, =ULV”

(2]

(7]
(14

whereU is anl x [ matrix which contains the left singular vectots,is an
1 x k matrix of eigenvalues and” is ak x k matrix which contains the right
singular vectorsi(is the embedding dimension, ardis defined in Section
II-B) and I; denotes the indices to select the eigenvectors.

(8]

[0
Lxr) = Ug;xl)c(lxk)

(15)
Haxr) = Cuxr) = Uuxr)Lrxk)
JauxnKaxk) <— Haxg) (16)

where QR denotes the QR decomposition that is performed eRItimatrix
as the error of reconstruction after projecting Hematrix (trajectory matrix

of a new observation) onto the learned subspagp Matrix B is defined in  [11]
[25]:
> L v 0 T
B=U J (rxr) (rxk) :| |: (kxT) (kxk)
[Oaxry Jax] Ouxry  Kuxk) Okxr) Ttk
17) [12]

Considering Equations (14-17), matiis simplified as:

V(er)

0(kxk):| r
O(er)

B=[U(xrmZ(rxr) U(lXT)L(TXk)+J(le)K(le)]|: Toxr)

= UaxmBrx r-)V(TT wi) Uasr L ey tHaxr)] [13]

= [U(lxr)z(rxr)vg;xk) U(lxr)L(rxk)+C(l><k)_U(l><r)L(r><k)]

= [U(lXT')E(TXT')Vﬁxk) Cxi)] [14]

= [X1, axk) Cuxm)

J (18) [15]
Matrix B contains the trajectory matrix of the initial subspace amel new
observation that can be written as (considering the SVD @fntiiddle matrix
in Equation (17)):

[16]

B = [X1;(xk) Cuxn)l 171

Viexr) O T (19
—[U J UIEIVIT (kxr) (kxk)
(Uaxry Jaxp] O A
where - L [18]
U/E/V/T — |: (rxr) (rxk) :| 20
Ouxry Kaxw) (20)
Finally matrix B is obtained as: (19]
B = UIIEIIVIIT
U" = [Uqxry JaxplU’ 20]
E” _ E/ (21)

O(kxk) [21]

Tiexr)

V(er)

V// —
[ Okxr)

v
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