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A theoretical analysis is presented of a nematic liquid crystal confined between substrates patterned with
squares that promote vertical and planar alignment. Two approaches are used to elucidate the behavior across
a wide range of length scales: Monte Carlo simulation of hard particles and Frank-Oseen continuum theory.
Both approaches predict bistable degenerate azimuthal alignment in the bulk along the edges of the squares; the
continuum calculation additionally reveals the possibility of an anchoring transition to diagonal alignment if the
polar anchoring energy associated with the pattern is sufficiently weak. Unlike the striped systems previously
analyzed, the Monte Carlo simulations suggest that there is no “bridging” transition for sufficiently thin cells.
The extent to which these geometrically patterned systems resemble topographically patterned substrates, such
as square wells, is also discussed.
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I. INTRODUCTION

The imposition of a liquid crystal’s (LC’s) bulk director
orientation through that LC’s interaction with a confining
substrate is termed anchoring [1]. In the absence of defects
and applied fields, substrate anchoring is the main determinant
of the director profile in a sandwich geometry LC cell; the
director profile in such a cell is set through minimization of the
orientational elastic energy, subject to each wall’s polar and
azimuthal anchoring constraints. At a continuum level, this
elastic energy is most commonly expressed through square
director gradient terms corresponding to the independent
splay, twist, and bend modes of orientational deformation,
weighted by the elastic constants K1, K2, and K3, respectively.
When considered at a finer length scale, conversely, both
the anchoring strengths and the bulk elastic constants are
emergent from the microscopic interplay of the orientational
and positional degrees of freedom of the liquid crystalline
molecules and the confining surfaces.

Traditional routes to establishing desired anchoring behav-
iors, and, thus, director profiles of use for display devices,
include substrate rubbing and various photoalignment ap-
proaches (light-induced cis-trans isomerization, photodegra-
dation, etc.). Although significant empirical knowledge has
been developed in relation to each of these approaches, no
coherent picture has been established of the molecular mech-
anisms that underpin continuum concepts such as anchoring
angles and coefficients and surface viscosities. Introducing
inhomogeneity into substrate conditions has, for some time,
been recognized as an alternative route to both controlling
conventional anchoring and, increasingly, introducing new
phenomena. A range of such substrates have been developed

*Present address: Karlsruhe Institute of Technology, Institute for
Meteorology and Climate Research, Atmospheric Aerosol Research
Department (IMK-AAF), Hermann-von-Helmholtz-Platz 1, D-76344
Eggenstein-Leopoldshafen, Germany.
†d.j.cleaver@shu.ac.uk

and examined. These cover patterning length scales ranging
from 10−7 m upward, couple to the LC either sterically,
chemically, or dielectrically (or by a combination of same), and
have been achieved as both one-dimensional (stripes, ridges,
etc.) and two-dimensional (circles, squares, triangles, posts,
etc.) patternings.

One of the important phenomena that can be achieved
through substrate patterning is bistability, which is stabi-
lization of two distinct anchoring arrangements with (in the
absence of an applied field) mutually inaccessible free energy
minima. Pattern-stabilized bistability has now been established
for the blazed grating structure of zenithally bistable devices
[2,3], the two-dimensional array of post-aligned bistable
nematic [4] devices, and, more recently, a steric square-well
arrangement [5,6]. In each of these, the bistability pertains
between one state with a continuous director arrangement and
a second containing orientational defects that are pinned in
some way by the substrate inhomogeneity. This suggests that
the key length scale for achieving bistability here is the size and
periodicity of the patterning, a conjecture which is supported
by the success of mesoscopic modeling approaches in both
accessing the bistable states and relating, semiquantitatively,
switching fields to geometrical parameters [7,8].

In addition to these sterically patterned systems, chemical
patterning has now also been developed as an approach for
imposing substrate inhomogeneity on LC systems. The notion
of imposing combinations of azimuthal and polar anchorings
on LCs via chemically nanopatterned substrates was the
subject of early experimental work [9–11]. Subsequently,
Lee and Clark performed a more systematic study of the
alignment properties of nematic LCs on surfaces comprising
both homeotropic and planar alignment areas [12]. For stripe
patterns, they found that the polar orientation depends on
the relative areas of the homeotropic and planar regions but
that the azimuthal anchoring always runs along the direction
of the stripes. Scharf and co-workers [13,14] undertook
further investigations of systems with competing alignment
regions. Subsequent innovations by the groups of Abbott [15]
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and Evans [16] centered on the development of patterns
of combinations of alkanethiols deposited as self-assembled
monolayers (SAMs) on gold. Using microcontact printing,
these systems proved capable of achieving highly reproducible
surface features with periodicities of tens of micrometers.
Square, circular, and striped patterns written on these length
scales were, thus, observed using optical microscopy in
crossed-polarizer setups. An alternative approach, employ-
ing selective ultraviolet irradiation of SAMs, achieved LC-
aligning stripe patterns on the submicrometer scale [17].

In Ref. [18], two of the current authors contributed the
simulation aspects of a joint experimental and simulation
study of LC alignment at a single patterned substrate. In
this, it was shown that a range of patterned SAMs can
be used to control LC alignment states and domains. For
stripe patterns, the LC was found to align parallel to the
stripe boundaries for both nanoscale simulation features and
micrometer-scale experimental systems. Indeed, despite the
significantly different length scales involved, the qualitative
behavior seen in simulations of generic molecular models
confined using a striped substrate proved entirely consistent
with the experimental observations. Specifically, on undergo-
ing isotropic to nematic ordering, all systems proved to be
dominated by the homeotropic-aligning substrate regions at
the ordering transition, the influence of the planar-aligning
regions only becoming apparent well into the nematic phase.

In Ref. [19], we extended our molecular simulation work
to consider the behavior of a thin nematic film confined
between two identical nanopatterned substrates. Using patterns
involving alternating stripes of homeotropic-favoring and
homogeneous-favoring substrate, we showed that the polar
anchoring angle can be varied continuously from planar to
homeotropic by appropriate tuning of the relative stripe widths
and the film thickness. For thin films with equal stripe widths,
we also observed orientational bridging, with the surface
patterning being written in domains which traversed the
nematic film. This dual-bridging-domain arrangement broke
down with increase in film thickness, however, being replaced
by a single tilted monodomain. Strong azimuthal anchoring in
the plane of the stripe boundaries was observed for all systems.

Stripe-geometry systems have also been analyzed by the
third of the current authors using continuum theory [20–22].
This larger-length-scale work, which built on earlier treatments
by Harnau et al. [23], has shown that the basis for azimuthal
alignment by striped substrates is associated with differences
in the Frank elastic constants. Azimuthal anchoring parallel
to the stripes corresponds to the LC adopting a configuration
comprising twist, splay, and bend deformations; in the other
limiting case, bulk alignment perpendicular to the stripes, only
splay and bend deformations are required. Experimentally,
K2 is significantly lower than K1 and K3 for most nematics,
so that parallel anchoring is stable. Monte Carlo estimates
of the elastic constants for calamitic particle-based LC sim-
ulation models yield similar elastic constant ratios [24], so
this phenomenological agreement between the predictions of
particle-based and continuum approaches is to be expected.

In this paper, we extend our respective works on stripe-
patterned systems by studying the effect of substrates with
square patternings on a confined LC film. Experimental studies
of such systems include the checkerboard patternings achieved

by Bramble [18] and, more recently, Yi [25] and the bistable
square-well systems mentioned above [5,6]. With respect to the
latter, we note that both Q-tensor [26] and Landau–De Gennes
[27] modeling approaches have been used to examine the
stable configurations for such systems. From this, diagonally
anchored and edge-anchored states have been identified, the
former comprising surface region defects.

Here, then, we use both molecular- and continuum-level
modeling approaches to investigate the behavior of LC films
confined between square-patterned substrates. In Sec. II we
present our molecular-level model system and describe the
simulation methodology employed. Section III contains the
corresponding simulation results. Following this, in Sec. IV
we present a continuum-level analysis of anchoring control in
systems with square-patterned substrates. Finally, in Sec. V,
we compare and combine the findings from these investiga-
tions to draw more general conclusions.

II. MOLECULAR MODEL AND SIMULATION DETAILS

We have performed a series of Monte Carlo (MC) sim-
ulations of rod-shaped particles confined in slab geometry
between two planar walls. Interparticle interactions have been
modeled through the hard Gaussian overlap (HGO) potential
[28]. Here, the dependence of the interaction potential νHGO

on ûi and ûj , the orientations of particles i and j , and r̂ij , the
interparticle unit vector is

νHGO =
{

0 if rij � σ (r̂ij ,ûi ,ûj ),
∞ if rij < σ (r̂ij ,ûi ,ûj ), (1)

where σ (r̂ij ,ûi ,ûj ), the contact distance, is given by

σ (r̂ij ,ûi ,ûj ) = σ0

{
1 − χ

2

[
(r̂ij .ûi + r̂ij .ûj )2

1 + χ (ûi .ûj )

+ (r̂ij .ûi − r̂ij .ûj )2

1 − χ (ûi .ûj )

]}−1/2

. (2)

The parameter χ is set by the particle length to breadth ratio
κ = σend/σside via

χ = κ2 − 1

κ2 + 1
. (3)

Particle-substrate interactions have been modeled using the
hard needle–wall potential (HNW) [29]. In this, the particles
do not interact directly with the surfaces. Rather the surface
interaction is achieved by considering a hard axial needle of
length σ0ks placed at the center of each particle (see Fig. 1).
This gives an interaction

νHNW =
{

0 if |zi − z0| � σw(ûi),
∞ if |zi − z0| < σw(ûi),

(4)

where z0 represents the location of a substrate and

σw(ûi) = 1
2σ0ks sin(θi). (5)

Here, ks is the dimensionless needle length and θi =
arcsin(ui,z) is the angle between the substrate plane and the
particle’s orientation vector. θi = 0 corresponds to planar an-
choring and θi = �/2 corresponds to homeotropic anchoring.
For small ks , the homeotropic arrangement has been shown
to be stable, whereas planar anchoring is favored for long
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FIG. 1. (Color online) Schematic representation of the geometry
used for the HNW particle-substrate interaction [29].

ks [29]. Furthermore, despite its simplicity, the HNW potential
has been found to exhibit qualitatively identical behavior to
that obtained using more complex particle-substrate potentials
[30]. Here, by imposing variation in ks across the two
boundary walls, we investigate the effects of molecular-scale
substrate patterning on LC anchoring. The results presented
in Sec. III were obtained for systems of 864 κ = 3 HGO
particles confined between two square-patterned substrates.
The substrates were separated by a distance Lz = 4κσ0, with
periodic boundary conditions being imposed in the x and y

directions.
On each substrate, ks was set to a homeotropic-aligning

value (ks = 0) for two quadrants of its area and a planar
value (ks = 3) for the remainder. Sharp boundaries have been
imposed between the different alignment regions and the
patterns on the top and bottom surfaces have been kept in
perfect registry with one another, as shown in the schematic in
Fig. 2. The simulated system was initialized at low density
and compressed, in small increments, by decreasing the
box dimensions Lx and Ly while maintaining the condition
Lx /Ly = 1. At each density, a run length of 106 MC sweeps
(where one sweep represents one attempted move per particle)

FIG. 2. (Color online) Schematic representation of rectangle-
patterned systems with alternating homeotropic-inducing [dark (red
online)] and planar-inducing [light (green online)] substrate regions.
The Euler angle φ is 0 from the y axis.

FIG. 3. (Color online) Snapshots of the square-patterned system
with sharp transitions between ks = 0 and ks = 3 regions for a
series of different reduced densities. Particles are color coded for
orientation. (a) ρ∗ = 0.30, (b) ρ∗ = 0.34, (c) ρ∗ = 0.37, (d) ρ∗ =
0.38, and (e) ρ∗ = 0.40.

was performed, with averages and profiles being accumulated
for the final 500 000 sweeps.

Analysis was performed by dividing stored system config-
urations into 100 equidistant constant-z slices and calculating
averages of relevant observables in each slice. This yielded
profiles of quantities such as number density, ρ∗(z), from
which structural changes could be assessed. Orientational
order profiles were also calculated, particularly

Qzz(z) = 1

N (z)

N(z)∑
i=1

(
3

2
u2

i,z − 1

2

)
, (6)

which measures variation across the confined films of orien-
tational order measured with respect to the substrate normal.
Here N (z) is the instantaneous occupancy of the relevant slice.
We have also further subdivided the system to assess lateral
inhomogeneities induced by the patterning.

III. MONTE CARLO SIMULATION RESULTS

The outcomes of the square-patterned surface system
simulations are summarized by the snapshots shown in Fig. 3.
Several remarks emerge from these. The substrate patterning
is readily apparent from all of these, with ordered layers
of homeotropic-aligned and planar-aligned particles residing
in the appropriate regions. Sharp delineation between these
regions can be seen for all densities. At ρ∗ = 0.30 and 0.34,
the particles at the center of the film appear to be relatively
disordered, whereas aligned monodomains can be seen at the
three higher densities. Animations of these simulations show
that in the planar-aligning substrate regions, the molecules
regularly flipped en masse between the x and y orientations.
This tendency is apparent from comparing Figs. 3(c)–3(e);
the orientations on the planar parts of the substrate vary
from image to image. At ρ∗ = 0.37, the system appears
to exhibit homeotropic anchoring [Fig. 3(c)]. On increasing
the density (ρ∗ = 0.38), however, this initial homeotropic
anchoring adopts a clear tilt [Fig. 3(d)] through which
the planar-alignment regions on the two substrates become
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coupled. On further compression to ρ∗ = 0.40, the bulk
director partially regains its alignment normal to the substrates
[Fig. 3(e)]. At the nematic density ρ∗ = 0.38, the homeotropic
and planar substrate regions are restricted to monolayers,
with orientational discontinuities being seen between these
layers and the tilted bulk anchoring. At high (ρ∗ = 0.40)
and moderate (ρ∗ = 0.37) densities, where the bulk anchor-
ing was more homeotropic, only the planar parts of the
surface monolayers appear orientationally disconnected from
the bulk.

In the light of these observations, we have analyzed the
behavior of this system more quantitatively by calculating
two sets of profiles of key observables; for analysis purposes,
each simulated system has been split in two according to
the imposed substrate pattern. In this, individual particles
have been allocated to homeotropic-confined or homogeneous-
confined regions according to their x and y coordinates.

The density profiles depicted in Fig. 4(a) show the
adsorption characteristics for the portion of the film confined
between the homeotropic surface regions. These indicate that

 0

 1

 2

 3

 4

 5

 6

-6 -4 -2  0  2  4  6

ρ(
z)

z

ρ∗=0.30
ρ∗=0.34
ρ∗=0.37
ρ∗=0.38
ρ∗=0.39

 0

 1

 2

 3

 4

 5

 6

-6 -4 -2  0  2  4  6

ρ(
z)

z

ρ∗=0.30
ρ∗=0.34
ρ∗=0.37
ρ∗=0.38
ρ∗=0.39

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-6 -4 -2  0  2  4  6

ρ(
z)

z

ρ∗=0.30
ρ∗=0.34
ρ∗=0.37
ρ∗=0.38
ρ∗=0.39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-6 -4 -2  0  2  4  6

ρ(
z)

z

ρ∗=0.30
ρ∗=0.34
ρ∗=0.37
ρ∗=0.38
ρ∗=0.39

(b)

FIG. 4. (Color online) Density profiles for the square-patterned
system at different reduced density ρ∗. (a) Density profile:
homeotropic-confined region; (b) density profile: planar-confined
region.

increasing the density leads to formation of surface layers
with a periodicity of �2σ0 (i.e., 2/3 of the particle length).
Figure 4(b) shows the corresponding behavior of the regions
of the film confined between the planar-confining surfaces.
Here, a shorter wavelength density modulation is apparent
close to the substrates. Despite these differences close to
the substrates, both profiles adopt very similar behaviors in
the central part of the film: essentially featureless at low
(isotropic) densities and weakly oscillatory at high (nematic)
densities. These oscillations are consistent with the formation
of a homeotropic (or near-homeotropic) bulk monodomain.
Such monodomain formation is only seen for much thicker
films when stripe patterning is imposed [19]. The weakness of
the density modulations, as well as the observation of tilt at
some densities, indicates that these systems are not adopting
homeotropic orientations simply to commensurate an integer
number of layers across the film thickness. Such behavior has
been seen previously but only for much thinner LC films [31].
Also, we have found equivalent behaviors for other choices of
the wall separation, d [32].
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FIG. 5. (Color online) Qzz profiles for the square-patterned
system at different reduced density ρ∗. (a) Qzz profile for the
homeotropic-confined region; (b) Qzz profile for the planar-confined
region.
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FIG. 6. (Color online) Comparison of the Qzz profiles for unpat-
terned (lines) and square-patterned (symbols) systems: homeotropic
regions.

A more complete understanding of the orientational aspects
of the substrate-induced ordering in this system can be
obtained from the Qzz diagonal component of the order tensor.
For perfect homeotropic anchoring, Qzz(z) should tend to
1 and for perfect planar anchoring, Qzz(z) should tend to
−0.5. Figure 5(a) shows the Qzz profiles measured in the
homeotropic-confined regions. As the density is increased,
initially the bulk-region Qzz value increases as well, showing
the development of homeotropic anchoring in the bulk. At
a density of 0.37, the bulk Qzz value reaches 0.60–0.65.
On further increasing the density to 0.38, however, the Qzz

value decreases to just below 0.5. Then, as the density reaches
0.4, the Qzz value increases again to Qzz = 0.60–0.65. This
nonmonotonic behavior confirms, in a statistically significant
fashion, the tilt behavior apparent in the corresponding
snapshots.

It is also informative to compare these observations with
equivalent profiles obtained for HGO films confined between
unpatterned homeotropic- and planar-aligning substrates. To
this end, Fig. 6 shows that, for the equivalent unpatterned
homeotropic-aligning system, increasing the density causes
the central Qzz value to increase monotonically. The fact that
Qzz shows a decrease at ρ∗ � 0.37 in the patterned system is,
then, associated with a tilt of the bulk director caused by the
presence of the planar pattern regions on the surface.

An equivalent comparison performed for the planar-
aligning region (Fig. 7) shows a very marked difference
between the patterned and unpatterned systems. Indeed,
despite its intrinsic anchoring character, the Qzz(z) behavior of
the planar-aligned region of the patterned system is actually far
closer to that of the unpatterned homeotropic-confined system.
Only very close to the substrates is the planar nature of the
imposed substrate pattern apparent.

In order to assess the azimuthal anchoring behavior in this
system, we have constructed a time-averaged histogram of the
molecular azimuthal angles observed during the ρ∗ = 0.37
simulation. Specifically, this histogram (Fig. 8) was generated
from 500 stored configuration files and based on the orienta-
tions of particles within 1σ0 of the planar substrate regions.
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FIG. 7. (Color online) Comparison of the Qzz profiles for un-
patterned (lines) and square-patterned (symbols) systems: planar
regions.

The histogram is strongly peaked at angles corresponding to
the boundaries of the square pattern; i.e., the molecules at the
planar substrates are strongly disposed to adopting azimuthal
angles φ of �0◦ � φ � 5◦ and �85◦ � φ � 90◦. This is
consistent with our previous observation that the molecules
on this region appeared to regularly flip between the x and y

directions.
Before closing this section, we return to the observation

that, other than in cases where the two were coincident, the
substrate patterning applied here failed to penetrate the LC
film beyond the first adsorbed monolayer. We can report that
this was actually a general characteristic observed for a range
of different two-dimensional patternings; simulations we have
performed with circle, oval, and rectangle patterns and a range
of film thicknesses have all led to the development of central
monodomain configurations [32]. This differs qualitatively
from what has been observed for thin LC films confined
between stripe-patterned substrates [19], where the substrate
patterning is written across the film in bridging domains.
Indeed, both the bulk monodomain formed here by the
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FIG. 9. (Color online) Schematic x-y plane slice through a
hypothetical planar-aligned bridging domain in a square-patterned
system. T configuration: splay and bend distortion. X configuration:
twist.

square-patterned film and its nonmonotonic tilt dependence
on density are equivalent to the behavior seen only for much
thicker stripe-patterned films.

To explain why the orientational bridging observed in thin
stripe-patterned systems is lost on moving to two-dimensional
patterns, we consider the hypothetical square bridging domain
shown schematically in Fig. 9. Here a planar-aligned domain
is bounded at each face by homeotropic material. From the
schematic, though, it is clear that two distinct pairs of domain
boundaries would be required for this situation: one pair
involving T-like orientational changes and another involving
X-like configurations. Such a scenario is clearly unstable
since the symmetry change across the interface is spatially
inhomogeneous. As a consequence, the hypothetical square
bridging domain considered here could never be a stable
arrangement. Indeed, similar stability arguments disallow
all orientational monodomain bridges projected from two-
dimensional patternings.

To conclude, these simulations indicate that LC film
confined between square-patterned substrates have a tendency
to form monodomains. These monodomains are different from
those developed between unpatterned substrates, though, since
(a) they can exhibit a nonmonotonic density-dependent tilt and
(b) the azimuthal anchoring shows a strong coupling parallel
to the square edges but is degenerate between the different
edge orientations.

IV. CONTINUUM MODEL

To further understand the aligning effects observed in the
simulations presented in the previous section, we now consider
the behavior of systems with the same geometry of patterning
but applied at a much larger length scale. Specifically, we
analyze the effect of square-patterned substrates on LC films
in the continuum limit. In this approach, the local orientation
of the nematic is characterized by a unit vector field known as
the director and parametrized here by

n̂(r) = (cos θ sin φ, cos θ cos φ, sin θ ), (7)

where the coordinates are chosen as depicted in Fig. 2. The
actual configuration adopted by the nematic is that which
minimizes the Frank free energy

F = 1

2

∫
d3r K1(∇ · n̂)2 + K2[n̂ · (∇ × n̂)]2 + K3|n̂

× (∇ × n̂)|2 +
∫

s

dS g(�n,�n0). (8)

Here, the first integral is to be performed over the volume of
the nematic layer and the second over the surfaces in contact
with the substrate. The interaction of the nematic with the
surface is characterized by an anchoring potential g(�n,�n0) that
measures the energy cost of moving the director away from an
easy axis �n0; for a patterned surface this varies as a function
of position. The configuration of the LC is found by solving
the Euler-Lagrange equations for θ and φ; these are generally
nonlinear and difficult to solve analytically in more than one
spatial dimension.

A common simplification, known as the one-constant
approximation, is to set K1 = K2 = K3. If this is done, the
Euler-Lagrange equation for θ reduces to Laplace’s equation.
However, such an approximation is unsuitable for analyzing
situations with patterned surfaces because the aligning effect
on the LC is due to differences between the elastic constants
[20]. A “two-constant” approximation, where K1 = K3 �= K2

has been previously used to understand the situation of
a nematic film in contact with a surface patterned with
alternating homeotropic and planar stripes, a two-dimensional
system [20,22], and here we extend the analysis to three
dimensions.

In order to proceed, a further simplifying assumption is
made: that the director is confined everywhere to a single
plane, i.e., that φ is spatially uniform. This simplification is
motivated (and justified) by the observation that the molecular
distribution of azimuthal angles (Fig. 8) in our MC simulations
implies a monodomain arrangement for all nematic films
confined in this way. While φ is taken to be constant, the
polar, or tilt, angle θ remains free to vary in response to the
substrate pattern. Keeping φ fixed is further motivated by the
observation that wherever the director is nearly homeotropic,
variations in φ contribute negligibly to the free energy. The
free energy density in this situation is

f = 1

2

{
(τ cos2 φ + sin2 φ)

(
∂θ

∂x

)2

+ (τ sin2 φ + cos2 φ)

×
(

∂θ

∂y

)2

+ (1 − τ ) sin(2φ)
∂θ

∂x

∂θ

∂y
+

(
∂θ

∂z

)2
}

, (9)

where τ = K2/K1 and the corresponding Euler-Lagrange
equation for θ is linear:

(τ cos2 φ + sin2 φ)
∂2θ

∂x2
+ (τ sin2 φ + cos2 φ)

∂2θ

∂y2

+ (1 − τ ) sin(2φ)
∂2θ

∂x∂y
+ ∂2θ

∂z2
= 0. (10)
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This can be converted to Laplace’s equation in new coordinates
(ξ,η,ζ ) by the following linear transformation:⎛

⎝ ξ

η

ζ

⎞
⎠ = P T QP

⎛
⎝x

y

z

⎞
⎠ , (11)

where

P =
⎛
⎝ cos

(
φ + π

4

) − sin
(
φ + π

4

)
0

sin
(
φ + π

4

)
cos

(
φ + π

4

)
0

0 0 1

⎞
⎠ (12)

and

Q =

⎛
⎜⎝

1
2

(
1 + 1√

τ

)
1
2

(
1√
τ

− 1
)

0
1
2

(
1√
τ

− 1
)

1
2

(
1 + 1√

τ

)
0

0 0 1

⎞
⎟⎠ . (13)

The geometric interpretation of the transformation is a combi-
nation of a rotation and shear. To solve the Euler-Lagrange
equation for θ (x,y,z), Eq. (10), we try a solution of the
form

θ (x,y,z) = θ0 +
∞∑

n=−∞

∞∑
m=−∞

1

λ
(Anme−νnmz + Bnmeνnmz) exp[i2π (nx + my)/λ], (14)

where λ = 2Lx/d such that λd is the period of the patterning in both x and y directions. The equation is satisfied if the parameters
νnm are chosen as

νnm = π
√

2(τ + 1)(m2 + n2) − 2(τ − 1)[2mn sin(2φ) + cos(2φ)(m2 − n2)]. (15)

The constant θ0 is, from the mean-value theorem,

θ0 = π

4
. (16)

The coefficients Anm and Bnm are determined by the boundary
conditions. For weak anchoring, these are from the torque-
balance equation

ŝ · ∂f (θ,∇θ )

∂∇θ
+ ∂g(θ,θe)

∂θ
= 0 (17)

evaluated at each surface, where ŝ is the outward surface
normal. To facilitate separation of the coefficients in Eq. (16),
the harmonic anchoring potential

gH (θ,θe) = Wθ

2
(θ − θe)2 (18)

is chosen, yielding the Robin boundary condition

± Lθ

∂θ

∂z
+ θ = θe, (19)

where Wθ is the polar anchoring coefficient, θe(x,y) is the spa-
tially varying easy axis promoted by the pattern, the minus sign
corresponds to z = z0 = −d/2, the plus sign corresponds to
z = z0 = +d/2, and the dimensionless parameter associated
with polar anchoring Lθ is

Lθ = K1

Wθd
. (20)

Inserting the solution (14) into the boundary condition (19) at
each surface yields the coupled system of equations(

1 + Lθνnm 1 − Lθνnm

e−νnm (1 − Lθνnm) eνnm (1 + Lθνnm)

) (
Anm

Bnm

)
=

(
cnm

dnm

)
,

(21)

where cnm and dnm are the Fourier coefficients of the easy
axis profile θ0(x,y) at the z = −d/2 and z = +d/2 surfaces,

respectively. These are simply

cnm = dnm =
{− λ

πnm
, n,m odd,

0, otherwise,
(22)

and solution of (21) yields

Anm = eνnmcnm

Lθνnm(eνnm − 1) + (eνnm + 1)
,

Bnm = cnm

Lθνnm(eνnm − 1) + (eνnm + 1)
. (23)

The complete director profile for given values of φ, τ , Lθ , and
λ is then fully specified by the series solution (14) and the
parameters (15) and (23) that have now been determined.

The free energy associated with the solution (14) may
be evaluated by substituting it into the free energy (9) and
performing necessary integrations. The bulk energy is

Fb =
∑
nm

π2

λ2νnm

[(
A2

nme−νnm + B2
nme+νnm

)
sinh(νnm)

+ 2AnmBnmνnm

]{(1 + τ )(m2 + n2)

+ (1 − τ )[cos(2φ)(m2 − n2) + 2mn sin(2φ)]}
+

∑
nm

1

2
νnm

[(
A2

nme−νnm + B2
nme+νnm

)
sinh(νnm)

− 2AnmBnmνnm

]
. (24)

The surface energy (for each surface) is

Fs = π2λ2/16 + 1

Lθ

∑
nm

(Anm + Bnm)(Anm + Bnm − 2cnm).

(25)

These expressions for the free energy have been evaluated
numerically as a function of φ for different values of Lθ . A
value of τ = K2/K1 = 1/2 was used that is approximately
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FIG. 10. Free energy of the nematic as a function of φ, plotted
for λ = 1.0 and various values of Lθ .

valid for many common nematics including 5CB. The period
of the pattern was initially chosen to be the same as the
cell thickness, i.e., λ = 1. The plots displayed in Fig. 10
reveal an anchoring transition: as Lθ → 0, representing rigid
polar anchoring, the squares promote azimuthal alignment
parallel to their sides, and there are two degenerate solutions
at φ = 0 or φ = π/2, i.e., the same behavior as was observed
in our molecular simulations. If Lθ is increased, however,
alignment along the diagonals, i.e., φ = ±π/4, becomes the
energetically preferred solution. The critical Lθ at which the
diagonal and aligned solutions become degenerate is roughly
Lθ ∼ 0.03. Experiments performed using a single square-
patterned substrate have exhibited the φ = ±π/4 behavior
corresponding to weak anchoring [18].

The second parameter of interest is λ, the overall size of
the squares relative to the cell thickness. Shown in Fig. 11 is
the energy difference between the aligned φ = 0 and diagonal
φ = π/4 solutions as a function of λ, plotted for various values
of Lθ . In this plot, therefore, the diagonal solution is stable

FIG. 11. Free energy difference between the aligned φ = 0 and
diagonal φ = π/4 solutions as a function of the period of the
pattern, λ.

FIG. 12. Calculated director angle profiles θ (z) in the center of
the homeotropic and planar regions, for various values of Lθ .

where lines lie below the abscissa, whereas the edge-aligned
solution is stable where the lines take positive values. We see,
therefore, that for Lθ � 0.03 the diagonally aligned solution
is preferred both at small λ and as λ → ∞. Reducing Lθ

has the effect of narrowing the window of λ values for
which the diagonal solution is preferred. Our high-density MC
simulation corresponds to a value of λ = 1.12 (Fig. 11).

Continuum predictions for director tilt profiles as a function
of z for the planar and homeotropic regions are displayed
in Fig. 12 and show that a nearly uniform configuration is
adopted at the cell center. This is in reasonable agreement
with the findings from our particle-based simulations, given the
very different spatial resolutions accessible to the two methods
used. As the inverse anchoring parameter Lθ is increased, the
tilt conditions at the substrates relax and the central uniform
region widens

V. CONCLUSIONS

Alignment of a nematic between two substrates patterned
with alternating homeotropic and planar squares has been
studied using two theoretical approaches: MC simulation of
rigid particles interacting through the hard Gaussian overlap
potential and a calculation performed with nematic continuum
theory. Both techniques show a regime where the nematic
azimuthally aligns in the bulk with the edge of the squares. In
the MC simulations, the average azimuthal orientation of the
molecules is observed to flip between the two sides during the
runs; these states are energetically degenerate in the continuum
approach. Furthermore, the continuum calculation reveals the
existence of an anchoring transition. If the polar anchoring
is sufficiently weak and the period of the pattern is somewhat
greater than the cell thickness, the nematic instead aligns along
the diagonals. Unlike previously considered systems of square
posts and wells [26,27] our calculations raise the possibility of
re-entrant behavior as a function of the period of the pattern: for
appropriate values of the polar anchoring energy, the diagonal
state becomes unstable at both short- and long-wavelength
patterning (Fig. 11). It is likely that the location of the
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critical values of the period are only approximately correct
because azimuthal variations of the director were not included
in our minimization of the free energy. We expect diagonal
arrangements to be accessible to the MC approach for larger
patterning periodicities; we are presently examining such
systems. Equivalently, a transition between the two regimes
ought to be experimentally observable by adjusting the ratio
of the period of the pattern to the cell thickness.

Our continuum analysis also reveals the surprising result
that an exact linear form of the nematic Euler-Lagrange
equations exists even if there is three-dimensional variation
in the director and the nematic has inhomogeneous elastic
constants. The form of the resulting equation lends a geometric
interpretation to elastic anisotropy as a transformation into
skewed coordinates. This result should be of utility for further
study of LC behavior in complicated geometries.

The behavior observed in the present system is quali-
tatively quite different from that seen where a nematic is
aligned between equivalent striped substrates. Previous MC
simulations show that, for a sufficiently thin film with stripe-
patterned boundaries, there exists a regime where the nematic
is divided into domains of vertical and planar alignment
that bridge between the corresponding substrate regions. No
such bridging behavior was observed for the square-patterned
system considered here. Instead, there was a clear tendency
for the orientations imposed by the surface patterning to be
confined to the first monolayer adsorbed at the substrate. The
absence of orientational bridging domains in two-dimensional-
patterned systems can be explained by consideration of the
spatially inhomogeneous domain boundaries they would im-
ply. Whereas arrangements involving some splaylike and some
twistlike domain boundaries in bulk are not stable, these mixed
arrangements are seen in the at-substrate monolayers. The line
tensions associated with these different geometries presumably
have differing energy densities. Despite this, these linear

features persist for the strong-anchoring scenario considered
in our MC simulations, rather than being displaced subsurface.
Since similar behavior appears from both simulation and
continuum theory, despite the fact that the latter entirely
neglects variations in ordering, it appears that the line tension
depends primarily on elastic distortion of the director and does
not significantly depend on the scalar order parameter. This
justifies use of the continuum theory for such systems.

When deeply in one or other of its possible regimes, edge or
diagonal, the alignment in these systems is degenerate due to
the symmetry and hence of interest for electro-optic, display,
and sensing applications. There is, though, also a capacity
for bistabiliity between the edge and diagonal states. In this
respect these systems are quite similar to the post-aligned
bistable display [26] and the arrays of square wells [27]
previously studied. Although these have the same symmetry as
the systems considered here, there is an important difference:
in the present case the bistable states have no disclinations
present in the nematic configuration. Our results indicate,
therefore, that bistability is not contingent on the presence
of defects.

Despite the apparent simplicity of the geometry, our results
illustrate the rich phase diagrams exhibited by complex fluids
in patterned geometries. Further study of related systems
is presently being undertaken, to identify optimal switching
strategies between the bistable states identified here.
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