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OPTIMAL CONTROL, SELF-TUNING TECHNIQUES AND 

THEIR APPLICATIONS TO DYNAMICALLY POSITIONED VESSELS

Patrick T K Fung

ABSTRACT

This thesis consists of two parts. The development of a 
self-adaptive stochastic control system for dynamically 
positioned vessels is described in Part One. Part Two is 
the investigation and the development of self-tuning control 
techniques.

In Part One, the dynamic ship positioning control problems 
and basic components are described. The modelling techniques 
of low frequency ship motions and wave motions are given.
The various Kalman filtering methods are appraised. An 
optimal state feedback control with integral action for the 
ship positioning system is proposed, followed by the 
simplification of the complex control structure to allow 
easy implementation. A self-tuning Kalman filter is proposed 
for systems which have low frequency outputs corrupted by 
high frequency disturbances. This filter is used in the ship 
positioning system. Simulation results of scalar, multivari­
able and non-linear cases are given.

Part Two begins with the development of an adaptive tracking 
technique for slowly varying processes with coloured noise 
disturbances. Estimated results for various wave signals are 
given. The self-tuning control techniques are overviewed, 
followed by the development of an explicit multivariable 
weighted minimum variance controller. Simulation results 
including the estimation of system time delay are given. 
Finally, an implicit weighted minimum variance controller 
for single input-single output system is developed.
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OPTIMAL CONTROL, SELF—TUNING TECHNIQUES AND 
THEIR APPLICATIONS TO DYNAMICALLY POSITIONED VESSELS

Patrick T K Fung

ABSTRACT
This thesis consists of two parts. The development of a 
self-adaptive stochastic control system for dynamically 
positioned vessels is described in Part One. Part Two is 
the investigation and the development of self-tuning control 
techniques.

In Part One, the dynamic ship positioning control problems 
and basic components are described. The modelling techniques 
of low frequency ship motions and wave motions are given.
The various Kalman filtering methods are appraised. An 
optimal state feedback control with integral action for the 
ship positioning system is proposed, followed by the 
simplification of the complex control structure to allow 
easy implementation. A self-tuning Kalman filter is proposed 
for systems which have low frequency outputs corrupted by 
high frequency disturbances. This filter is used in the ship 
positioning system. Simulation results of scalar, multivari­
able and non-linear cases are given.

Part Two begins with the development of an adaptive tracking 
technique for slowly varying processes with coloured noise 
disturbances. Estimated results for various wave signals are 
given. The self-tuning control techniques are overviewed, 
followed by the development of an explicit multivariable 
weighted minimum variance controller. Simulation results 
including the estimation of system time delay are given. 
Finally, an implicit weighted minimum variance controller 
for single input-single output system is developed.
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INTRODUCTION

Objectives

The contents of this thesis are separated into two main 

parts. Part I involves the solution of the dynamic ship 

positioning control problem using optimal and self-tuning 

techniques. This is the main theme of the thesis. Part II 

is concerned with the development of adaptive and self­

tuning control theory.

Introduction to Part I

The abundant deposits in the ocean seabed have become the 

targets for energy and mineral searches. The development is 

progressing towards deeper seas. Thence the demand for 

technical support by way of dynamically positioned vessels 

is increasing and the performance specifications are becom­

ing tightened. Basically, the position control of a vessel 

must only allow for a maximum certain radial position 

error. The control system must avoid high frequency fluctu­

ations in the thruster demands. Moreover, the controller 

must be capable of eliminating any offset due to constant 

disturbances.

-xx-
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In the conventional dynamic system using Proportional- Inte­

gral-Derivative (PID) controllers and notch filters, the 

wave filter imposes a phase lag on the position error 

signals. This phase lag restricts the allowable bandwidth 

that can be used for the controller, whilst still 

maintaining the stability margins required for satisfactory 

controller performance; hence an inevitable conflict arises 

between bandwidth and filter attenuation. The more effec­

tive the wave filter becomes in reducing the thruster oscil­

lations due to the waves, the more restriction is placed on 

the controller bandwidth and hence on the position holding 

accuracy. These considerations have led to the development 

of a second generation of dynamic positioning systems, 

designed using optimal stochastic control theory and 

employing the Kalman filter.

The non-linearity and the uncertainty of ship parameters and 

weather conditions are the main obstacles in achieving a 

good performance for the control system. The recent devel­

opment of the self-tuning control theory has encouraged the 

author to investigate the use of self-tuning techniques in 

dynamic ship positioning systems. Self-tuning of dynamical­

ly positioned vessels can be classified as the third 

generation in this development.

-xxi-
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Introduction to Part II

When the author was solving the dynamic ship positioning 

control problem, he was encouraged by Professor M.J. Grimble 

to work on self-tuning control as well. This attempt led to 

the development of a self-adaptive tracker for slow varying 

processes with coloured noises and weighted minimum variance 

self-tuning controllers.

Self-tuning control, because of its practical utility, has 

received much attention since it was first developed in the 

early seventies. The self-tuning algorithms vary according 

to the controller design criteria used. Usually, several 

self-tuning algorithms may be generated using the same con­

trol criterion. The weighted minimum self-tuner is one 

example based on the weighted minimum variance control cri­

terion and was developed particularly for the non-minimum 

phase system.

The self-adaptive tracker was primarily developed to esti­

mate slowly varying signals with coloured noises. The 

approach was to gather as much information as possible based 

on the observed signal, and then estimate the remnant using 

recursive parameter identification techniques.

-xxi i-
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Outline of the Thesis

Chapter One is an introduction to dynamic ship positioning 

control problems and a description of the basic components 

for the control system. The dynamic models for controller 

and filter design are developed in Chapter Two. The funda­

mental dynamic positioning control problem consists of con­

troller design and filtering. The Kalman filtering tech­

niques are described in Chapter Three. In Chapter Four, an 

optimal and three sub-optimal schemes of stochastic control 

with integral action are developed. Chapter Five consists 

of the self-tuning Kalman filtering theory. The applica­

tions and results of self-tuning Kalman filter to DP 

(Dynamic Positioning) control system are discussed in 

Chapter Six. This includes single input/single output, 

multivariable and non-linear cases.

Chapter Seven is the development of an adaptive tracker for 

slowly varying processes corrupted by coloured noises, 

followed by simulation results. The self-tuning control 

techniques are surveyed in Chapter Eight, followed by the 

development of an explicit multivariable weighted minimum 

variance self-tuning controller and an implicit version for 

single input/single output systems. Finally, an overall 

conclusions and suggestions for future work are described in 

Chapter Nine.
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CHAPTER ONE 

DYNAMIC SHIP POSITIONING SYSTEMS

1.1 INTRODUCTION

The philosophy of dynamic ship positioning control is to 

maintain the position and heading of a ship or a floating 

platform above a pre-selected fixed position over the seabed 

by using the vessel's thrusters. It can be extended to 

include the tracking problem of a vessel at fixed speed.

It's superiority over conventional positioning control 

technique is that the dynamic positioning (DP) system does 

not need anchor or mooring. It is particularly suitable for 

operation in deep seas such as the North Sea. The operation 

is efficient since there is no delay due to setting up and 

dismantling the anchors. It causes no damage to existing 

constructions on the seabed such as oil pipe lines. This 

type of vessel is used for several applications in the 

survey and development of off-shore mineral and oil 

resources and in oceanography. The number of countries 

involved in off-shore exploration is increasing rapidly.

The manufacturers competing against GEC in the United 

Kingdom are mainly from Norway, United States and Japan.

-1-
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1.2 THE POSITION CONTROL PROBLEMS

A DP system should be able to keep a vessel within specified 
position limits, with minimum energy consumption and with 

minimum wear and tear on the thrusters. The DP system 

should also cope with the time delay in the measurement 

system and the errors in the propulsion devices.

The control loops (Figure 1-1) for dynamically positioned 

vessels include filters to remove the high frequency wave 

induced motion signals. This is necessary because the 

thruster devices are not intended and are not rated to 

suppress wave induced motions greater than 0.3 radians per 

second. High frequency motions are generally tolerable in 

ship position control. The position control system must 

only respond to the low frequency forces on the vessel. The 

filtering problem is one of estimating the low frequency 

motions so that control can be applied. Notice that even 

though the position measurement includes a noise component, 

this does not cause the filtering problem. If the total 

position of the vessel were known exactly, there would still 

be a need to estimate the low frequency motions. A typical 

GEC duplex DP control system is shown in Figure 1-2.

-2-
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1.3 BASIC COMPONENTS

The basic components in a DP system are illustrated in 

Figure 1-3. Several types of position measurement systems 

can be used including taut wire [1], short range radio 

reference, and sonar systems. These measurements can be 

pooled and this gives rise to a combination of measurement 

problems. The heading measurement is given by a gyro­

compass. Communication satellites are increasingly being 

used to provide a position fix and this enables vessels to 

be moved to a reference position in just a few minutes. The 

control force is generated from thrusters.

1.3.1 Sonar Measurement System (Figure 1-4)

In the sonar measurement system, an interrogator on board 

the vessel transmits a sound pu e towards a transponder

which is placed on the seabed or mounted on an object. Upon 

receipt of a correctly pulsed/coded signal, the transponder 

transmits a reply. A split beam transducer then performs a 

highly accurate phase measurement of the received signal and 

the computer converts the phase angle to the geometric angle 

of the transponder. At the same time, the accurate range to 

the transponder is measured, which enables this system to 

determine the water depth.

-5-
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There are many types of acoustic position measurement 

systems but the GEC/Marconi system was a single beacon on 

the seabed with a multi-head transponder on a pod beneath 

the vessel. The signals can be upset by gas bubbles from 

divers or from the ocean bottom. However, vessels often use 

more than one position reference system including taut wire, 

rig mounted radio beacons and satellite fixes.

1.3.2 Taut Wire Measurement System (Figure 1-5)

The taut wire system is a well established and reliable 

method of determining the horizontal position of a vessel 

relative to a fixed point on the seabed. The required sea­

bed reference point is marked by a sinker weight lowered on 

a steel wire rope from the vessel. To sense the location of 

the vessel relative to the sinker weight, the rope is main­

tained under constant tension and the angle of rope from the 

vertical is measured in two orthogonal axes. The horizontal 

displacement of the vessel from the seabed reference point 

is the tangent of these angles multiplied by the water 

depth.

1.3.3 Radio Measurement System (Figure 1-6)

The position of off-shore vessels can also be measured by 

radio, satellite navigation, and inertial navigation

-8-
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systems. These systems are used extensively for navigation 

and survey purposes. However, their position accuracy is 

not suitable for dynamic positioning. These measurement 

systems are suitable for applications such as mining and 

pipelaying. Nevertheless, the short range radio position 

reference system has a potential for future development.

Its operating range is 50 Km with accuracy from 2 m to 20 m 

at a frequency of 3000 MHz. Basically, it has three modes:

(a) circular,

(b) range/bearing,

(c) hyperbolic.

GEC adopts the Artemis range/bearing system (Figure 1-6). 

The artemis measuring system has the following advantages:

(a) The fixed station equipment is portable and can be set 

up in approximately half an hour.

(b) One fixed station is sufficient for position fixing of 

a vessel within line of sight.

(c) The angular accuracy is independent on azimuth.

(d) A very low radiated power.

(e) A data channel is available for numerical data and

voice communication.

-10-



0/5/mcl704/16

1.3.4 Thrusters

The thruster devices for positioning the vessel can take 

several forms (Figure 1-7) but the ship model used in the 

following analysis is based upon Wimpey Sealab which has 

retractable ac motor driven thrusters with variable pitch 

propellers. The vessel has two rotatable bow and two 

rotatable stern thrusters, capable of 360 degrees rotation 

and each rated at 12.5 tonnes. The detailed model of the 

thruster will be discussed in the next chapter.

1.3.5 Wind Speed/Direction Measurement System

The wind force is normally regarded as an environmental 

disturbance. However, this force can be used in the feed 

forward loop, which has been shown to improve the control 

responses significantly. Wind speed and direction are 

measured by different sensors. However, a package unit 

consisting of the two sensors is available, which simplifies 

the installation and ensures these two parameters are 

measured at the same location.

The most commonly used wind speed sensor employs a propeller 

to drive a small dc voltage generator. The voltage gener­

ated is approximately directly proportional to the speed of
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the wind. The output voltage can be calibrated as the 

measurement of the wind speed.

The wind direction sensor consists of a vane which rotates 

to track the direction of flow of the wind. Attached to the 

vane is an angle measuring device which exerts minimum drag 

on the vane. Commonly used wind sensors are linear 

potentiometer and synchro transmitters. The latter has the 

advantages over the former of avoiding discontinuity and 

wearing of the components.

-13-
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CHAPTER TWO 

DYNAMIC MODELLING OF VESSEL MOTIONS

2.1 THE MOTIONS OF VESSELS

The environmental forces acting on a vessel induce motions 

in six degrees of freedom (shown in Figure 2-1). In a 

dynamic positioning system, only vessel motions in the 

horizontal plane (surge, sway and yaw) are controlled. All 

the motions will be referred to the body axes of the vessel 

(shown in Figure 2-2). The assumption will be made that the 

low and high frequency vessel motions (Figure 2-3) can be 

determined separately and that the total motion is the sum 

of each of them. This is the usual assumption made by a 

marine engineer because the analysis is simplified and the 

low frequency motions can be predicted with more accuracy 

than the high frequency motions.

The low frequency motions are mainly due to thruster, 

current, wind and second order wave forces. These are 

normally less than 0.25 radians per second. The last three 

forces can cause the vessel to drift from its station, 

therefore, they must be counteracted by using the vessel's 

thrusters.
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The first order high frequency wave induced motions are 

normally oscillating between 0.3 to 1.6 radians per second. 

These motions are not controlled because the existing 

thrusters cannot counteract them effectively. Any attempt 

will cause unnecessary wear and use extra energy.

In practice, most applications can allow such errors in the 

controlled variables, particularly in calm sea conditions.

2.2 THE NON-LINEAR LOW FREQUENCY SHIP MODEL

The forces which produce the low frequency (LF) motions are 

listed as follows:

(a) Forces generated by the thrusters and propellers.

(b) Wind forces. The horizontal wind speed can be resolved 

into a component in the average wind direction and a 

component perpendicular to this direction with zero 

mean. Both components can be modelled by a random 

variable with a Gaussian probability distribution.

(c) Wave induced drift forces. These second order wave 

forces are relatively steady and are assumed to be 

unaffected by the current forces which are almost 

constant.
(d) Hydrodynamic forces, caused by the vessel's motion 

relative to the water. These forces are due to add-

-17-
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mass, wave generation, viscous drag and hydrostatic 

buoyancy.

The non-linear differential equation relating surge, sway 

and yaw velocities are represented by the following form 

[2,3].

(M-X^)u - (M-Y^)rv = XA + XH (u,v,r)
(M-Y^)v + (M-Xu )ru = YA +.YH (u,v,r) (2.1)
(I^zz “ £̂-)r = Na + NH (u ,v ,r )

where

u: surge velocity
v: sway velocity
r: yaw velocity

X : applied surge direction force due to
the thruster and the environment

Ya : applied sway direction force due to
the thruster and the environment

Na : applied turning moment on the vessel

x H'y H/n H : the hydrodynamic forces and moment
due to relative motion between the vessel and 
water

Xu ,Y^,N£-: add masses and add inertia which depend on the
nature of the body motion and the resulting flow 
pattern.
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M: mass of vessel
I2Z: radius of gyration

The coefficients of this non-linear model are to be

determined by a combination of theoretical analysis and 

model tank tests [4], The thruster force f is a function of

the control signal in the linearized model. The thruster

dynamics will be discussed later in this section.

2.3 THE LINEARIZED LOW FREQUENCY SHIP MODEL

The linear LF ship model is determined by linearizing the 

non-linear model about an operating point of assumed current 

flow. This model and the linearized thruster model will be 

used in system design. The linear model has very little 

interaction between surge motion and sway/yaw motions, 

thence, surge motion control will be treated as a separate 

entity.

The state space equation for the surge motion is:

-  - - — —  - -  —
. su su su SU nSU
X1 all 0 X1 p F

. su 
x2 1 0 su

x2 + 0 (2.2)
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+ psu
su .Ui + > '

0 0
fsu

The sway and yaw state space equations are:

X1
x2
x3
x4

all 0 a13 0 
1 0 0 0
a31 0 a33 0 
0 0 1 0

xl > 1 0

x 2 0 0

x3 + 0 h
x4 0 0

/3l 0 
0 0
0 02 
0 0

u)i
u)2

h
0

0 0
0 02
0 0

7J2

Fl
Tl

where

su , ..xi : surge velocity
su ...X2 : surge position

xi: sway velocity
X2 : sway position
X3 : yaw angular velocity
X 4 : yaw angle
Fsu: achieved thrust in surge direction
Fi: achieved thrust in sway direction
T^: achieved torque in yaw direction
o^u : random force applied to surge direction
c*>i: random force applied to sway direction
0>2 : random torque applied to yaw direction

(2.3)
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The disturbances such as wave drift and current forces are 

considered to produce an unknown mean value on the random 

forces. The parameters in the system matrices resulted from 

linearization.

2.4 THRUSTER ALLOCATION LOGIC

The function of the thruster allocation logic is to operate 

on the demands for thrust in the three axes from the state 

feedback control to:

(a) Set the thrusters so that the demands are met as 

closely as possible.

(b) Produce an achieved thrust command signal in each of 

the three axes for the input into the estimator.

The inputs to the thruster logic are:

(a) Fmax: maximum achieved thrust of the thrusters.
(k) distances of the thrusters from the vessel's

center of gravity.

(c) XU ,YU ,NU : the demanded forces and moment from the state 

feedback controller.
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The outputs are:

(a) F].,F2: achieved thrust command signals of the

thrusters.

(b) <f>i, <p2' the angle setting of the thrusters.

(c) Xp,Yp,Np: the achieved forces and moment in 

surge, sway and yaw direction.

The configuration is illustrated in Figure 2-4.

The thruster allocation logic is a static optimization 

problem, where minimum fuel consumption is the target. It 

will be treated as a separate entity and will not be 

included in the Kalman filter model. The Kalman filter and 

the state feedback controller will be concerned only with 

the thrust in surge and sway axes and moment about the yaw 

axis. The detailed thruster algorithm is very complicated 

and it will not be discussed in this report.

2.5 THE NON-LINEAR THRUSTER MODEL [4]

The thruster devices for dynamic positioning of a vessel can 

take several forms, but the ship model used in the following 

is based upon Wimpey Sealab which has retractable ac motor 

driven thrusters with variable pitch propellers 

(Figure 2-5). The vessel has two rotatable bow and two

-22-
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rotatable stern thrusters which can rotate 360 degrees and 

are each rated at 12.5 tonnes. The non-linear model is 

shown in Figure 2-6. The detailed thruster model is very 

complicated [10]. However, this simplified model is 

adequate for the purpose of control analysis.

The input servo is of bang-bang type. It has an electrical 

input circuit which compares a reference voltage against an 

electrical feedback from potentiometers measuring the moment 

of the ram. The error signal is applied to comparators 

which switch the forward or reverse solenoid valves when the 

error exceeds a predetermined deadband. This deadband is 

set to stop the servo from hunting.

The spring box between the input servo and output servo

restricts the force exerted on the mechanical linkage 

between the two servos. This is approximated by a 

saturation non-linearity.

The non-linearity between the spring box and the input to 

the main servo is not great for the angular movement is

small, thence, it is assumed to be linear.

The model of the main servo consists of a three position 

switch with a small dead zone at zero. The output from the
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switch is passed through an integrator and then a saturation 

non-linearity. The scale factor inserted in the feedback 

loop is the inverse of this saturation element. In 

practice, the output servo is faster than the input servo,

so the steady state loop gain should be greater than that in

the input servo. The ram should move to 100 percent in less 

than 5 seconds. The actual non-linearities in the forward 

path and feedback path are not known but can be seen from 

the experimental curves, that, they can be either 

compensated or neglected if small.

The most severe non-linearity is at the thrust and pitch 

relationship:

Thrust = (pitch)111 m = 1.76 (2.4)

It is usual to compensate for this non-linearity using an

input compensator of the form:

1_mSQ = (Si) (2.5)

The parameters at the input and the output of the thruster 

model are scaling factors which normalize the model with 

reference to the ship model.
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2.6 THE LINEAR THRUSTER MODELS

2.6.1 First Order Approximation

The linear model is a fundamental requirement for linear 

Kalman filter and state feedback controller design. The 

order of the linear model is quite critical to the 

computing load and accuracy of the model. A first order lag 

approximation was proposed by Grimble et. al. [5,6,7]. For 

the ith thruster, it takes the following form:

xi(t) = -bixi(t) + biui(t) (2 .6 )

where 1/5 is the time constant of the thruster and u^ is the i
control signal from the controller. xi(t) is the achieved 

thrust.

The parameter bi is the input amplitude and is frequency 

dependent. The usual modelling technique is first to 

estimate the current and wind forces as well as the 

operating frequency range. The time constant is then 

estimated by frequency response or step response techniques.

2.6.2 Second Order Lag Approximation

Fung et. al. [8 ] proposed a second order linear model to the 

non-linear thruster. It is well known that a high order
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linear model is usually a better approximation to the 

non-linear model. On the other hand, it will increase the 

computing load. Then, the choice of the order should depend 

on these two factors: complexity and accuracy. In the 

dynamic ship positioning system, a second order linear 

thruster model would only place a small increase on the 

computing load when using a fixed Kalman filtering scheme 

yet it has been shown that it gives better estimation [9] of 

the states and improve the robustness of the control 
system. The state equation of the second order linear model 

has the following form:

xi(t) -bi -b2 xifc(t)

1
cr ro .. 

I

X2( t) = 1 0 X2 (t) + 0

Where xi (t) is the thrust rate, x|(t) i

u( t )

(2.7)

thrust, u(t) is the demand control signal, bi and b 2 are 

the linearized parameters. The method to estimate these 

parameters is the same as that described in Section 2.6.1.

2.7 THE DYNAMIC MODEL OF WIMPEY SEALAB

Wimpey Sealab is a dynamically positioned vessel for a 

variety of operational duties in off-shore exploration 

operated by Wimpey Laboratories Ltd. It was converted from 

a Cargo Ship to a drilling ship in 1974. The vessel has an
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overall length of 99.11 metres, a beam of 15.24 metres and a 

displacement of 5674 tonnes. The position is automatically 

controlled by a computer which controls the operation of 

four 1,000 HP (746 Kw) retractable thrusters, each fitted 

with variable pitch propellers [10] and capable of 360° 

rotation. The vessel is equipped with acoustic and taut 

wire position reference systems. Wimpey Sealab also has a 

satellite navigation system which enables the vessel to 

position itself accurately at predetermined locations and 

has an integrated Doppler Sonar System for traversing 

predetermined paths to very high orders of accuracy• The 

specifications of the vessel for control system analysis are 

listed in Appendix B.

GEC Electrical Projects Ltd. is responsible for the control 

system design.

Dynamic positioning for Wimpey Sealab is required in water 

depths between 30 and 300 metres. The ship must be held 

within a circle of 7 metres radius (or 3% of water depth, 

whichever is the greater) in a steady wind of up to 

12.87 m/sec. with waves of significant height, 3.54 metres 

and significant length 91.44 metres and with a steady sea 

current up to 1.54 m/sec. Under the above conditions, but 

with the wind gusting up to 20.50 m/sec, the ship position
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must be held within a circle of 11 metres radius. Ship

heading is allowed to vary.

2.7.1 The Low Frequency Model

The normalized non-linear differential equation reference of 

the vessel are [1 1 ]:

1.044 u = XA + 0.092 v^ - 0.138 uU + 1.84 rv
1.840 v = YA - 2.580 vU - 1.840 v3/U + 0.068 r|rJ-rU
0.1021 r = NA - 0.764 uv + 0.258 vU - 0.162 r|r|(2.8)

The variables are defined in equation 2.1. U is the vector 

sum of u and v.

The linear LF model, under zero current flow, is:

1.044 u = XA - 0.0159 u
1.840 v = Ya - 0.1004 v + 0.002981 r (2.9)
0.10221r = Na - 0.007101 r + 0.005859v

The linearized model shows very little interaction between 

surge (u) and sway (v)/yaw (r), thence, the research into 

the control system for Wimpey Sealab in this project is 

concentrated in sway and yaw multivariable control. Surge 

control is treated as a single input and single output
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case. It can be solved easily once the control system for 

the multivariable case is established.

The linearized state equation of the ship model, together 

with the thrusters, is of the following form:

A| (fc) = A* *1 + Hjt(t) + (t) + (t)
y ̂ (t) = Cj x ̂ (t ) (2.10)

Where U j ( t ) £  is the control input to the thrusters, ^ (t ) 

£r 2 is a white noise sequence representing the random forces 

applied to the vessel and R^ is the wind force 

disturbances. Other disturbance forces, such as wave drift 

and current forces cannot be measured but can be considered 

to produce an unknown mean value on the signal o^(t), the 

vector y^(t)6 R^ represents the position outputs: sway and 

yaw.

In Section 2.6, the linear thruster model can be either 

first order or second order, thence state vector and

the system matrices are different in each case. Model A and 

Model B given below represent two different models for 

control system design. Let the system matrices be 

partitioned into the following forms:
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Ai = 0
11 Al 2
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1

c 11 Lt
0 ii

r

0 (2.11)

xt (t) = x̂ 1 (t )

x-H(t)6 R^ * x2 1 (t) is dependent on the model used. Matrices

A.ll, a }^ r d}1 , and vector x}^(t) are the same forX i l l i —g
both models. Matrices Â 22 and q 21 are dependent on the 

thruster model selected. All linearized equations have been 

time scaled with 3.104 as a time normalization factor.

Xj (t)

11

12

xi sway velocity
x 2 sway position
x3 yaw angular velocity (2

x4 yaw angle

-0.0546 0 0.0016 0
1 .0 0 0 0
0.0573 0 -0.0695 0
0 0 1.0 0

0 .5435 0 D/U  = 0.5435 0
0 0 0 0
0 -1.6340 0 9.785
0 0 0 0
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11 0.384
0
0
0

0
0
6.92
0

c.n = 0 1 0  0 
0 0 0 1

(2.13)

There are two linear ship models to be used in the 

simulation analysis. The difference between these models 

is in the thruster subsystems only.

Model A

x5
x6

a 22=Rt

thruster one 
thruster two

-1.55 0
0 -1.55

b21 = 1. 55 
0

0
1.55

(2.14)

(2.15)

In this model, the time constants of the thrusters are all 

2 seconds (0.644 per unit).

Model B

x5
x6
x7
x8

thrust rate of thruster one 
thrust of thruster one 
thrust rate of thruster two 
thrust of thruster two

(2.16)
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The time constants obtained by fitting the best second order 

linear model to the non-linear thrusters using frequency 

tests and Bode diagrams are:

TABLE 2-1

PEAK SINE WAVE INPUT TIME CONSTANTS (PER UNIT)

1*1 t2
0.0002 0.3981 0.3055

0.0005 0.7244 0.4266

0.001 1.059 0.6918

0. 0022 1/585 0. 861

Note that one unit is equivalent to input amplitude of 

0.0022. The time constants used in the linear model were 

taken as T^ = 1.059 and T2 = 0.6918 seconds which 

corresponds with a mid-range input signal. The system 

matrices for the thrusters are:
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A? * -2.3895 -1.3646
1.0 0

0
0

0
0

0 0 -2.3895 -1.3646
0 0 1.0 0

B£21= 1. 3646 0
0
0

0
1.3646 (2.17)

0 0

In the full LF model, two zero columns should be added to

2.7.2 The Noise Covariances Specifications

The process noise in the dynamic positioning problem can be 

partitioned into two parts: high frequency model and low 

frequency model. Let 0^ and 0^ be their covariance matrices 

respectively. Oh is assumed to be unity. The Qj covariance 

matrix is dependent on the mean wind force level. In Wimpey 

Sealab tests, the following values have been taken:

= sway per unit force covariance

= (0.00228)2 = 5.2 x 1CT6 C: 4 x 10“ 6

Qj2 = yaw per unit torque covariance

= (0.00031)2 = 9.6 x 10" 8 £: 9 x 10“ 8

the RHS of matrix A^2 to complete a square matrix A|
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Thence the process noise covariance matrix for the total 

system is:

Of =
4xl0“6 i

o ; 0 0
0 9xicr8 !1 0 0

0 0 1 1 1 0
0 0 1 0 1

(2.18)

The position measurement error is assumed to be 

0.333 metre. In the normalized unit, it is 0.0033. 

Therefore, the noise variance for sway motion is RjgicrlO” *̂ 

The yaw standard deviation is assumed to be 0.2 degrees, so 

that R£2 ^ 1 * 2 2 x  10“5. Thence, the measurement noise 

covariance matrix is:

10“5 0

1 . 2 2 x 1 0 “ 5
(2.19)

2.8 HIGH FREQUENCY MODEL

The high frequency motions of the vessel are in sympathy 

with the wave frequencies, and are assumed to be linearly 

related to the wave forces. The spectrum of the high 

frequency vessel motion is obtained from a standard sea 

spectrum and the vessel dynamics. It is assumed that in the 

worst case, the high frequency motions are determined by the
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sea spectrum alone which means the wave motions are not 

attenuated by the vessel dynamics.

Several sea wave spectra [12] have been proposed. A 

commonly used one is the Pierson-Moskowitz model [13] which 

is expressed by:

where qo is the angular frequency in radians per second.

A = 4. 894 , B =3. 1094/(h^) 2. The term h^ is defined as 

the significant wave height in metres. By finding the 

stationary point for Sn (*u), the resonant frequency of the 

spectrum is found to be:

The wave spectra of several sea conditions (identified by 

Beaufort Numbers) are shown in Figure 2-7.

There are three types of models used in state estimation 

using Kalman filter.

2.8.1 Rational Proper Transfer Function Model

Kostecki [14] suggested the sea spectrum can be approximated 

by a rational proper transfer function presented by:

(2.20)

= (4B/5 )1/4 (2.21)
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S0 (o>) = | G( ju>) J 2 Si(cJ) (2 .2 2 )

Where Si(^) is the wind spectrum density which is assumed to

be stationary and has unit value. S0 (u>) is the approximated

spectrum and G(joj) is the transfer function. A single

section of the transfer function may be expressed as:

2 b i £ -jsGi(s) ------ 1—  (2.23)
s + 2 tOnis + ^ni

Two sections of Gi(s) are chosen [15]. The parameters of 

the transfer function are estimated using the criterion:

A S (to) = min I y 1 s n (u))-s0 (w)]2d^ 1/2 (2.24)

Where Sn (u>) is defined in the frequency interval (0,^g) and 

n is typically 250. Two typical examples are shown in 

Figure 2-8 and Figure 2-9. The high frequency model, for 

one degree of freedom, therefore has the form:
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In state space form:

ih<t> = Fhih(t) + Gh^(t) 
Yh(t) = Hhxh (t) (2.26)

Where

*h (t) 6 R12, ^h(t) e R3

F®U 0 0 h G®U 0 0 h

Fh - 0 F? 0 h - S  = 0 Gh 0

0 0 0 0h h

Hh = n?u o oh

0 Hh 0 (2.27)

The sub-matrices for surge, sway and yaw each has the 

following form:
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0 1 0 0 0

0 0 1 0 Gh = 0

0 0 0 1 0

_-fo -fs2 - f s3

...
 

1
O)

i

[0 0 hs3 0 ]

2.8.2 Auto-Regressive Moving Average (ARMA) Model

This model was first used in the DP Kalman filter estimation 

by Fung and Grimble [16]. It is assumed that the high 

frequency disturbance can be epresented by the following 

multivariable ARMA model:

Ahfz”1) = Chfz"1) |_h(t) (2.29)

which is assumed to be asymptotically stable and yh(t)£R^ 

and ih (t) 6 R^, Here, §_h(t) represents an independent zero 

mean random vector which is uncorrelated with the low 

frequency disturbances and the measurement noise. The 

covariance matrix of £h(t) *-s denoted by ̂ h *  

polynomial matrices A ^ z ”1) and C ^ z ”1) are assumed to be 

square and of the form:
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= I3 + Aiz”l+ +Anaz_na
Ch (z“i) = Ciz” 1 + C2Z-2+.,+Cncz-nc

(2.30)
(2.31)

where z”l is the backward shift operator. The matrix 

Ah(z“l) is assumed to be regular (that is Ana is non- 

singular). The zeros of det (An (x)) and det (Cft(X)) are 

assumed to be strictly outside the unit circle. The order 

of the polynomial matrices are known but the coefficients

constant or slow varying unknowns since in practice, the 

wave spectrum varies slowly with weather conditions. It is 

also assumed that the disturbances in each observed channel

diagonal form.

2.8.3 Harmonic Oscillation Model

The harmonic oscillation model for high frequency motions of 

a vessel for dynamic control system was discussed in 

[17,18], The surge, sway and yaw motions are modelled by 

three separate harmonic oscillators. Each oscillator has a 

variable frequency, a white noise input representing 

the modelling error and unpredictable wave noise. The state 

space representation of HF motions becomes:

na' ...nc , are treated as

are uncorrelated so that
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Xh(t) = Fh xh (t) + Gft £_h (t )
yh(t) = Hh xj^t) (2.32)

where:

Xhl(t) HF
Xh2<t) HF

HF
Xh3(t> HF

xh (l:) xh4(t) HF
u?2 HF
xh5(t) HF
xh6(t) HF
^3 HF

Fhl 0 0

Fh = 0 Fh 2 0
0 0 Fh3

Hhi 0 0

Hh = 0 Hh 2 0
0 0 «h3

0 1 0
ri «. up" nFhi - —It/* ui u

0 0 0

i = 1 , 2, 3

Gh =

hi

®hl 0 0
0 ^h2 0
0 0 °h3

0 0

1 0

0 1
*h

(2.34)
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x^t) 6 is the state variable Jh(t)6 R^ is the high 

frequency motions, 6 R^ is the process white noise

sequence.

2.8.4 Simulation of High Frequency Motions 

Method 1

The first order wave induced HF motions can be simulated 

using the following expression [19] (in one direction with 

unit in metre):

M
yh(t). = 2. y0 sin(Ct>it+^i) (2.35)

i = l

where ©i are random numbers lying in (0 , 27f), yQ and are

selected to approximate the Pierson-Moskowitz wave

spectrum. M is the number of equal parts (in terms of

energy) into which the wave spectrum is divided. A typical

value of M is 20.

For a fully developed sea [16] ;
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= 0 -6990-52-5 x In(
A hl/3 pad/sBC- (2.36)

y0 = h1/3 (M/2 )“1/2 naetr&S (2.37)

Other

terms such as wind speed and Beaufort number are also used 

to characterize the sea conditions.

Method 2

This method uses the rational proper transfer function of HF 

motions described in Section 2.8.1 to simulate sea waves.

For each weather condition, the parameters of the model are 

estimated using least squares technique. The state space 

representation of the model is used to generate the HF 

motions. Since the model is assumed to be linear, a 

discrete model is more appropriate for updating the states.

A set of values for some typical weather conditions are 

given in Appendix A.

2.9 THE LINEAR STATE SPACE EQUATIONS FOR SHIP MOTIONS

The state equations for the low and high frequency models of 

the ship can be combined into the form:
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i,(t>
Xh(t)

AX 0 

0 Fh
£ i (t) +

x.h(t) 0
ju x (t ) +

i
&

i

rj_ (t) +

rod*
i

0 _° G h _

The position of the vessel is given

and high frequency motions:

t )

ô h (t ) (2.38)

£ ( t ) = £ j ( t ) + £ h ( t )  (2.39)

The position measurement Z(t) sway and yaw is therefore:

zx(t) = [Cjj Hh]
1 ~

 
4-1-4XI

1

+ v(t)

z2 (t) 2£h (t) (2.40

= ) + Yh ( )  + X ()

where v(t) = [v̂  V2 lT is a white noise signal representing 

measurement system noise. The above equations can be 

written more concisely as:

x(t) = Ax(t) + Bu(t) + E^(t) + Dcu(t) 

z(t) = Cx(t) + v(t)

(2.41)

(2.42)
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where u_ (t) includes the control signals, ^(t) includes the 

measurable disturbances inputs, ojjt) represents the white 

process noise input and v(t) represents the white 

measurement noise signal. These equations are in the 

standard form associated with the Kalman filtering and 

optimal stochastic control problem.
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CHAPTER THREE 

KALMAN FILTERING PROBLEM OF 
DYNAMIC SHIP POSITIONING SYSTEMS

3.1 THE ESTIMATION STRUCTURE

The stochastic model of the vessel is defined by the state 

equation in Section 2.9, and now the estimation problem can 

be considered. Recall that for control purposes, it is not 

simply the total position y_(t) of the vessel that is to be 

estimated, but rather the low frequency component X|(t).

That is, the position control problem must only respond to 

the low frequency position error signal. The estimator is
Atherefore required to provide an estimate y^(t). If a state 

feedback controller is to be implemented, the states in the 

low frequency model must be estimated. If a stochastic 

model of a system is formed the Kalman filtering solution is 

quite standard nowadays [20, 21]. The Kalman filter 

includes a model of the total system and can therefore 

provide the high and low frequency motion estimates. The DP 

Kalman filter structure is shown in Figure 3-1 and is 

defined by the equation:
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>c(t) = Ax(t) + K(t) Iẑ (t) - Cx(t)] 
+ Bu (t) + E_J(t)

(3.1)

£(t) = Cx(t) (3.2)

The Kalman gain matrix K(t) can be partitioned into low and 

high frequency matrices as follows:

This matrix can be calculated for given noise covariance 

matrices by using standard results (Appendix C). The 

measurement noise covariance can be defined relatively 

accurately from the knowledge of the position measurement 

system and using manufacturers data. The process noise 

covariance matrix is less well defined (Section 2.7).

In practice, the process noise of the LF model and the 

measurement noise can be assumed stationary. The LF linear 

model with respect to a current force can be assumed 

constant. However, the HF model is based upon sea spectra 

which vary with sea conditions. The variations may be very 

slow but nevertheless, the Kalman gain Kĵ (t) and the 

parameters in the model vary with the weather conditions.

To implement an optimal Kalman filter, the Kalman gains and 

the parameters in the models need updating, that means the

K(t)
K| (t)

Kh (t)
(3.3)
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Riccati equation must be solved in real time. In order to 

reduce the computer load the following techniques can be 

used.

fiDAfWZ
3.2 EXTENDED KALMAN FILTER USING HARMONIC WAVE MODELS /
When the harmonic oscillation models described in 

Section 2.8.3 are used for high frequency motions of a 

vessel, the dominant frequency is treated as the only 

unknown parameter in the system matrices [17,18]. It was 

observed in simulation results that:

(a) After a short initial period, the LF filter gains for 

estimation of positions and velocities vary within 2 to 

3%.

(b) The filter gains for estimation of the HF motion 

frequencies o>^, oscillate with the same frequency as 

the HF motions and with zero mean value.

The following simplifications were made in the estimation 

algorithms:

(a) The filter gains for updating of LF positions and LF 

velocities are assumed to be constant.

(b) The filter gains for updating the HF motion frequencies 

are assumed to be a linear combination of the high 

frequency position and velocity estimates.
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Simulation results shows that the Kalman gain of the high 

frequency subsystem can be expressed as [17]:

KH (t) = k xH (t) ' (3.4)
i i i

Hwhere Kj_ is the Kalman gain for the HF frequency kj; is

the modulation factor and is the position estimate of HF 

motion.

Alternatively, the high frequency 0)̂  can be estimated in the 

following technique.

Consider the state estimator in the ith channel.

Xj [ ( t )  = ft( .) +
^hl(t) = Xh2<t) + Khl£i<t>

ih2 (t) = Kh2 ?i(t)

where f (.) is a vector function which generates the
Apredicted states. is the prediction error and is the

sea wave dominant frequency.

If varies away from its initial value, the covariance of 

the innovation process will increase.

(3.5)
(3.6)

(3.7)
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The algorithm to track the is

(€i <t)) (3.8)2

- it£i.(t) .g-ct)
aco

* .2CO^ is adjusted in the negative gradient direction of c i .

The constant k is chosen to be small so that the influence 

of the measurement and process noises are kept small.

It can be shown that:

= _ [dxhl (t )/acoi + ^x£l (t)/0 coil (3.9)
a <̂ i

and

t e p J V  «  (3.10)
a cu i

Differentiating equations (3.6) and (3.7) gives:

r = s - K h i r  (3.11)

s = - co\r - 2o>iXhl(t) - Kh2r (3.12)

where r=dxhi/££)i and s=dxh2/^o>i* Differentiating equation 
(3.11) and substituting into equation (3.12):

r + Khir + (&i(t)+Kh2)r = -2^ixhl(t) (3.13)
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Assume that the HF estimate is given by:

xhl(t) = ^sincOj[t (3.14)
Xh2(fc) ~ j> ^ i  cos c2>it (3.15)

The steady state solution to equation (3.13) is given by:

r = -a£i <t)
L ^  A,

O CO a

^ ---------1Kj-,ixj-,2 (t)_Kh2^hl ft)] (3.16)
(Khl&i)2 + Kh2

This substituted into equation (3.8) yields the algorithm
Afor tracking .

To select the value of k, introduce the first order 

approximation

ft(t) = £io(t) (3.17)
o <*0 i

in equation (3 .8 ), where the innovation signal
A  . Awhen cô  = Cû  and where = cô  - cD±.

If COi is assumed to be constant, the following result is 

obtained:

A«>i = -k (f A (t))2̂ i  " k ^ £i(t) £io (3.18)0 COi ^ 60 i
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This yields an approximate time constant for the estimation 

of given by:

3.3 CONSTANT GAIN LINEAR KALMAN FILTER

In the fourth order transfer function model approach [5], 

the models discussed in Section 2.8.1 are selected for the 

HF motions. The on-line computation of Kalman gains and the 

estimation of parameters in the HF wave model is very comp­

licated and cumbersome. A simplified algorithm is to choose 

a particular sea state say Beaufort 8 , for filter design.

The filter gain matrix is computed off-line based upon the 

linear LF model and the selected HF model. It is then used 

constantly for any sea state. Experimental results showed 

that in most cases, the constant gain filter is noticeably 

slower in reaching the steady state than the corresponding 

time varying filter. However, it may be acceptable in some 

operational conditions in which the accuracy is not so 

critical.

(3.19)

If the variance of is small compared to the
_ , Avariance of c^(t), the variance of tô  is approximately given

by [ i 8 ] :
Cov(^i) = j kCov(£i0 ) (3.20)

-59-



0/5/mcl704/54

3.4 EXTENDED KALMAN FILTER USING 

FOURTH ORDER WAVE MODELS

It was found in the simulation results [5, 6 ] that the 

extended LF Kalman estimator improved very little in the 

estimation of the states. However, if the sea 

condition varies from time to time, the extended HF 

estimator can reach the optimal state and can improve 

convergence significantly. The extended structure of the HF 

matrix in the state equation proposed by Grimble et. al. [6 , 

7], in one-channel form, is as follows:

xhl 0 1 0 0 | xhl 0 0

Xh2 0 0 1 0 | 0 xh2 0 0

xh3 = 0 0 0 1 ] xh3 + 0 0

xh4 -fo -fl -f2 “ f 3 ! 
L

xh4 1 0

fo
1
i
1 fo 0 1

fl 0 i 0l fl 0 1

f 2 1 f 2 0 1

*3
i
i
i f 3 0 1

co

CO
hi
h2

(3.21

The Kalman filter estimates the states as well as the HF 

model parameters. Because of the high dimensional 

structure, it may not be easy to implement.
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CHAPTER FOUR 

THE STOCHASTIC OPTIMAL CONTROL PROBLEM IN DYNAMIC 
POSITIONING SYSTEM

4.1 INTRODUCTION

Recall that the control system must respond to the low 

frequency vessel motions but not high frequency motions. In 

the classical design of dynamic positioning control systems, 

a notch filter is cascaded with a PID controller. The notch 

filter is therefore an integral part of the control loop.

In designing the notch filter, it is important that the 

phase shift introduced by the filter is small at the control 

loop unity gain crossover frequency, otherwise it may 

destabilize the control loop. The filter design always 

includes this compromise between good filtering (suppression 

of thruster modulation) and good regulating actions. The 

basic criteria for such a design given by Sorheim and 

Galtung [22] are:

(a) The wave filter center frequency should be chosen equal 

to the maximum amplitude frequency response of the 

vessel for the chosen wave conditions.

(b) The phase shift introduced by the filter at one decade 

below the center frequency should be less than

10 degrees.
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(c) The notch depth should be the maximum attainable 

consistent with hardware limitations.

The control frequencies normally lie in the range of 0 to 

0.3 radians per second and the wave frequencies lie in the 

range 0.3 to 1.6 radians per second.

The PID controller approach has several disadvantages. Due 

to the couplings between the controlled motions, the 

integral action of the controller must be slow enough to 

reduce the excessive overshoots in the other controlled 

variables. The second disadvantage is due to the phase lag 

introduced in the control loops by the notch filters. These 
disadvantages led research engineers [6 , 7, 8 , 17, 18] to 

investigate the use of Kalman filtering and optimal control 

techniques in dynamic positioning systems.

Section 4.2 describes the optimal controller design 

criterion. In the dynamic ship positioning system, there 

are slowly varying disturbances such as current and wind.

It is essential that the offsets due to such disturbances 

are eliminated. The technique to include integral action in 

the optimal controller is described in Section 4.3. 

Simplified schemes are given in Section 4.4.
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4.2 OPTIMAL CONTROLLER DESIGN

The dynamic positioning control system and the state 

estimator is shown in Figure 4-1. The controller uses state 

feedback from the low frequency Kalman estimator. If the 

estimator works efficiently, the control system will respond 

only to the low frequency position error signal. Thence, 

the thruster modulation will be reduced. The wind force can 

be measured separately. It is a usual practice to feed this 

disturbance forward to minimize any undesirable effect.

The controller gain matrices can be determined using optimal 

control techniques. However, a suitable design must also 

satisfy classical design criteria. The performance 

criterion to be minimized may be defined as:

where is the low frequency state vector, u(t) is the

control signal, Qc and Rc are weighting matrices and are 
positive definite and semi-positive definite respectively. 

E is the expectation operator. The optimal control gain 

matrix Kc (t) may be calculated using well known Riccati 

equation techniques. The selection of the weighting 
matrices needs experience and judgement from the designer.

J(u) (4.1)
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It may be useful to use the guidelines proposed by 

researchers such as Chang [23], Tyler and Tutem [24], Chen 

and Shen [25], Melheim [26] and Grimble [27].

4.3 OPTIMAL CONTROLLER WITH INTEGRAL ACTION

4.3.1 System Description

The dynamic ship positioning control problem is more 

complicated than that considered in the simple white noise 

LQG stochastic optimal control problem [28] (Section 4.2). 

The DP system has both slowly varying and high frequency 

disturbance inputs and the measurements are contaminated by 

both white and coloured noise. It is desirable to use 

integral control to offset slowly varying unmodelled 

disturbances, so the system can regulate about the given 

references. The system to be controlled is shown in 

Figure 4-2. The plant is assumed to be completely 

controllable and observerable and is represented by the time 

invariant state equations:

where x^(t)6 Rh , u(t)eRr / u^(t)6 R^ and y^(t)eRm . The 

observed plant output z/t) is corrupted by an additive noise

xx (t) = A£xJt(t) + Btu(t) + DjCDj/t) 
(t) = Ĉ  x £ (t )

(4.2)
(4.3)
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signal v(t) containing both coloured .Zh^t) an<3 white 

v(t) noise components. The coloured output noise is 

generated by the following dynamical system which assumed to 

be asymptotically stable:

Xh(t) = AhXh(t) + (4.4)
Yh(t ) = CftXh(t ) (4.5)

v(t) is the actual measurement noise where yfrit) the high 

frequency motion.

The output noise and the observation vectors are given by:

v*(t) = Xh(t) + v(t) (4.6)
jz(t) = Zf + v*(t) (4.7)

the input disturbances consist of current disturbances and 

wind gust disturbances. These can be separated into two 

groups, o)j and o>2 where:

- DjCt>2 (t) + D2^(t) (4.8)

and

^ (t) = + Zojlt) (4.9)
0)2 < t ) = *c II (4.10)

The white noise input yai(t) may allow for modelling errors, 

and the coloured noise y^it) represents the relatively fast
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plant disturbances (e.g. wind gust). Disturbances which are 

slowly varying can be represented by the signal xc (t) 

(current). The system modelling the disturbances is assumed 

to be asymptotically stable. The system representing the 

fast input disturbances is modelled by the state equations:

and similarly, the low frequency disturbances are modelled 

by the system.

The white noise signals (t) , ^^(t) and &)c (t) driving the 

disturbance models are assumed to have known constant 

variance matrices 0V / 0^ and Qc respectively. Similarly, 

the signals v^t) and v(t) are assumed to have covariance 

matrices Qv and Rv respectively. The noise sources are 

assumed to be mutually independent and the noises are 

assumed to be Gaussian and stationary.

The above equations may be written in the augmented matrix 

form:

X w<t> =
(4.11)
(4.12)

xc (t) = Acxc (t) + Dc<f?c (t) (4.13)

A/ /V /\s /Vyv /V A* ,x(t) = A x (t) +Bu/t) + Da>(t) 
z(t) = Cx (t ) + v’(t)

(4.14)
(4.15)
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where the augmented state vector is defined as:

X ( t) = Col ■[ Xft (t ) Xc^) x(t)£
u)( t) = ColJ cOh^) ^ c ^  vtL)( )}

and the system matrices become:

0 0 0 0
0 Ac 0 0 B = 0
0 0 Aco 0 0
0 d2 Diq» H A

Dh 0 DC B  © , 'c = [Ch 0 0

(4.16)

(4.17)

In the dynamic ship positioning problem, it is important 

that a constant disturbance should not produce a constant 

position offset in a calm sea. Thus, as in the usual 

industrial control situation, integral control must be used 

to ensure that constant disturbances do not produce steady 

state errors. The way in which integral action is 

introduced is discussed in the following section.

4.3.2 Optimal Regulating Problem

Assuming that the set point vector 3£0 (t) to be constant the 

optimal controller must bring the system states to the cor­

responding non-zero set points, which means the expected 

value of the steady state error between the states and their
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set points, must be zero. To achieve this condition, an 

integral operator L will be introduced into the performance 

criterion, where the operator L is defined as:

Where Aj is a constant rxp matrix with elements equal to 

zero or unity. The unity element corresponds to the state 

which should have zero steady state value under constant 

disturbance. Since only plant states are to be controlled, 

the matrix Aj has the block form:

Matrix A 24 has the elements corresponding to sway position 

and yaw angle equal to unity. The other elements are zero. 

The performance criterion may now be defined as:

reason behind the introduction of the integral operator 

terms is that, when T becomes large, the cost will tend to

(4.18)

Aj = [0 0 0 A 2 4 ] (4.19)

J(t0 ,T) = E- [ < x (t)-xQ (t) ,Ql x(t)-xo(t) > Ep 
*"0

+ < l {  x(t)-x0 (t)} ,0 2 L J[ x( t)~xG ( t )j>> E 
+ < u(t),

P
(4.20)

Where xo (t)=[0 0 0 x£(t)]T , Oi^O, 02^0 and Ri>0. The

infinity, unless the mean zero.
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This performance specification therefore ensures that the 

controller includes integral action.

The above problem is not the usual form for the linear 

quadratic stochastic control problem. To transform the 

problem into the required form so that the standard results 

may be used, define:

x'i(t) =

x2 (t) =

Notice that

x 1 (t ) =

and

x2 (t) =

x(t) 

(Lx)(t) 

l 0 (t) -

(Lx0 )(t)

(4.21)

(4.22)

x(t)

Afx(t)
(4.23)

Xo(t) 

Ajx^0 ( t )
(4.24)

The reference signal Xo(t) is assumed constant. An 

additional assumption will now be made, namely that Xo^) 

a solution of the plant state space equation. Thus, 

is assumed to be a solution of the augmented state space 

equation.

x'o(t ) = Ajx'o (t) = 0 (4.25)
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The subspace spanned by the reference signal is therefore 

assumed to be in the Kernel of matrix 'K. To understand the 

implications of this assumption, the second and fourth state 

variable represent the position of the vessel in sway and 
yaw. These position signals are obtained by integrating the 

ship velocities. Thus, if there are no disturbances, the 

plant state vector, in steady state, will have the form:

Xj(t) = [0 xs 0 Xy 0,..0]T (4.26)

The reference signal will have a similar form and

xQ (t) will span the corresponding two dimensional subspace 

of the p-dimensional state space. That is, the only 

reference signals which are allowed are those whose non-zero 

entries correspond to a particular set of plant states.

These states correspond to integrators, and are at the 

output of the state space model of the system. These are 

also the states to be controlled to the set point and may be 

recognized by the zero columns of the system A^-matrix.

The state equations now become:

-72-



0/5/mcl704/65

xjlU )  =

*2 <t) =

r->A 0 B A/D
= X j ( t )  + u(t) +

Aj 0 0 0
C(t)

_A 0

A t 0

(4.27)

(4.28)

The performance criterion and state equations may now be 

rewritten in the form:

x = A x (t) + B_u (t) + D^( t)
z(t) = Cx(t) + v(t)

(4.29)
(4.30)

J(t0 ,T) = E j J ^  < x(t) ,0ix(t)> Ep+ <u(t) ,Ru(t) > E r oli: }

Where

x( t ) £ x’l (t ) 
? 2 ( t )

A £
Aj 0 ̂  

0 A 2
r Aj =

% 0 

Aj 0
, a2 -

% o’*
Aj 0

B £ Bl
0

, Bi £
Dl

, Di £
1“ -* - -* - -*

C k  [Cl, 0], Cl £ [£, 0 ]

r> -f

Ol -Ol r s /

1--Of—
i 

. °

Ol £ r~ t r * j '  Ol =
-Ol Ol 0 02

n*sD

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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The effect of the equivalence on the matrix caused by the
/V A/assumption Aj=A2 will be discussed in the following section.

The above problem may now be solved by considering the 

individual subsystems. This has the advantage that the 

structure of the optimal system can be identified, and the 

role of individual blocks can be analyzed. The order of the 

Riccati equations which must be solved can also be reduced.

4.3.3 Control Problem

It is well known [29] that the solution to the linear 

stochastic control problem may be obtained by considering 

the equivalent deterministic optimal control problem and the 

Kalman filtering problem. This result follows from the 

separation principle [30] of stochastic optimal control 

theory.

Consider the partitioned system described by equations 

(4.29) to (4.31). The control matrix Riccati differential 

equation for the system becomes:

-i. — _T— — T_ _Pj(t) = -PjA - A Pj + PjBR”1! Pj “ Oj (4.37)
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i’ll P 12 P 11 Pl2 Ax 0
P 21 p 22 P21 p 22 0 A 2

'Ai 0

0

Pll Pl2 + P11 p 12

? 21 P22 P21 p 22

B i R  1Bi 0

A/ fj — 4
oi -orP 11 p 12 

P 21 p 22
The individual equations become:

r->

-Qi Qi

p ll(t) = - P n ( t ) A i  - Ai Pll(t)

+ PixCtJBxR-iBi Pn(t) - Ox

Pl2 (t) = -Pl2 ( t )A 2 “ A 1 p 1 2 (t )

+ Pxx(t)BxR_1BxTPx2 (t) + @1

* *p
P2 2 (fc) “ -P2 2 ( ) A 2 “ A 2p2 2 (t)

+ P21/plR_lplp1 2 t̂ ) ” 'Ol

(4.38)

(4.39)

(4.40)

(4.41)

When Px(T)=0, the optimal control feedback gain matrix is 

given by:

Kx(t) = R” 1BT P1

= [R-iB^Pxxtt) R"1B|T P12(t)]

(4.42)

(4.43)
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/V /V/
In this particular case, Ai=A2* follows that the above

Riccati equations become identical, giving the solutions:

pll(t) = P2 2 U) = “Pl2(fc) (4.44)

and thus the gain matrix becomes:

Ki(t) = [Kn(t) -Kn(t)] (4.45)

where

K n ( t ) ^  R-1BlTPn(t) (4.46)

Thus, for the system where the assumption made in the last 

section holds, using the equation (4.45), the control signal 

is obtained by multiplying the gain matrix Kn(t) by the 

signal £x(t)-X2 (t), which gives:

u*(t) = -K11 (t )̂ 2£1 (t) - 212 ( ^  (4.47)

= K1 1 (t)jx0 (t)-x(t)| + Kx2 (t )|l(x q - x )j (t) (4.48)

where

Kn (t) = [Kix(t) R12 (t ) 1 (4.49)

The optimal control signal u*(t ) is clearly the sum of a 

state tracking error term and an integral of the state 

tracking error term. The integral term only involves a 

subset of the state variables which are determined by Aj
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The matrix Riccati equation (4.39) can be expanded to obtain
c can expression of the gain matrices Kn(t) and Ki2 (t).

= (Ki!(t) Ki2 (t)]

(4.50)

ivT^ i a/T ̂= [R_1B Pn(t) R_1B P12 (t) ]

where Pn(t) and ?i2 (t) are the solutions of the following 

matrix Riccati equations with Pn(T)=0.

Pll(t) = “PllA - P12a  ̂ " A Pll “ A P21

+ PixBR_1B P11 - 01

/v T1 A/ T' /NX *1 /V.T ̂
-A P12 _ **p22 + P11B R B p12p12<t)

/'■O . /~ r* t ~T
P22( = p21br” b p12 " O2

(4.51)

(4.52)

(4.53 )

An alternative partition of the state vector will be used 

below. It will further simplify the equations. The system 

matrices Ai and Bi in equation (4.33) and (4.34) have the 

form:

orAl =

Ah 0 0 0 0 0
0 A c 0 0 0

r-'

0
0 0 Aw 0 0 ,B 1 = 0
0 d 2 DlCw A* 0 B/
0 0 0 Ai 0 0

4.54)
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and

Q1 = 0 ©  0 0  0 e  0£ ©  Q2r 02^0) (4.55)

where Qg is the optimal control weighting matrix correspond­

ing to the plant states. Note that the state associated 

with the output noise subsystem and the disturbance sub­

system Ac and Aw have zero weighting in the cost function. 

These states are uncontrollable and thus, it is reasonable 

to set their weighting matrices Qv , Qc and Qw to zero. Note 

that if non-zero values have been assigned to these 

matrices, they would not affect the gain calculation.

It may now be shown that there is no feedback from the 

output noise states Xh^M' for these states do not affect 

the plant states. Let the state vector #i(t) be partitioned 

as follows:

211 =
xh (t)

X3 (t)
(4.56)

The above matrices may then be written in the form:

r~*
hi =

Ah 0 

0 A 3
A/

, Bi
0

B3
Ql

o o 

o 03
(4.57)
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Matrix Riccati equation (4.39) is expanded and the 

individual equations become:

Pn (t) = -PllAh - Ahpll + p 12b 3r “1b 3p21

Pl2 (t) = “Pl2A3 " Ahp 12 + P12b3r~1b3p22

P2 2 (t ) = “P22a3 “ a 3p22 + P22b3r~1b3p22 ” O3

where P2 2 (T)=0 . The third equation above is independent of

the first two equations and the latter have the following 

solutions:

Pll(t) = 0, Pi2 (t) = P*21 (t) = 0 (4.61)

V t€[t0 ,T]

The optimal control feedback gain matrix is given by:

  m .

Kn (t) = R*“1BiPi1 (t)

= [0, R-1B3Pw(t)] (4.62)

where Pw (t)-P22^t )• Note that the matrix Pll(t) does not 

affect the gain calculation and also that Pi2 (fc) and p2 l(fc)
/vwill be non-zero if Qi has a non-zero off diagonal block.

In such a case, the first entry in the gain matrix

R“^B3TP2 i(t) becomes non-zero.

(4.58)

(4.59)

(4.60)
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As would be expected, there is state feedback from the dis­

turbance states xc (t) and xw (t), which affect the plant 

states x^(t). This may be shown by partitioning the state 

vector _X3 (t:) into the form:

*3(t) =
xc (t)
xw (t)
"x4i t y

(4.63)

The submatrices A 3 and B3 occurring in equation (4.57) 

may now be partitioned as follows:

and

Ac 0 ! 0 0 0
A 3 = 0 _^w _ 1 0 - -f _ 0 b3 = 0 (4.64)

d 2" DXCw 1 A 0
0 0 ! A

1 1 °_ 0

0 0 | 0 0
Q3 = 0 0 | 0 0 (4.65)

0 0 ] 0
0 0 ] 0 02

These matrices may therefore be written in the form:

A q = ^cw 0 0 0 0
b3 = 0 3 =

Aa A4 b4 0 q 4
(4.66)

The matrix Riccati equation (4.60) is expanded and the 

individual equations become as follows (note that 

pw(t)=p 2 2 (t));
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P 1 X (t) = -Pll(t)Acw - P12 (t ) Aa - AcWP’n(t) (4.67)

-AaP’2i(t) + P21 (t ) B4R-^B4P21 (t)

P21 (t) = -P2 lAcw - P’2 2Aa - A 4P21 (t ) (4.68)

+ P’22 (t) B4R-1B4P’2i (t)

P22(t) = -P22(t)A4 - A 4 P2 2 (t ) (4.69)

T $
+ P22(t)B4R_1B4P22(t) - O4

where Pw (T )=P22(T )=0• The optimal control feedback gain 
matrix is given by:

Kw (t) £ R_1B3Pw (t) (4.70)

= [R-iB^tt) R-iB^Patt)) (4.71)

where P^(t)=P2i(t) and Pa (t)=P22(t ) • Notice that the 
solution to equation (4.67) need not be calculated since 

this does not enter into the calculation of the optimal 

feedback gain Kw (t).

Let the solutions to equations (4.68) and (4.69) be:

P w (t) =
Pll(t) P 1 2 (t )

p 2l(fc) p 2 2 (fc)

, Pw(t) = P21(t ) (4.72)
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and

Pa(t) =

respectively.

pii(t ) P12(tr

pll(t) P2 2 (t )
, Pa (t) = p22(t)

(4.73)

The system matrices involved in the equations have the form: 

A a — r B a — , 04 = (4.74)

Thus, the total feedback gain matrix is obtained in the 

simplified form:

o _1 1
K?

1 o1°
DO II O II

Ai o 1
o

1 0 02

Kil(t) = [0, Kw (t)] (4.75)

= R_1B[0( P n ( t ) f Pi2 (t), Pll<t), P1 2 (t)] (4.76)

f 3 3 c w W Twhere { pn  (t) ,pi2 ( t)j- and | pn  (t) , pi2 (t) j are the solutions

of the linear differential equations:

and
Pa (t) = “paA4 ~ A4pa + paB4R lB4pa " ^4

pv/(t ) — pwAcw A 4Pw ” paAa "** paB4R ^p4pw

(4.77)

(4.78)

respectively. The optimal control signal can be calculated 

using equation (4.47)
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u*(t) = -Kii(t ) ^ xi(t ) - X2 (t)} (4.79)

xQ (t) - x (t )

L(x0 - x'j(t)
= Kn (t)

The matrix Kn(-t) has been partitioned in a simple form as 

shown in equation (4.75). There is no feedback from the 

output noise states. Proportional feedback is present both 

in the input disturbance model states and the plant states. 

In addition, there is an integral feedback term from a 

subset of the plant states which must have zero steady state 

error. Finally, it should be noted that the weighting 

matrix was assumed to be block diagonal. If this is not 

the case, the above feedback gains have to be modified.

Infinite Time Solution to Control Problem

The most important practical solution to the control problem 

is often the limiting case in which the final T tends to 

infinity. It will now be shown that the matrix Riccati 

equations considered previously should yield a unique 

solution for the optimal feedback gain matrix in steady 

state. Let the state vector x^t) be partitioned in such a 

way that the second vector contains the plant and integral 

states only, that is:
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xi (t) = [ £xh (t )t Xq (t )f Xw (t )]• , 

[x[(t)>(Lx)T (t)} ]T (4.80)

The system matrices in (4.64) may also be partitioned in the 

same manner:

(4.81)

The matrix Riccati equation (4.39) may be expanded to obtain 

the following equations in the steady state:

a /  r*> w T  a /  T0 = -PllAn - P12A21 " A 11P2I " A P21

r-j
A 11 0 0 /v 0 0

Ai =
A 21 a 4

r B 1 =
b4

* Qi =
0 o4

T+ P12b 4R“1b 4p21

0 = -P21A H  ~ p22A 21 " A 4P21

(4.82)

(4.83)

T+ p22b4r~1b4p21 

O 4 = -P22a4 “ a 4p22 + p22b4r“1b4p22 (4.84)

The feedback gain matrix is given by equation (4.46) as:

K 1 ;L(t) = R“1B4 [P2l P2 2 I (4.85)

Note that only the steady state matrices P 21 and P22 enter 

the gain calculation, thence equation (4.82) may be
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neglected. Also notice that given P2 2 ' equation (4.83) is 

linear in P2 1 «

The condition under which equation (4.84) has a unique 

solution will now be discussed [29, 31]. Assume O4 is of 

rank ri, where rj < n+r, O4 may be expressed as:

0 4 = HTH (4.86)

where H is a constant r^x(n+r) matrix [32] . It is well

known that if (A4 , H) is completely observable, and (A4 , B4 )

is completely controllable, then equation (4.84) has a 

unique positive definite solution. Furthermore, all the 

eigenvalues of the resulting closed loop system matrix

A f  |  A 4  - B4R-1B4P22 (4.87)

have negative real parts and A f  is an asymptotically stable 

matrix [33]. In this case, equation (4.83) may be written 

as:

Af P21 + P21A11 = “P22A 21 (4.88)

TThis equation has a unique solution if and only if A f  and 

- A n  have no eigenvalues in common [34, 35]. That is, the 

equation has a unique solution provided that:

^i(Af) + Aj (An) =£ V i , j  (4.89)

-85-



0/5/mcl704/78

The eigenvalues corresponding to the matrix A f  are all 

negative and thus equation (4.89) will be satisfied provided 

the eigenvalues of A n  are all negative too.

/vThe subsystem matrix A 2 i=Aj1©Ac©Aw is, by previous 

assumptions, stable and hence equation (4.88) has a unique 

solution. Note that in the case of constant disturbances, 

Ac=0 and the above condition still holds.

To show that the above system with state feedback is stable, 

let xj(t) given by equation (4.80) be written in the form:

/Vxi(t) =
X5 (t) 

X4 (t )
(4.90)

The state trajectory J£5 (t) will clearly be bounded, since 

X5 (t) satisfies:

X5 (t) = A;qX5 (t) (4.91)

and A n  i-s assumed stable. The control signal which 

determines the zero input response of the system is given by 

equation.(4.48) and (4.85) as:

u*(t) = -R"1B4P2iX5(t) - R - 1B 4P 22X4 U ) (4.92)
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and thus 214^) satisfies:

4 (t ) = Af X4 (t ) + (A21 - B 4R“1B4P21 )x5 (t ) (4.93)

The matrix Af has eigenvalues with negative real parts and 

the state trajectory xs(t) is bounded, which implies that 

the response j<4 (t) will also be bounded. It follows that 

the system is stable. However, for a constant input 

disturbance (modelled by setting Ac=0), the plant states may 

not all tend asymptotically to the set point. The plant 

states which must be driven to the set point values are, of 

course, included in the integral term. The disturbance 

system Ac was in fact, assumed to be asymptotically stable. 

It therefore follows that both Aff and the closed loop 

system are asymptotically stable.

The above uniqueness and stability arguments depend upon the 

assumption that the A4 subsystem is controllable and 

observable. The latter assumption may be easily justified, 

since both the weighting matrix H and the integral control 

matrix Aj are selected by the designer. The conditions 

under which the subsystem is controllable have been 

established by Porter and Power [36-39]. They are:

(a) If A| is non-singular ( A B f ) must be a controllable 

pair, and
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rank(AjAj ) = r (4.94)

(b) If A^ is singular (Aj, ) must be a controllabe pair

and

rank ̂  AI(AJl+BjLF)”1BJt j = r (4.95)

where r is the rank of the matrix Aj and F is any matrix 

for which (A^+BfF) is non-singular.

In ship positioning control problems, the matrix Af is 

singular, but the second condition may be satisfied since an 

appropriate F matrix may be defined.

The equivalent state feedback scheme for deterministic 

systems is shown in Figure 4-3. Usually, an alternative way 

to obtain integral control action may be by introducing an 

additional derivative term of u(t) in the cost function.

This is often used in deterministic optimal control systems 

[40-42]. However, the optimal control signal in the 

stochastic control problem will include the filtered noise 

input signals. Thus, if the cost is to be calculated from 

the plant measurements, the cost function should not include 

a term which depends upon the derivative of this control 

signal. Fuller [43] has found that it is difficult to find 

an appropriate justification for this type of technique.

This does not apply to the introduction of an integral
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operator into the cost function, since this clearly ensures 

that the steady state regulating error is zero.

4.3.4 Filtering Problem

It is not intended to include the details of the filtering 

problem in this section since this has been discussed in the 

previous chapter. However, it has been shown that due to 

the optimal control problem which includes the integral 

action, some adjustments have been made in the system 

model. It is desirable that the filter should be adjusted 

to give consistent estimates for feedback purposes.

As in the control problem, the filtering problem may be 

simplified by considering the individual subsystems. The 

filter matrix Riccati equation corresponding to the system 

equations(4.29)and (4.30)is given by:

Pf(t) = APf(t) + Pf(t)AT - Pf (t)CTRJ1 CPf (t) (4.96)

+ D^DT

where Q^is the covariance matrix of driving noises of the 

input disturbance models and is the covariance matrix of 

the driving noises of the output disturbance models.
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The equation may be expanded using the system matrices 

defined in equations (4.33) to (4.35). The individual 

equations become:

J.f A/ -f _f A,Pll(t) = A!PU (t) + PU (t)A1 (4.97)

_f - a,TT f
- Pil(t)^1iylc/iPU (t) +

J - f  r~ r - f  _f a/TPl2(t) = AiP̂ 2̂ t) + p12^^a2
f T f- Pn<t) EiRf1CiPi2<t)

P22(fc) “ A 2?22(t ) + p22a 2

(4.98)

(4.99)

- P21<t) 'CiRf1CiP12(t)
_f ~ _f _f

where P n ( o ) = ^ ,  Pl2io }=0 ' P2 2 (°)=0 * T^e latter two initial 
covariances are zero because the initial state of the 

reference (second) subsystem is completely determined. 

Thence, the solutions of equations (4.98) and (4.99) are
-f - f ./obviously zero (i.e. Pi2 (t) = 0 and P2 2 t̂) = 0,7 t£0). The

gain matrix is then given by:

_ T
Kf(t) = pf(t)C Rf1 =

P11 (t ) C i R£ 
0

-1
(4.100)

It follows that the filter subsystem generating the 

estimates of the reference signal x̂2 (t) is completely 

separate from the other filter subsystems.
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The filter state variables associated with the integral 

control action may now be considered. These states form the 

second subsystem in the following partition of the state
A/vector xi(t ).

I (t ) = [xft (t ) xc (t) xw (t) x | (t) (Lx ) (t ) ] (4.101 )

The system matrices in equation (4.54) may now be 

partitioned as in equations (4.33) to (4.35).

/ v  
A 1 =

rsA 0 r-f
Dl =

/VD

_ A l
0 0

Cl = [C 0] (4.102)

The filter matrix Riccati equation corresponding to the 

system equation (4.27) is given by equation (4.97). The 

equation may be expanded using the system matrices defined 

in equation (4.102). The individual equations become:

f Ta* a. xPn (t) = APn(t) + P n A  - Pll(t)C Pll(t)

A'/v/V/T+ Dtp

f f r'sf' A/
p 21 (t) * A Pn(t) + p21 (t ) A

(4.103)

(4.104)

/\f f A'T -1 /v< A/f- p21(t)C R^1 (t)CP1 1 (t)
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A* f ^ f /vf TP22<t) = A IP12(t) + P21(t)AI (4.105)

-  ? 2 l ( t ) ' C T R f 1S^i2 < t )

f ^ / w f f
Where Pn(o)=^, Pi2(o)=°r P22(°)=0* The latter two
covariances are zero, for the integral control subsystem has 

a known (zero) initial state. The Kalman gain matrix is 

given by:

The gain matrix depends only upon the solutions of the 

equations (4.103) and (4.104).

The integral control subsystem has input from the plant 

state estimates Aj^(t) and from the innovation process via

the filter gain K2i(t). Also note that the structure of 

the Kalman filter [44] depends upon the output matrix 

(=[Ch 0 0 0 ]), and thus state estimate feedback

within the filter only comes from the output noise and the 

plant model subsystems. The structure of the filter is 

shown diagrammatically in Figure 4-4.

(4.106)

Off
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Infinite-Time Solution of Filtering Problem

The disturbance and output noise subsystems are assumed to 

be asymptotically stable and the plant is assumed to be 

controllable and observable. Thus, the system A may be 

assumed to be stabilizable and detectable [29]. It then 

follows that the solution of the equation (4.103) approaches 

a unique positive semi-definite solution [29] as to-*-oo ,

for every E q ^O. The resulting steady state optimal observer 

follows as:

and is asymptotically stable. The section of the filter 

concerned with the integral action may now be considered. 

In steady state, equation (4.104) becomes:

(4.103) and the closed loop filter matrix is defined as:

Equation (4.108) is based only upon the assumption that
/n/ .and Pn(t) are both symmetric.

A

(4.107)

/ v f  r ^ T  r s f .P2 i (t)Af = - A j P ^ U ) (4.108)

where the steady state value of p (t) is given by equation

(4.109)
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The eigenvalues of the matrix Af have all negative real

parts and thus (Af1 )” 1 exists, so the unique solution for 
^  f 
P21 is!

n / f  r - ' f  r * TT  —  1 (4.110)

The corresponding gain matrix may be calculated using 

equation (4.106) and the filter subsystem becomes:

A A _ .Ad_
dt 'xj(t) = A^x(t) + (t)-Jz_(t) ~ Cx( t ) j- (4.111)

where £1 (t) is the state estimate of (LjxHt). This 

subsystem consists of a number of integrators whose inputs 

are given in equation (4.111). The filter shown in 

Figure 4-4 is therefore stable. The integral control 

subsystem must also be used for generating the signal 

(Lx0 )(t) contained in the £2^) subsystem. Equations

(4.106), (4.110) and (4.111) then give the modified 

subfilter as:
A f

= A J£(t) - £ < t >  (4.112)d t It— —o

- Pl 1 (Af )_1 CTR_1 (z(t) - Cx(t))j 

Recall that Aj is the matrix which selects the subset of
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the plant states to be driven to their set point values. In
A

steady state, £j(t) should tend to a constant value.

4.3.5 Stability of Closed Loop Output Feedback System

In the last two sections, the closed-loop state feedback 

system with constant gains was shown to be asymptotically 

stable, and the Kalman filter (with the exception of the 

integral control system) was also shown to be asymptotically 

stable. In this section, the stability problem of the 

closed loop system with state feedback and including 
integral action will be investigated.

Let the white noise inputs to the system be assumed to be

zero and let the following state tracking error vectors and

reconstruction error vector be defined as:

£(t) = £(t) - 2£0 (t) (4.113)

Jc*(t) = *| L(£-x0 )j- (t) (4.114)

e(t) = ^(t) - ST( t) (4.115)

separation

(4.116)

The optimal control signal is then given by the 

principle and equation (4.48) becomes:

* A'C £ * ^ c A,u (t) = - K ^ x ^ )  -
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From equations (4.14) and (4.15), the system equations 

become:

xf(t) = %x_{ t) + /Bu*( t) (4.117)

and

z(t) = 'cx'(t) (4.118)

The filter equations follow from equations (4.107) and

(4.111).

J£$(t) = A&t) + 'f(f1Jz(t) - Cx'tt)^ + Bu*(t) (4.119)

^Xjft) = Aj.x'tt) +'K2i-fz<t> - /cf(t)j (4.120)

From equations (4.115), (4.117) and (4.119), yield:

e(t) = (A - Ki 1'C)e(t) (4.121)

and from equations (4.25), (4.113), (4.117) and (4.118), 

yield:
m

x/1 ) = Ax̂ (t) + /Bu*(t) (4.122)

Also note that:
A  f A

x(t) = 2£(t) - (t) and x' (t) = £ (t) - ‘x. (t )

so

xf(t) = x(t) - e(t) (4.123)
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and

x( t) = (A-Bfc^xU) - BK^x'T(t) + B K ^ e U )  (4.124)12 1 IV

Similarly, from equation (4.114), (4.115) and (4.120)

£ j ( t )  =  X j ( t )  -  A  i'x q  ( t ) (4.125)

and

Xi(t) A ];x( t)
ft/f rS(Aj- K2 1C)e(t) (4.126)

Equations (4.121), (4.124) and (4.126) may now be put into 

the form:

x(t)
fj /v ~CA - B K jl! “ B k 12

(t) = A I 0

i(t) 0 0

a/ r ^-(A -K^C)

/V /VA-Kn C

x(t)

x L (t)— i

e (t)

L4r. \Zl)

The eigenvalues of the closed loop system [29] may be found 

using the matrix equation (4.127). This matrix has the 

form:

F =
r*> n-s C(Al-B K n )  f12

/w /%/ f (A-KU C)

(4.128)

where
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and

BKn

Thence, the closed loop eigenvalues are determined by the 

zeros of the polynomial.

and clearly, these include the state regulator and the 

Kalman filter poles. The state regulator and Kalman filter 

have both been shown to be asymptotically stable. It 

therefore follows that the optimal stochastic regulator with 

integral control is also asymptotically stable. If the 

reference state vector .Xo^) different from zero, the 

plant states will be driven asymptotically to the non-zero 

set point values. The integral term will ensure that any 

unmodelled constant disturbances are offset, without 

producing a steady state tracking error, which is based on 

the assumption that a steady state solution exists for such 

an input.

4.3.6 Implementation on the Dynamic Ship Positioning System

The optimal stochastic regulating system which is a 

combination of the deterministic regulator and Kalman filter

(4.129)
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is shown in Figure 4-5. The controller includes thex^state 

estimate feedback from each of the input disturbance 

subsystems and proportional plus integral feedback from the 

plant regulating error. The integral control term enables 

unmodelled low frequency disturbances to be offset to 

maintain zero steady state regulating errors. However, even 

when the disturbances are modelled accurately, the integral 

action is desirable. Consider, for example, the situation 

where the low frequency disturbance Xc(t ) is almost 
constant. Assuming for the time being that the integral 

control is not being used (Aj = 0), then u.* (t) will include

not be zero in steady state because the cost function 

includes the regulating error and the control signal. The 

error will of course be smaller than it would have been had 

the disturbances been modelled. However, the integral 

control term ensures that even these small errors are driven 

to zero.

In the dynamic ship positioning problem, the input 

disturbances are usually not modelled in the Kalman filter 

to be implemented. The details will be discussed in the 

next section. In this case, the stochastic optimal control 

scheme is of roughly the same complexity as one based on PID 

[45, 46] controllers and notch filters [22, 47]. Similarly, 

the transportation delay of the measurement system is

terms in both xc (t) The latter term will
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usually neglected. However, it necessary, the above scheme 

can be modified to allow for such delays [48, 49],

Belanger [50] has proposed a scheme based upon Johnson's 

[51] work involving an observer for the control of linear 

systems with constant output disturbances. This scheme has 

an integral feedback from the innovation signals in the 

observer (equivalent to Aj=0). Thus, the input 

disturbances, for example, can still produce steady state 
offsets in the states being controlled. This may not be 

observed in the measured outputs. Smith and Davidson [52, 

53] also describe an integral control system which uses an 

observer. However, the optimal stochastic control system 

was not considered in their work.

4.4 SIMPLIFIED DP INTEGRAL CONTROL SYSTEMS

4.4.1 System Model

The original theory of the stochastic optimal control scheme 

given in Section 4.3 assumes that the constant input 

disturbances can be modelled. Usually the steady current 

forces in DP problems are difficult to measure. The 

simulations shown in this section are based on unknown 

constant disturbance, which means that the constant

-1 03-
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disturbance state equation (4.13) is not included in the 

Kalman filter. However, in the ship dynamics simulation a 

constant input disturbance, which represents the current 

force and steady state wind force, is purposely injected 

into the dynamical equations.

The dynamic models of Wimpey Sealab are given in Chapter 2, 

Section 2.7. In the application of integral control to the 

DP (dynamic positioning) problems, two integral states are 

added to form a state vector of eight dimensions. The high 

frequency motions are not controlled, theoretically they 

have no direct effect on the performance of the integral 

controller, therefore the high frequency motions are not 
considered here.

Define the state vector and observed output vector:

xi sway velocity
X2 sway position

x(t)
X3 yaw angular velocity
X4 yaw angle (4.130)
X5 thruster one
xg thruster two
X7 integral state (sway)
x q  integral state (yaw)

z (t ) z\ observed sway position
Z2 observed yaw angle (4.131)
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The system matrices are given in Section 2.7, except for 

Aj. The thruster model is a first order model. With 

reference to the state vector "x(t) , the unity elements in 

Aj can be assigned. They should correspond to sway 

position and yaw angle so that their offsets are 

eliminated. Therefore,

A t =
0 1 0 0 0 0 
0 0 0 1 0 0

(4.132)

The weighting matrices, optimal gains, noise covariance and 

Kalman gains are given below:

State Weighting Matrix

On =
0 500.0 0 0 0 0 , 0  0
0 0 3.00 0 0 1 0  0

(4.133)

3.0 0 0 0 0 0 0 0
0 500.0 0 0 0 0 0 0
0 0 3.0 0 0 0 0 0
0 0 0 500. 0 0 0 0 0
0 0 0 0 10.0 0 0 0
0 0 0 0 0 o 

1
O 

1 
^1 0 0

0 0 0 0 0 0 0 .05 0 .025
0 0 0 0 0 0 0 .025 0 .05

Control Weighting Matrix

Rc = 500.0 0
0 500.0 (4.134)
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Optimal State Feedback Gains (computed from Matrix Riccati

*c =
—

2 . 3 3 3 6 7 8 - 0 . 8 9 7 4 1 0 5 E - 1
1 . 0 1 7 8 2 0 - 0 . 9 6 5 1 8 6 7 E - 2
0 . 9 4 0 6 2 1 E - 2 - 2 . 0 5 2 5 4 2

0 . 5 3 2 1 4 2 0 E - 2 - 1 . 5 9 6 6 7 0

0 . 6 2 9 8 7 3 6 - 0 . 1 4 2 4 5 4 8 E - 1

0 . 5 6 9 8 1 9 3 E - 2 1 . 3 1 8 9 3 4

0 . 7 1 9 9 6 4 8 E - 2 - 0 . 4 7 4 9 7 6 5 E - 2
0 . 2 9 6 7 0 0 2 E - 2 - 0 . 1 1 4 7 1 7 2 E - 1

—

( 4 . 1 3 5 )

Process Noise Co-variance Matrix

Op -
4 x 1 0 “ 6 0

0 9 x 10"*8
( 4 . 1 3 6 )

Measurement Noise Co-variance Matrix

Rtt =
10~5 0 
0 1 . 2 2  x 1 0 ~ 5

( 4 . 1 3 7 )

Kalman Gains (computed from matrix Riccati equation)

K p  = 0 . 3 0 1 3 1 5 3  

0 . 7 7 6 1 4 7 2  

0 . 2 4 1 0 6 4  3 E - 1  

0 . 1 6 8 1 0 5 9 E - 1  

0
0_____________
1. 0

0

0 . 7 5 7 8 4 7 8 E - 2  

0 . 1 3 4 4 8 4 7 E - 1  

0 . 7 4 5 9 9 2 2  

1 . 2 2 1 3 7 6  

0
0_____________
0
1.0

(4.138)
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4.4.2 Control System Design One and Simulation Results

Figure 4-6 shows the step time responses of sway and yaw 

motions. The constant disturbance came in at the 80th 

second. Both the real states x^(t) and estimated states 

x^(t) were deviated from the set position. The constant
A

bias between an<̂  was ^ue tC) ^act t îe
constant disturbances did not go into the Kalman filter 

directly.

The structure of the state feedback control with integral

action is shown in Figure 4-7. Figure 4-8 shows the time

responses of the system. The real steady errors were driven

to zero by the integral controllers. As before, the bias
abetween x^(t) and x^(t) remained. The overall system was 

overdamped with settling time about 60 seconds. It should 

be emphasized that the stability and optimality of this 

control scheme are guaranteed. The constant control forces 

were built up to balance the steady disturbances.

Linear Analysis of Constant Error in Estimation

Assume the system output (single input single output case) 

due to the constant disturbance xc (t) is in the form (see 

Figure 4-2):
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yc (t) = Gc (s)xc (t) (4.139)

where:

Gc (s) = Cj(sI-A|)_1D2 (4.140)

Since xc (t) is not estimated, the LF filter output due to xc 

can be shown to be:

yC(t) = GC(s)yC(t) (4.141)

where:

Gc(s ) = (Ct ( s I - A £ )_1Kii(4) (4.142)

Therefore, the constant estimation error in position, in 

steady state, is:

ec (t) = yc (t) - yc (t) (4.143)
= Gc (o)xc (t) - Gc (o)yc (t)

It will be shown in Section 6.4 that this quantity can be 

estimated using self-tuning techniques.

4.4.3 Control System Design Two and Simulation Results

There are two ways of overcoming the bias between _x£ (t) and 

x.̂ (t) observed in the last section:

(a) include the constant disturbance forces in the filter,

(b) disconnect the integral control signal from the filter
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Since the system matrix Aj is singular and the constant 

forces cannot be measured directly, thus method (a) may not 

be applicable. Method (b) is an intuitive technique. The 

argument is: the integral control signal is used to 

eliminate the offset due to the constant disturbance, since 

the constant disturbance is not modelled in the filter.

Thus, this additional driving force should naturally be 

disconnected from the filter.

The disadvantage of this design is that stability and 

optimality will no longer be guaranteed. Improper weighting 

factors of the integral states may lead to an unstable 

control system.

Figure 4-9 shows the layout of this design. The time 

responses show that the bias has vanished (Figure 4-10).. It 

is always a problem that an integral controller may produce 

an underdamped response. The underdamped problem has been 

improved by reducing the weighting on the integral states.

Figure 4-11 shows the time respnses with random noise 

disturbances. The constant disturbance appeared at the 

200th second. The Kalman filter performed very well and the 

system was stable. Note that this test was with input 

disturbance, measurement noise and HF output disturbance
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(Beaufort No. 5). A self-tuning Kalman filter (to be 

discussed in Chapter 5) was used.

4.4.4 Control System Design Three

In Design 2, position errors are fed back into the 

integrators through block Aj [28]. This is not found in 

some designs [50]. In their methods, only the innovations 

are fed back into the integrators [Figure 4-12]. The step 

responses of this control scheme were found to be similar to 

those results obtained in Design 2. This was because the 

innovations also included the steady state position errors 

and these signals were also fed back into the integral 

controllers, therefore the steady state errors would be zero 

in both designs. However, in Design 1 and Design 2 there is 

a unique procedure to compute the controller gains, whereas 

in Design 3, because the elements of Aj are all zero, the 

controller gains calculated using Riccati equation may cause 

the system to become unstable.

4.5 SUMMARY OF RESULTS

An optimal stochastic controller was designed for dynamic 

ship positioning of Wimpey Sealab. The controller included 

integral action which drove the steady state position error
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to zero. The position errors in DP systems are due to 

steady current force and steady wind force. The Kalman 

filter was used to estimate the states. Three simplified 

schemes, which did not include the estimation of the input 

constant disturbances, were used and simulation results were 

given. Because the Kalman filter did not have an input from 

the constant disturbances, the estimated states were biased 

from the real states.

A technique was developed to remove the bias by 

disconnecting the integral feedback from the filter. It was 

found to be quite successful.

A comparison between the technique which feedback only the 

innovations and that feedback both innovations and position 

errors (through Aj matrix)to the integral controllers was 

performed.

Because the position errors selected through Aj matrix to 

pass the integral controllers, and the innovations also 

included the steady state position errors, therefore, the 

results in both designs were found to be similar. However, 

a non-zero Aj matrix provides a unique procedure for 

computing controller gains using Riccati equation.
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CHAPTER FIVE 

SELF-TUNING KALMAN FILTER

5.1 INTRODUCTION

In this chapter, a novel adaptive filtering technique is 

developed for a class of systems with unknown disturbances. 

The estimator includes both a self-tuning filter and a 

Kalman filter. The approach was initially developed for 

application to the dynamic ship positioning control problem 

and has the advantage that existing non-adaptive Kalman 

filtering systems may easily be modified to include the 

self-tuning feature. However, the theory can be extended to 

apply to any system which has an output containing low 

frequency components and high frequency components provided 

the low frequency model is known. Many engineering and 
economical processes have this feature.

The extended Kalman filtering technique was first applied to 

dynamic ship positioning systems by Balchen, Jenssen and 

Saelid [17]. A simpler but non-adaptive qonstant gain 

Kalman filtering solution was also proposed by Grimble, 

Patton and Wise [5]. In both cases, a linearized model was 

used for the estimation of the low frequency motions and
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optimal control feedback was employed from these estimates. 

Balchen assumed, in this and subsequent schemes [18], that 

the high frequency motions were purely oscillatory and could 

be modelled by a second order sinusoidal oscillator with 

variable center frequency.

Grimble et. al. [5, 6 , 7] used a fourth order wave model in 

the specification of the high frequency motions. However, 

the dominant wave frequency varies with weather conditions 

and the corresponding Kalman filter gain must therefore be 

switched for different operating conditions. The extended 

Kalman filter of Balchen automatically adapted to these 

varying environmental conditions. The computational load 

resulting from the gain matrix calculation was reduced by 

making suitable approximations. An alternative extended 

Kalman filtering scheme proposed by Grimble, Patton and Wise 

[6 , 7] employed the higher order wave model but suggested 

the use of fixed low frequency filter gains to achieve the 

necessary computational savings. These are all described in 

Chapter Three. The self-tuning filter described here is 

based upon a similar decomposition property. This approach 

was first proposed by Fung and Grimble [16] using a scalar 

example and without the theoretical justification given in 

the following.
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The analysis begins with the system and problem description 

in Section 5.2. The fixed gain Kalman filter is then 

considered in Section 5.3 and the self-tuning filter is 

described in Section 5.4. The errors which are introduced 

using the self-tuning structure are discussed in Section 5.5 

and the total estimation algorithm is presented in 

Section 5.6. Section 5.7 discusses the advantages and 

disadvantages of the technique. Finally, a summary of the 

results is given in Section 5.8.

5.2 THE SYSTEM DESCRIPTION

The environmental forces acting on a vessel induce motions 

in six degrees of freedom. In dynamic positioning only 

vessel motions in the horizontal plane (surge, sway and yaw) 

are controlled. To simplify the problem, the motions of the 

vessel in the sway and yaw directions only are considered. 

This is possible because the linearized ship equations for 

the surge motion are normally decoupled from these for the 

sway and yaw motions [11]. The assumption is also made that 

the low and high frequency motions can be determined 

separately and that the total motion is the sum of each of 

them. Marine engineers often make this assumption since the 

analysis is simplified and the low frequency motions can 

also be predicted with more accuracy than the high frequency 

motions.
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The canonical structure of the system under consideration is 

shown in Figure 5-1. The model for a vessel can be 

separated into low (1 ) and high (h) frequency subsystems.

The low frequency motions (subsystem ) are controllable 

via thruster action and the high frequency motions 

(subsystem S^) are due to the first order wave forces and 

are oscillatory in nature. The ship positioning problem is 

to control the low frequency motions (output of S£) given 

that the measured position of the vessel (z) includes both 

ŷ  and y^. The object in the following is to design a state 

estimator to provide estimates of the low frequency motions 

X|. The estimator must be capable of adapting to variations 

in the high frequency subsystem which occur due to 

variations in the weather conditions.

The plant Sjj can be assumed to be completely controllable 

and observable and to be represented by the following 

discrete, time-invariant, state equations:

x^(t + l) = A^Xj^t) + BjU(t) + D£o)(t) (5.1)
1 * Xj (t) = C| x t )

= + —  ̂ (5.2)

where:
(5.3)

(5.4)
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and S^m is the Kronecker delta function, 2Cg(t)eRn , uftJeR10, 

cOCtJeR^ and ^ ( t ) € R r. The process noise co(t) is used to 

simulate the wind disturbance and v(t) represents a white 

measurement noise signal. The plant matrices A^ , and

are assumed constant and known. The observed plant 

output includes the coloured noise (wave disturbance) signal 

y^(t) and is given by:

z (t) = (t) + yh (t) (5.5)

The high frequency disturbance can be represented by the 

following multi-variable auto-regressive moving-average 

model:

Sh : Aft(z”l)yh(t) = Cft(z~i) §(t) (5.6)

which is assumed to be asymptotically stable and ^ ( t ) 6 Rr

and J(t)6 Rr. Here ^(t) represents an independent zero mean

random vector which is uncorrelated with u)(t) and v(t) and

has a diagonal covariance matrix . The polynomial5
matrices A^(z“-̂) and C^(z*"i) are assumed to be square and of 

the form:

Ah(z“l) = Ir + Ajz”! + A 2Z”^+...+ Anaz“na (5.7)

Ch(z-i) = Ciz“i + C2 Z_2+...+Cncz~na (5.8)
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where z”l is the backward shift operator. The matrix 

is assumed to be regular (that is Ana is 

non-singular). The zeros of det(A^(x)) and det ( Cj-j (x ) ) are 

assumed to be strictly outside the unit circle. The order 

of the polynomial matrices are known but the coefficient 

matrices { Ai} and {Cjj, i=l> ••• na., j = l, ... nc, are 

treated as unknowns, since in practice the wave disturbance 

spectrum varies slowly with weather conditions. It is also 

assumed [1 ] that the disturbances in each observed channel 

are uncorrelated so that the matrices { Ai } and |cjj' have 

diagonal form.

5.3 THE LOW FREQUENCY MOTION ESTIMATOR

Assume for the moment that the coloured noise signal y^ can 

be measured, and thence can be calculated. The plant 

states _x̂  can be estimated using a Kalman filter with input 

z^, assuming the ship equations and noise covariances are 

known. It is reasonable to assume that a good time- 

invariant model for the low frequency motions is known and 

that the noise sources are stationary. This subsystem is 

stabilizable and detectable, and under these conditions the 

Kalman gain matrix is constant and may therefore be computed 

off-line. Thus, the solution to this part of the estimation 

problem is particularly simple.
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The Kalman filter algorithm becomes:

Predictor:

x^(t/t-l) = x^ (t-l/t-1) + B^u/t-l) (5.9)

£ (t/t-1) = C^xt(t/t-l) (5.10)

P(t/t-l) = AiP(t-l/t-l)A| + (5.11)

x^(t/t) = x^(t/t-l) + K^(t)£^(t) (5.12)

Corrector:

y^(t/t) = C^X|(t/t) (5.13)

P(t/t) = P(t/t-l) - Kj (t)C£P(t/t-l) (5.14)

K, (t) = P(t/t-l )cJ[(^P(t/t-l )C^+ Rf ]_1 (5.15)

where:

(t) = z(t) - y^(t/t-l) - yh(b) (5.16)

= z (t) - y_^(t/t-l) (5.17)

and is the Kalman gain matrix, P(.) is the error

covariance matrix. Qf and Rf are the process noise 

covariance matrix and measurement noise covariance matrix 

respectively. Unfortunately Yh(t) cannot be separated from 

z/t) by measurement, and the signal _£̂ (t) cannot be
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calculated. The way in which it is approximated will be 

discussed in Section 5.5.

5.4 High Frequency Motion Estimator

The wave spectrum is represented by the coloured noise model 

(5.6) and in this section, the high frequency motion 

estimator is constructed based upon this model. The 

assumption is made that the low frequency motions can be

estimated via the technique of Section 5.3. For the

present, the problem of generating £^(t/t-l) when y_h (t ) is 
unmeasurable will be ignored.

Define the new variable m^(t) as:

ni h (t:) = z(t) - y^(t/t-l) (5.18)

and from (5.16):

mh(t)=^j^(t)+y;h(t  ̂ (5.19)

The innovations signal is white noise and mh can be 

treated as the measured output of a plant S^ with 

measurement noise £^ . The covariance matrix for is 

denoted by . The innovations signal model becomes:

Ah(z”l)mh(t) = Dh(z“l)£ (t) (5.20)
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where *s an independent random sequence with

covariance matrix ^  .

The matrix polynomial D^(z~i) has the form:

D ^ z - 1) = Ir + D1z"1+  +Dndz"nd (5.21)

where the zeros of det(Dj)(x)) lie strictly inside the unit 

circle. The parameters of D^(z“i) are determined by the 

following spectral factorization:

Dh (z-1) Dh<z > = ch (Z_1 ) 2eCh (z-> + (5.22)

Ah (z-1) ^ A h ( z )

Note that nd=na (since normally na>nc) and that by 

multiplying both sides of equation (5.22) by znc* and taking 

the limit as z-*0 :

^nd ~ ^ n a ^  (5.23)

Since A^(z_i) is regular, that is Ana is non-singular, 

the following identity holds:

A nit>nd = ( 5 '24)

Hagander and Wittenmark [54] (for the scalar case) and Moir 

and Grimble [55] (for the multi-variable case) have shown 

that the optimal estimate of ^h (t) can be calculated using:
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(5.25)

(5.26)

A becomes:

(5.27)

The estimate of Zh^) not needed for control purposes but 

is required for updating x^(t/t). The 'wave frequency model 

changes with environmental conditions and these variations 

are accounted for in (5.27) by on-line estimation of Ana,

Dn(j and the innovations £(t) (Section 5.6).

5.5 MODIFIED ESTIMATION EQUATIONS

The signal not measurable and must be replaced in
Athe low frequency Kalman filter by y_ft(t/t). This 

substitution causes a difference in the state estimates
A

(denoted ^(t/t)) and in the calculated innovations:

£ (t) £ z(t) - ^(t/t-l) “ y.hftA) (5.28)

= (t) + jih (t)

^h (t/t) = mh(t) “ 

where:

£ (t) = mh(t) - £ h(t/t-l)

Using the identity in equation(5.24) , 

Zh (fc/1) = 21h^) "" ^naDnd £_(b)

-129-



0/5/mcl708/22

where nh(t)=yji(t)-£h(t:/t) . The signal r»h(t) for the high

frequency motion estimator has a zero mean value if the
aerrors in calculating yh(t/t) are neglected. Notice from 

(5.16) and (5.26), the innovations £(t) is identical to the 

signal £_h(t) where:

fh<t) £ mh (t) - £h(t/t) (5.29)

If the above substitution is made, the new low frequency 

filter has the form:

3<j( t/t) = x^( t-l/t-1) + B^u(t-l) + K^(t) £_(t) (5.30)

but this equation may be decomposed into two parts:

X (t/t) = A, x,(t-l/t-1) + BjUft-l) (5.31)

+ (t) S jl (t )
A A

(t/t) = A^jc£ (t-l/t-1) + K|(t)rih(t) (5.32)

where:
A A
x^(t/t) = x^(t/t) + >L^(t/t) (5.33)

AA*and x^it/t) represents the change brought about by replacing 

^h(t) by Zh^t/t) in (5.27). The change in the predicted 

output:

y,(t/t-l) = y (t/t-l) - y . (t/t-l) (5.34)

where:

y^(t/t-l) = Clf f(t/t-l) (5.35)
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but from (5.9) and (5.33)

^ (  t/t-l) = (x^ (t/t-l )-x^( t/t-l)

A
= C^A^xf t-l/t-1 ) (5.36)

For later reference, note that y (t/t-l) is generated from

the output of the low frequency subsystem (see (5.32)) 

driven by the zero mean signal . The resulting position 

variations are relatively slow in comparison with the high 

frequency motions.

The high frequency motion estimator is also modified because

the signal mft(t) in (5.18) cannot be calculated but instead 
m^(t) can be found where:

The basis of the parameter estimation equation (Section 5.6) 

follows from (5.19) and (5.34) as:

mh (t) = nih(t) “ y £(t/t-l)

A
mh (t) = ,z(t) - (t/t-l) (5.37)

= Aft(z_1 )“1Dh (z !) £(t) - 2/(t/t-l) (5.38)

Assuming that £_ and can be calculated the estimate of 

can be generated using (5.27) and (5.38):

Zh (t/t) - m^ (t) - AnaDna £_(t) + t/t 1) (5.39)

-131-



0/5/mcl708/24

The signal E must be calculated to obtain the desired state 

estimates x^(t/t) and this can be found using (5.18), (5.27) 

and (5.28):

lit) = Aniond £(t) (5.40)

Recall that the gain Kj(t) is calculated based upon the low 

frequency subsystem rather than the total system model.

This has the advantage that the gain is fixed and 

independent of variations in the high frequency subsystem. 

The optimal low frequency position estimate should therefore 

be calculated from (5.31) but this is not possible since 

jEĵ (t) cannot be computed directly. The state estimates are 

therefore obtained via (5.30) but are corrected using the 

estimated (t/t-l). This can be achieved in the ship 

positioning problem because the position states are 

identical to the outputs of the system. Thus, let the 

corrected estimate

y^(t/t) = y^(t/t) - y^(t/t-l) (5.41)
= position states in x^(t/t)

In the application of Kalman filters, it is unavoidable that 

errors will arise from incorrect models for the plant and 

noise signals. The signal yj(t/t-l) will include such 

errors, but in the following section it is shown how this
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quantity can be estimated and may be used to correct the low. 

frequency state estimates.

5.6 KALMAN AND SELF-TUNING FILTER ALGORITHMS

The Kalman and self-tuning filter algorithms are combined 

below to produce the desired low frequency motion
A

estimator. The Kalman filter to estimate x^(t/t) becomes:

Algorithms 5.1

Predictor:

x^( t/t-l) = A^x^C t-l/t-1) +B^(u(t-1)) (5.42)

3^(t/t-l) = Cj£X̂ ( t/t-l) (5.43)

Corrector:

] x ^ ( t / t )  =  X j ( t / t - l )  + K ^ ( t )  £_(  t ) (5.44)

(t/t) = C^x^(t/t) (5.45)

Tbe signal \ is required in the above algorithms but this 

can be computed from (5.40) given the innovations signal 

and the matrices Ana and Dn^ . These matrices may be 

estimated as described in the following. Note that at time 

t-1, the predicted output y^(t/t-l) is known (from (5.42), 

(5.43)) so that m^(t) can be computed from (5.37). From 

(5.39):
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Ah(z 1 )mh(t) = Dh(z_1) E(t) - Ah(z_1 )£^(t/t-l) (5.46)

îjThe quantity is a slowly varying signal (from

Section 5.5) and can be treated as a constant over a short 

time interval. Let s( t) =A^ ('z"A )y^ (t/t-l) (where using the 

final value theorem z may be replaced by unity) then (5.46) 

becomes:

Ah(z”l)mh(t ) = D(z"l) £(t) - s{t) (5.47)

The innovations signal model can be represented in the usual 

form for parameter estimation:

ih (t) = t(t)0 + £(t) (5.48)

and the algorithm due to Panuska [56] can be employed to 

estimate the unknown parameters.

In the ship positioning problem, the high frequency 

disturbances can be assumed to be decoupled, so that 

Ah ( ) ~-*-Dh ( ). is a diagonal matrix and the parameters for

each channel can be estimated separately. Thence, standard 

extended recursive least squares or maximum likelihood 

parameter identification algorithms may be used. For the 

ith channel:

™hi(t) =lf>i(t)0i + £j.(t) (5.49)
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where:

= [-mhi (t-1)],... ,Shi (t-na) ? (5.50)

£i(t-l),... £i(t-nd);1 ]

T£i = [air. . «Mna ;ciil' • • •<3ind'siJ (5.51)

Past values of the innovations signal are approximated by:

E. i (t) = fnhi(t) - ^i(t) 0_i (5.52)

A  _where (t) is given by (5.50) with ci(t-j) replaced by
A  A
£i(t-j) j=l, 2 , ..., n^ and 0  ̂ represents the estimated

parameter vector.

The recursive Kalman/self-tuning filter algorithm now 

becomes:

Algorithm 5.2

1. Initialize:,0if initial parameter covariance for each 

channel and assign the forgetting factor 3̂ .

Initialize state estimates.

2. Generate the Kalman filter estimates x^ft/t-l) and 

y^(t/t-l) using (5.42) and (5.43).

_  A

3. Calculate m^^(t) using (5.37) and form i(t ) .
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4. Parameter update:

= £i<t-l) + Ki(t)(mhi(t) - 0 i (t-1) )
(5.53)

5. Covariance and gain update:

Pi (t) = |Pi(t-X)-Ki(t) ( |3 + (f>i(t)Pi(t-l) tf-i(t) )Ki(t)T]-A3

Ki(t) = Pi(t-l) (pi(t)( (3 + Pi(t-l) i (t) )
(5.54)

where 0.95 < p<l.

6 . Innovations update:

<E i (t ) = nihi(t) - Cpi(t) 0i(t) (5.55)
A

7. Calculate (t) for channel i using (5.40):
a A
£|i (t ) = anadnCj £i.(t) (5.56)

8 . If i < number of channels (r), go to step 3.

A
9. Generate the state (using equations (5.44) and

(5.45).

10. Calculate the estimated y.(t/t-l) as:

$jji(t/5-l) = Si(t)/Ahi(l) (5.57)

Ysi(t) = ^ y si(t_1) + (1“«) y)i(t/t-l)
0 ^ a ^ l
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11. Correct the position estimates using (5.41). Return to 

step 2 .

A

The signal Yjji(t/t-l) in step 10 may be processed, to
A

produce the smoothed estimate ysi(t), before it is used to 

correct the state estimates. The algorithm described in 

Appendix D can predict the velocity as well as smoothing the 

estimation of yji (t ) .

The structure of the self-tuning/Kalman filtering scheme for 

the dynamic positioning system is shown in Figure 5-2. The 

surge motions are decoupled from the sway and yaw motions 

and thus these are normally estimated by separate filters.

5.7 DISCUSSION

The self-tuning Kalman filtering technique is the 

alternative scheme for a dynamic ship positioning control 

system. The advantages and disadvantages are listed below. 

Most of the advantages are also its advantages over harmonic 

wave model and fourth order wave model extended Kalman 

filtering approaches.
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5.7.1 Advantages

(a) The varying wave disturbance is represented by 

single-input single-output channels and thus the 

adaptive filter is not multi-variable in nature.

(b) The high frequency adaptive filter forms a separate 

subsystem to the low frequency Kalman filter and thus 

the gain calculations are simplified and the system may 

be commissioned more easily.

(c) The filter gains for the low frequency estimator are 

fixed and can be computed off-line whereas all of the 

gains in an extended Kalman filter must be computed 

on-line unless approximations are made [17, 18].

(d) Existing constant gain linear Kalman filtering DP 

systems [5] may easily be modified to include the 

self-tuning features described here.

(e) There is no need to specify the process noise 

covariance or the form of the high frequency model.

Only the total order of the model is assumed known.
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(f) The high frequency model states which are not needed 

for control purposes, are not estimated in the 

self-tuning approach.

5.7.2 Disadvantages

The full extended Kalman filter in which all of the gains 

are computed on-line can be classed as being locally optimal 

(if the linearizations are correct) whereas the self-tuning 

scheme is sub-optimal unless the low frequency estimator 

gains are calculated on-line using knowledge of the changing 

high frequency model.

In fact, the harmonic wave model extended Kalman filtering 

approach is not an optimal extended Kalman filter. The 

fourth order wave model [6 , 7] extended Kalman filter 

approach involves too many states and is therefore very 

difficult to implemented for it may easily cause numerical 

problems and the stability problem is difficult to analyze.

5.8 SUMMARY OF RESULTS

A self-tuning technique has been developed to replace the 

usual fixed high frequency estimator in Kalman filtering
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dynamic positioning systems. Thus, systems which do not 
currently have automatic adaption to varying environmental 

conditions can be provided with such a feature. The 

approach has the advantage of simplicity over extended 

Kalman filtering dynamic positioning systems. In addition:

(a) There is no need to specify the process and measurement 

noise for the high frequency model.

(b) High frequency model states which are not needed for 

control are not estimated.

(c) The structure of the multi-variable estimator which 

involves separate adaptive and non-adaptive subsystems 

simplifies both implementation and fault finding.

The technique can also be applied to other engineering and 

economical processes which have the same features as the 

dynamic positioning systems.
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CHAPTER SIX

THE USE OF SELF-TUNING KALMAN FILTERING TECHNIQUES IN 
DYNAMIC SHIP POSITIONING SYSTEMS

6.1 INTRODUCTION

In Chapter Five, the theory of a self-tuning Kalman filter 

was developed. Originally, the theory was inspired by the 

Dynamic Ship Positioning (DSP) problem. In DSP systems, the 

controlled ship motions are due to the current, wind and 

second order wave disturbances. These motions are slow 

compared with the high frequency oscillatory first order 

wave disturbances. The control problem and system modelling 

are fully described in Chapter One and Chapter Two. The 

self-tuning Kalman filter has several advantages over the 

more usual extended Kalman filter [7, 17, 18]. The 

separation of the LF and HF estimation functions is 

convenient for both fault analysis and error detection. The 

existing constant gain Kalman filtering DSP system [5] can 

easily be modified to include the self-tuning section. Most 

of all, the self-tuning filter subsystem is adaptive to the 

weather condition changes.
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The application of self-tuning Kalman filter to DSP is 

tested in four conditions. In the linear case, both single 

input, single output (SISO) system and multi-input, 

multi-output (MIMO) system are used to test the filtering 

and control scheme. The results are given in Section 6.2. 

In the next test, instead of using a linear model to 

simulate the low frequency ship motions, the original 

non-linear differential equations are used. The estimation 

of states still remains the same, that is, a linear Kalman 

filter is employed. In the above three cases, no integral 

action is included in the controller. The final test is to 

demonstrate a special feature of the self-tuning Kalman 

filter when integral control is employed. The MIMO system 

is used in non-linear cases. The filter and controller 

paxameters are given in each section. These parameters may 

vary among the tests, since the model used for the design 

may not be the same for each test.

6.2 LINEAR SYSTEM IMPLEMENTATION

6.2.1 Single Input - Single Output Systems

Low Freguency Model

In this study, the sway model of Wimpey Sealab [11] is 

considered with Beaufort No. 8 sea condition (equivalent to
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a mean wind speed of 19 m sec ^). The normalized linear 

model is:

*i<t>
yL (t)

2. At)

Aj X jU) + BjU(t) + Dje<0(t) 
c,xx(t)

(t ) + v (t )

The system matrices are:

A i ■

(6 .1 )

0.0546 0 0.5435
1 0 0
0 0 -1.55

0 1 ,50
1 o" (6 .2 )

. 5435 0 <3

X| i  (t) sway velocity
Xĵ 2 (t) = sway position (6.3)

_X1 3 (t > thruster state

„ T 
BI ~

Ci -

D t  =

*j(t) =

Here u(t)€ Rl represents the control input to the thruster, 

U)(t)eRl is a white noise sequence representing the random 

force on the vessel. Other disturbances, such as wave drift 

and current forces cannot be measured and can be considered 

to produce an unknown mean value on the signal 00(t ) . Let 

y|(t)€R* denote the low frequency motion, v(t)£R* the 

measurement noise and z^(t) £ R^ is the measurement noise and
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LF sway motion respectively. For Wimpey Sealab, the 

estimated standard deviation for cO(t) is <Tp=0 .00228, and 

that for v(t) is (fm=0.0033.

High Frequency Model

The simulation model used is described in Method (1) in 

Section 2.8.4.

For the self-tuning filter subsystem, it is assumed the HF 

motion can be modelled by a second order transfer function.

(6.4)

where:

C h ( z _ 1 ) = c i z  1 (6.5)

Ah(z“ ^) = 1+aiz 1 + a2z"2

The parameters of the polynomials A^(z“l) and C^(z“ )̂ are 

unknown and £(t) is an independent random sequence.

The total measured output is

z(t ) = z^(t) + yh(t)
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Filtering Problem and Results

A steady state Kalman gain matrix is used in the LF state 

estimation subsystem. For Wimpey Sealab, the process noise 

and measurement noise covariances are 6p= 5.1984 x 10"® and 

6^= 10"® respectively. The computed steady state Kalman 

gains are given as:

Kss

0.301351

0.776339
0.0

(6.6 )

The thruster state has zero gain because the process noise 

is not fed into this state.

The estimated parameters are shown in Figure 6-1. The 

parameters converged to steady values after 350 seconds. It 

is, of course, well known that the convergence rate of any 

technique, where the innovations must be approximated, is 

very slow. Figure 6-2 shows the total sway motion, and the 

estimated LF motion is shown in Figure 6-3. When the 

uncontrolled vessel was drifting away from the station, the 

estimator tracked the position well even though the 

parameters had not reached steady state (see Figure 6-1).

The high frequency estimation is shown in Figure 6-4. The 

HF estimator started to track accurately the HF motion after
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20 seconds. Before this time, it tracked reasonably well 

except for a noisy envelope.

For the innovation process equation (5.20) to be stable, the 

parameters a^ and dj should lie in the interval [0 , -2 ], and 

a2 and d2 should lie in the interval [0, 1], Thus, the best 

guess of the initial values for a^ and di are both - 1 . 0 and 

those for a2 and $2* are 0.5. When using the extended least 

square algorithm, the parameter gains and the estimation 

errors should be restricted so that {ai^ and £dij lie in the 

stable region, otherwise, it has been observed that the 

estimated parameters may blow up in the initial estimation.

It is important to consider how the filters behave in steady 

state. Figures 6-5 to 6-7 show the motions between 400 to 

500 seconds. Both LF estimator and HF estimator behaved 

well. The cumulative losses are shown in Figure 6-8 . These

tests were based on Beaufort No. 8 (hi/3=7 .4 7m) sea

condition. Figure 6-9 shows the parameter estimation when

the sea condition was changed to Beaufort No. 5

(hi/3 =2 . 7 m). As the Beaufort number decreases, the natural
frequency of the wave spectrum increases, therefore, the--------

absolute values of the parameters jaij should increase. The 

absolute values of the parameters *[ai^ increase at the 
time when sea condition is changed, and they converge to new 

steady state values. This demonstrated that, as required,
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the self-tuning scheme adapted, to different weather 

conditions. The simulated frequency range of HF motion at 

Beaufort No. 8 is 0.3tol.2 radians per second, and that at 

Beaufort No. 5 is 0.5tol.9 radians per second.

In this simulation test, the quantity of s(t) equation 

(5.66) was not estimated. This was based on the assumption 

that if the variance of the measurement noise was 

sufficiently high, the signal n^(t) in equation (5.51) was 

almost negligible compared with £^(t). Thence, the 

estimation of s(t) may be dropped. The results have 

verified this assumption. However, if the variance of the 

measurement noise was unable to suppress the effect of n^(t) 

in the system, significant error in the LF estimation was 

found. Therefore, it is recommended that the estimation of 

s(t) should always be included. On the other hand, if the 

variance of the HF disturbance is low (the variance of n^(t) 

is low), this will give better estimation in LF motion (see 

equation (5.32) and (5.33)).

6.2.2 Multi-Input - Multi-Output Systems Low Frequency

Model ------------

The DSP system to be considered here is a two-input and two- 

output system. The controlled variables are sway and yaw 

motions. The LF linear ship model is given in Section 2.7
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(Wimpey Sealab). Model A was used in this simulation. The 

LF state vector is defined as:

X 1 ( t) sway velocity
*2 <t) sway position
x3 (t) yaw angular rate
x4 (t) yaw angle
x5 (t) thruster one
x6 (t) thruster two

High Frequency Model

The HF wave motions were simulated using Method [2] 

described in Section 2.8.4.

The high frequency model for the self-tuning filter is a 

second order ARMA model which is described in Section 

2.8.2. The order of Dh(z”l) is identical to that of the 

Ah(z"1).

Filtering Problem and Results

The steady state Kalman filter gain matrix is computed based 

on the process noise variances (LF only) defined in equation 

(2.18) but the measurement noise covariance matrix (2.19) is 
inflated to diag [5 x 1 0 ~5 f 1.22 x 10"4] . The first and 

second diagonal elements are five and ten times the
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simulated measurement noise variances equation (2.19) 

respectively. The computed Kalman gain matrix is:

0.1263 0.0031
0.5023 0.0086
0.0170 0 . 2 2 0 1
0 . 0 2 1 0 0.6633

o
•
o o
•
o

o
•
o o
•
o

The filter gains corresponding to thruster states are zero 

because the process noises are not fed to these states.

The simulation results presented below were obtained using 

the above high frequency model to generate the wave

motions. The tests were based on sea states corresponding

to Beaufort No. 8 and 5 (wind speeds 19 m/sec. and

9.3 m/sec., respectively), which correspond to typical 

rough and calm seas respectively. The first set of the 

filtering results (Figure 6-10 and Figure 6-15 are for 

Beaufort No. 8 without closed loop control.

The total sway motion is shown in Figure 6-10 and the

estimated and modelled low frequency sway motions are shown

in Figure 6-11. The estimate of the low frequency motion is 

required for control purposes and it is clear the estimate 

is good throughout the time interval (even after initial
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start up). The high frequency sway motion estimates are not 

needed for feedback control and are not shown. The total 

and the low frequency yaw motions are shown in Figure 6-12 

and Figure 6-13 respectively. It is important that the LF 

motion estimates are relatively smooth to reduce the 

consequential variations in the control action. The major 

role of the combined estimator is indeed to separate the HF 

and LF motion estimates. Since the LF Kalman filter does 

not have z  ̂as an input, but rather:

the predicted measurement noise covariance should be 

increased if the LF estimates contain an HF component.

Since the HF wave conditions are slowly varying, the amount 

by which Rf should be increased is not known exactly, but 

the system is not oversensitive to such an adjustment 

(factors of 5 on sway and 10 on yaw were used for the 

results shown here).

The cumulative loss functions for the position estimation 

errors in sway and yaw (both HF and LF) are shown in 

Figure 6-14. The LF loss function for sway is defined is:

£(t) ~ y^(t/t) = jZj(t) + nft(t) (6.9)

t = l
(6.10)
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If the measurement noise were not artifically increased when 

calculating the Kalman filter gain, the HF and LF loss 

functions for yaw would be found to be similar. This is an 

indication of optimal performance which has been sacrified 

to some extent to obtain smoother position elements. The 

parameter estimates for the high frequency model are shown 

in Figure 6-15 where:

a® 0 a® 0
A h (z *) = 12 + z-*1 +

0 a* 0

d® 0 d® 0
Dh (z"l) = I2 + z" 1 +

0 d^ _° \
Note that even before the estimated parameters have 

converged, the position estimates are still accurate (see 

Figure 6-11 and Figure 6-13). The initial parameter 

estimates for the matrices Ah and Dh can be based upon the 
knowledge that these have stable inverses. The polynomials 

are all of the form a = l+a].z”l + a 2z”  ̂ = (miz~l + 1 )* 

(m2 z"l + 1 ) and since|mi|<l, 1̂ 2 1 ^ 1 then -2 <mi+m 2 ^.2 , 

- l < m ^ m 2 <l. Assuming mi,m2<0 implies that good initial 

estimates are a2 = 0.5 and ai = -1. It was found that the
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initial error covariance for s(t) should be small (e.g. 0.1 

in this test) but the initial covariance for the other 

parameters should be high (e.g. 100). The estimate of s(t) 

may contain a high frequency component and this may be 

smoothed by use of a simple first order lag filter.

The filtering results for a calm sea (Beaufort No. 5) are 

shown in Figures 6-16 to 6-21. The state estimates are much 

better for this case. This is consistent with the theory of 

Section 5 that shows that when the modelling errors are 

negligible, the term (t/t-1 ) is caused by the estimation 

error of the high frequency motion (see (5.22) and (5.33)) 

which is reduced in a calm sea.

Control Problem and Results

The controller design is based on the well known separation 

principle of stochastic optimal control theory. The 

controller with input and output jj is chosen to minimize 

the performance criterion:

where Qc and Rc are positive definite weighting matrices.

The optimal control signal is generated from a Kalman filter

1 im 1 
T-*oo 2T (6.13)
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cascaded with a control gain matrix Kc :

u(t) = “Kcxj(t/t) (6.14)

The control gain matrix may be calculated from the steady 

state Riccati equation in the usual way. The closed loop 

control system is shown in Figure 6-22.

The optimal control weighting matrices were chosen to 

penalize the position error corresponding to the low 

frequency motions (states 2 and 4) and to give an 

appropriate step response. These were found as:

Qc = diag^5, 60, 5, 60,1, lj
(6.15)

The computed optimal steady state gain matrix is:

Kc

1.2907 
0.3873 
0.0116 
0.0030 
0.3815 

-0.0095

-0.0475 
0.0030 

-0.8371 
-0.3873 
-0.0095 
0.6635

(6.16)

The saturation limits on the control signals were set at 

+0.002 per unit. These represented the actual saturation 

which can occur when thrusters are at full load. The
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details of the controller design is described in Chapter 

Four. Integral control is not included in this test, it is 

shown in Section 6.3.3.

Closed Loop Control

The first set of results are again for the rough sea 

(Beaufort No. 8 ) condition. To allow the parameter 

estimates to converge (as will be possible in practice) the 

step response of the system is measured over the time 

interval 150 to 300 seconds. A step reference of 0.06 per 

unit is input to the system at t = 150 seconds. The sway and 

yaw responses are shown in Figures 6-23 to 6-26. The low 

frequency variations, due to wind and current disturbances, 

are much reduced under closed loop control but the high 

frequency motions are, as required, almost unchanged. The 

rise time for the step response can be reduced if larger 

control signal variations are allowed. These are shown in 

Figures 6-27 and 6-28 and it is clear the sway control 

enters the saturation limit for a few seconds when the step 

demand is entered. This is not a problem, since in practice 

position reference changes are not made in steps. One of 

the main design objectives is to reduce "thruster 

modulation", that is, a variation of the thrusters in 

sympathy with the wave motions. That this objective has 

been achieved is clear from the control signals shown in
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FIGURE 6-27 Sway Control Signal (Beau 8 , MIMO)
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Figures 6-27 and 6-28.

The equivalent results for the calm sea (Beaufort No. 5) 

condition are shown in Figures 6-29 to 6-34. The parameter 

estimates are improved and the control signal variations are 

reduced in this case, as would be expected. Note that in 

comparing the high frequency motions in Figures 6-23 and 

6-29 the magnitude of the HF motion is reduced in the calm 

sea but the frequency of the wave motion is higher. The 

sway motion is less than the allowed limit of 3 metres for 

both sea states.

A
The estimated quantities of yS£(t)(i=l,2) shown in 

Chapter 5, algorithm 5.2, step 10 are illustrated in 

Figures 6-35 and 6-36. In Beaufort No. 5, this signal
A
ysi(t) is much smoother than it is in Beaufort No. 8 . These 

results are consistent with the theory. The argument is:
A  A

ysi(t), a smoothed signal of y^i, has been shown to be 

driven by the estimation error, n^, of the HF motion. In 

calm sea, the variance of the estimation error (driven 

noise) is small, thence, this noise is attenuated by the
A

ship dynamics. As a result of this, ysift) i-s smoother in 

calm sea than it is in rough sea.
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6.3 NON-LINEAR SYSTEM IMPLEMENTATION

In the last section, the self-tuning Kalman filter has been 

applied to linear DSP systems and was found to be 

successful. Practically all physical systems in one way or

another, are non-linear. To extend the study on the

application of the self-tuning Kalman filter to DSP systems, 

a non-linear dynamic ship model is used to investigate the 

filtering and control problems. A non-linear thruster model 

is also included in the LF dynamics. The Kalman filter,

however, is based upon the linearized version of the

models. The thruster subsystem of the filter is a second 

order model (Section 2.6.2). The high frequency model is 

basically the same as in the linear case.

Low Frequency Model

The non-linear model for the thrusters is shown in 

Figure 2-6.

The LF equations of motion for the vessel Wimpey Sealab have 

been derived from tank tests and are non-linear 

(Section 2.7.1):
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xj = - 2 . 4 0 2 2 Jxi(xi + 0. 03696 |x3 |X3
- 0.5435|x 1 |x 3 + 0.535U! + 0.05435 ̂ 2

x2 = X!

X 3 = 2.5245 |xx|xi - 1.585|x3|x3 - 1.634U2 (6.17)
+ 9. 785 cl>2

x4 = x3

wh e r e  x i = s w a y  velocity, X 2 = s w a y  position, X 3 =yaw ve l o c i t y ,  

X 4 =yaw angle, u i = t h ruster 1 output, U 2 =thruster 2 output,

Gl>i , cJ2=process noise. The ship simulation is based upon 
the above model.

The LF linear ship model B described in Section 2.7.1 was 

used for the Kalman filter and controller design.

X 1 ZZ sway velocity
X2 = sway position
x3 = yaw angular rate
x4 = yaw angle
x5 = thruster one state one
x 6 = thruster one state two
x7 = thruster two state one
x 8 = thruster two state two
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High Frequency Model

The simulation of high frequency motions and the self-tuning 

filters are identical to the linear system case described in 

Section 6.2.2.

Filtering and Control Problems and Results

The system matrices for the Kalman filter are identical to 

the linear system except that the thrusters are represented 

by second order models. The process noise covariance matrix 

Qj (LF only) for the calculation of the Kalman gain is given 

in equation (2.18). The first and second diagonal elements 

of the modelled measurement noise covariance matrix, 

are increased by a factor of 4 and a factor of 10 

respectively, which gives [c.f. equation (2.19)]

Rt = [4x10-5, 1.22xl0"4] (6.19)

The adjustment will allow the Kalman filter to accommodate 

the errors due to the estimation of the HF motions which, 

though not computed directly, do affect the Kalman filter as 

additional measurement noise.

The computed Kalman gain matrix is:

-177-



0/5/mcl708/51

0.1427
0.5341

0.003191
0.008514

0.01829 0.2453 (6.20)
0.02129 0.7003
0 0
0 0
0 0

The optimal controller design criterion is similar to the 

linear system case (Section 6.2.2) but the state vector in 

the non-linear system has two additional thruster states. 

This requires the weighting matrices to be redefined. They 

are:

By solving the Riccati equation, the steady state solution 

of the optimal feedback gain matrix was found to be:

Qc = diag [3 500 3 500 0 10 0 10] 

Rc = diag [500 200]

(6 .21)
(6.22)

3.048 -0.1742
1.0 0.002396
0.01137 -3.049

Kt = 0.001463 -1.581c
0.6652 -0.01277
1.892 -0.05395

(6.23)

-0.005076 1.315
-0.0164 4.322
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The optimal control signal, based on the separation theorem, 

becomes:

u*(t) = -Kcx^(t/t) (6.24)

where x^(t/t) is the estimated state vector of the LF 

motions. The stochastic control scheme is illustrated in 

Figure 6-37.

Simulation Results

The performance of the optimal state estimation scheme is 

illustrated in the first set of results (Beaufort No. 8 ) 

shown in Figure 6-38 to 6-41. The system has a step 

reference input of 0.03 per unit to the sway subsystem at 

t = 50 seconds. (N.B. real time = 3.104 x simulated time).

The results demonstrate that the system remains stable even 

in the non-linear case. The estimates of the LF motions 

(Figures 6-39 and 6-41) are needed for control purposes and 

are good even in this non-linear situation. The parameter 

estimates of the HF subsystem (Figure 6-42) converge 

rapidly. The initial parameter estimates for the matrices 

and are similar to the linear situation described in 

Section 6.2. The accumulative loss functions for the LF 

estimator (Figure 6-43) increase steadily after the 

parameters have settled down. The estimated thrusts, shown 

in Figure 6-44 and 6-45, are as expected varying more than
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FIGURE 6-38 Total Observed Sway Motion (Beau. 8 , NL, M I M O )
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the thrusts generated from the modelled non-linear 

thrusters. This also applies to the estimated and modelled 

velocities shown in Figures 6-46 and 6-47. The estimates of 

the self-tuning parameter ^(t) for sway and yaw (Figure 6-48 

and 6-49) show higher frequency variations than are obtained 

with linear ship models (recall that £(t) is related to the 

error term y^(t)). Note that the amplitudes of these 

signals are very small. Also note that at t=50 seconds,

_s(t) for sway has a significant over shoot. This over shoot 

indicates that s(t) can detect the modelling errors when a 

step input is applied to the non-linear system while a 

linear filter is being used. The response shown in 

Figure 6-39 indicates that, when a step input is applied, 

the linear estimator reacts faster than the non-linear 

system response, and so gives a significant estimation 

error. When this error is detected in ŝ (t) , the estimation 

is upgraded to follow the actual system output.

The second set of results for Beaufort No. 5 is shown in 

Figure 6-50 to Figure 6-59. As expected, better results are 

obtained. The ^(t) signals (Figures 6-58 and 6-59) are less 

oscillatory and the amplitudes are lower in Beaufort No. 5 

than in Beaufort No. 8 . This is consistent with the theory 

that s(t) is caused by the HF estimation error.
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FIGURE 6-50 Total Observed Sway Motion (Beau. 5, NL, M I M O )
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6.4 SELF-TUNING KALMAN FILTER WITH INTEGRAL CONTROL

The ship positioning system with integral action has been 

discussed extensively in Chapter 4. A simplified scheme was 

proposed for practical application purposes in Section 4.4.2 

design 1. The simulation results show that the overall 

control system is stable and well damped (Figure 4-8). The 

plant output states have zero steady state error, but the 

drawback is that there are constant errors ec (t) in the 

position estimation. In this section it will be shown that 

these constant errors due to constant disturbances, can be 

estimated, and therefore, the output state estimation will 

have no constant errors.

In Section 4.4.2, it has been shown that the constant

estimation error is ec (t )=yp(t)-y?(t). Since ec (t) appears ̂ b
in the usual Kalman filter estimation (because the constant 

disturbances are not modelled), these quantities will be 

included in the variable m^(t) defined in equation 

(5.5.10). Thus, mft(t) can be redefined as:

mh(t) = _z (t) - J^(t/t-l) - ec (t) (6.25)

where ^(t) is the measured output and y^(t/t-l) is the 

predicted output generated from the Kalman filter at time 

t-1. Assuming ec(t) can be estimated, the total output
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estimated positions using equation (5.41) can easily be 

shown to be:

X^(t/t) = ~ t/t-l )-ec( t)} (6.26)

It is clear in equation (6.26) that compensation signals 

y^(t/t-l) and ^c (t) need not be separated. Thence, these 

two quantities can be combined into one parameter. From 

equation (6.26) and equation (5.46), the equation for 

parameter estimation can be rewritten as:

Ah(z-1 )mh< t) = Dh (z-l)f(t)
- A h (z" 1 <t/t-l )-eC(t)} (6.27)

To estimate the sum of (t/t-l) and £ c(t), the only change 

in algorithm 5.2 is to redefine the variable s(t) as:

s (t) = Aft( z” 1 )j £^( t/t-l )-ec ( t)l[ (6.28)

This is the theoretical analysis of estimating the error 

term ec (t). In practice, the algorithm 5.2 does not require 

to be changed at all. In general, the variable s(t) can 

represent any slowly varying and/or constant errors as well 

as errors due to linearization of non-linearity. The 

algorithm will automatically feed the estimate of £(t) 

through a filter Ah“1 (z~1) to yield a signal for correctng 

the position output estimate.
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Simulation Results

The simulation of the non-linear low frequency motions and 

high frequency motions are identical to those described in 

Section 6.3. Due to the introduction of integral states, 

the system matrices for the linear Kalman filter and for the 

calculation of the optimal feedback gain matrix are defined 

as follows: r n \

0
x^(t) =

Ai 0
xJ[(t) + net) (6.29)

where matrices Aj, Bj and Dj are defined in equation 

(6.27). The matrix (steady state wind disturbance) is 

defined in equation (2.13).

Ax = 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

Xx( t) = *1 sway velocity
x 2 sway position
x3 yaw angular velocity
x4 yaw angle
x5 thrust velocity of thruster 1

x 6 thrust of thruster 1

x7 thrust velocity of thruster 2

x 8 thrust of thruster 2
X9 integral state for sway motion
x 10 integral state for yaw motion

(6.30)

-191-



0/5/mcl708/57

observed sway position (6.31)
observed yaw angle

The state weighting matrix Qc and control weighting matrix 

Rc are the same as those defined in equation (6.21) and 

(6.22) except for an extra Aj. The weighting factors 

corresponding to the integral term are:

Ql =

When the steady state Kalman gain matrix was computed, the 

measurement noise covariances of sway and yaw motions were 

inflated by twice and three times respectively.

The performance of the entire stochastic control system is 

shown in Figures 6-60 to 6-63. The system has a constant 

current disturbance input of 0 . 0 0 2 per unit to the sway 
subsystem at t=50 seconds. The disturbance is much larger 

than would occur in practice since it would involve the 

thrusters acting continuously at full load to counteract the 

effect. However, the results demonstrate that the system 

remains stable even in this extreme situation. The steady 

state error can be reduced to zero by the use of integral 

action. The estimate of the LF motions which are needed for 

control purposes are good even in this non-linear situation.

0.5 0.25

0.25 0.5
(6.32)

z (t ) = Z 1
z2
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6.5 SUMMARY OF RESULTS

The self-tuning Kalman filter has been shown to be 

successfully applicable in DSP systems in both calm and rough 
sea conditions. The filter and control scheme worked very 

well in single-input single-output, linear multi-variable 

and non-linear multi-variable cases. It was also shown that 

the self-tuning filter could estimate the errors due to 

linearization of non-linearities and the constant error due 

to constant disturbances, in the position output estimation.
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CHAPTER SEVEN

THE ADAPTIVE TRACKING OF SLOWLY VARYING PROCESSES WITH 
COLOURED NOISE DISTURBANCES

7.1 INTRODUCTION

In many industrial processes and communication systems the 

low frequency signals of interest are corrupted by high 

frequency disturbances. The conventional technique to 

remove these disturbances is to use low pass filters. It is 

well known that the filtered output will contain a 

significant phase lag especially when the filter has been 

designed to produce very smooth estimates. If the signal 

model and the noise covariances of a process are known, an 

extended Kalman filter can be used to adapt to the varying 

coloured noise disturbances. However, if the model of the 

plant and disturbances are unknown, it is very difficult to 

use this approach. In this chapter, an adaptive estimation 

technique is developed to deal with slowly varying processes 

where the process model is unknown. The adaptive estimator 

is divided into two parts, namely a primary estimator and a 

vernier estimator. The primary estimator is a low pass 

filter or its equivalent. The vernier estimator is self­

tuning and is adaptive to varying disturbances. The terms
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primary and vernier were borrowed from the space shuttle 

orbital control system where primary jets are used to 

control large errors and vernier jets to correct small 

errors.

The adaptive estimator can be used to track constant, ramp, 

step and sine wave signals. It is well known that the 

motion of a ship at sea consists of low and high frequency 

motion components. The low frequency motion is due to wind, 

current, second order wave and propulsion forces. The high

frequency motion is caused by the first order wave forces.

The adaptive tracker can be employed to estimate the low 

frequency motions, and simulation results for this are 

presented.

The theory of the adaptive tracking problem was originally 

inspired by the self-tuning Kalman filter theory developed 

in Chapter Five.

7.2 SYSTEM DESCRIPTION

The canonical structure of the single-input/single-output 

system to be considered is shown in Figure 7-1.

The slowly varying process is modelled by:
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s* : yi (t) = S ^ H cJ(t) (7-1)

and the high frequency disturbance is modelled by:

Sh: yh<t) = 17 (7.2)F ( Z ■L )

and E^yh( t)| = 0 (7.3)

where z~l is the backward shift operator, v(t) and ^(t) are 

independent random variables with variances and 

respectively. The signal o)(t) is also an independent random 

variable with variance but not necessarily zero mean

value. M(z“l) and N(z” )̂ represent the unknown plant 

polynomials. The plant can be a non-linear system or a 

linear system. The polynomials F(z~l) and G(z”l) are 

defined as:

F(z 1) = 1+f^z ^-+f2Z  +fnfz"’n  ̂ (7.4)
G(z“l) = l+giz“l+g2Z”2+.....+gngz_ng

The parameters of the polynomials F(z“l), G(z”l) are 

unknown. Only the order nf is assumed known. The process 

output Y|(t) is corrupted by the high frequency disturbance 
yh(t) and measurement noise v(t). The measured output is 

given by:

z(t) = y^(t)+y^(t)+v(t) (7.5)

where v(t) usually represents measurement noise.
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An example of this process is a vessel's motions at sea.

The motion due to current, wind and second order waves is 

slowly varying and the motion due to first order wave forces 

is of high frequency.

7.3 TRACKING AND FILTERING PROBLEMS

In many applications, the observation z(t) is not the 

desired signal for feedback. It is essential that the 

process output ŷ '(t) is estimated. The conventional method 

is to design a low pass filter. However, this will give 

significant phase lag in the system response, particularly 

when the filter is of high order. With the knowledge of the 

polynomials M(z“l), N(z“l), F(z~l), G(z”l) and the variances 

of the disturbances, a Kalman filter may be suitable. If 

these parameters are unknown the Kalman filter can only be 

based on rough estimates which may not be adequate. For the 

analysis here it is assumed that the order nf of the 

polynomial F(z“l) is known. In most cases, nf can be 

obtained from knowledge of the physics of the process. 

Generally, nf = 2 is adequate for most disturbance models.

In the next section, an adaptive filter is developed to 

estimate y^(t) which has a small time lag relative to fixed 

parameters filters. The adaptive filter can adapt to the 

range of parameters in the polynomials as well as to change 

in the variances of the random disturbances.

-199-



0/5/mcl708/63

7.4 THE DESIGN OF ADAPTIVE ESTIMATOR

It is assumed the signal y^(t) can be decomposed into two 

components (t ) and (t ) :

yJL(t) = y^(t) + y^(t) (7.6)

where (t) represents the component which varies within a 

boundary of +f), that is:

(7.7)

Here o is a constant which is close to the maximum amplitude 

of the sum of yh(t) anc  ̂ v(t). That is,

&£(max + v (t)|) x k, k > 1 (7.8)

In the present discussion y^(t) represents the output from a 

primary estimator. There are several ways to design such a 

coarse estimator.

A. Averaging Method

ŷ  (t) = E{yjt ( (7.9)

The expectation of both sides in equation (7.5):
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E[z(t)} = E{yt (t)}+Efyh (t)}+Efv(t)} (7.10)
= Efy.(t)} (7.11)

The expectation of the last two terms on the RHS are zero. 

Thence,

(t) = E|z (t (7.12)

The result in equation (7.12) is useful because y^(t) can be

generated from the measured output z(t).

B. Conventional Low Pass Filter

H(t) = W(z“l)z(t) (7.13)

where W(z~l) is a low pass filter in which 7jg(t) can be 

generated directly from the output.

C. Innovation Disturbance Model

Define a new variable n(t):

n (t) = z(t )-y j (t ) (7.14)

Using equations (7.5) and (7.6):

n (t ) = ŷ  (t ) +yh (t ) + v (t) -yg (t) (7.15)

= Yh( )  (7.16)
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The variable Yh(t) an(3 the disturbance v(t) can be 
represented by a new process called an innovation model, 

defined as:

H (z~l) c _ .yh< t ) + V(t) = , £ (t) (7.17)
t  \ Z  M  )

where the polynomial H(z”l) and the variance of £(t) satisfy 

the spectral factorization:

H f z - ^ H ^ z - 1 )^2 = G(z“1 )G*(z~1 )Cl2 (7.18)
2

+ F(z"1 )F*(z“1 )(Sv

and £( t) is an independent random sequence. The polynomial 

H(z“l) is of the form

H(z_i) = 1 + h^z-1 + ... + hnhz“nh (7.19)

If nf > ng then from equation (7.18) nh = nf. D*(z“l)

represents the reciprocal of polynomial D(z“l), which is

defined as:

D*(z“1) = z-nh(D(z)) (7.20)

Substitute equation (7.17) into (7.16) to yield:

n(t) = V' £(t) + y,(t) (7.21)F (z_1) *
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D. Adaptive Tracking of y/(t) (Vernier Estimator)

Equations (7.12) and (7.13) show that the quantity y^(t ) can 

be generated from the measured output z(t). The conditions 

set in equation (7.7) can easily be fulfilled by using 

either the averaging method or a conventional low pass 

filter. In order to obtain a good estimation of yj(t), 

there is still a quantity Y|(t) to be estimated (equation 

7.6). The variable Y|(t) varies within the envelope of + 8  

(equation 7.7). Therefore, if y^(t) varies slowly, the 

quantity Yĵ (t) can be treated as a constant within a few 

sampling intervals. Hence equation (7.21) can be 

represented as:

n(t) = xT(t-l) 0(t) + £(t) (7.22)

where

XT (t-l) = [-n(t-1),...-n(t-nf),
£( t-1) ,. . . £(t-nh) , 1] (7.23)

0T = [fl,...,nf ,hl,...,nh ,s(t)] (7.24)

where s(t) = Fy^(t)

The commonly used methods for estimating the parameter 

vector 0 (t) are (1 ) recursive extended least square, (2 )
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recursive maximum likelihood and (3) recursive generalized 

least squares. Suppose the recursive extended least squares 

technique is used. The unmeasurable innovation signal £(t) 

is approximated by:

£(t) = n(t) - XT (t-l)0(t) (7.25)

Awhere £(t) is the estimate of vector £(t).

The quantity y^(t) is assumed to be varying slowly, and the 

parameters of the disturbances may also be varying. It is 

essential that the identification algorithm has a forgetting 

factor p of slightly less than unity. This will enable the 

recently observed output to be weighted more heavily than 

past information. The value of should be within the range 

of 0.98 to 1.0. There are methods for varying the 

forgetting factor ji but most of them are intuitively based.

A more detailed analysis of such an algorithm was done by 

Osomio Cordero and Mayne [113]. They modified the algorithm 

so that the trace of the error covariance was divided by jS . 

They claimed that it may prevent the algorithm from 

diverging but care must be taken when choosing the constants 

6" and \ in the algorithm. It was found that the algorithm 

is sensitive to these parameters. Collecting the above 

results the desired adaptive tracking algorithm becomes:
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E. Adaptive Tracking Algorithm

(1) Initialize data: P(o) , 0(o), |3(o) , (S', A

(2) Measure output z(t)

Primary Estimation

(3) Generate y^(t) = M(z”l)z(t) or

-E{z(t)}

(4) Generate n(t) = z(t)-yj(t)

Vernier Estimation

(5) £(t) = n(t) - xT(t-l)8 (t-l)

(6 ) K(t) = [1 + XT (t-l)P(t-l)X(t-l)]-1P(t-l)X(t-l)

(7) 6 (t) = 6 (t-1) + K (t) £(t)

(8 ) N(t) = S/{1 - XT(t-l)K(t)J£2 (t )

(9) (J(t) = 1 - 1/N (t)

(10) W(t) = [I - K(t)XT(t-l)]P(t-l)

If trace W(t)/j$(t)<A set P(t) = W(t)/^(t)

Else set P(t) = W(t)

(1 1 ) £(t) = n(t) - xT(t-l)6 (t)

(1 2 ) (t) = s(t)/F(z-l), z = 1

Total Estimated Output

(13) ŷ  (t ) = yj (t ) + y/ (t )
(14) Go to Step 2
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A
It may be necessary to smooth 5^(t) in step (12) using the 

following algorithm:

7.(t) = Otyjj (t-1) + (l-«)s(t)/F(z-l), z = 1

where £X should be less than 0.5, otherwise it will introduce 

too much lag and deteriorate the performance of the vernier 

estimator.

7.5 SIMULATION RESULTS

In order to test the stability of the adaptive estimator 

under the condition where there is a severe change in the 

plant output, the adaptive estimator was used to track a 

square wave which was corrupted by high frequency noises.

The measured output, primary estimate and final estimate are 

shown in Figure 7-2. The primary estimator alone is guite 

insensitive to the step changes. This is the well known lag 

problem in the low pass filter. However, with the vernier 

estimator being activated, the lags observed at step changes 

are much reduced. When the plant output becomes constant 

the final estimate settles very well to the plant's constant 

value.
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The second test is to demonstrate the adaptive tracker's 

capability in following trapezoidal (ramp and constant) 

signal. The results are shown in Figure 7-3. It is found 

that the significant lag in the primary estimate when 

following a ramp signal is quickly eliminated by the vernier 

estimator. The difference between the cumulative losses of 

the primary estimate and of the final estimate shown in the 

Figure 7-3(d) have justified the contribution of the vernier 

self-tuning estimator to the accuracy of the estimation.

The estimated parameters of the disturbance model are shown 

in Figure 7-3(e ).

The disturbance consists of high frequency oscillatory noise 

(simulated using the method described in Section 2.8.4, 

method one) and white noise component. The disturbance 

model was assumed to be of second order. Four parameters, 

jfij, {hi}' i = 1 , 2 , and were estimated in
the self-tuning vernier estimator. The initial parameters

ensure the disturbance model is stable and that the 

parameters lie at the mid-point of their maximum range of 

values.

These initial guesses
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The third test is the tracking of a sinusoidal signal which 

is corrupted by a high frequency oscillatory disturbance and 

white noise. The measured output is shown in 

Figure 7-4(a). The vernier estimate shown in Figure 7-4(b) 

varies consistently with the error, between the

primary estimate and the true signal (shown in 

Figure 7-4(c)). The vernier self-tuning estimator performs 

very well even when it crosses the zero value. However, 

the estimate fluctuates whenever the gradient of y^(t) 

changes sign, but the magnitude of this fluctuation is small 

compared with the output disturbances. The fluctuation 

observed in the vernier estimate was due to the fact that 

the forgetting factor in those regions was small. Notice 

that the small forgetting factor enables the vernier 

estimator to adapt to any the change faster than in normal 

operation. The final estimate is shown in Figure 7-4(d).

The last test is to track the sway motion of a vessel on 

sea. The measured output is shown in Figure 7-5(a). The 

primary estimate and the final estimate are shown in 

Figure 7-5(b) and 7-5(c) respectively. The final tracking 

lag was found to be smaller than the primary tracking lag, 

particularly when the velocity of the ship varied slowly.
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7.6 SUMMARY OF RESULTS

An adaptive tracking technique has been developed to 

estimate the output of a slowly varying process which is 

corrupted by a coloured noise disturbance. No assumption 

was made on the plant model and the noise covariances. The 

only assumption made in the disturbances is that they are 

modelled by a second order process and the parameters are 

treated as unknowns. The estimator consists of a primary 

estimation subsystem and a vernier estimation subsystem.

The primary estimator is simply a low pass filter or its 

equivalent. The vernier estimator is self-tuning and is 

adaptive to varying disturbances. A variable forgetting 

factor technique is employed in the parameter estimation 

algorithm. The adaptive estimator was used to track a 

square signal, trapezoidal signal, sinusoidal signal and 

the sway motion of a vessel at sea.

It was shown in the simulation results that the vernier

self-tuning estimator is capable of reducing or eliminating 

(depending on the variation of the signal being tracked) the

lag caused by the primary estimator.
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CHAPTER EIGHT

SELF-TUNING CONTROL AND WEIGHTED 
MINIMUM VARIANCE SELF-TUNER

8.1 INTRODUCTION

There are two objectives in this chapter. The first is to 

overview the self-tuning control techniques which have 

become popular since the early seventies. The self-tuning 

methods developed in the previous chapters were originally 

inspired by this methology. The second objective is to 

develop a class of self-tuning controllers called Weighted 

Minimum Variance (WMV) self-tuning controllers. An explicit 

WMV self-tuner for multivariable systems and an implicit 

algorithm for single input-single output systems are 

proposed. The robustness of these self-tuners suggests 

further development may be possible in the future.

8.2 SELF-TUNING CONTROL OVERVIEW

8.2.1 The Self-Tuning Control

Self-tuning Control is a Direct Digital Control (DDC) 

technique. The objective is to achieve a high performance
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system in which conventional Proportional-Integral-Deriva- 

tive (PID) control may have difficulty in fulfilling the 

requirements. Self-tuning begins when the identification 

procedures are combined with control strategy. One approach 

is to perform a plant identification and then to calculate 

the control action directly from the estimated parameters. 

This is called self-tuning control with explicit 

identification. A more subtle approach is to set up the 

control and identification problems so that the plant 

parameters are incorporated into the controller gains and to 

identify the latter. This route is known as self-tuning 

control with implicit identification. The basic assumptions 

made on self-tuning control are: (a) the parameters of the 

plant are constant or varying slowly? (b) the order of the 

plant is known; (c) the time delay is known. However, some 

self-tuning techniques are able to identify the time delay 

on-line.

In a wider context than self-tuning, the class of control 

systems known as "optimally adaptive" incorporate on-line 

process identification with optimal control action. In 

particular, the system input signal provides data for 

parameter estimation and executes the control strategy 

giving rise to the term "dual control". A categorization 

due to Jacob and Patchell [58] breaks down the control 

signal into three components:
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(a) Certainty Equivalent Control; The control which would 

be exercised if the estimated parameters were the 

actual ones.

(b) Caution; The component which recognizes that errors in 

parameter estimates may cause excessive deviations in

'the control signal. This component takes account of 

uncertainties in the parameters estimated and is a 

function of estimated parameters and their accuracies.

(c) Probing: This component is used to inject an optimal 

testing signal into the process to improve the 

estimates of uncertain parameters.

The optimal self-tuning theory approximates the optimal 

signal via the first component. Identification and control 

are regarded as separate operations so that the control law 

is derived under the assumption that the plant parameters 

are known. In this respect, the self-tuning controllers 

[7 4 ] may be classified as a certainty equivalent control 

law. Thence it is not optimal in the dual sense [59]. The 

pole and zero placement self-tuner [87], which is based on 

conventional control theory, does not fall in either 

category.
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8.2.2 The Development

Self-adaptive control is always a challenging subject for 

control theoreticians and engineers. It is very much like 

non-linear control system theory, and though many techniques 

have been proposed, the application to a particular system 

is usually unique. The ad hoc tuning was the earliest 

technique in this field. This method developed in the early 

fifties is based on conventional control theory.

In 1958 Kalman [60] developed a simplified algorithm of a 

self-optimizing control system. However, the theory was 

inadequate and the digital computer technology at that time 

was unable to perform the adaptive feature.

In 1970, Peterka [63] revised and strengthened the minimum 

variance (MV) control law. The hundred flowers blossom 

period began when Astrom and Wittenmark [65] developed a 

Peterka type minimum variance self-tuning regulator in 

1973. The MV control law suffers two drawbacks in applica­

tion: (a) the control signal cannot be shaped or weighted, 

therefore it may be exceed the hardware limitations, and?

(b) it can only be applied to a non-minimum phase system.

It often happens that a continuous time minimum phase system 

becomes a non-minimum phase system after discretization. 

Later work of Astrom and Wittenmark [6 6 ] employed the spec­
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tral factorization technique to eliminate the unstable poles 

from the closed loop transfer function. The use of the 

spectral factorization technique means more computing is 

required, and increases the complexity of the self-tuning 

algorithm. It also requires that the number of unstable 

zeros must be known exactly.

In 1975, Clarke and Gawthrop [74] extended Astrom and 

Wittenmark's theory to produce a more general self-tuning 

controller which is based on the generalized minimum vari­

ance control (GMV) law proposed by Clarke and Hastings-James 

[72] in 1971. The cost function of this control law has 

weighting transfer functions on the system output and the 

control signal. Similar to LQG control law, designers can 

select these weightings according to the desired responses. 

Gawthrop [75] has found a few interpretations of the control 

law based on these weighting functions. One typical example 

is its relation to model adaptive control. The GMV 

controller can overcome the two drawbacks in the MV 

controller. The control is stable in a non-minimum phase 

systems if the weighting function on the control is properly 

selected. This weighting function can also be used to shape 

the control signal within the hardware limits. Because of 

its generalized feature, the GMV self-tuner has received 

greater attention in application than the MV self-tuner. 

Astrom [163] claimed that the excess in the control signal
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may be improved by adjusting the sampling rate. However, 

the sampling rate is a very critical parameter in many 

aspects systems [166], and it may not be freely selectable 

in many applications.

The MV self-tuner is not optimal in a dual sense [59] , but 

is optimal in the principal of certainty equivalent. The 

GMV self-tuner, because of the weighting on the control, is 

only optimal based upon the conditional expectation 

on all the acquired input/output data [61]. These 

self-tuners require the time delay and the order of the 

plant to be known.

In 1977, Wellstead, et al [8 6 ] proposed an alternative 

self-tuning technique called the pole placement self-tuner. 

The latter version [87] of this class of self-tuner was 

extended to include zero placement. The original concept 

should be dated back to Edmund's work in this area in 1976 

[62]. The closed loop pole/zero placement theory is well 

established in classical control theory. The designer can 

place the pole/zero of the closed loop transfer function to 

achieve the desired response. It was shown that by solving 

the diophantine equation using the estimated plant 

parameters identified explicitly, the controller has the 

self-tuning property. A controller is self-tuning if the 

parameter estimates are unbiased and converge to the true
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values. Because of its explicit feature, this self-tuner 

may allow the time delay to be estimated on-line.

Since the appearance of Astrom and Wittenmark's paper in 

1973 [65] followed by Clarke and Gawthrop's article in 1975 

[74], the number of reports in this field has multiplied 

greatly. The articles can be divided into the following 

categories:

(a) MV Self-tuner [65-71]

(b) GMV Self-tuner [72-83]

(c) Pole/zero Placement Self-tuner [84-87]

(d) Multivariable Self-tuners [88-95]

(e) PID Self-tuners [96-98]

(f) State Feedback Self-tuners [99-102]

(g) Hybrid Self-tuning Control [103-104]

(h) Self-tuning filters [105-107]

(i) Self-tuning Predictors [108-109]

(j) Non-linear Self-tuners [110-111]

(k) Stability Study and Identification Algorithms [112-132] 

(1) Applications [133-160]

A comprehensive review on self-tuning control by experts 

from the United Kingdom is given in Reference [161].
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In 1981, Grimble [164] proposed a weighted minimum variance 

(WMV) controller which fills the gap between the MV 

controller and the GMV controller. When the GMV controller 

encounters a non-minimum phase system, the closed loop 

system may become unstable if the control weighting factor 

is not suitably chosen. Whereas for the MV regulator 

(non-minimum phase version), since there is no weighting on 

the control, the control may be excessive. WMV control does 

not suffer from the above problems. However, to modify a 

WMV controller to become self-tuning involves complicated 

algorithms which may be difficult to realize in complex 

systems. In Section 8.3, an explicit multivariable WMV 

self-tuner will be described. An implicit version for a 

single input-single output system is given in Section 8.4.

Recently, Koivo and Guo [160] have applied the self-tuning 

concept to robotic control. A robotic system is time 

varying because the moment of inertia is dependent on the 

configuration of the arm. Therefore, the adaptive 

controller may not achieve the self-tuning property. 

Nevertheless, the simulation results have demonstrated that 

this adaptive controller is a potential candidate for highly 

time-varying manipulator systems.

Indeed, self-tuning control is the first offspring of the 

marriage between parameter identification and control design
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in this digital computer age. The reason that the 

self-tuning control has received much attention in this 

decade is mainly due to its practical features. Although 

many fruitful implementation results have been reported, 

many engineers still do not have confidence in self-tuning 

techniques for various reasons. The implementation aspects 

will be discussed in the next section.

8.2.3 Implementation, Advantages and Disadvantages

It is not uncommon that engineers in industry, due to the 

'generation gap' mainly in mathematics, have the impression 

that modern control theory is only an academic fashion and 

that it is of little use in practical problems. It is 

certainly true that modern control theory is strongly 

mathematically based. Since the mathematical model often 

idealizes a practical problem, it is not suprising that 

control theory based solely on the model may not be 

appropriate for practical purposes. For example, an optimal 

controller with a time delay may not perform as well as a 

Smith predictor type controller [162]. Recently, control 

engineering research has tended strongly towards solution of 

practical problems. The self-tuning control is highly 

regarded as a major achievement in this aspect.
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Self-tuning control is an alternative control design 

technique. The self-tuner is usually only a small part of a 

control system and should only be used when the problem is 

appropriate and only then in its most computationally 

efficient form.

The percentage of success in the application of self-tuners 

to chemical processes is far higher than those applied to 

any other dynamic systems. The result is not surprising 

because chemical processes are often complex and slow and so 

plant parameters are either constant or varying slowly.

These characteristics are the basic assumptions in the 

development of the self-tuning theory. The use of a MV 

self-tuner in a paper machine is the first successful 

application of the self-tuner reported in the literature 

[134]. Suprisingly, the PID controller was used again in 

the same plant [163] later. Two possible simple reasons 

are: (a) engineers have a lack of confidence in the

robustness of the self-tuner, and (b) the MV self-tuner in 

particular, or self-tuning in general, is not appropriate 

for the process. To conclude, the advantages and 

disadvantages of implementing a self-tuning 

control solution based on experience to date are listed 

below:
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Advantages

(a) The self-tuner can be applied to a plant which contains 

unknown or slowly varying parameters.

(b) It may be possible to improve the control of certain 

non-linear systems by treating the gains of the 

non-linear elements as variables.

(c) Existing controllers may be adjusted by self-tuning 

techniques, by monitoring the controller performance 

online.

Disadvantages

(a) The number of parameters to be estimated depends upon 

the order of the plant polynomials. In practice, most 

system constants are usually known approximately, but 

no advantage is taken, in the basic self-tuners of the 

information structure of the plant parameters. This is 

in direct contrast to the extended filtering 

methodology in which only the unknown or varying 

parameters are estimated.

(b) If the uncontrolled system is unstable or non-minimum 

phase it is possible for self-tuning controllers based
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upon a single-stage cost function to yield unstable 

controllers. Grimble [164] has recently introduced a 

weighted minimum-variance controller which has 

advantages in this situation.

(c) The time-delay must be known for the Clarke/Gawthrop 

and Astrom/Wittenmark self-tuners. The Wellstead 

algorithm has the advantage that it leaves the leading 

coefficient of the B(z“ )̂ polynomial as an unknown and 

can be used for systems with unknown delays. However, 

this is a non-optimal technique which is not so 

appropriate for more complex stochastic systems having 

several noise and disturbance inputs (the controller is 

independent of the noise intensities). For this 

situation a method of weighting the importance of the 

noise is required which is available with LQG 

controllers [165], although such controllers are 

necessarily more complex.

An optimal control system can be proposed based upon an 

extended Kalman filter and a state-estimate feedback gain 

matrix. Unknown parameters can then be estimated using the 

extended filter. This type of controller seems to be more 

robust than the equivalent self-tuning system, but it is not 

called upon to do as much as in the self-tuning problems.

In self-tuning control no knowledge of the plant parameters
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or of the noise sources is assumed. In extended filtering, 

however, only a few system parameters are normally to be 

estimated. There is, therefore, a difference in the 

assumptions made for these two types of control system.

One unknown parameter in a state-space model can affect many 

of the coefficients in a transfer-function plant model.

Thus, in such cases if only one parameter is to be 

estimated, an extended Kalman-filter scheme may be 

appropriate. Conversely, the plant may be modelled in 

z-transfer-function form with one unknown coefficient. In 

this case, the basic self-tuners can be modified so that 

this parameter only is identified.

8.3 EXPLICIT MULTIVARIABLE WEIGHTED MINIMUM VARIANCE 

SELF-TUNING CONTROLLER

8.3.1 Introduction

An explicit self-tuning controller is described based upon 

the weighted minimum variance control law. The controller 

has the advantage that a non-minimum phase system can be 

stabilized under conditions where other minimum variance 

control laws fail. The system can be multivariable and can 

include unknown transport delay terms which are different in 

each loop.
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The weighted minimum variance controller for single input- 

single output systems was recently introduced (Grimble 

[164] ) to overcome some of the problems in the control of 

non-minimum phase systems. For example, the generalized 

minimum variance controller employed by Clarke and Gawthrop 

[74] in their successful self-tuning controller is unstable 

when the control weighting tends to zero. Since small 

control weighting corresponds to tight control action this 

is an unfortunate feature of this controller. The weighted 

minimum variance controller is stable in this situation.

The controller also has advantages in comparison with the 

minimum variance regulator employed by Astrom and Wittenmark 

[6 6 ]. The cost function includes control weighting and 

control signal variations can be much reduced. The penalty 

to be paid for the improvement in performance 

characteristics is that the controller is more complicated 

than the foregoing. A multivariable version of the weighted 

minimum variance controller is derived in the following and 

this is used as an explicit self-tuning controller.

8.3.2 System Description

The multivariable linear constant plant is given as:

-227-



0/5/mcl708/87

A (z-1 )̂ ( t) = B(z-1 )u(t) + C(z-1 )|(t) (8.1)

where the polynomial matrices are m-squared. The 

disturbance £(t) is a sequence of independent zero mean 

random vectors with covariance E£§( t )]j[( t )| = Q. The

polynomial matrices A(z“l) = Im + A^z'”-̂ + ...+ Anz”n, B(z“ )̂ 

= (B0 +B]^z“^+. . ,+Bn_^z“n+  ̂) z”k and C(z“l) = Im +

C-lz-1+ . . . +Cnz“n. The delay k ^ 1 and if this is unknown k 

is assumed to be unity and the actual delay can be 

estimated. Notice that B0 is not necessarily full rank as 

assumed in most of the work on self-tuning. This implies 

that different loops in the multivariable system may contain 

different transport delay terms.

The matrix B(z"l) is assumed to be of normal full rank and B 

= B2B1 where B2 and B^ represent the non-minimum and minimum 

phase spectral factors, respectively. The B2 term includes 

the delay k and without loss of generality B^fO) can be 

chosen to be full rank, (the factorization is performed via 

the Smith form). The orders of B^ and B2 are denoted by n^ 

and ri2, respectively.

For greater generality the system will include a reference 

input r(t) = A( z”l )“^E ( z“l )£*)( t) and a set point w(t). The 

covariance matrix for the white noise signal o)(t) is denoted
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0o . The stochastic tracking error e(t)£ ir(t) - y/t). The 

innovations form of the system equation becomes:

Ae (t) = D6 (t) - Bu(t) (8.2)

where the matrix D follows from the spectral factorization:

D(z“1)dT(z ) = E(z"1)0o Et (z )
+ C(z“1 )QCt (z) (8.3)

and D(z“l)“l is stable. It will be necessary to write D“^B 

in the form:

D-1b2 = B° D0-l

where det D0 = det D, Do (0) = Im and n<j0 = n^. The 

polynomial matrices B2 and D0 are right coprime and always 

exist but are not unique.

8.3.3 Cost Function

The feedback control law is required to minimize the cost 

function:

J = E|^l(fc + K)T^ x(t + k)/tj (8.4)

where the expectation is conditional upon all observations 

up to time t. The signal

-229-



0/5/mcl708/89

gl(t + k) & P0 (z“l)e(t) + Pi(z~l)w(t)
- P2 (z“l)u(t) (8.5)

and the transfer function matrices P0 , Pj and P2 can be 

specified to achieve given performance specifications. The 

transfer function matrix

po(z_1)^ di(z“1 )(Ac (z-1 )Bc (z“ 1 ))“ 1 (8 .6 )

where d^(z“ )̂ is a minimum phase scalar polynomial and 

Ac (z“l)”l is a stable matrix. The matrix Bc (z“l) is related 

to B2 (z“1 ) and is defined in the following. Assume that 

di(0) = 1, Ac (0) = Im and P2 (0 ) ^ 0, and let A1 (z~1) £

A (z~l )AC (z”l ).

8.3.4 Multivariable Weighted Minimum Variance Controller

The weighted minimum variance controller is defined in the 

following theorem:

Theorem 8.1 Weighted Minimum Variance Controller

The optimal control for the plant (8.1) and the performance 

criterion (8.4) is given as:

u°(t) = (Bi+DoP2)“1 (gh“1£ (t)
+ D0 Piw(t)) (8.7)
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where e^(t) = Ac~le(t), G and H satisfy:

AjH + B2G = diD 8.8)

nh = n 2 “ 1 and ng = max (nai - 1 , n<ji + n<j - n2 )

The proof follows that for the single-input, single-output 

case given by Grimble, 1981 [164], and is summarized briefly 

below.

Proof: Let ^(t + k) £ Po^ft) then from (8.2):

^(t + k) = Bc-1diAi_1 (D£(t) - Bu(t)) (8.9)

and from (8 .2 ) and (8 .8 ):

<£(t + k) = Bc_1 (H£(t) + Ai-1B 2GD_1Aiei (t ) 
- HD"lBu(t))

(8.10)

but f rom (8 .8 ):

A 1"1B2GD_1A 1 = HD"1B2GH“ 1 (8 .11)

thence

£(t + k) = Bc-l(H£(t) + HD-1B2 (GH-le1 (t) 
- Biuft))) (8 .12)

The term D“ -̂B2 may be written in terms of the right coprime 

polynomial matrices B 2 and D0 as:
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D-1b 2 = B^D0-1

where det D0 = det D and Do (0) = Im . The term D0 i!

but

(BO(z-l))-l = Zn2(BOno + B°(no_1)Z + ...

♦ BO0 znO)-l

represents a non-causal transfer function (n2-n0 = 1* 

The term Bc in the cost function may now be defined

Bc = HB° 

so that

Bc-1h D-1b 2 = 0o-l

and

Bc -1h = (BO)-1

From (8.12) and using the above relationships:

$(t + k) = (B°)-l£(t) + Do-ifGH-Vitt)

“ B 1u(t))

and from (8.5):

(8.13) 

stable

(8.14)

^ 1). 
as:

(8.15)

(8.16)

(8.18)
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0!<t + k) = (BOj-iftt) + D0 -l(GH"Vl(t)

+ D0 Pxw(t) - (Bx + D0 P2 )u(t)) (8.19)

From these results it follows that a least squares predictor
A IV .jj£l(t+k/t) and prediction error <fy± (t + k/t) may be defined 

as:

(t + k/t) = D0 -l(GH-lei(t) + D0 P!w(t)
- (Bx + DdP2 )u (t )) (8 .2 0 )

£l(t + k/t) = (BOJ-^tt) (8 .2 1 )

A
The prediction error is uncorrelated with the signal (t + 

k/t) which is known at time t.

The cost function (8.4) may now be expressed as:

J = e |̂ >! (t + k/t)T$i(t + K/t) + (t + k/t)T
<£l (t + k /1 ) J- (8 .2 2 )

and it follows by the usual arguments that the optimal
A

control gives <j(>i (t + kjt) = 0 or

(B!+D0 P2 )uO(t) - (GH-ie'ftJ+DoPiWft)) = 0 (8.23)

This completes the proof of (8.7).

The stability of the closed-loop system can be ascertained 

from the characteristic equation. This follows via:
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det(A-1 (AiH+B(B1+D0 P2 )_1G)H_:lAc-1) = 0 (8.24)

and in the limiting case as P2 0 the characteristic 

equation becomes det djD = 0 and the system is stable. 

Similarly, if the plant is open loop stable the closed loop 

system is stable when P2 -*"00.

Special Cases:

(a) Assume the model for e is autoregressive (D = Im ) then 

D0 = D.

(b) Assume that the time-delay and non-minimum phase 

behaviour is the same in each signal path for the 

plant, thus B2 = b 2 lm where b2 is a scalar, and D0 =

D. The calculation of b 2 is also simplified in this 

case.

8.3.5 Explicit Self-tuning Control

An explicit self-tuning algorithm may be constructed in the 

usual manner and this is illustrated for the plan considered 

by Koivo [91]. The plant polynomial matrices are defined 

as:
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(8.26)

Let the performance criterion polynomials be defined as:

di(z“l) = 1 Aj = 0.5
A ^ z " 1) = 12 f Pi(z-1) = I2 and P2 (z“1) = Xl2

where A is a real positive scalar. For this system r = 0, 

B2 (z”1 ) = B(z~l) and Bi(z~l) = I2

In this case the expressions for the optimal control

simplify and the following simple explicit self-tuning 

algorithm may be employed.

1. Estimate A and B 2 using Aŷ (t) = B2_u(t) + §(t)

2. Solve AH + B2G = d]^2 f°r H an<3 G where n^ = n2 ” 1 = 1
and rig = na - 1 = 0

1 13. Calculate u°(t) = (GH"“ly^t) + w(t))

Return to 1.

0/5/mcl708/94

A(z ^) = I2 +

B ( z 1) =

•0.9 0.5
0.5 -0.2

,-1

0 . 2 1.0 1.0 0
z 1 +

0. 25 0.2 0 1.0
- 2

C(z-1) = I2
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To evaluate the diophantine equation note that it may be 

expressed in the form:
1

M to 00 0 
1

H 1

It -A]_ - X 1 I2
A 1 B 1 _ B°_ 1

0

(8.27)

where A(z~l) = 12 + A 1 B2 (z“*) = z"^(B20+B21 z"”* ) '
G(z”l) = G0 and H(z~l) = 1 2  + H^z"!. Assuming the inverse 

exists during self-tuning:

H* I B* -1
1 0

G* A* B*0 1 1

•Ai - A 1I 2

0

(8.28)

where the * denotes the estimated value.

The system is open loop unstable and non-minimum phase and

thence the closed-loop system may be unstable for some

values of \ . In the approach by Clarke and Gawthrop [74] 

(or Koivo [91] for the multivariable case) \  cannot be 

either too large or too small if the system is to be 

closed-loop stable. The advantage of the weighted minimum 

variance controller is that X can be set to zero (as in the

simulation results) and stability is maintained.

Simulation results for both output regulator and 

servomechanism are given. The estimated parameters for the
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regulator problem are shown in Figure 8-2 and the outputs 

and control signals are shown in Figure 8-1. The time delay 

can be estimated on-line provided an upper order on B is 

known. In the servomechanism results, different unknown 

delays in different loops were simulated. This was achieved 

by replacing b° = 0.2 in (8.26) by zero. The time delay in 

loop 1 is k]_ = 2 and in loop 2, k2 = 1. The estimated
A .

parameters are shown in Figure 8-4 (notice that 0) and

compare with Figure 8-2. The controlled outputs are shown 

in Figure 8-3 and these demonstrate the effect of a step 

change in the set-point signal.

8.3.6 Discussion

A weighted minimum variance control law has been derived for 

multivariable systems and has been combined with an 

estimation algorithm to produce an explicit self-tuning 

controller. This approach has the disadvantage that the 

matrix polynomial B must be spectrally factored. Recent 

work has been concerned with the development of an implicit 

scheme which does not involve this spectral factorization 

stage. The advantages of this approach are: (a) the range

of stability is extended over that normally found for 

non-minimum phase plants; (b) the performance criterion 

includes control weighting; (c) stochastic reference or 

known set point signals may be included; (d) the transport
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delay may be estimated since the controller does not depend 

upon knowledge of k; and (e) the delay can be different in 

each signal path.

8.3.7 Industrial Application

It is often true that the simplest solution to a control 

problem is the best in an industrial situation. The 

engineer would therefore choose the self-tuning regulator of 

Astrom and Wittenmark [65] if the discrete plant were 

minimum phase and the output variance was of major 

importance. If say the control energy was important., then 

the self-tuning controller of Clark and Gawthrop [74], which 

could involve a minor increase in complexity, could be 

used. Varying time delays would suggest the use of a pole 

placement type of self-tuner due to Wellstead, Prager and 

Zanker [84].

The WMV self-tuner involves greater computational 

complexity, however, several problems might justify its 

use. The control problem might be basically stochastic and 

multivariable in nature, as in a marine application. The 

optimal types of self-tuner have advantages here, 

particularly when the cost function has some physical 

significance [75]. The minimum variance types of self-tuner 

described above can have problems on non-minimum phase and
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open loop unstable plants, as was demonstrated in the simple 

example. These problems are due to the control laws which 

form the basis of the self-tuning schemes. The WMV control 

law has the property of better stability. There may of 

course be computational and numerical difficulties in 

implementing more complex control laws, but although 

important these are not fundamental limitations.

8.4 IMPLICIT WEIGHTED MINIMUM VARIANCE SELF-TUNER

8.4.1 Introduction

An implicit self-tuning controller based on the weighted 

minimum variance control law, by Grimble [164], is developed 

for the single-input single-output non-minimum phase 

systems. This self-tuner has the advantages of identifying 

the controller parameters directly and it does not need any 

spectral factorization. The robustness study of this 

self-tuner and simulation work are possible areas for future 

work .

8.4.2 Plant Description

The single-input/single-output linear time invariant system 

is assumed to be represented by the following difference 

equation:
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A(z“1 )y(t) = z"kB(z“1 )u(t) + C(z“1 )^(t) (8.29)

The polynomials A, B and C (z“l are dropped for clarity) are 

assumed to be of known degree na, nb and nc respectively.

The zeros of C(x) are strictly outside the unit disc in the 

x-plane. k is the known time delay (or estimated on-line). 

y(t) is the system output, u(t) is the control signal and 

^(t) is the disturbance signal. The disturbance ^(t) is 

a sequence of normally distributed independent random 

sequence with zero mean and covariance E

Polynomial B is factorized into minimum B+ and non-minimum 

phase B” spectral factors. The factorization B = B+B~ may 

now be defined as:

B+ = b+ + b+z"1+  +b+ 1z”nl (8.30)0 1 nl

B" = 1 + b7z”l+..... +b“_z~n2 (8.31)1 n2

and the other polynomials are defined as:

A = 1 + a^z ^+.....+anaz na (8.32)

C = 1 + ciz *+ +cncz nC (8.33)
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8.4.3 Weighted Minimum Variance Controller

The weighted minimum variance (WMV) controller [164] which 

minimizes the cost function (Appendix E)

is

CRw(t) - Gy(t )/Pd 
u0 (t) = (FB+ + QC) (8.35)

where

lp(t+k) = P'y(t+k) + Qu(t) - Rw(t) (8.36)

where P' is defined as

P' = P/B~ (8.37)

P, Q and R are weighting transfer functions, that is:

P = Pn/Pd etc.

The polynomials F and G are determined by the diophantine 

equation:

Pnc = PdAF + z“kB"G (8.38)

Where F and G are of degree nf = k-1 + n2, ng = na + npd-1 

respectively, and are of the form in (8.32) and (8.33).
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w is the reference signal.

It may be shown that the controller also minimizes the 

following equivalent function:

I2 = E i(P'y(t+k) - Rw(t))2 + (o ■u (t))2| (8.39)

where Q 1 is related to 0 by a scalar [74].

The main results of WMV control are:

(a) The prediction:

Lpy (t/t—k ) = u(t-k) + ^ yp (t-k) (8.40)

(b) The remnant:

^y(t) = Lpy ( t/t-k) + £(t) (8.41)

(c) The control strategy:

A A
(jJ( t/t-k) = (^y(t/t-k) + Qu(t-k)-Rw(t-k) (8.42)

= 0
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(d) The generalized function:

ljS(t) = P'y(t) + Qu(t-k) - Rw(t-k) (8.43)

where

lpy(t) = P'y(t) = | ^ (t) (8.44)

yp (t) = y(t)/Pd (8.45)

(e) The prediction error:

c F t(t)C( t/t-k) = (8.46)

The polynomials F and G are determined by the diophantine 

equation (8.38).

H = B+F (8.47)
= hQ + hiz“l+ +hnhz”nh (8.48)

8.4.4 Implicit Self-Tuning Control

Assume the control signal U ] / t ) ,  at time t ,  will set the
A

prediction (jjyit+k/t) equal to Rw(t). Clarke and Gawthrop 

[76] have deduced the following results:
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(8.49)

where

hQ = B+ (o)F(o) 
= H (o)

(8.50)

and

ipy(t/t-k) = Rw(t-k) + h0 (u(t-k)-uj(t-k)) (8.51)

In self-tuning control, a suitable algorithm is required to 

be used for parameter estimation. Explicit self-tuning 

control identifies the plant parameters. Implicit control 

should identify the controller parameters directly. The 

equivalent form of i j jy(t) in Clarke and Gawthrop's [76] 

self-tuning algorithm is used for parameter estimation. 

However, in this case, ( p y i t )  consists of an unstable 

polynomial B” in the denominator. Furthermore, B” is 

unknown. Thus, the expression in equation (8.41) is 

unsuitable for identification. The following technique is 

used instead:

Define

(8.52)
(8.53)= Py(t)
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From equation (8 .41) a*~cl C8-4fc)

(f)y(t) = B~ (fly (t/t-k) + B-f(t) (8.54)
= B " ^ y (t/t-k) + fit) (8.55)

where

i'U) = f^tt) (8.56)

£( t )— in equation— (8 .5 5--)— i-3—uncorrol-ated-with—t-he- other' two 

■terms- on the RHS-« Hono-e- define? -the -prediction of— (py(-t--)— a-e-t

•̂ yft/t-k ) '=" B~ '-B "■■■■£( t-1)-----------  (8,574

ASubstitute equation (8.40) for \p y (  t / t - k )  into equation 

(8.55).

Wy(t) = B - { |  u(t-k) + | yp (t-k)j (8.58)

+ £(t)

Multiply both sides by C and use equation (8.55) to yield:

i P y ( t )  = B- | Hu (t-k) + Gyp (t-k)j
- 'CB~$y(t-l/t-k-l) - C£(t-()
+ <2 £(t-U + £(t>
= B" { Hu(t-k) + GVp (t-k)}

- CB~(Liy (t-l/t-k-1) + £( t) (8-^9)
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where

C = 1 + z'-lc (8.60)

or

( f y (  t) = Hu (t-k ) + Gyp (t-k) - Ct̂ y (t-l/t-k-1)
+ B” m(t-k-l) + F§Ct) + §(.t) (8.61)

where
=• \ ■+ &~l'1 f = ' + ^

m(t-k-l) = Hu(t-k-l) + Gyp (t-k-l)
- 'cfy (t-2/t-k-2 ) (8 .6 2 )

From the control strategy (8.38)

(J/y (t/t-k) + Ou(t-k) - Rw(t-k) = 0 (8.63)

which is equivalent to

Hu(t-k) + Gyp (t-k) - C^y (t-l/t-k-1)
= Rw(t-k) - Ou(t-k) (8.64)

Thus

m(t-k-l) = Rw(t-k-l) - Qu(t-k-l) (8.65)
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Define

&T (t) = [u(t), yp(t), (fjy (t+k-l/t-1 ) , m (t—1 ), §Ct-0] (8 . 66 )

$(t) = [H, G , -C, B~) F 3 (8.67)

Thus equation (8.58) can be written as:

W y ( t )  =  X T ( t - k ) <9(t-k) +  § < t) ( 8 . 6 8 )

Similar to Clarke and Gawthrop's self-tuner, (t) is 

uncorrelated with X(t-k), thence unbiased estimates are 

achieved.

Self-Tuning Algorithm

Step 1: Select P, 0, R and w(t). Assign nh, ng, nc, n2

(order of B“ ), k and initialize the self-tuner 

with initial parameters and parameter error 

covariance matrix.

Step 2: Calculate (f) y ( t )  = Py(t), and form the information

vector X(t-k).

Step 3: Identify the controller parameters using:

(jPy(t) = XT ( t - k  ) Q  (t - k  ) +  ^ ( t )
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by extended recursive least squares technique or 

recursive maximum likelihood technique.

Step 4: Calculate the control signal ui(t) from

Ul<t) = - |  yP (t)+ |  <|>y(t+k-l/t-l)
H  rl

Step 5: Calculate the control signal u(t) from:
A

u(t) = Ul(t)

Step 6 : Approximate:

§(t) = (f>y - xT(t-k) 0 (t-k)

Step 7: Calculate:

A
m(t-k) = Rw(t-k) - Qu(t-k) + £(t)

A
Step 8 : Calculate l ^ y ( t + k / t )  from:

(̂ y (t+k/t) = Rw (t) + hQ (u(t )-ui (t) )

Step 9: Return to step 2.

Special Cases:

i) If B" = 1 then B”m(t) = 0, (fy {t) = (py (t) . This is

the implicit self-tuning control developed by Clarke

and Gawthrop [76]. W  fa*

\0jJkMASU f ̂it) - O.
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? *ii) If 0=0, R=0 then (fjy (t+k-l/t-1) = ^(t+k-l/t-1) = 0.

This is the implicit version of the minimum variance

self-tuning controller for the non-minimum phase system 
which was developed by Astrom and Wittenmark [6 6 ].

iii) If B“=l, 0=0, R=0 then B“m(t) = 0, (j)y ( t) = (py ( t),

y (t+k-l/t-1) = ljJ( t+k-l/t-1) = 0. This class of 

self-tuning control is called Minimum Variance 

Regulator developed by Astrom and Wittenmark [65].

8.4.5 Discussion

The implicit WMV self-tuner is complex compared with Clarke 

and Gawthrop's GMV self-tuner. The WMV control law, in the 

deterministic case, is more robust than the GMV control 

law. However, its self-tuning version is very much 

dependent on the robustness of the identification 

algorithm. The robustness of the GMV self-tuner has been 

investigated extensively by Gawthrop [129] and Gawthrop and 

Lam [132]. The WMV self-tuner needs similar investigation 

in the future.
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CHAPTER NINE

OVERALL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

9.1 OVERALL CONCLUSIONS

The work presented in this thesis is divided into two 

parts. Part One (Chapter One to Chapter Six) was to develop 

an adaptive control system for dynamically positioned 

vessels. Part Two (Chapter Seven and Chapter Eight) 

consists of a few contributions to the self-adaptive control 

theory.

In Part One, the control problems and the basic components 

of the ship positioning system were first defined, followed 

by the development of dynamic models for controller and 

filter design purposes. The models are: low frequency ship 

model, thruster model and high frequency wave model. The 

dynamic positioning control system consists of two parts: 

control and filtering. A LQG (Linear Quadratic Gaussian) 

optimal controller with integral action was developed. 

However, this controller requires the detailed models of the 

disturbances, so it may not be easily implemented. For this 

reason, the control scheme was simplified and the simulation 

results were still found to be good.
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The previous contributions to the filtering problem of the 

dynamic positioning system were mainly from Balchen [17,18], 

Grimble [5,6] and their co-workers. It was found that their 

adaptive filtering approaches either cumbersome or the 

assumption on the wave model is oversimplified and the 

adaptive algorithm is complicated. The author has developed 

a novel self-tuning Kalman filter to estimate the low 

frequency states for feedback purposes. The scheme is 

relatively insensitive to the to the presence of non-linear 

ship dynamics and thruster non-linearities. The self-tuning 

filter is able to estimate implicitly the offsets between 

the low frequency position states and their estimates due to 

the constant disturbance when using the simplified LQG 

controller with integral action. The structure of this 

adaptive scheme is simple compared with those developed by 

the Balchen and by Grimble.

In Part Two, an adaptive technique was developed for 

tracking slowly varying processes which are corrupted by 

coloured noises. The technique has the advantage of not 

requiring the specification of the noise properties except 

the order of the noise model. Usually a second order noise 

model is sufficient for most applications. The adaptive 

tracker was found to be successful in estimating square, 

trapezoidal, sinusoidal and low frequency ship motion. The
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results were extremely good when the process output varied 

linearly or near linearly.

Lastly, the published self-tuning control theory and 

applications were over-viewed. A multivariable explicit and 

single input-single output weighted minimum variance (WMV) 

self-tuning controller were also developed. The WMV control

is stable over a wide range of control weightings in

non-minimum phase systems. However, its structure is more 

complex compared with some other popular self-tuners. 

Nevetheless, it does offer an alternative in certain 

applications.

9.2 Suggestions for Future Work

1. It has been shown that the self-tuning Kalman filter is

able to estimate the offset between position states and 

their estimates due to the absence of a constant 

disturbance model in the Kalman filter. Theoretically, 

this can be extended to estimate the slowly varying 

position estimation errors due to the low frequency 

model mismatch. This property needs further 

investigation.
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2. The weighted minimum variance self-tuners require

further investigation. It should be compared with LQG 

controllers regarding their computational efficiency 

and robustness. Usually, complex self-tuning control 

algorithms will give additional uncertainty to a 

control system. Simplification of the algorithms 

should be one of the important activities in the 

future.
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APPENDIX A
TRANSFER—FUNCTION WAVE“MODELS—FOR VARIOUS—SEA—CONDITIONS

TABLE A—1

L
Beaufort l/3(m) 

No.
K (il <?2 h ^ni

5 2.74 0.52 0.50 0.77 0.24 0.70 0.93 0.74
6 4.24 0.92 0.41 0.61 0.18 0.57 0.73 0.58
7 5.73 1.38 0. 36 0. 54 0.15 0.48 0.65 0.51
8 7.47 1.95 0.31 0.49 0.14 0.42 0.58 0.49
9 9. 24 2.60 0. 28 0.45 0.13 0.37 0.54 0. 38

hl/3 ' signi f icant wave height (metres)*

The significant wave height by taking

99 waves, choosing the 33 largest waves and then 
calculating one-third of the peak-to-peak magnitude of 
these waves.
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The fourth order model transfer function is:

G(s) =

or

G(s) =

i ?i ?2k2s2
2 2 

(s2 + 2 % ls +cOni) (s2 + 2^2S + ̂ n 2^

k ' s 2

(s4 + «isJ + « 2S2 + 0<3S + 0(4 )

where

0(1 #  2( £l+ ^2), «2 =(<Onl+<̂ 2>

CX3 £ 2 (  5l*j£2 + ^ 2<o21 ),(X4 *

and K ‘ = 4^ l ^ 2 k ^

The signal flow graph for the system in companion form is 
shown in Figure A-l.

The characteristic polynomial of the companion form 
state-space representation is the fourth order s polynomial 
of the scalar transfer function G(s) above, so that the 
frequency system matrix is given by:

F h

0 Tb 0 0
0 0 Tb 0
0 0 0 Tb

-0f4 "»3 -0(2 -«i

where Tj-, = 3.104 secs
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FIGURE A-l Sway and Yaw High Frequency Model Flow Graph
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The coefficients OC and overall gain constants K' may be 
tabulated as follows (Table A-2) for the range of sea state 
conditions corresponding to Beaufort scale numbers 5 to 9 
and for time scale factor of 3.104:

TABLE A-2

Beaufort
No. 1 2 3 4 K

5 4. 594 4.384 2. 988 1.470 0.403
6 3.663 2.698 1.452 0.556 0.776
7 3.166 2.119 0.974 0.341 1.277
8 2.794 1.789 0.754 0.251 2.049
9 2. 545 1. 353 0.486 0.131 3.055

It is convenient to transfer the scalar gain K 1 into the
matrix so that the overall matrix Hh for both sway and yaw
is:

Hh = 0 0 1.0 0 0 0 0 0
0 0 0 0 0 0 1.0 0

The Gft matrix must then contain the gain K' divided by 
suitable scaling factors.
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The normalizing factor for sway position measurement is Lpp 
(see Appendix B). Thus the noise input to sway motion has 
unit variance, but is scaled by the factor:

K'/Lpp = K'/94.49 (for Wimpey Scalab)

The output of this high frequency yaw angle motions must be 
in per-unit of angle, that is in radians. The approximation 
is also made that the vessel dynamics have a constant 
attenuation of 0.885 at the high frequencies considered, so 
that the yaw scaling factor is:

K 1(0.855)/57 = 0.0465K'

where it must be noted that K 1 has previously been 
normalized with respect to time.

The resulting matrix for the combined high frequency sway 
and yaw motions is:

0 0
0 0
0 0
K 1 Lpp 0
0 0
0 0
0 0
0 0
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An alternative 4th order approximate HF model can be derived 
which has the following companion form:

Fh
0 1 
0 0 
0 0

0 0 
1 0 
0 1

-e4 -2fj2€3 -4S2 - 2^6

The corresponding transfer function is:

K ' s2G(s) = (s2 + f£F6s + e )  (s2 + + &

where K' = 25.33 iv4/2
and £ = 5B1/4

Table A-3 shows the variation of gain K' and parameter G for 
Beaufort numbers 5 to 9. The corresponding significant wave 
height (^2/3^ an<̂  Pierson-Moskowitz parameters A and B are

also shown.
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TABLE A-3

Beaufort
No. h 1/3 (M) K ' A B e

5 2.74 1.58 5xl0“4 2.66xl0"4 0.640
6 4.24 1.77 5xl0-4 l.llxl9“4 0. 513
7 5.73 1.91 5x10-4 6.08xl0”5 0.441
8 7.47 2.04 5x10-4 3.58xl0-5 0.386
9 9.24 2.15 5x10-4 2.34xl0”5 0.347

Table A-4 shows the resulting time scaled state-space
coefficients for the model for time scale factor of 3.104.
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TABLE A-4

Beaufort
No. & 1 a 2 a 3 O i4 K'

5 5. 60 5.09 2.30 0.51 1.58
6 4.50 3.27 1.18 0.21 1.77
7 3.87 2.41 0.75 0.12 1.91
8 3.39 1.85 0.51 0.07 2.04
9 3.05 1.49 0.37 0. 05 2.15

The system eigenvalues for this model are all complex 
conjugate and given by:

^1,2 ’ A3,« " “''I 1/2 ' “ f /2

, { wjll
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APPENDIX B
WIHPEY SEALAB PER UNIT SYSTEM SPECIFICATIONS

Mass m = 5670 tonne

Length Lpp (between perpendiculars) = 94.49 m

Acceleration g = 9.81 m.sec-^

Time
n

— - 3.104 sec.

Velocity^LppQ = 30.44 m.sec~l

Force Mg = 5670(9.81) = 55,620 KN

Moment MgLpp = 5,256,000 KN-m

Angular Velocity = 0.3222 rad.sec-!Lpp

Radius of gyration in yaw kzz Or 0.25 Lpp
Cl 0. 243 p .u
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Vessel's attenuation to high frequency motions in yaw = 

0.855.

/v. 0.855- — (3.104) p.u.

= 0.0466 p.u.

per unit scale factor

3.104 3.104 nfor sway HF noise = ■ = 94— 49" = 0»0327 p.u.
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APPENDIX C
DISCRETE KALMAN GAIN MATRIX COMPUTATION

The position measurements are not defined in continuous form 

but are sampled at regular intervals. The system simulation 

and the Kalman filter have both been modelled using their 

discrete forms. The resulting discrete equations are as 

follows:

Ly and P are related to their continuous-time counterparts

x(k+l) = f(k+l,k)x(k) + yj _u {k ) +Py(k) (C-l)

z(k) = Cx(k) + v(k) (C-2 )

with

(C-3)

(C-4)

and where Sjcm is the Kronecker delta function. The matrices

by:

Xi
(C-5 )

0
(C-6 )
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and

3>(k+l,k)4 J> (-Ci) = g A ^  (C-7)

where is the sampling interval, matrices A, B and D are 

the continuous time counterparts of ^  and f1.

The state estimate is given by calculating the predicted 

state

x(k+l/k) = §>(k+l,k)x(k/k) (C-8 )

and then calculating the estimated state at the instant 

(k+1 ), using

x(k+l/k+1) = x(k+l/k) + K(k+1)(z(k+l) - Cx(k+l/k)) (C-9)

The Kalman gain matrix K(k+1) can be obtained, first by 

calculating the predicted error covariance matrix:

P(k+l/k) = <j>(k+l,k)P(k/k) T (k+l,k) + F 0 TT (C-10)

for some initial error covariance P(k/k), and then 

calculating

K(k + 1) = P (k+l/k)CT [CP(k+l/k)CT + R ]” 1 (C-ll)
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Finally, the error covariance matrix is obtained using 

P(k+l/k+1) = (I-K(k+l)C)P(k+l/k) (C-12)

The above equations can be used iteratively to obtain the 

state estimate at any future sampling time, given the 

initial state and covariance.
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APPENDIX D 
A RECURSIVE ALGORITHM FOR SMOOTHING AND 

PREDICTION OF A SIGNAL

The Algorithm for tracking the error y i ( t )  based on the 

estimated position error y i ( t / t - l ) ,  for the ith channel 

[167,168] becomes

rv * *A/P A/ A/
Yi^t) = yii^ ” 1 + Tyi^t-i)

, /"£** , , v ^21 r /''P

yjj^(t) predicted position

^yi^(t) updated position error

(D-l)

yii(t) = yii(t)+kii [yii(t/t-l)-yii(t)] (D-2)

yi (t) = yi (t-1) + ----  [yl.(t/t-1)-yi.(t)3 (D-3)
1 1  T l l

where

T sampling interval

k]^ constant less than unity

ko constant less than unity^t
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* *
YX^(t) updated velocity error
A
yi^(t/t-l) estimated position error from the self-tuning

filter.
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APPENDIX E
WEIGHTED MINIMUM VARIANCE CONTROLLER DERIVATION

Discrete-Time Plant

The time-invariant single-input/single-output plant is 

assumed to be represented either by the control 

autoregressive moving average equation:'

A(z_1 )y(t) = z-kBfz-ijuft) + C U " 1) %(t) (E-l)

where z is the forward shift operator z*y(t) = y(t+k) and t 

is the sampling state. The order of the system is n and the 

time-delay is an integer number of sample intervals (k £l). 

This definition of k implies that bg is non-zero. The 

polynomials A, B and C have the form:

A(z“l) = 1 + aiz“l +....+ anz °a (E-2

B ( z ” l )  =  b()  + b i z - * + . . . . +  b n z  nb , ( b o  f 0) (E-3)

C(z“l) = 1 + c i z “ -̂ +....+ c n z  n° (E-4)

The disturbance ^(t) is a weak stationary sequence of 

uncorrelated random variables with zero mean. The delay k 

and an upper bound n to the orders of A, B and C (denoted
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na ,nb ,nc^ are assumed known. Owing to the physical 
realizability, the discrete closed-loop system must contain 

at least one step delay; thus k}l. The delay k is equal to 

the magnitude of the pole excess k-na-nk which appears 

explicitly when the backward shift operator is used. The 

polynomial C may, without loss of generality, be taken not 

to have roots outside or on the unit circle in the z-plane. 

This statement may be justified using the representation and 

spectral factorization theorems. z“l will be dropped in the 

following polynomials for clarity.

Weighted Minimum-variance Controller

The controller derived below will be termed the weighted 

minimum-variance controller and must minimize the 

performance criterion:

(E-5)

Let y'(t)^ P(z~ly(t) where

P ( E - 6 )
B"Pd

Note that B~ and B~ are reciprocal polynomials and thus they 

do not affect the steady state variance of Py(t+k). The



0/5/mcl749/59

weighting polynomial Pd will always be chosen so that 1/Pd 

is stable. To define a predictor introduce the following 

diophantine equation:

B“PnC = PdAF + z”kB~G (E-7)

where F and G are of degree k-l+nk“ and na+npd-l, 

respectively (assuming npn + nc < npd+na+k-l). Thus,

PC v- PBr\w y. CD
y 1 (t+k) = --- £(t+k) + --- u (t )A J A

G G?(t)(t+k) + --- u(t) + 'B " A APd ^

but from (E-l)

F G
y ’(t+k) = ----  2 (t+k) +   y(t)

B Pd

+ -J?—  { B“ Pn - z"kB“G i u (t) (E-8 )CPdA I n J

Recall that zkF/B“ may be expanded as a convergent series, 

|z|<l, of the form:

zkF/B” = &IZ + 2Z^ +. . .

Thus, the first term in (E-8 ) represents an unpredictable 

random sequence.
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The k steps ahead predictor follows from (E-8 ) as: 

a G B+F
y ' (t+k/t) = — - y(t) + ;—  u (t) (E-9 )

^d

The prediction error is given by

a  F
c 1 (t+k/t) = y ' (t+k ) - y ' (t+k/t) = — _£(t+k) (E-10)
c  B "

where £'(t+k/t) depends upon future values of the
/

dusturbance signal. It follows that £ (t+k/t) is 

uncorrelated with all y(t-i), and u(t-i) values for i ^ 0 . 

Since ^(t) is zero mean it also follows that the prediction 

error is uncorrelated with w(t) which is known at time t.

Let 6} £ E ( £'(t+k/t)^/t) then the performance criterion

may be simplified as:

J 1 = E |(y'(t+k/t) + £(t+k/t) - Rw(t ) ) 2 + (0'u(t))2/tJ(E-ll) 
= E f (y ' (t+k/t) - Rw(t) ) 2 + (01 u (t) ) 2/tJ + CTl

The necessary condition for optimality may be derived by
Anoting that (y'(t+k/t) - Rw(t)) is known at time t,

 d-Jl = 2 (y ’ (ty+k/t) - Rw(t)) Y • + 2Q'qu(t) = 0 (E-12)0u(t) Y  ̂ au(t) ^

where q'0 is the coefficient of z° in the power series 

expansion of O'. Note that

Ay' B+FQ = (---)(0 ) = b0 (E-l3)0u(t) C
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since B+ (0) = b()fF(0) = 1 and C(0) = 1. Define the transfer 

function 0 = then the condition for optimality

becomes:

y'(t+k/t) + Ou(t) - Rw(t) = 0 (E-l4)

The second partial derivative of Ji with respect to u(t) is 

always positive which confirms that (E-14) is also a 

sufficient condition for optimality. The optimal control 

law follows as:

u q (t ) =-(y'(t+k/t) - Rw(t))/Q (E-l 5 )

An alternative expression for the optimal control may be 

derived as follows. From (E-9) and E-14):

B+f —G R
(1 +  ) u (t ) = — —  y(t) + — w(t)CO PdCQ J 0

or

CRw(t) - Gy(t)/Pduo (t ) = -------------------- ^-- (E-l 6 )U (FB+ + OC)

It may easily be shown that this controller also minimizes 

the following equivalent cost function:

J = E J t+k ) 2/t j (E-l 7 )
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where

(j>i(t+k) = Py(t+k ) + Qu(t) - Rw(t) (E-18)

The performance of the weighted minimum variance controller 

is compared with the generalized minimum variance controller 

using the example treated by both Astrom and Wittenmark [6 6 ] 

and Clarke and Gawthrop [74]. The results are shown in 

Figure E-l and E-2.
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PUBLISHED PAPER

Dynamic Ship Positioning Using a 
Self-Tuning Kalman Filter

PATRICK TZE-KW AI FUNG  a n d  M IK E  J. GRIMBLE, s e n i o r m e m b e r , ieee

Abstract —  A  novel adaptive filtering technique is described for a class of 
systems nith unknown disturbances. The estimator indudes both a sdf'tun­
ing filter and a Kalman filler. The state estimates are employed in a 
dosed-loop feedback control scheme which is designed via the usual linear 
quadratic approach. The approach was developed for application to the 
dynamic ship positioning control problem and has the advantage that 
existing nonadaptive Kalman filtering systems may be easily modified to 
include the self-tuning feature.

Manuscript received April 21. 1982: revised September 27. 1982. This work was supported by G E C  Electrical Projects Ltd.. and the United Kingdom Science and Engineering Research Council.P. T.-K. Fung was with the Department of Electrical Engineering. University of Strathclyde. Glasgow. Scotland. H e  is n o w  with the Space and Electronic Group. Spar Aerospace Ltd.. Weston. Ont., Canada.M. J. Grimbte is with the Department of Electrical Engineering. Uni­versity of Strathclyde. Glasgow. Scotland.

I. In t r o d u c t i o n

A D YN A M IC  positioning (DP) system is used to main­
tain a floating vessel on a specified position and at a 
desired heading. The system involves a position/heading 

measurement system, a thryster control algorithm, and a 
set of thrusters (including the main propulsion units in 
some cases). This type of vessel is used for several applica­
tions in the survey and development of offshore mineral 
and oil resources. The number of countries involved in 
offshore exploration is increasing rapidly. For example. 
Saudi Arabia and the Sudan are preparing to dredge rich 
deposits of zinc, copper, and silver from the Red Sea mud. 
Manganese nodules of the highest grade have been found

0018-9286/83/0300-0339501.00 01983 IEEE
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Fig I. Basic components in a dynamic positioning system.

in the international waters between Hawaii and California, 
and hence have become the subject of a prolonged debate 
at the United Nations Conference on the L a w  of the Sea.

The basic components in a D P  system are illustrated in 
Fig. 1. Several types of position measurement systems can 
be used including taut wire [1], short range radio reference, 
and sonar systems. These measurements can be pooled and 
this gives rise to a combination of measurement problems. 
The heading measurement is given by a gyrocompass. 
Communication satellites are increasingly being used to 
provide a position Fix and this enables vessels to be moved 
from a reference position in just a few minutes. A  maxi­
m u m  allowable radial position error is normally specified, 
for example, 3 percent of water depth (under 100 m) (2).

The control loops for dynamically positioned vessels 
include filters to remove the wave motion signals. This is 
necessary because the thrust devices are not intended and 
are not rated to suppress the wave induced motions (greater 
than 0.3 rad/s). The position control system must only 
respond to the low frequency forces on the vessel. The 
filtering problem is one of estimating the low frequency 
motions so that control can be applied. Notice that even 
though the position measurement includes a noise c o m p o ­
nent, this does not cause the filtering problem. If the total 
position of the vessel was known exactly there would still 
be a need to estimate the low frequency motions.

The extended Kalman filtering technique was first ap­
plied to dynamic ship positioning systems by Balchen, 
Jcnsscn, and Saclid (3J. A  simpler, but nonadaptive, con­
stant gain Kalman filtering solution was also proposed by 
Grimble, Patton, and Wise (4). In both cases a linearized 
model was used for the estimation of the low frequency

motions and optimal control feedback was employed from 
these estimates (5]..Balchen assumed in this and subsequent 
schemes (6J that the high frequency motions were purely 
oscillatory and could be modeled by a second order 
sinusoidal oscillator with variable center frequency.

Grimble et al. used a fourth order wave model in the 
specification of the high frequency motions. However, the 
dominant wave frequency varies with weather conditions 
and the corresponding Kalman filter gain must therefore 
be switched for different operating conditions. The ex­
tended Kalman fitter of Balchen automatically adapted to 
these varying environmental conditions. The computa­
tional load resulting from the gain matrix calculation was 
reduced by making suitable approximations. A n  alternative 
extended Kalman filtering scheme proposed by Grimble. 
Patton, and Wise |7J, [8], employed the higher order wave 
model, but suggested the use of fixed low frequency filler 
gains to achieve the necessary computational savings. The 
self-tuning filter described here is based upon a similar 
decomposition property. This approach was first proposed 
by Fung and Grimble [18] using a. scalar example and 
without the theoretical justification given in the following.

The advantages and -disadvantages of the self-tuning 
approach in comparison with the usual extended Kalman 
filtering schemes can be listed as follows.

Advantages

1) The varying disturbance is represented by single­
input single-output channels, and thus the adaptive filter is 
not multivariable in nature.
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_A_

Fig. 2. Low and high frequency subsystems for a ship model.

2) The high frequency adaptive filter forms a separate 
subsystem to the low frequency Ka lman filter, and thus the 
gain calculations are simplified and the system m a y  be 
commissioned more easily.

3) The filter gains for the low frequency estimator are 
fixed and can be computed off-line, whereas all of the 
gains in an E K F  must be computed on-line unless ap­
proximations are ma de [6].

4) Existing constant gain linear Kalman filtering D P  
systems |4] m a y  easily be modified to include the self-tun­
ing features described here.

3) There is no need to specify the process noise covari­
ance or the form of the high frequency model. Only the 
total order of the model is assumed‘.known.

6) The high frequency model states which are not needed 
for control purposes are not estimated in the self-tuning 
approach.

7) The scheme presented here is relatively insensitive to 
the presence of nonlinear ship dynamics and thruster non- 
linearities [23].
Disadvantages

I) The full E K F  in which all of the gains are computed 
on-line can be classified as being locally optimal (if the 
linearizations arc correct), whereas the self-tuning scheme 
is suboptimal unless the low frequency estimator gains are 
calculated on-line using knowledge of the changing high 
frequency model.

The analysis begins with the system and problem de­
scription in Section II. The fixed gain Kalman filter is then 
considered in Section III and the self-tuning filter is de­
scribed in Section IV. The errors which are introduced 
using the self-tuning structure are discussed in Section V  
and the total estimation algorithm is presented in Section 
VI. The controller design is considered in Section VII and 
the simulation and results are described in Sections VIII 
and IX. respectively.

II. T iie System D escription

The environmental forces acting on a vessel induce m o ­
tions in six degrees of freedom. In dynamic positioning

only vessel motions in the horizontal plane (surge, sway, 
and yaw) are controlled. T o  simplify the problem, the 
motions of the vessel in the sway and ya w directions only 
are considered. This is possible because the linearized ship 
equations for the surge motion are normally decoupled 
from those for the sway and yaw motions [9]. The assump­
tion is also ma de that the low and high frequency motions 
can be determined separately and that the total motion is 
the su m of each of them. Marine engineers often make this 
assumption since the analysis is simplified and the low 
frequency motions can also be predicted with more accu­
racy than the high frequency motions.

The canonical structure of the system under considera­
tion is shown in Fig. 2. The model for a vessel can be 
separated into low / and high h frequency subsystems. The 
low frequency motions (subsystem S,) are controllable via 
thruster action and the high frequency motions (subsystem 
Sh) are due to the first order wave forces and are oscilla­
tory in nature.-The ship positioning problem is to control 
the low frequency motions (output of S,) given that the 
measured position of the vessel (z) includes bothy, and y h. 
The object in the following is to design a state estimator to 
provide estimates of the low frequency motions x,. The 
estimator must be capable of adapting to variations in the 
high frequency subsystem Sh which occur due to variations 
in the weather conditions.

The plant S, can be assumed to be completely controlla­
ble and observable and to be represented by the following 
discrete time-invariant state equations:

5,: x,(r +  l) =  /I/x /(r)+ B , u ( t ) + D , u ( t )  (1)
37(0 = £>/(')
S/(/)“ 3V(0+*>(0 (2)

where
£{u(f))“  0, E { u ( k ) u T( m ) ) =  Q 8lm (3)
£{•>(*)) “ 0. E{v(k)vT(m)) *= RSk,„ (4)

andfii m is the Kronecker delta function. x,(/) e  £". u(/)e 
R m, u(f)e Ri, and jv (0e  R r. The process noise io(r) is 
used to simulate the wind disturbance and v ( t ) represents
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using
A<'l>)-»>.<')-2.,2. '*(') («)

where
«(0 "»*(0 -A('l'“ 0- (26)

Using the identity in (24),/A(/|f) becomes
yh(fJf) -  m A(r) -  ). (27)

The estimate of j’A( 0  is not needed for control purposes, 
but is required for updating The wave frequency
model changes with environmental conditions and these 
variations are accounted for in (27) by on-line estimation 
of A m . Dny and the innovations c(/) (Section VI).

V. M o d if ie d  E stim ation  E qu atio ns

The signal yh( t )  is not measurable and must be replaced 
in the low frequency Kalman filter by /A(/|f). This sub­
stitution causes a difference in the state estimates [denoted 
x,(/|/)] and in the calculated innovations

<(') 4:(')-//('!'- 0- A(*l0
~ < / ( 0  +  f.*(0 (28)

where nA(/)«  /*(/)-/A(f|/).The signal nA(/) for the high 
frequency motion estimator has a zero mean value if the 
errors in calculating/A(f|0 are neglected. Notice from (16) 
and (26) that the innovations <(/) are identical to the signal 
«*(/) where

«*(') a »*(0-A('I0-
If the above substitution is ma de the new low frequency 

filter has the form
*/('!') *= l|r - 1 ) +  B,u{t - 1 ) +  /^,(r)c(r),

(29)
but this equation m a y  be decomposed into the following 
two parts:

x,(f|/)“  A ,x , ( t  -  1|/ —  1)+ B , u ( t -  l ) +

(30)
i,(/|f) -  A , i , ( t  -  l|r - 1 ) +  *,(/)/»,(/) (31)

where
■?(t|0 *= x , ( i \ i )  +  £ , { i \ t ) (32)

aod x,(f|f) represents the change brought about by rcplac-
'ng 3’a(0  by /A(/|f) in (27). The change in the predicted
output

y , ( ' \ ' - \ ) & (33)
where

/,(f|'-l)“ C,i,(r|r-l) (34)

but from (9) and (32)
T,('|/- l) =  C /(i,(r|t- I))

*= C ,A , i ( t -  l|f -  I). (35)
For later reference note that y , ( i \ t -  I) is generated from 
the output of the low frequency subsystem [see (31)] driven 
by the zero mean signal n h. The resulting position vari­
ations are relatively slow in comparison with the high 
frequency motions.

The high frequency motion estimator is also modified 
because the signal m h( t ) in (18) cannot be calculated, but 
instead m A(f) can be found where

«»*(/) = z (/)—  ̂ /(/l/ —  I)- (36)
The basis of the parameter estimation equation (Section 
VI) follows from (19) and (33) as

w*(r) -= mA(/)— ̂/(rjr — 1)
“  A k( z ' t ) ' l D k( z ' , ) i ( i ) - y , ( t \ i  -  I). (37)

Assuming that t and y, can be calculated the estimate of 
yh( i )  can be generated using (27) and (37)

/?* ( M 0 - m * ( 0 - ^ A , / ( 0 + #('!'- 0- (38)
The signal i  must be calculated to obtain the desired stale 
estimates x,(/|f) and this can be found using (18). (27). and 
(28)

<(0*= A ^ lD „ t ( t ) .  (39)
Recall that the gain K ,{ ( ) is calculated based upon the 

low frequency subsystem rather than the total system model 
[7]. This has the advantage that the gain is fixed and 
independent of variations in the high frequency subsystem. 
The optimal low frequency position estimate should there­
fore be calculated from (30), but this is not possible since c, 
cannot be computed directly. The state estimates are 
therefore obtained via (29), but are corrected using the 
estimated /,(/[/-1). This can be achieved in the ship 
positioning problem because the position stales are identi­
cal to the outputs of the system. Thus, let the corrected 
estimate

/ , ( ' ! ' )  = / / ( ' I ' ) "  j v ( ' I ' - i )

e  (position states inx/(r|f)). (40)
In the application of Ka lman filters it is unavoidable 

that errors will arise from incorrect models for the plant 
and noise signals. The signal //(/If -  1) will include such 
errors, but in the following section it is shown h o w  this 
quantity can be estimated and m a y  be used to correct the 
low frequency state estimates.

VI. K alm an  an d  S it.i -T u n in g  F i l t e r  
A lg o rith m s

The Kalman and self-tuning filter algorithms are c o m ­
bined below to produce the desired low frequency motion 
estimator. The Kalman filter to estimate x,(r|f) becomes
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Algorithm 6.1: 
predictor:

i,(/|r -  1) «  -  \\t - \ ) +  B ,u(t -  1) (41)
/,(/|/-l) =  Ci,(/|f-D (42)

corrector:

j F / ( / | 0 - i , ( / | / - l ) + K #(0*( / )  (43)
/,(/|r)-C,Je,(/|/). (44)

The signal c is required in the above algorithm, but this 
can be computed from (39) given the innovations signal t 
and the matrices A „_ and D„y  These matrices m a y  be 
estimated as described in the following. Note that at time 
t -  I the predicted output y,( t \ t -  1) is known [from (41), 
(42)] so that m h( t ) can be computed from (36). Fr om (38)

Ah(z-')m(t) = Dh(2 -')t(t)-Ah{z-')y,(t\<-M
(45)

The quantity y, is a slowly varying signal (from Section V) 
and can be treated as a constant over a short time interval. 
Let s ( 0 =  ^ * ( ^ " l)j!/(,l/ “  0  (where using the final value 
theorem i  m a y  be replaced by unity) then (45) becomes

4<*(*-,)«*(»)-/)*(*-,)€(»)-i (i). (46)
The innovations signal model can be represented in the 
usual form for parameter estimation

m * ( ' W ( O e  + c(0 (47)
and the algorithm due to Panuska [12] can be employed to 
estimate the unknown parameters.

In the ship positioning problem the high frequency dis­
turbances can be assumed to be decoupled, so that 
Ah(z ‘ ' ) ~ ' D h{z _l) is a diagonal matrix and-the parame­
ters for each channel can be estimated separately. Hence, 
standard extended recursive least squares or m a x i m u m  
likelihood parameter identification algorithms m a y  be used. 
For the /th channel

wiA>( / ) - ^ l(f)0l +  «<(f) (48)
where

*,(/) “ [“"»*,(' “ I). • • • •“ '»*.(' “ »«):
«,(* -  I).*”  A , ( t ~  n,/): l] (49)

6,r =  (50)
Past values o' the innovations signal are approximated by

(51)
where $ , ( / ) is given by (49) with replaced by
«,(/ -  j )  j  =  1, 2. • • •. rij and 0, represents the estimated 
parameter vector.

The recursive Kalman/self-tuning filter algorithm now 
becomes

Algorithm 6.2:
1) Initialize 6it initial parameter covariance for each 

channel and assign the forgetting factor /). Initialize state 
estimates.

2) Generate the Kalman filter estimates x,( t \ t  — 1) and 
y , ( t \ t  -  1) using (41) and (42).

3) Calculate mh (t) using (36) and form i£,(r).
4) Parameter update:
M O  -  M '  "  0+ K r ( t ) ( m hi( t ) - l ( t ) h , ( t  -  1)). (52)
5) Covariance and gain update

0 -^ (0  
.(/? + *i(Of/’(/-i),OXO)k',(O7}/0 

kH‘)~Pn<- 1)<M0
+  (53)

where 0.95 <  /? 1.
6) Innovations update:

M 0 & ( 0 M 0 .  (54)
7) Calculate iH( t ) for channel i using (39)

* ! , ( * ) (55)
8) If i <  number of channels (r) go to step 3).
9) Generate the state Jt,(/|0 [using (43) and (44)].
10) Calculate the estimated f t( t \ t -  1) as

/ / . ( ' I ' - O - M O / ^ . O )
A.(0 - a . - 1) + (I - cr)A,(f|' - 0-

0 <  a <  1. (56)
11) Correct the position estimates using (40). Return to 

step 2).
The signal - 1) in step 10) m a y  be processed to 

produce the smoothed estimate y, ( t ) before it is used to 
correct the state estimates. The algorithm described in the 
Appendix can predict the velocity as well as smooth the 
estimation of y , ( t ) .

The structure of the self-tuning/Kalman filtering scheme 
for the dynamic positioning system is shown in Fig. 3. The 
surge motions are decoupled from the sway and ya w  
motions, and thus these are normally estimated by separate 
filters.

VII. C o n t r o l le r  Design

The controller design is based on the separation princi­
ple of stochastic optimal control theory [16]. The controller 
with input j and output u is chosen to minimize the
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Fig. 3. Structure or the filtering scheme.
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Fig. 4. Kalman and self-tuning filter state estimate feedback scheme.

performance criterion 
7 -  ^lirn^ ^ p £ |  j T ( x ,  -  r , ) T Q x( x ,  -  r , )  +  u TR xu d t}

(57)
where Q t and R t are positive definite weighting matrices. 
The optimal control signal is generated from a Kalman 
filter cascaded with a control ga n matrix K t

« ( f ) - - £ fx(/). (58)
The control gain matrix m a y  be calculated from the 
steady-state Riccati equation in the usual way. The closed 
loop control system is shown in Fig. 4.

The optimal control weighting matrices were chosen to 
penalize the position error corresponding to the low 
frequency motions (slates 2 and 4) and to give an ap­
propriate step response (17J. These were found as

Q, =diag(5.60.5.60.1,l)
R t -  diag{400,400).

The saturation limits on the control signals svere set at 
±0.002 per unit. These represented the actual saturation 
which can occur when the thrusters are at full load. The 
selection of the optimal control weighting matrices in the 
ship positioning problem can be based upon results from 
asymptotic root loci |I7] since the system is uniform rank.
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VIII. S im u la tio n  an d  Ship E qu atio ns  

A. Low Frequency Ship Motions

The low frequency motions of a vessel are determined by 
nonlinear equations [13] which are linearized for system 
analysis. The forces which produce the low frequency 
motions can be listed as follows: I) forces generated by the 
thrusters and propellers; 2) wind forces; 3) wave induced 
forces; 4) hydrodynamic forces.

The linearized low frequency model of the vessel can be 
represented by (I) and (2) where the state vector is defined 
as

'*,<0 
x2(t)

x M ~ -.to
*s(0 
X t ( t )

The system matrices for W i m p e y  Scalab [4] corresponding 
to the zero current condition and the continuous time state 
equations become

0 
0
9.785 
0 
0

-1.55 .

o] (60>

where E, is the input matrix corresponding to the wind 
force disturbances. The above linearized equations arc in 
per-unit form and have been time scaled (real time ** 3.104 
x  simulated time). The following simulation results are 
also in terms of per-unit quantities and scaled time.

The covariance of the process noise is dependent upon 
the wind force level and can be defined as

Q -  diag{4x 10 *.9x10
The standard deviation of the measurement noise (sonar 
position measurement device) is assumed to be 1/3 and 0.2 
degrees, giving the normalized sway and yaw covariances

R «  diag(IO \  1.22x 10 5>. (61)

'V

B,

0.056 0 0.0016 0 0.5435
1.0 0 0 0 0
0.573 0 -0.0695 0 0
0 0 1.0 0 0
0 0 0 0 -1.55
0 0 0 0 0

0 0 ' 0.5435 0
0 0 0 0
0 0 D, = 0 9.785
0 0 0 0
1.55 0 0 0
0 1.55. 0 0
0.384 0

E,~
0
6.92
0
0
0

- fO I•,I=lo 0
0 0 0 
0 1 0

) sway velocity 
) sway position 
) yaw angular velocity 
) ya w angle 
} thruster one 
} thruster two.

B. High Frequency Motions

The high frequency motions of the vessel are due to the 
first order wave forces. The worst case high frequency 
motion is determined by the sea wave spectrum alone and 
can be represented by the input-output vector difference 
(6). The order of the polynomial matrices A h( z ~ * ) and 
C A(z-1) can be assumed to be second and first order, 
respectively. The parameters of these matrices vary with 
sea state.

It is usual to test the D P  designs for real applications 
using simulated rather than measured sea wave data. This 
is partly due to the difficulty in collecting representative 
sea wave data, but also reflects the fact that tests over a 
range of different conditions must be made.

The high frequency motions were simulated using two 
fourth order coloring filters driven by white noise. In state 
space notation

= + (62) 
y*-chxk (63)

where
'4k 0 and D h = D'h 0
0 A1 * 0 D'h

and the submatrices for the sway and yaw directions have 
the same form

0 1 0 0 ' 0 '
0
0

0
0

1
0

0
I ><

- II 0
0

. ~ a* -«3 ~ a’l. .ks.
(64)

C ; - [ 0  0 1 0]. (65)
The parameters of the system matrices are calculated to 
minimize the integral squared error between the modeled 
and Pierson Moskowitz sea spectra [8].

Tests on the Filters: The simulation results presented 
below were obtained using the above high frequency model 
to generate the wave motions. The tests were based on 
weather conditions corresponding to Beaufort numbers 8 
and 5 (wind speeds 19 m / s  and 9.3 m/s. respectively) 
which arc typical examples of rough and calm seas, respec­
tively. The first set of “ filtering’* results (Figs. 5-8) are for 
Beaufort 8. without closed loop control.

The total sway motion is shown in Fig. 5 arid the 
estimated and modeled low frequency sway motions are 
shown in Fig. 6. The estimate of the low frequency motion 
is required for control purposes and it is clear that the 
estimate is good throughout the time interval (even after 
initial startup). The high frequency sway motion estimates 
are not needed for feedback control and are not shown. It 
is important that the L F  motion estimates arc relatively 
smooth to reduce the consequential variations in the con­
trol action. The major role of the combined estimator is 
indeed to separate the H F  and L F  motion estimates.
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Fig 7. Sway and yaw loss functions (Beaufort 8).

Because the L F  Kalman filter floes not have z, as an input, 
hut rather

: ( 0 " / / , ( ' ! ' )  = Z / ( 0 + .n A( r )

the predicted measurement noise covariance should be 
increased if the L F  estimates contain an H F  component. 
Since the H F  wave conditions are slowly varying the 
amount by which R should be increased is not known 
exactly, but the system is not oversensitive to such an 
adjustment (factors of 5 on sway and 10 on yaw were used 
for the results shown here).

The accumulative loss functions for the position estima­
tion errors in sway and yaw (both H F  and LF) are shown 
in Fig. 7. The L F  loss function for sway is defined as

L (>v’(0-.»V(f|'))J.r-l
If the measurement noise were not artificially increased, 
when calculating the Kalman filter gain, the H F  and L F  
loss functions for ya w would be found to be similar. This is 
an indication of optimal performance which has been 
sacrificed to some extent to obtain smoother position 
estimates. The parameter estimates for the high frequency 
model are shown in Fig. 8 where

Fig. 8. Sway and yaw estimated parameters (Beaufort 8)

Note that even before the estimated parameters have con­
verged the position estimates are still accurate (see Fig. 8). 
The initial parameter estimates for the matrices A h and D h 
can be based upon the knowledge that these have stable 
inverses. The polynomials are all of the form a ~ / i \Z  +
a2z ~2 ~ (m,z ‘ 1 +  l)(m2r 1 +  1) ar>d since \m t( < I. | m 2| 
<1 then —  2 <  m, +  m 2 < 2, —  l < m , m 2 <l. Assuming 
m,, m 2 < 0 implies that good initial estimates are a , =  0.5 
and a, =  -  I. It was found that the initial error covariance 
for/(/) should be small (e.g., 0.1 in (his test), but the initial 
covariance for the other parameters should be high (e.g.. 
100). The estimate of s ( t ) m a y  contain a high frequency 
component and thus this is smoothed by use of a simple 
first order lag filter.

The filtering results for a calm sea (Beaufort 5) are not 
shown since the parameter estimates are m u ch better for 
this case. This is consistent with the theory of Section V  
that shows that when the modeling errors are negligible, 
the term y,(/|f -  1) is caused by the estimation error of the 
high frequency motion (see (35)) which is reduced in a calm 
sea.

Closed Loop Control: The first set of results arc again for 
the rough sea (Beaufort 8) condition. T o  allow the parame­
ter estimates to converge (as will be possible in practice) 
the step response of the system is measured over the time 
interval 240-360 s. A  step reference of 0.06 per unit is 
input to the system at / =  240 s. The sway and yaw 
responses are shown in Figs. 9-12. The low frequency 
variations, due to wind disturbances, are m u c h  reduced 
under closed loop control, but the high frequency motions 
are. as required, almost unchanged. The rise lime for the 
step response can be reduced if larger control signal varia­
tions are allowed. These are shown in Figs. 13 and 14 and 
it is clear the sway control enters the saturation limit for a 
few seconds when the step deptand is entered. This is not a 
problem since in practice position reference changes are 
not made in steps. On e of the main design objectives is to 
reduce “ thruster modulation." that is, variation of the 
thrusters in sympathy with the wave motions. That this 
objective has been achieved is clear from the control sig­
nals in Figs. 13 and 14.

The equivalent results for the calm sea (Beaufort 5) 
conditions are not shown. The parameter estimates are
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improved and the control signal variations are reduced in 
this case, as would he expected. Note that in comparing the 
high frequency motions the magnitude of the H F  motion is 
reduced in the calm sea, but the frequency of the wave 
motion is higher. The sway motion is less than the allowed 
limit of the ± 3  for both sea states.

Rapid Weather Changes: The sea state will, relative to 
the system lime constants, take a long time to change. It 
might therefore be expected that the self-tuning filler could 
easily track such variations and this has been demonstrated 
in [18]. If the weather direction changes or if the heading is 
changed the direction of the disturbances acting on the 
vessel will also vary. The magnitude of the wind and 
second-order wave forces will change according to the sine 
of the angle of incidence of these forces on the vessel and 
also according to the shape of the superstructure and hull 
exposed to these forces. The change in the angle of the 
current forces will be reflected in a change to the low- 
frequency dynamics of the vessel, and hence to the lin­
earized low frequency model (23). These changes necessi­
tate a variation in the drift estimator or integral action 
term, and the optimal control gain of this loop must be 
carefully chosen by posing an appropriate cost function 
(22). This design problem is of course c o m m o n  to other 
Kalman filtering dynamic ship positioning schemes.

Comparison: A  comparison between characteristic locus 
and optimal designs for dynamic ship positioning systems 
has recently shown [24] that the performance achievable is 
roughly the same in both cases. The differences lie more in 
the engineering implications and the relative ease of use of 
the different design procedures. Similar conclusions may­
be drawn when comparing the usual and self-tuning 
Kalman filtering solutions to this problem. The sway step 
response and control signal variations, shown in (24). for 
the usual fixed Kalman filtering solution, are very similar 
to those in Figs. 10 and 13, respectively. If the Kalman 
filter is matched to the sea state model (by using the same 
dynamics to the filter as in the wave model (8)) the Kalman 
filter gives a slightly lower mean square estimation error of 
about 10 percent. However, whenever the sea state model is 
significantly mismatched with the Kalman filter the self­
tuning filter gives the best results. This is the situation in 
practice since the H F  dynamical model structure is a poor 
representation of the nonlinear sea spectrum generator. 
Extended Kalman filtering schemes can also of course 
adapt the dominant wave frequency parameter, but these 
usually have a more restrictive structure than the self-tun­
ing wave filter. A  full E K F  also involves a considerably 
larger computational burden.
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IX. C o n c l u s i o n s
The self-tuning filter replaces the usual fixed high 

frequency estimator in Kalman filtering D P  systems. Thus, 
systems which do not currently have automatic adaption to 
varying environmental conditions can be provided with 
such a feature. The approach has the advantage of simplic­
ity over extended Kalman filtering D P  systems. In addition:
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I) there is no need to specify the process and measurement 
noise covariances for the high frequency model, 2) high 
frequency model slates which are not needed for control 
are not estimated, 3) the structure of the multivariable 
estimator which involves separate adaptive and nonadap- 
livc subsystems simplifies both implementation and fault 
finding, and 4) recent simulation results using nonlinear 
ship models and thruster nonlinearilies have demonstrated 
that the scheme is robust in the presence of such nonlinear- 
itics (23].

A ppendix

The algorithm for tracking the error y t( l )  based on the 
estimated position error.»“,(/]/ -  1), for the /th channel (19], 
120], becomes

.y,f(/) =  ^ ( / - l ) + r f /* ( / - l )  ( 7 0 )

v , : ( ' )  =  - * ' ( ' ) ]  ( 7 1 )
=  +  ( 7 2 )

where
T

k2
. » v f ( 0
>;(')
V . ( t )

1)

sampling interval 
constant less than unity 
constant less than unity 
predicted position error 
updated position error 
updated velocity error 
estimated position error 
from the self-tuning filter.
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