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KALMAN FILTERING TECHNIQUES APPLIED TO THE DYNAMIC SHIP POSITIONING
PROBLEM

_A A G Al-Takie
Abstract

The dynamic ship positioning problem using Kalman filtering techniques
is considered. The main components of the system are discussed. The
ship dynamics, based on a linearised model, are represented by state
equations. These equations involve low and high frequency subsystems.
A simplified design procedure for the implementation of a Kalman filter
is described based on the linearised equations of motion. The Kalman
filter involves a model of the system and is therefore particularly
appropriate for separating the low and high frequency motions of the
vessel. The filtering problem is one of estimating the low-frequency
motions of the vessel so that control can be applied. An optimal '’
feedback control system simulation based on optimal stochastic control
theory is used. The optimal control performance criterion weighting
matrices Q, R were pre-selected and the optimal feedback gain matrix
was computed. This control scheme involves the low-frequency part
of the ship model. The Kalman filter has been simulated on a digital
computer for different modelled operating conditions. The computer
simulation results showing the behaviour and responses of the Kalman
filter applied to the dynamic ship positioning problem were
investigated. The system dynamics vary as the weather conditions vary
and can be classified from a calm sea condition (Beaufort number 5) to
the .worst condition . (Beaufort number 9). Different tests involving
systems modelling and filter mismatching have been carried out.

Another field in which the robustness of a Kalman filter has been
assessed involved a test in which the system observation noise
covariance was increased keeping the filter with the usual noise
information. Saving in both computation and computer storage
requirement were achieved using a form of semi-constant filter gain and
reduced-order Kalman filter respectively.

System non-linearities have been considered and a non-linear control
algorithm was proposed and implemented using an extended Kalman filter.
These non-linearities involve the thruster dynamics and the associated
low-frequency part of the system model.

All data that have been used within this work for system implementation
were obtained from two different models ("Wimpey Sealab" and ''Star
Hercules" vessels). Our system has been employed by GEC Electrical
Projects Limited, Rugby, for a new vessel ("Star Hercules") and this

has been commissioned and is currently operating successfully off
Brazil. '

%N



CONTRIBUTION AND PUBLICATIONS

Summary of Contributions

1. Complete implementation of Kalman estimatbr togethe; with optimal
feedback control for "Wimpey Sealab" vessel.

2. In depth investigations into the non-linearities of main parts of
the dynamic ship positioning systems.

3. Complete development of dynamic positioning coﬁtrol based on Kalman

filtering and optimal feedback control for "Star Hercules" vessel. -
* Publications

1. AL-TAKIE, A A: "Development of a dynamic ship positioning
simulation", Research Report EEE/28/1979, ‘Sheffield City Polytechnic.

2. AL-TAKIE, A A: "Documentatiqn report on the selection of the optimal
control performance criterion", Research Report, January 1980, Sheffield
City Polytechnic

3. AL-TAKIE, A A: "Kalman filtering techniques applied to the‘dynamic
positioning problem", Research Repoft EEE/53/May 1980, Sheffield City
Polytechnic

4, AL-TAKIE, A A and GRIMBLE, M J: "Optimal control of non?linear
stochastic systemskwith application to dynamic ship positioning",
International Conference on Systems Engineering, Seétember 14-16, 1982,
Coventry (Lanchester)Polytechnic, UK.

5. GRIMBLE,AM J and AL-TAKIE, A A: “Optimal control of non-linear
stochastic systems", Research Report EEE/60/September 1980, Sheffield

City Polytechnic.



ACKNOWLEDGEMENTS

I would like to express my gratitude and sincere thanks to my super-—
visor, Professor M J Grimble, for his guidance, valuable advice and

encouragement all through the period of this research work.

The work described in this thesis was partially financed by the
British Science and Engineering Research Council for which the author

is most grateful.

The work has been carried out in close liaison with GEC Electrical
Projects, Rugby and I would particularly like to thank Mr D Wise for

his valuable technical advice.

Thanks due to Mr D Abraham, Head of Department of Electrical and
Electronic Engineering, Sheffield City Polytechnic and to virtually
every member of his staff who have offered their help and suggestions

with respect to difficulties.

My thankfulness is:also extended to Dr R J Patton of the Department
of Electrical Engineering, York University, for his help and advice on

the software developments.

Finally, I would like to thank Mrs Lesley Walker for her meticulous

care in typing this thesis.

e
e
e



TABLE OF CONTENTS

page
ABSTRACT i
CONTRIBUTION AND PUBLICATIONS ii
ACKNOWLEDGEMENTS ‘ iii
CHAPTER 1 - GENERAL ASPECTS OF THE DYNAMIC POSITIONING 1
PROBLEM ‘
1.1 General Introduction 1
1.2 Notch, PID Filtering and Control 8
1.3 Alternative, Kalman Filtering and
Stochastic Optimal Control Solution _ 9
1.4 Thesis Layout ' . , 13
CHAPTER 2 - MAIN PARTS OF THE DYNAMIC SHIP POSITIONING
SYSTEMS | | 15
2.1 Introduction | 15
2.2 Thruster Devices ' 17
2.2.1 Introduction , 17
2.2.2 Thruster used on "Wimpey Sealab" 20
2.2.3 Thruster used on "Star Hercules" 22
2.2.4 Thruster applied forces 27
2.3 Position and Heading Measurement Systems 28
2.4 Process and Measurement Noise Analysis 31
2.4,1 The Process Noise . 33
2.4.2 The Observation Noise ‘ 234
CHAPTER 3 - THE SHIP MOTION 35
3.1 Introduction k 35
3.2 Low-Frequency Dynamics 39
3.2.1 Introduction 39
3.2.2 Derivation of the Low-Frequency Dynamics 41
3.2.3 Low-Frequency Equations for "Wimpey
Sealab" vessel 43
3.2.4 Low-Frequency Equation for "Star Hercules"
vessel 48
- 3.3 High-Frequency Dynamics , ' 49
3.3.1 Introduction 49
3.3.2 Development of the High-Frequency Model 50
CHAPTER 4 - THE STOCHASTIC OPTIMAL CONTROL PROBLEM 54
4,1 Introduction 54
4.2 Control Algorithm 57
4.3 Selection of the Performance Criterion Weighting
Matrices 61

iv



page

4.4 'Simulations and Results 65
4.4.1 Case (a) 65
4.4,2 Case (b) 66
4.4.3 Case (c) 73
4.5 Concluding Remarks : _ 76
CHAPTER 5 - LINEAR FILTERING/KALMAN FILTERING PROBLEM 82
5.1 Introduction 82
5.2 Kalman Algorithm 84
5.3 Implementations and Simulation Results 88
5.3.1 Software Description : 88
5.3.2 Filter and Control Implementations
for "Wimpey Sealab" vessel 90
5.3.3 Filter and Control Implementations
for "Star Hercules" vessel 98
5.4 Concluding Remarks 107
CHAPTER 6 - PRACTICAL INVESTIGATION INTO THE USE OF KALMAN
FILTERING FOR DYNAMIC POSITIONING 109
6.1 Introduction . 109
6.2 Reduced-Order Kalman Filter 110
6.3 Semi-Constant Gain Kalman Filter 112
6.4 Filter Mismatching 121
6.5 Reliability Tests 126
6.6 Concluding Remarks 129
CHAPTER 7 '—= NON-LINEAR FILTERING/EXTENDED KALMAN FILTER 130
7.1 Introduction ‘ : 130
7.2 Non~Linear Filtering and Control 131
7.2.1 System Description including Thrusters
Non-Linearities 132
7.2.2 The Filtering Algorithm 136
7.2.3 The Control Algorithm 139
7.2.4 Simulation Results 140
7.3 Parameter Estimations 141
7.4 Concluding Remarks 150
CHAPTER 8 - OVERALL CONCLUSIONS 151
REFERENCES ' 155
APPENDICES 166



CHAPTER 1

GENERAL ASPECTS OF THE DYNAMIC POSITIONING PROBLEM

1.1 General Introduction

Since the end of World War II, it has been increasingly realised that
the seabed and rock beneath are rich in mineral resources which should be
exploited. The best known example is the offshore'oil reserves.
Initially, exploitation was limited to shallow water close to the shore
but it has moved progressively into deeper water and less hospitable
locatiqns. Early exploration for oil production was carried out from
fixed platforms. Inspection and maintenance work on fixed structures
involve extensive use of diving services and lifting facilities. From
these has arisen the need for the floating vessel with the necessary
technique to keep it stationary Wifh respect to some reference point.
Recently many floating drilling rigs and drill ships have been intro-
duced and manhy of these are working in the North Sea. In addition to
drilling, offshore operations involve:
(1) coring

(ii) surveying

(iii) cable laying

(iv) dredging

(v) diving

(vi) fire fighting
The most significant limitation of using the conventional floating vessel
is the difficulty of anchoring in deep water. To overcome these
limitations, the concept of a dynamic positioning technique was intro-
duced. kDynamic ship positioning is defined as the technique for main-

* taining the position of a vessel stationary over a specific preselected



point on the seabed without the use of anchoring systems. The second
definition of dynamic positioning is that the vessel may be moving at
controlled speed, which can be extended to include the tracking

problem.

The process of automatically controlling a ship or floating platform
position and heading [:13:] ]:19:] over a preselected area 1s concerned with
providing the necessary thrust in aPpropriate quantity and direction
to match the mean loads imposed on the vessel by environment and other
forceé. - This will involve using:
1) a c&mbination of thruétervmechanism and propulsion
(ii) position and heading measuring devices
(iii) wind speed sensor’

(iv) control computer

The design of an automatic position andvheading control system for a
vessel depends on the required criteria, which must be satisfied by
the vessel and its control system (or computer control system) to
perform.its mission, on the environmental conditions in the area where
the vessel will operate and on thebexpected behaviours of the vessel

for changing weather.

The control system is part of a closed loop s&stem, schematically
shown in Figure 1l.1. The main components are:

(1) measurement subsystem, including all devices for generating the
information to be processed by the computer,

(ii) the filter to attenuate the unwanted signals and to generate fhe
required estimates for state feedbackcontrol,
(iii) the controller, of which the output is sent to the propulsors
(main propellers and other thrusters),

(iv) thrust generating system to drive the vessel to the required

2
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position.

This control scheme should be capable of:

(i) controlling the propulsors for maintaining a reference position
and heading under specified weather conditions (with the ability to
react to changing weather conditionms), with a maximum allowable radial
position error of 3 per cent of the water depth,’

(ii) avoiding high—-frequency fluctuétions in the thrust demand
(filtering problem) since this may cause unnecessary wear of the
propulsors and waste of energy,

(iii) controlling the propulsors for changing the position or heading

of the ship in case a new reference position or heading is selected.

Dynamic positioning systems with on-line computer control involve
one of the following EBO]:
(1) Simplex computer control, where longer term or more accurate
position keeping is necessary, such as for support purposes. This
fully automatic control system is an economic scheme and it normally
comprises:
(a) one computer complete with monitoring unit and peripherals
controllers
(b) one operator conmsole, with full set-up, control and
display
(c) one position measurement system
(d) sSet of environmental and attitude sensors
(ii) Duplex computer control, which is usually used for oil exploration
drilling vessels, which is required to remain on station for long periods
of time. A Full automatic duplex dynamic positioning system comprises of:
(a) two computers complete with monitoring units and peripheral

controllers



(b) omne operator comnsole, with full set-up, control and
display,
(c) two position measurement systems,

(d) two sets of environmental and attitude sensors.

The design of a vessel's dynamic positioning system involves a
compromise between the two conflicting requirements of accuracy of
position holding and the need to suppress the thrusters response to
part of the wave motions. These external forces are assumed to consist
of low-frequency and high-frequency forces. The thrusters response

to the first order high-frequency wave motions is oscillatory in
nature, and involves an extra power demand and wear and tear of the’
thrust~producing mechanisms, without any gains iﬁ counteracting vessel

motion due to the above waves and forces.

The accuracy of the dynamic positioning System will depend to a certain
extent on the philosophy of the wave filter selection method and the
corresponding controller design procedure. Thus, the aﬁount of the
thrusters oscillations will depend on the wave filter attenuétion and
the controller bandwidth; Filtering for the dynamic positioning
problem can be defined as the process of operating upon the corrupted
information (the noisy measured system output) to attempt to comstruct
a signal which can be used for control purposes [?Q],[?Z]. The control
systems for the first dynamically positioned vessels [3!],[3Q] included
Notch filters and PIDAcontrollers. Using such a scheme, the position
measurement signal can be filtered out to obtain a comparatively good
estimate of the low—-frequency part of the vessel motibns, and hence,
control can be applied [?3]. An introduction to Notch filter

networks is given in Section 1.2



Using the above conventional Notch filter scheme with PID control can
cause some difficulties since a compromise should be made between
improved filtering and good control system performance. Such diffi-
culties led to the use of the alternative Kalman filtering technique
together with modern stochastic obtimal control theory. The
Kalman-Bucy filter [:58], [60:] s [47:] , [46] has assumed a role of ever
increasing importance over recent years in the field of filtering and
estimation of processes, and its applications in dynamic systems,
Theoretically, the Kalman filter gives the unbiased, minimum variance
estimation of the state vectors of a linear or linearised dynamic
system when output measurements are provided which represent a

linear function of thé system states with some additive white noise.
In practice, optimum performance will be very hard to realise since
the information required to construct the Kalman filter is only
approximately known. Hence, to get the best filtering and estimation,
the Kalman filter has to be provided with as mucﬁ informatiqn as

possible concerning the noise statistics and system dynamics.

In dynamic vessel positioning the low-frequency part of the system
states are required to be estimated by the Kalman filter so tﬁat control
can be’applied. Kalman filter dynamics, based on the separation

theorem [21], [54] will involve a model of the actual low and high
frequency part of the system dynamics (Figure 1.2), and heﬁce, the
estimatéd high—ffequency state vectors can be ignored, while the
estimated low-frequency states can be fed back to be used within the
control 1oop..'An introduction into ‘the use of the Kalman-Bucy

filtering scheme and_its applications to the dynamic positioning

problem for this study will be given in Section 1.3.
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1.2 Notch, PID Filtering and Control

Notch filters [99___‘, D.OB] havevbeen developed and used in dynamic ship
positioning for some years with relatively good results. If the control
system were purely analogue ,this filter would obviously be preferred.
With digital processors available, other‘filter structures might yield
additional advantages. A Kalman filter with such properties [%5],[12]
will be introduced in the next section. A Notch filter is often used

in dynamic‘positioning pfoblems ?o attenuate the high-frequency wave
motion signals from the position measurement system. The Notch filter
must be capable of providing a constant atteﬁuation ratio either for a
fixed sea wave resonant frequency or for é range of fesonant frequencies.
A typical range of Notch frequencies [si] wogld be 0.06 Hz to Oﬁ12 Hz
corresponding to Beaufort scale number 9 down to 5 (Appendix 2). To
provide a wide band-stop characteristic it is ﬁecéssary to use a
cascaded system of Notch filters with each sectioﬁ tuned to a

particular resonant ‘frequencyr [;20] s [13]. In this application three

such cascaded sections are normally used. The Notch filter transfer

function can be defined {ﬁoj] by:

s2 + —2d o L2
: ,A - 242
H(S) T e b2d ss eeco 00 (1.1)
§2 + —2—— 5 + w? ‘
/1 - 242
where:
©w ’Notch centre frequency (rad/sec)
b ~ the 3 dB bandwidth of the Notch (rad/sec)
d the attenuation ratio at the Notch centre frequency

The above parameters w, b and d can be used to describe the Notch
network. For a three cascaded section of this network the above
transfer function H(s) can be written és [?Z]:

i=n

H(s) = I Gi(s) ceecececeacees (1.2)
i=1



where: n = 3 (for three cascaded sections), and:

2, bjidj . 2
S o st
Gi(S) = N b. 2 . ®e s ee oo s (1.3)
1 + W,
i

2 —m———=—m— G
S* A - 248

where:
| W, the ith séction centre frequency
bi the ith section 3 dB bandwidth
di the ith section attenuation ratio

1.3 Alternative Kalman Filtering and Stochastic Optimal Control Solution

Considerable research has been devoted during the last twenty years to
various problems in the estimation of the states of linear dynamic
systems using system measurements éorrupted by Markov

noise. The Kalman-Bucy filtering technique for such applications has
been thoroughly examined in the literature. The optimél, continuous
time filtering problem for the case of linear system dynamics, additive
measurements ‘and Gaussian white disturbance measurement noise was
first solved by Kalman (1960) [58] and Kalman and‘ Bucy (1961) [60] .
Specifically they considered the problem of finding fhe unbiased,
minimél variance state estimate gﬁt) of the system state x(t) in the
presence ofastocﬁastic input disturbances and output measurement

additive noise.

The problem of state estimation of noisy systems using Kalman filtering
scheme requires a kﬁowledge of the system structure and its parameters Eﬂ.
If the system is linear or linearised and its different parameters are
known, the solution is a straightforward application of Kalman
algorithms for filtering and eétimation and is given by Kalman and Bucy

. (1961). In actual industrial applications, some of the plant



parameters may be unknown and hence it 1s necessary to estimate them
together with the system states simultaneously. This parameter
estimation problem requires the extension of the Kalman filtering
scheme to include the system non-linearity. This will involve the
implementation of the extended Kalman filter. This form of

non-linear filter problem can be dealt with by constructing an
additional linear dynamic model corresponding to the unknown parameters.
The parameter equations are added to the system model equations and the
combined states and parameter variébles of this augﬁented model are to
be estimated. Feedback control can be applied using the low—-frequency
pért of the state estimates only (Figure 1.3). All the necessary
information concerning the process and observation noise as well as
system inputs have to be fed into the proposed filter dynamics for good
estimation and filtefing accuracy. The non-linear filtering problem
for systems with random inputs is of great impértance in control
processes, especially in industrial situations. The Kalman filter has
been proved to be efficient and reliable for many industrial

applications.

The Kalman filtering scheme and its application to the dynamic
positioning problem has been proposed by the Norwegians (Balchen et al,
1976 [ii],[ié]). Balchen's design involves a more complicated and
computationally inefficient form of filter in which some of the
high-frequency parameters were estimated. An alternative solution to
the linear and non-linear Kalman filtering problems with their
applications to the dynamicAship positioning problem was proposed and
used by Grimble [E%],[}Q]. The use of the proposed alternative
solution of Kalman filtering combined with the opfimal control

theory to the dynamic positioning problem was part of a Case

research study supported by GEC Electrical Projects Limited, Rugby

10
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and carried out by a team of researchers. This work on dynamic
positioning using Kalman filtering was an extension of in depth

study of general filtering and control problems by Grimble [?5],[?3],
[36]. The simulations were involved in some high-frequency parameter
estimations to estimate some of the unknown parameters within the
high-frequency dynamics using an extended Kalman filter E&Q] , [52] .
These estimated parameters are to affect the high—-frequency block

of the system dynamics structure which varies in accordance with

the weather and sea conditions (Beaufort 9 for the Qorst sea condition

down to Beaufort 5 for calm sea).

The team research provided a basic design for the dynamic ship
positioning problem using Kalman filtering techniques based on data
available from the "Wimpey Sealab" vessel. The author produced a
complete design for the implementation of Kalmén filtering and
optimal stochastic control with its applications to the dynamic
positioning problem based on data from the new "Star Hercules"
vessel. This vessel has already been commissioned by GEC Electrical
Projects Limited, Rugby. The author has also contributed to an
original idea in which a special form of extended Kalman filter has
been used employing the optimal control loop within the low-frequency
part of the vessel dynamics. This form of non-linear control |
caters for the non—linearitieé within the low-frequency dynamics and
deals specifically in detail with the non-linearity of the thruster
devices which form part of the 16w—frequency dynamic structure

(Chapter 7).

12



1.4 Thesis Layout

In the previous sections of Chapter 1, the overall dynamic vessel
positioning problem has been introduced and its usefulness for
exploitation processes and'other'industrialAappliéations were outlined.
An introduction for the use of Notch. or Kalman filfering techniques
within the dynamic positioning controlbloop were finally drawn in

Sections 1.2 and 1.3 respectively.

Chapter 2 contains a brief description of the main basic parts of the
dynamic positioning systems. This will include the overall system
structure, the systems for measuring the position of the vessel, the
thrust producing devices (for both "Wimpey Sealab" and "Star Hercules"
vessels) and finally, the general statistics of both the procéss and

observation noise.

Chapter 3 includes the basic linearised mathematicél equations
representing both the low and high frequency motions of the vessel.
These differential equations have been formulated on. the basis of data
obtained from a set of "tank-tunnel-tests" and carried out by GEC
Electrical Projects Limited, Rugby. These data were provided for both
"Wimpey Sealab" and "Star Hercules'" vessels. Finally, system matrices

were summarised for control and system simulatioms.

In Chapter 4, Grimble's approach for the seleétion of the Q and R
control weighting matrices has been implemenfed and used within the
problem of the dynamic ship positioning. A form of the separation
theorem has been used and the matrix Riccati equation was solved to
calculate the optimal feedback gain matrix. Finally, the low-frequency
dynamics for both "Wimpey Sealab" and "Star Hercules" vessels were

. simulated for the selection of the optimal Q and R matrices, and hence

13

%



the selection of the optimal gain matrix for future design (Chapters

5, 6).

Chapter 5 contains the main design results for a complete implementation
and installation .of the dynamic positioning system on both "Wimpey
Sealab" and "Star Hercules" vessels using linear Kalman filtering and
stochastic optimal control techniques. This chapter has Been extended
to include tests and investigations into the reliability and

robustness of the Kalman filter algorithm and its application to the

dynamic ship positioning problem.

In Chapter 6 the reliability and goodness of the Kalman filter and its
application to the dynamic ship positioning are to be investigated

and several tests to be carried out to examine the scheme robustness.

Chapter 7 deals mainly with the case of non-linear filtering and control.
Non-linearities in both the high-frequency and low-frequency dynamics

of the system were studied and an extended Kalman filter has been used.

Finally, in Chapter 8, all the design procedures and results were

concluded, together with some future work recommendationms.

14



CHAPTER 2

MAIN PARTS OF THE DYNAMIC SHIP POSITIONING SYSTEMS

2.1 Introduction

The design of on-line computer control of a vessel position and
heading under dynaﬁic positioning control depends on certain criteria.
These must be satisfied by the vessel and its control system in order
to perform its mission (drilling, diving, fire fighting, etc), in the
environmental conditions in the area where the vessel will operate

and on the expected behaviour of the vessel under fhese environmental
conditions. In dynamic positioning only the vessel motion in the
horizontal plane (surge, sway and yaw) are. controlled, where the ship
will be regarded as a rigid body. The vessel motions in&uced by the
waves are oscillatory motions with frequencies equal to the wave
frequencies. At the same time the vessel drift'from‘its original
position is due to forces .induced by the wind and the current. The |
vessel motion is assumed to consist of a low-frequency component and a
high-frequency component. To keep the vessel motions, induced by the
external forces, within the required allowable limits, ;he vessel 1is
fitted with a set of thrusters (Section 2.2). Considering the
requirements and environmental conditions, it may be stated that the
control system should Be designed to accept the relatively high-frequency
motions without any counter-act measures, while the low-frequency
motions should be reduced and controlled on the bésis of the required
accuracy for the different applications within the dynamic positioning

technique (Table No 2.1).

As it has been defined,dynamic positioning is the technique for

15
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maintaining the position of a vessel above a reference point on the
seabed without the use of anchors. This is to be achieved by
employing a set of active thrusters controlled by a computer. The
error within the position can be monitored using different kinds of
measurement techniques. These measurements éould be corrupted by noise.
The main components in the dynamic positioning systems are the thrusters,
the measurement systems, filter and the computer control (Figures 2.1,
2.2). System input éignals‘from wind sensor, gyro compass and position
measurements are fed into the control system and itg associated computer
to produce a command signalﬁto the thrusters for appropriate actionmn.
This computer control system should be capable of:
(i) controlling the propulsors for maintaining a reference
position and heading under specified adverse weather conditions, with
a maximum allowable radial position error of 3 per cent of water depth
or 7 metres (whichever is the smaller in case of drilling), or -
controiling the propulsors to maintain the vessel at a constant speed,
(ii) avoiding high;frequency fluctuations in the thrust demand since
this may cause unnecessary wear of the propulsors and power consumption,
(iii) controlling the propulsors for changing the position or heading

of the ship in case a new reference position or heading is selected.

In this chapter the thrusters, the measurement systems and the
associated noise will be considered in detail, while the control system

.and the related filtering are due to be considered later.

2.2 Thruster Devices

2.2.1 Introduction

The dynamic ship positioning system has been defined as the process of
automatically controlling a ship, or floating platform position and

heading above a pre-selected fixed position on the seabed by using a
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Figure (2.2): Schematic Diagram of the Dynamic Positioning

"~ System supplied for Wimpey Sealab
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set of thrust-producing devices. In a dynamically positioned system
the forces required to overcome the effects of wind, waves and currents
are provided by propellers, and the vessel pre-selected position

can be maintained by the use of a combination of thrusters and the main
propulsion unit. Numerous types of thrusters are used for the dynamic
ship positioning problem including plain propellers, ducted propellers
and éycloidal propellers [73], (Figure 2.3). When thrusters or
propellers are operated on a dynamic positioning vessel, the force and
moment produced on the hull are not only due to the'thrust devices
since interactions arise due to pressﬁre changes on the hull, and these

should be taken into consideration in some cases.

The principal types of thrust-producing units are:

(i) screw propellers or thrusters,

(ii) cycloidal propellers (Voith Schneider units),
(iii) pump type thrusters,

(iv) transverse tunnel thrusters, and

(v) steerable thrusters.
Figure (2.3) shows the most common configuration being used. The
thrusters have both dead zone and saturation characteristics (the dead
zone for "Wimpey Sealab" is approximately 1-27 of the rated value of
the thrusters [ﬁ§]). The size of thrusters required is determined by
the largest magnitude of the steady drift forces and moments. To avoid
the unnecessary wear and tear on the thrusters the control system should

not attempt to compensate for the high cyclic vessel motions.

2.2.2 Thrusters used on "Wimpey Sealab" vessel

George Wimpey and Company Limited have been involved in offshore
drilling for many years. The dynamic positioning system, Figure 2.2,

has been developed and included in the "Wimpey Sealab" vessel in
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Figure (2.3): Possible Bow and Stern Thruster Configuration
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November 1972. Tﬁe vessel (Figure 2.4) was the first British owned
dynamically positioned drillship, and it has been used for site
investigation in addition to the drilling activities. "Wimpey Sealab"
employs retractable a.c. motor driven thrustersrwith variable pitch
propellers (Figure 2.5). The vessel has two rotatable bow and two
rotatable stern thrusters (capable of 360° rotation and each rated at
12.5 tonnes). The basic configurations of the thrusters are fully.
rotatable outboard propellers. Data from "Wimpey Sealab" were used

as the basic information for the implementation of the dynamic

positioring technique throughout this work (Chapter 3).

2.2.3 Thrusters used on "Star Hercules" vessel

"Star Hercules" vessel (Figure 2.6) is the other vessel to be
considered in this work. Data from the "Star Hercules" have been

obtained and used for design and simulation implementations.

The control thrust for the "Star Hercules" is provided by the main
engine and by two forward and one aft ‘tunnel thrusters. Thruster
locations used on "Star Hercules" are shown in Figure 2.7 and have the

following specifications:

The thrust Maximum thrust Thruster lever arms relative
producing device (tonne force) to centre of gravity
Main Engine 28 (FWD) : -
19 (REV) -
FWD.FWD Thrusters 5.1 31.03 metres
AFT.FWD Thrusters 9.1 28.62 metres
AFT. Thrusters 5.1 28.62 metres

22
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2.2.4 Thrusters applied forces

"

The fore and aft thrusters on "Wimpey Sealab" act at angles ¢1 and ¢»

relative to the vessels coordinates respectively (Figure 2.5). Let the
thrusters forces be £, and fzbrespectively for the fore and aft

thrusters. Then the thrusters force in the surge direction is:

£, cos ¢, + £, cos ¢2 R AL (2.1)
the total force in the sway direction is:

f, sin ¢; + f‘2 sin ¢, _ cesseenn ceesees (2.2)
and the total force in the yaw direction is:

£,%, sin ¢, - £,%, sin ¢, | P ¢ %))

where £, = £ = 10 metres ("Wimpey Sealab"). Hence, the per-unmit

2

equations in a matrix form (Appendix 1) will be:

surge force cos ¢1 cos ¢2
f\
. . 1
sway force = | sin ¢1 sin ¢, vesesses (2.4)
f\
yaw force El-sin ¢, -Ez-sin ¢, 2
b 5
where:

£], £, are the per-unit values of £,, £, respectively.

Rb is the per-unit base 1engfh = 30 metres

0< £¥.< 1, 0 < L2 1 an 21 _% _1

2 I, % % 3

The matrix in equation (2.4) can be written in appropriate notation as:

Yii Yio cos ¢, cos ¢,
Y = Y21 Yoo | = sin ¢1 sin ¢2 cevesevesses (2.5)
R . '3 .
Y, Yo I; sin ¢, —.Ej 31n¢2
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Dynamic édsitioning system is basically the technique in which control
signals can be applied to propellers and thrusters for specific action
based on information concerning position and heading deviations from
the pre-determined limits. In recent years the need for dynamic
positibning has ‘been increased by the problems associated with oil
exploration and production. With these applications, accuracy will be
one of ﬁhe main requirements. Accuracy within dynamic positioning
systems depends to some extent upon the reliability and availability
of the information tegardingﬂposition, heading and different wind and

environmental forces as measured and fed into the system.

System inputs (Figure 2.2) could come from:
(i) wind sensor, measuring the wind speed and direction,
(ii) gyro compass, for heading measurements,
(iii) position measurements, which could be provided by one or more
of the following techniques:
(a) hydroacoustic systems (with 122-305 m ideal depth of operation)
(b) radionavigation systems, and

(¢) taut wire systems.

Due to the demand for accuracy within the dynamic positioning systems,
the most commonly used technique for measuring the position (Figure
2.8) is based on an acoustic system where a beacon is deployed on the
seabed and designed to tramsmit signals at a frequency around 20 KHz

[}i] at specific time intervals. The pulses transmitted by the beacon
are received at an array of hyvdrophones fitted at the hull underneath
the vessel, and the position of the vessel relative to the beacon is

computed from the time differences in receiving the signal. These
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poéition calculations are carried out by the on-board computer on the

basis of the following formula:

-1 vét, _ Dvét

y =D tan (sin -afd = - ceeecccseness (2.6)
where:

y the displacément of the vessel

6t the difference in the time of arrival of the pulses

at two of the hydrophones set

v the velocity of sound in water
D the water depth
d the separation between the two hydrophones

The great disadvantage with this technique in providing position
reference deviations are the sensitivity to acoustic noise and air
bubbles in the signal transmission line [ié]. In addition to the accuracy
requirement of the measurements, reliability and repeatability are also
required. With the hydroacoustic system in operation alone, blocking

of measurements in 20-40 per cent of the operation time may occur. To
avoid the loss of the measurement signal, and to improve the

reliability of the measurement systems, various back up systems can be
used. The most commonly used system is the taut wire system shown in
Figure 2.9, which consists of a sinker weight, wire, tensioning winch
and inclinometer. The wire is maintained in tension by means of the
constant-tension winch, which is also used to raise énd lower the sinker:s
weight when required. The measurement inaccuracy within the taut wire
system maykarise from the effect of the sea currents and the catenary
effect on the wire due to its weight. Measurement systemsdeveloped by
GEC and installed on "Wimpey Sealab" are to consist of one beacon and
two sets of hydrophones using the computer to calculate the vessel

position. These acoustic position measurement systems are backed by the
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taut wire measuring system shown in Figure 2.10. The vessel heading

measurements are obtained.by the ship gyro compass.

As to the applications of dynamic ship positioning, considered in this
work, the vessel position accuracy is about #3 per cent of the water
depth of 200 metres and +2 per cent in 500 metres of water depth. The

vessel positional accuracy can be defined by the following expression:
Radial Error = e;.d + W/2 + ey vesssseses (2.7)

where:
e, is the per unit error of the position measurement system
d is the water depth
W is the peak to peak wave motion

e, is the accuracy of the control loop

2.4 Process and Measurement Noise Analysis

The vessel motions under dynamic positioning control are assumed to
consist of low and high frequency components. Our ﬁain concern in

this section is the low-frequency part of the motions, which are

assumed to be due to the current, wind and the second order wave

forces (Section 3.2). The mean wind forcing level and the sea current
speed and direction are all normally assumed constant over a period of
time and up to several hours [?4]. Like all environmental phenomena,
wind has a stochastic nature which greatly depends on time and location.
To compensate for such uncertain forces, the low-frequency part of the
system dyﬁamic is excited by random variables. These random variables
are modelled as stationary zero mean and Gaussian white noise sequences.
Stationarity of these sequences [?i] can be pictured as the absence of

any drift in the ensemble of realisations as time proceeds.
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Mathematically, this means that the -probability distribution and
density functions are unchanged over some specific period of

time.

The wind forces are often the most important disturbance acting on the
vessel. Wind feedforward confrol is often used to counteract the
effect of steady wind (Figure 1.1) and hence, it will be assumed that
the vessel positioning will be affected by a white component of wind
only. The noise analysis can be extended to include the study of both
process and observation noise, which in turn affect the system

estimation for them causing the plant uncertainties.

2.4.1 The Process Noise

The process noise will be considered here in terms of their covariance
matrices. The continuous or discrete time noise covariance matrices
are related by the step length of the system simulations time interval
(At), and hence the discrete process covariance matrix will be:

0 =2

D At ® & 9 0 08 000 000 00 (2.8)
where At is the step length time interval = 0.1 and Qp is the discrete
form of Q. The process covariance matrix (Q) is assumed to consist of
a QZ submatrix corresponding to the low-frequency part of the system

dynamics, and a Q submatrix corresponding to the high-frequency part

of the dynamics.

The high-frequency submatrix in Q is determined by the least squares

fitting procedure [34] and assumed to be unity (i.e. Q, = I).

The low-frequency part of the system dynamics has a Qz matrix

determined by the mean wind forcing level (in per-unit, see Appendix 1).
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Hence, per-unit sway force = 126.8/55620 = 0.00228, and per-unit yaw
torque = 1636/(55620 x 94.5) = 0.00031. Thus, for two degrees of

freedom in sway and yaw, the low-frequency part of Q-matrix will be:

(0.00228) 2 0.0
Q =
% 0.0 (0.00031) 2

2.4.2 The Observation Noise

The observation or measurement noise and their re1a£ed covariances
will be examined here. The position measuring systems are always
contaminated by superimposed noise and assumed to have a standard
deviation 0 = 1/3 metre. The per-unit position measurement noise

‘covariance (Appendix 1) therefore will become:
y

G (sway) = 0.0033 and (¢*)? = 0.1 x 10

The yaw angle standard deviation is assumed to be one degree, and

hence

-~ ) . - o - ~ -4
0 (yaw) = 0.02 radians in per-unit and (O Y2 =4 x10 .
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CHAPTER 3

THE SHIP MOTION

3.1 Introduction

The motion of a ship induced by the waves is an oscillatory motion with
frequencies equal to the wave frequencies [}8]. At the same time the
ship drifts off from its original positién in the waﬁe direction.

Drift of the'ship is also induced by the external énvironmental

forces of wind and current. The current speed and direction may be
constant over some period of time. Current speed and direction chénges
could occur but these changes are slow compared with fluctuations of
wind speed and direction. The wind may be treated as a random Gaussian
process (white Gaussian noise thréughout the modelling.and simulation).
The ship motion is also induced by the wave forces which consist of a
small drift second-order-component and a very large first-order

oscillatory component.

Depending on the type-of the external acting forces the ship motion [3]
is assumed to consist of a low-frequency component and a high-frequency
component. The combined motion of the vessel due to both low and high
frequency components [12] is indicated invFigure 3.1. The low-frequency
motion in the range of O.d - 0.04 Hz (which'is 0.0 - 0.251 rad/sec) 1is
assumed to be induced by: |

(i) forces generated by the thrusters and propellers,

(ii) hydrodynamic and interaction forces due to the ship motion
relative to the water [25],
(iii) wind forces,

(iv) 1induced second-order wave forces.
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The low-frequency motion will be the combination of the applied forces
due to the thrust devices and due to the wind and waves. So that for

one degree of freedom:

Total force = fa + fb ceeseevasascess (3.1)

where:
fa represents the applied forces due to (i), (iii) and (iv) above.

fb represeénts the hydrodynamic forces in (ii) above.

The high-frequency motions in the range 0.05 - 0.25 Hz (equivalent to
0.314 - 1.57 rad/sec depending on the actual sea spectrum) are assumed
to be due to the first-order wave motions. These motions are of a verf
large level and cause the oscillatory motions of the vessel. These
motions cannot be effectively counteracted because of the limited thrust
of the propulsors. The basic assumption for the -development of models
‘of the vessel to correspond to the high-frequency ﬁotion is that the

sea state is known and can be described by a spectral density function.
The high-frequency wave motions are normally modelled using the

Pierson-Moskowitz sea spectrum [51].

In the worst case the vessel motions are simply the Pierson-Moskowitz

excitation since the vessel dynamics filter the sea wave spectrum.

In dynamic positioning,only the vessel motions in the horizontal pléne
(surge, sway and yaw) are controlled. Heave, roll and pitch motions
(Figure 3.2a) are neglected. All motions will be referred to the body

axes of the vesset (Figure 3.2b).

Surge motion has only a minor effect upon the directional stability of
the ship. Sway motion mainly occurs due to the imbalance of wind and

tidal forces acting upon the vessel. Yawing is induced by orbital
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Figure (3.2) (b): Earth and Body Axes Coordinate System

38



motions of the water in the wave [73]. There is differential static
pressure on the hull because of the shape and the gjroscopic couple due
to the imposition of rolling motion on the pitching ship. Sway and yaw
motions are normally associated with each other. To simplify the
situation, the equations of motion of the vessel in sway and yaw only
will be considered. This is possible because the linearised equations
of motion indicate that surge motion can be assumed decoupled from the
sway and yaw motions, and hence it can be considered and controlled

separately ,

3.2 Low-Frequency Dynamics

3.2.1 1Introduction

A study of the dynamic positioning control of a vessel at sea requires
the formulation of a set of equations which describe its dynamic
behaviour under the forces imposed on it by the environment of wind,
waves and current flow as well as by its own thrust producing devices
@Oé]Dﬂ.These equations of motion which represent the vessel dynaﬁics
are assumed to invol§e'a complex multiplicity of coefficients for
reasonable accdracy and good modelling to be achieved. Such equations
will be regarded as the basis of the whole modelling and simulation
involving the position céntrol scheme of the vessel. However, the need
is apparent for a simplification of the set of equations which give a

more realistic feel of the vessel dynamics.

For an efficient control scheme using Kalman filtering, a good
mathematical model of the vessel dynamic is required. The reason for
this is that the Kalman filter uses the model dynamics, together with
some knowledge of the noise statistics, to generate the unbiased
estimates of the system states. This assumption will introduce the need

for some reasonable means of linearisation based on common practice,
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and at the same time provide reasonable representation, good accuracy

and simplicity.

The low-frequency part of the vessel dynamics should describe:
(i) the wind and wave forces,
(ii) the part of the vessel dynamic to be controlled,
(iii) the thruster dynamics, and
(iv) the interaction between the thrusters devices and the vessel

dynamics.

The dynamic ship positioning system controls the low-frequency part of
the ship motion in surge, sway and yaw. Treating the ship as a rigid
body [104] having freedom of movement in surge, sway and yaw, but
restricted in heave, pitch and roll. These movements are taken with
respect to the body axes (Figure 3.2b). The vessel dynamics are
represented by a set of non-linear differential equations, then
linearisation procedure has to be applied to these equations for control
purpose. The linearised form of the ship equations have the‘following

differential state equation form:

%y = A2§£ + B%E£ + D29£ + E22£ ceeeceaasss (3.2)

where:

xz(t) € R* are the system state vectors

uz(t) € R® are the cqntrol inputs to the thrusters

wz(t) e R? are white noise signals representing the random
forces applied to the vessel

nl(t) e_R3 are the wind disturbance forces

Ag is the system matrix

B2 is the input matrix

Dg and Ez are the noise matrices.
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Different parameters and ﬁoefficients of equation (3.2) above have been
obtained from a set of tank and wind tunnel tests, carried out by the
National Physical Laboratory on two different models, namely "Wimpey
Sealab" and "Star Hercules'". The obtained non-linear set of equations
have to be linearised, time-scaled and converted into per—unit form,
before it can be used ‘in the control loop. Originally, these dynamic
equations were provided by GEC Electrical Projects Limited, Rugby, and

derived from first principles of Newton's laws of métion.

3.2.2 Derivation of the Low-Frequency Dynamics

The body axes are chosen to be the principle éxés of the vessel for

the derivation of the dynamic equations with its origin located at the
centre of gravity (Figuré 3.2b). For the position control of a vessel,
interest is directly concerned with the motions in the horizontal plane
of surge, sway and yaw (Figure 3.2a). |

Regarding the vessel as a rigid body having freedom in surge, sway and
yaw, but restricted in heave, roll and éitch, the equations of motion

can simply be represented by [104] 3

X = m(ﬁ - rv) eescesesss (3.3)
Y = m(v + ru) ceseceesee (3.4)
N=1I,¢t , ceecscenes (3.5)

The forces and moment acting on the vessel in equations (3.3) to (3.5),
X, Y and N respectively can be considered as a sum of two components as

shown in the following equations:

XA + XH = m(ﬁ - rV) esesscs e (3-6)
YA+ YH=m(v +ru) s a0 0o (3-7)
NA+NH=IZZi Seo s 0000 (3.8)
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where Xp, Yp and Np represent the applied forces and moment due to
the thrust-producing devices, and to the enviromment of wind and

second-order wave drifts.

XH, Yy and Ny represent the hydrodynamic forces and moment due to
relative motion between the vessel and the water. To determine the
equations of motion, expressioms for Xy, Yy and N, are required,
appropriate to a vessel making small movements about a fixed reference

position.

Xy, Yy and Ny are assumed to be a function of the velocities and
accelerations (u, v, r, U, v and r). It is assumed that the velocity
and acceleration dependent forces can be separated. Acceleration
dependent forces, referred to as added masses and added inertia are
Xﬁ, Yﬁ and Ni’ thch depend on the nature of the body motion and flow
pattern. |

m ¢ mass of the vessel.

Izz : radius of gyration.

The abové equations in (3.6) to (3.8) can now be wriften as:

Xp + Xﬁ u - Y rv + XH(u,v,r) = mn(d - rv) ceesseses (3.9)
YA + Y& v o+ Xﬁru + YH(u,v,r) = m(v + ru) ceseeese (3.10)
NA + N T + NH(u,v,r) = Izzf: ceessees (3.11)

Equations (3.9) to (3.11) can be rearranged into the following form:

(m - Xﬁ)ﬁ - (m - Yﬁ)rv =X, + XH(u,v,r) ceseeess (3.12)
(m - Yﬁ)ﬁ + (m - Xﬁ)ru = YA + YH(u,y,r) veeesese (3.13)
(IZZ - Nf)f =N, + NH(u,v,r) ceeeeses (3.14)

These non—-linear equations can be dimensioned using the appropriate base

units, based on the specifications and dimension of the vessel under
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consideration. The per—unit variables are shown by using a primed

symbol, and are obtained using the following base units:

S u ~ _' v ’ -~ T
u = —_— V = — , r = —
/ppe A8 V8/Lyp
101\ - 1.1 LA — \.’ i.\' _ i
=0 , =V , =X
L
g g g/ op
X = ;X— , Y = gg , N = mgIL\I
& PP
K
£ = t , K = WA

W T__
Aop/e “ Tpp

- - -~ 2= -~ 2
Izz =m (Kzz) (Kzz)

where:

LpP is the length between the perpeﬁdiculars

g is the gravitational acceleration (= 9.81 m/sec?)

Kzz is the radius of gyration in yaw (= 0.243)
The above per-unit system formulas are valid for a vessel with small
fixed displacement, which is the case of the dynamic positioning

problem.

" "
3.2.3 Low-Frequency Equations for Wimpey Sealab Vessel

There are a variety of methods by which an estimation of the differenﬁ
coefficients in equations (3.12) to (3.14) can be_achievedl These
methods are mainly based on experimental results on a model of the
vessel in tank tests, or on a theoretical basis using previous
experimental evidence. An estimation of the coefficients for the drill
ship "Wimpey Sealab" is obtained by a combination of results from tank

tests and theory, performed at the National Physical Laboratory [104].
After reference to the base unit details of "Wimpey Sealab" in Appendix

1, the set of non-linear equations (3.12) to (3.14) can be expressed as:
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-~ “~\2
" + 0.092(v’)

'-00138'»1“‘[1~ A s e0scessoncse (3.15)

(L + 0.044)0" - (1 +0.84)r'v =X

YA - 2.58v'U

- 1.84(v")3/U° + 0.068r" |r| ceeeeernenns (3.16)

(L + 0.84)%" + (1 + 0.044)r u”

(€)% + 0.0431)E% = N} = 0.764u™v> + 0.258v°U°
- o.iszr‘lr‘l ceeerecnons . (3.17)

where:
U" = modulus of the vessel velacity (surge and’sway) = /EG:?FI—GESZ
The prime is used to dénote the per-unit variable. Equations (3.15) to

(3.17) above represent the vessel motions in surge, sway and yaw with

respect to the vessel axes.

For the dynamic ship positioning system, the vessel deviations from its
reference position are assumed relatively small, and heﬁce a reasonable
linearisation process can be applied to get a form of linear state
equations for simulation and control. Previous experience with Notch
filter designs [51],[99] suggests that a linear low-frequency model

can be good enough for tﬁe design and control of the dynamic ship V
positioning system using a Ralman filtering scheme. The linear state
equations can be obtained using Taylor expansions [65] and some useful
approximation to the non-linear dynamics [104]. However, a number of
linearised models could be obtained for different sea current and state
of environment. The following linearised dynamics have been used which
correspond to a Beaufort number 8 sea state with a mean wind velocity

of 19 m/sec:

1.04[}{1k = XA - 0.0159311\ | ®e 000000000 (3018)
1.84v" = Y; - 0.1004v" + 0.002981r™ cesssassess (3.19)
0.1022%" = N; - 0.007101r™ + 0.005859v" ceesessses. (3.20)
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As a result of the little interaction between the surge and the sway
and yaw motions within the above equations, simulation and control will
be applied initially using the sway and yaw motions only and described
by equations (3.19) and (3.20). Surge motion then can be simulated

separately.

The low—frequency model for sway and yaw motions is to include the
velocity, position and heading of the sway and yaw, as well as to
represent the thruster dynamics. The thrusters have been modelled by
simple first order lag terms with two seconds time constant real

time. Referring to Section 2.2, Section 2.4 and Figure 3.3, the overall
low-frequency dynamics for "Wimpey Sealab" can be represented by the

following state space equation and its related details:

§2=A2_>5£+BQ’32+D2,92+E2% ceseeaesses (3.21)

where:
§£(§) € R® is the system state vectors in. which,
x1(t) = sway velocity
x2 (t) = sway position

x3(t) = angular velocity

x4 (t) = yaw heading
x5(t), xe(t) = thruster outputs
E&(t) € R? are the control inputs

9£(t) € R? and E&(t) € R? are process and disturbance noise.
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With:

—all
1.0
a3
A =
% 0.0
0.0
__0.0
T 81
DZ =
| 0.0
T reIBI
E2 =
L e,B,

O.o

0.0

O.O

0.0

0.0

0.0

0.0

0.0

0.0

0.0

ar:z

0.0

easé

e,B,

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Y181
0.0
Y4B,

0.0

0.0

0.0

0.0

0.0

0.0

72317 (0.0 0.0 ]
0.0 0.0 0.0
'YuBz 0.0 0.0
, By =

0.0 0.0 0.0
6.0 b: 0.0
-b, | | 0.0 b2 |
0.0 .|

0.0 |

0.0 |

0.0 |

The low-frequency components of the position and heading is given by:

—}-’—52,1
Ig =
Yy
where:
0.0
C =
% 0.0

= Coxq

1.0

0.0

0.0

0.0

000

1.0

0.0

0.0

ceeeecesses (3.22)

0.0

0.0

Substituting for the above different variables in terms of the respective

approximated and calculateéd values, the following system matrices can be

obtained: 
[-0.0546
1.0
0.0573
0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0016

O.o

=0.0695

1.0

0.0

0.0
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0.0

0.0.

0.0

0.0

0.0

0.0

0.543
0.0
3.268
0.0
-1.55

0.0

5  0.272 ]
0.0
-1.634

ee. (3.23)

0.0

0.0

-1.55




-~

0.0 0.0

| 0.0 0.0
[ 0.5435 0.0
| 0.0 0.0
[ 0.384 0.0

0.0 0.0

0.0

0.0

0.0

9.785 .

0.0

6.92

0.0

0.0

0.0

0.0

1.55

0.0

0.0

0.0

0.0

0.0

0.0

1.55

0.0

0.0

0.0

0.0

ceee. (3.24)

eeee. (3.25)

eeees (3.26)

The above linearised equations have been time-scaled with 3.104 as the

time normalisation factor for "Wimpey Sealab" vessel (Appendix 1).

3.2.4 Low-Frequency Dynamics of "Star Hercules" Vessel

Using the step by step procedures outlined in Section 3.2.3 above, the

linearised equations of motion for the three degrees of freedom,

(surge, sway and yaw), based on per—unit data from the "Star Hercules"

(Appendix 1) are:

1.0330™

1.709%"

A

1

A

X, - 0.01088u"”

YT - 0.03307v" + 0,00221r"

0.1042%" = NA - 0.003272r"™ + 0.004344v"

eeenaenes (3.27)
eeees ceen. (3.28)

cececensese (3.29)

Taking a time normalisation factor of 2.728 and considering sway and

yaw motions for simulaton and control, different elements of the system

matrix will be:

11

213

ajis

. asy

ass

ase

-0.03307/1.709

0.002210/1.709

1.0/1.709

]

-0.01935 per-unit

0.00129

OQ

585

0.004344/0.1042 =0.04168

-0.003272/0.1042

1.0/0.1042

i

-0.0314

9.596
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agg = g = -1.364

Therefore the A-B-C matrices building up the low-frequency dynamics

for "Star Hercules" will be:

[-0.01935 0.0 0.00129 0.0 0.585 0.0 1
1.0 0.0 0.0 0.0 0.0 0.0
0.04168 0.0 =-0.0314 0.0 0.0 9.596
A, = . ee. (3.30)
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 ~ 0.0 0.0 =-1.364 0.0
| 0.0 0.0 0.0 0.0 0.0  -1.364
T [ 0.0 0.0 0.0 0.0 1.364 0.0 |
BR‘ = es e (3.31)
| 0.0 0.0 0.0 0.0 0.0 1.364
0.0 1.0 0.0 0.0 0.0 0.0 W
Cg’ = LRI (3.32)
| 0.0 0.0 0.0 1.0 0.0 0.0 |

3.3 High-Frequency Dynamics

3.3.1 Introduction

Section 3.1 outlined a brief introduction to the high-frequency motion
of the vessel. The high-frequency motions are the linear wave induced
ship motions, which take place at the wave frequency. A mathematical
model of the vessel for automatic control system implementation can
only be made if the characteristics of all its components are known.
Therefore, the high-frequency motions of the vessel have to be
determined and fed into the system together with the low-frequency part

of the vessel dynamics.

The automatic control system must be capable of avoiding high-frequency
fluctuations since this may cause unnecessary wear of the thruster

devices. Balchen, J G []2],[}£] modelled the High-frequency part of the
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ship dynamics using separate harmonic oscillators in each degree of

freedom (surge, sway and yaw).

Since the frequency of the wave motion is time-variant and unknown, the
dominant oscillator frequency must be estimated as a parameter in the
state space equations [49]. For simplicity, all oscillétors‘are assumed
to be running with the same frequency and that will reduce the cost of
simulation. The oscillator frequency can be estimated individually

using an extended Kalman filter.

As an alternative to the above épproach by Balchen, Grimble adopted a
fundamental assumption for the development of models for the
high-frequency motion of a vessel, in which the sea state is regarded
as known and can be described by a spectral density function. An
intefnationally accepted sea spectrum.is similar to the Pierson-
Moskowitz sea spectrum. The vessel dynamics act as a filter on the
sea spectrum for different Beaufort sea states [17]. The worst case
high-fréquency motion of the vessel is determined by the Pierson-
Moskowitz spectrum alone. Grimble's approach for estimating the
unknown parameters within the high—frequenc& dynamics ‘using extended

Kalman filters will be considered in Chapter 7.

3.3.2 Developmént of the High-Frequency Model"

The internationally accepted sea wave spectrum, which is similar to the
Pierson-Moskowitz spectrum for a stationary wave system can be defined
by the following sea spectrum:

'b/wu

S(w) == e m?sec | ceseeeees (3.33)

Elm

where

w is the frequency in rad/sec
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= 4.894

[\
[

o'
|

= 3.109 (h1/3)2

h1/3 is the significant wave height in metres, which is defined by
taking 99 waves, choosing the 33 largest waves and then calculating

the mean of one third of the peak to peak magnitude of these waves.

The above sea spectrum can be obtained by passing a white noise source
into a rational transfer function [49]. Therefore, to fit the sea

spectrum S(w) above, consider:
S, () = (leGw . A, P €< 5 7

in which AO is the white noise amplitude.

For a unit magnitude white noise,

s, = (JeGm 2. 1 | Ceeeeateeneeeanee. (3.35)
where:
Ks?2
G(s) =

LRI B A N A BRI B S 3 (3036)
(s? + 0,s + w?)(s2 + 0,5 + wz) -

in which 6,, 0,, W;, W, and K are constants for a given sea spectrum,. and
given in Appendix 2. These constants can be determined by minimising

the integral of the squared error criterion:

- fwm (S(w) - 5 ()? dw R ¢ T 7))
o

over a range of frequency from zero to wm. Theiworst case
high-frequency dynamic of a vessel can be represented by a white noise
source input to the above transfer function G(s) in each degree of
freedom. The state space representation of the high-~frequency dynamic
of the vessel in sway and yaw motions can be expressed in a companion

. form as:

51



R T AX, YDy

where:

Eh(t) € R* for each degree of freedom,

S® 9.0

va

0.0 Ah

bn

D 0.0

h ya
0.0 Dh

cectseareeess (3.38)

ceresesneeess (3.39)

. w a ., . .
The above sub-matrices A; and Ai in sway and yaw directions have the

same structure of:

0.0 Ty
S0 ) Aza ) 0.0 0.0
0.0 0.0
T T
and
[ 0.0
sw ya 0.0
D = D =
h h 0.0
[k

0.0

0.0

ceesnasncssass (3.40)

where T, = 3.104 sec for the "Wimpey Sealab" and = 2.728 for the

"Star Hercules". The parameters o,, o,, 03 and @, :are constant for a

given weather condition and a specific vessel as indicated in Appendix

2 for both the "Wimpey Sealab" and the "Star Hercules" vessels. The

values displayed in both tables are to correspond to Beaufort number 5

(calm sea) to Beaufort number 9 (the worst weather condition) for

+ the "Wimpey Sealab" and the‘corresponding Beaufort number 5 and number
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8 for the "Star Hercules" vessel.

The high-frequency component of the position of the vessel is given by

the following output equation:

:!_*d é:d

In =Ch_7:h cessasessaase (3.41)
2

where:

{o0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
C = 0005(3.42)
.0 0.0 0.0 0.0 0.0 0.0 1.0 o0.0
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CHAPTER 4

THE STOCHASTIC OPTIMAL CONTROL PROBLEM

4.1 Introduction

Optimal contrél problem,have attracted and received a great deal of
attention during recent years owing to an increasing demand for systems
of high performance especially for industrial applications. A solution
to the stochastic control problem [40],[42],[10],[27] is the next step in
applying the optimal control theory to the multivariable industriél

systems with noisy observations [43],[63],[90], [o5].

The essential components of a control system are:

(i) the system dynamics of the plant to be controlled,

(ii) measurement systems, and
(iii) the controller, which is the heart of the control system, which
compares the measured values to their desired values and adjusts the

input variables to the plant.

There are two traditions in control, which may be classified as,

classical, which is based on a transfer function representation of the
system, and modern control theory which deals directly with the differential
equations, representing the system dynamics and often uses optimisation
theory. Throughout this work the state space differential equations
procedure will be adopted to implement the controllers. One basic
difficulty with these optimalvcontrollers is that they are often
impractical, if not physically impossible to implement. Typically, the
feedback portion of the optimal control system is a function of all the
states of the system [85]. This would be satisfactory provided that all the

‘ states were accessible_[63],[d] or available for measurements. In this case
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a straightforward solution to the optimal stochastic control problem
using the system states for direct feedbadk control would be extremely
difficult. However,[21],[51],[59] s since the system is linear or linearised
(non—-linear systems control will be considered in Chapter 7), and the
measureﬁents are directly or indirectly available then a special form
of the separation gheorem can be used and the optimal stochastic
controller calculations can be separated (Figure 4.1) into:

(i) a filter (Kalman filter in our case) to generate.the conditional
mean of the system states, and |

(ii) a solution to the linear optimal control problem using the

estimated .states in (i) as true states of the system.

Hence, the separation tﬁeorem as applied ﬁo this specific problem can
be defined as follows: "In linear/linearised systems with quadratic
error criterion and subjected to Gaussian inputs, the optimal stochastic
controller is synthesised by combining an optimal estimation (Kalman

estimator) with a deterministic optimal control".

In the dynamic ship positioning problem the system is assumed to

consist of a low-frequency part to be controlled and a high-frequency

part to be attenuated using the filtering scheme. The dynamic

positioning control systems use the state estimates corresponding to the
low-frequency mo&el in the Kalman filter for closed loop feedback control.
If the filter is working efficiently the control system will only respond
to the low-frequency position error signal and thus the thruster
modulation will be minimised. Hence, the purpose of the on-board

computer [104] is to input error signals of the ship'position and operate
on them to output thrust magnitude and direction commands to the thrusters,
so that ship position and heading are maintained at their fixed

reference values against the environmental disturbance. Thus, the
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Figure (4.1): Filter and control using a form of the

" separation theorem
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control system is mainly required to:

(i) maintain the vessel within the radial position error tolerance
band (Table 2.1),

(ii) control the heading of the vessel (specially in the worst
weather conditions), and
(iii) minimise thruster modulation and the consequence of energy

losses.

In general, there are some difficulties in applying optimal control to
multivariable industrial systems. Two problems are of relative
importance to this work and were investigated in some detail. The first
is concérned with the implemenﬁation of the optimal control algorithms
(Section 4.2) and the second arises in the selection of the performance

criterion weighting matrices Q and R (Section 4.3).

4.2 Control Algorithm

An optimal control algorithm for the stochastic multivariable system of
the dynamic positioning problem is summarised in this section. The

plant linearised state equations may be derived as:

%(t) = Ax(t) + Bu(t) + Du(t) eereeeeen (421)
z(t) = Cx(t) + v(t) e (022)
where:

it

x(t) € R" (n = 6 as system low-frequency states in sway and yaw)

2)

u(®er” (m

zZ(DER" (x

2) is the observations
v(t), w(t) are the uncorrelated additive'measurement and process
noise respectively.

The stochastic control strategy emploving Kalman estimator can be assumed

* to include two procedures:
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(i) Obtain the conditional mean estimate of the low-frequency part
of the dynamics to be controlled, using a Kalman filter, and assume the
estimafes as truely representative of the system states for the state
feedback loop.

(ii) Calculate the feedback control gain matrix by solving the
deterministic control law [14],[28], [32], [41] ,[66] -
The above assumptions in (i) and (ii) are often feferred to as the
separation theorem [?i], which involves two separate problems of
estimation and control (Figure 4.2) to solve the optimal stochastic

control (Section 4.1).

In solving the above.optimal control problem, some rules or measures

need to be specified subject to certain «constraints in order to minimise
the deviations of the system behaviour from the ideal ﬁre-selected ones.
Such measures are usually provided by the optimisation of the performance
criterion (index). The performance criterion is important because, to

a large degree it determines the nature of the resulting optimal control
through its'cost weighting matrices Q, R. Details of the selection

procedure of both Q and R are considered in Section (4.3).
The steady state performance criterion to be minimised may be defined as:

Cqiie L
J(u) = limit >

T

Tor T |
E{ [ x(t).Q.x(t) +u (t).R.u(t)dt} .... (4.3)
-T

where Q 20 and R > O are the positive semi~definite and positive
definite weighting matrices respectively, while EF(t) is the transpose
of x(t). From the above separation principle, the optimal control

signal can be found 'as:
u®(t) = K°k(v) PN ()

. where.g(t) are the best current conditional mean estimates of the system
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states x(t), and K¢ is the optimal feedback gain matrix.

In dynamic ship positioning,control is not needed for the high-frequency
subsystem, and hence the overall gain matrix of the feedback control

loop will have the following form:
c cl
K = [K 0] Se s s0 e s (4.5)

and the corresponding control signal will be:

%, (t) ‘
)= [k o] | F ereereenneen (426

% (©)
where gh(t) are the high-frequency system state estimates. The gain
matrix KCQ may now be calculated by solving the steady state Riccati

equation [70] :

_ AT _ -1_T .
O - AQ,PQ’ + szAQ’ Pszg'R BQIPle + Q eevscevescecvsone (4.7)
and
Kcz = R_IBTP (4 8)
Q,,Q,OO te s 00000000 .

Subscript () is used to refer to the low-frequency subsystem, while
subscript () denotes the steady state solqtion of the matrix Riccati
equation. A2 and Bg of equation (4.7) are the low-frequency plant
system and input matrices respectively. sz is the steady state
solution of the matrix Riccati equation correspording to the

low-frequency part of the system dynamics to be controlled.

The solution of the above Riccati equation can be obtained by a number

of methods[}&jiﬁZ]{?7]JBl]. The solution to the steadv state or algebraic
matrix Riccati equation used throughout this work is an extension to the
work done by Grimble and Patton [}9] and it has been using the

eigenvector method of MacFarlane (1963) [7@]. The method used is to
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form the 2n x 2n matrix of:

A B R BT
w= 2’ 2‘T 2’ ® 0 6 0 00 0 0 0 00 (4.9)
Q -Az

where n = 6 (the system dimension of the low-frequency part of the ship
dynamics for sway and yaw motions). Now, compute eigenvalues and
eigenvectors of the above matrix (W). The eigenvalues of this matrix
are symmetrically disposed in the éomplex plane, and if the eigenvectors
corresponding to the most stable eigenvalues with negative real parts
are found, then the following (2n x n) eigenvectors matrix can be

written as:

Ul
v=| , ceeeenneenes (4.10)
U2
then the sz - matrix can be found as:
_ -1 v
le = "UZ.U]. es00c0csese e (4.11)

where Pro is the solution of the steady state matrix Riccati equation.
. . cl ‘ . .
The feedback gain matrix (K~ ~) can now be computed using equation’

(4.8).

4.3 Selection of the Performance Criterion Weighting Matrices

One of the main criticisms in dealing with the design of optimal
controllers for industrial applications is concerned with the selection
of the performance criterion weighting matrices Q and R. For some time
there has been no neat method of selecting a suitable value for the Q
and R weighting matrices and thus the designer must resort to trial and
error procedures to achieve reasonable values of Q, R for improved
performance of the system responses. An investigation and simulation

work have been carried out Bﬂ to help with the selection of the
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weighting matrices Q, R for the control loop as applied to the dynamic
ship positioning problem. These investigations were based on recent
techniques developed by Grimble [3{],[38] on the design of an optimal
controller using multivariable root loci. The author contributed to
the computer implementation of the technique and the applications of
the technique to the dynamic ship positioning problem. Expressions
are obtained below from which the performance criterion weighting

matrices Q and R may be calculated.

Consider the optimal output regulating problem [39],[72] as applied to the

following linear multivariable system:

x(t) = Ax(t) + Bu(t) B 7% ¥/3)

y(t) = Cx(t) B S (/9 K
with

x(t) e R®

u(t) € R"

y(t) € R"

and the system (A,B,C) is assumed to be square, since additional plant
outputs may be defined in (4.13) to square up the system. This action

only affects the following performance criterion:

© .
30, = [ 7T (©)eyy(r) + u' (©) Ry u(r) dt eeieeeeees (4.18)

fqr zero cross—-products matrix (i.e. no interaction between the input

and the output of the system). Qy and Ry are the weighting matrices

for the output regulator contrsl loop[}8j. Nowzastraightforward conversion

can be performed on equation (4.14) to obtain the energy weighting Q, R

for the state (estimated state) feedback control as applied to our

dynamic positioning problem (R values will be as-those of Ry).
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y(t) = Cx(t) cecrencennsccess (4.15)

Substitute (4.15) in (4.14) with Z?(t) = C

T T(t) and derive the weilghting

Q-matrix for the state feedback control case as:
T .
Q=CQC ceresnsnsesssees (4.16)

Hence the values of Q and R matrices can be selécted on the same
principle as in Grimble [SQJ, with the necessary above conversion for

the state feedback loop.

Q= ((cBMDHrEern”t e (417

R= ) "W yE | | eeereeennenne. (4.18)
where:

N=[3],52, coee ¥p ]

and v7, v5, ... are the set of the system eigenvectors.

2 1,2 1,2
s ( A?) Ir ey (A'i)) }

2 A diag{( %)
A1
and Ai (i=1, 2,..., m) are the system eigenvalues.

The above expressions of equations (4.17) and (4.18) were derived for

the case when CB is full rank, i.e.,
rank (CB) = m or |[CB| #0 : N T8 )

The case when CB is not full rank will be considered now as applied to
the example of the dynamic positioning problem using the dynamics of the
"Wimpey Sealab" vessel EiI,Bﬂ. In applying the above technique to this
example (Section 3.23), the following have to be noted. The first Markov
parameter (CQBQ) is not full rank, the second Markov parameter (CRAEBR)

is not full rankyeither, but the third Markov parameter (CzAEBz) is full
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rank, and thence

i 0.84243  0.4216
CohgBy =

5.0654 -2.5327

2 = =
det.(CRAQBz) 4.,2692.
where Az, Bl’ CQ are the low-frequency part of the ship system, input
and output matrices based on data from the "Wimpey Sealab" vessel

(Section 3.2.3).

Expressions for Q and R from equations (4.17) and (4.18) can be

repeated to obtain:

Q = ((Ca2BM ™) (CoAZB M ceeeeeeens (4.20)
R = p[ah) ™ AT ] ereveeaees (4.21)

where P is a positive real scalar which affects the values of the control

energy R-weighting matrix to shape the system responses.

1 1

1
R SN

K] = diagf }

In a more general case where the first (k) Markov parameters are zero
({cB|= 0, |caB|= 0, ..., ICAk'lB|=0), and (CAB) is full rank, the

expressions of equations (4.20) and (4.21) become:

Q = (ccakmmy Ty eakmny Tt eeeeeeenees (4.22)

R = [T, N eeen ceeees (4.23)

where

1 | 2(k+1)

Aoy = -1)¥ diagi( ) 201y
1

|
""’(Ag)

Using equations (4.20) and (4.21) above for Q and R, different
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combinations of Q and R values have been selected and system simulations
for different cases were investigated based on data from the "Wimpey
Séalab". These cases were summarised in the next section in which

full simulation of the ldw-frequency part of the ship and calculation

of the optimal feedback gain matrix were considered.

4.4 Simulations and Results

4.4,1 Case (a)

In this test, the control signal for the first input (sway motion) is

1.5 times faster than that of the second input (yaw motiomn), i.e.,

AT = 1.5 l: » assume unity eigenvectors (N = I,), and
A, =1 , then, X} = 1.5
co . . 1 ]_ .
A, = diag {(=)°% (= )%}
A A7
= diag{0.08799, 1.0}
0.08779 0.0
(o]
R =_fA3 P
0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 |
0.0 1.7597 0.0  =0.17555 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
Q =
0.0 -0.17555 0.0 0.0487 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
| 0.0 0.0 0.0 0.0 0.0 0.0 _

R- matrix for system simulations varies as f takes the following values

for best response to be chosen.

p=107%, 103 1, 10, 10°, 10°}

System responses of the low-frequency dymamics of the "Wimpey Sealab"
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are shown in Figures 4.3a - d for £ = 10 and in Figure 4.4a - d for
f = 1.0. Both system responses were presented here as the best
responses of case (a) for a step input of 0.02 p.u. into sway. The

optimal feedback gain matrices for both systems have been calculated,

for P = 10 °, as:

cl

{?26.87 -63.67 =~4.39 -10.48 -5.18 -0.024
K =

-23.81 =37.46 -3.95 6.24 -0.002 -3.22
and for p = 1.0,

ol -2.87 =2.05 -0.44 -0.32 -1.20 -0.024

-2.54 -1.17 0.41 0.19 -0.002 ~0.66

4.4.,2 Case (b)

Throughout this test, the two inputs are non-interactive and required to

=]

be at the same speed. Hence choose XT = 12 = 1.0. Let N = I, and the

Q-matrix remains unchanged as from case (a).

=
]

diag {1.0 , 1.0}

1.0 0.0
1
0.0 1.0

R = FR,

w
1]

The systems of the "Wimpey Sealab'" have been simulated for different

values of p,

-l -3

»={107%, 107°, 107", 10°, 1.0, 10}

and the responses for a step input of 0.02 p.u. into sway are presented
here in Figures 4.5a — d for the case when f = 1.0. The optimal feedback

. . L . .
gain matrix K" for this case is:
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[-1.30

-0.59
Kc%

-2.54 -1.18 0.41
4.4.3 Case (c)

In this case (see Grimble [§§]),

26.36797  -12.47397
s [—42.47397 6.59232 :l
R = fR,
while:
Q=c'.c
0.0
1.0 0.0
0.0
Q =
1.0
0.0 0.0

and P takes values of the following

p ={10 %, 1.0, 10.0}

~-0.21.

-0.097 -0.67 -0.005
0.19 -0.005 -0.67
0.0_
range:

Based on the above selected values of Q and R, system responses of the

"Wimpey Sealab" for 0.02 p.u. step input into sway are presented in

Figures 4.6a-d for the selected case when f = 1.0 with the following

feedback gain matrix:

-1.28
=2.57

ol -0.58 -0.26

K

-1.19 0.30
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4.5 Concluding Remarks

Values of the weighting matrices Q and R were selected using the new
technique by Grimble [ﬁé] which showed that these weightings depend on
the choice of the eigenvalues (X?) and the eigenvectors (V?). The
chosen values of Q, R have been used in solving the matrix Riccati
equation to obtain the optimal feedback gain and hence to simulate the
system. The dynamics of the "Wimpey Sealab" have been simulated over a
range of Q and R values (cases (a) to (e)), in which R-matrix took
multiple values for a range oﬁ,P values. Some selected tests were
presented and the system responses for sway and yaw inpuf-output vectors
were considered. The test of the simulation, including case (d) and
case (e) was ‘documented in a separate report by the author {2]. Among
the presented responses, case (b) with f = 1.0 has been selected for
the control loop and its application to the dynamic ship positioning
problem. It has been selected, since it has given a good.system
response and since it represents a test fqr a non-interactive, same
speed input, which is the case of the dynamic positioming problem. After
Q and R are specified there remain the procedures of solving the
Riccati equation and calculating the feedback gain matrix thereafter,
and for any specified system. Solution of the Riccati’equation is‘the
process of obtaining the steady state P-maﬁrix. For systems based on
data from the "Wimpey Sealab'" vessel (Section 3.2.3), the P-matrix was

found to be:

8.40  4.61 -0.82 -0.46  0.84  1.67

4.61  4.07 -0.45- -0.40  0.38  0.77
-0.82 -0.45 0.22 0.12  0.13 -0.27
-0.46 -0.40  0.12  0.11  0.063 =-0.12

0.84 0.38 0.13 0.063 0.43 0.003

1.67 0.77 =0.27 -0.12 0.003 0.43
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and hence the corresponding optimal gain matrix is:

-1.30 -0.59 -0.21 -0.097 -0.67 -0.005

-2.54 ~1.18 0.41 0.19 =0.005 =-0.67

The calculation of the optimal feedback control using the above
selected values of Q and R for a system based on data from the 'Star
Hercules" vessel of Section 3.2.4 was performed, and the optimal

feedback gain matrix. found as:

-1.40 =0.44 0.0 0.0 =0.51 0.0

0.0 0.0 -0.09 ~0.03 0.0 -0.53

The above calculated feedback gain matrices for both the "Wimpey
Sealab" and the "Star Hercules" will be used for closed loop control
for different applications of the dynamic positioniug problem
considered throughout this work. At this stage, the low-frequency
part of the "Wimpey Sealab" and the "'Star Hercules" havé been
simulated using their corresponding values of the feedback gain and
for a step input of 0.02 p.u. into yaw rather than sway. These
responses are shown in Figures 4.7a — d for the "Wimpey Sealab" and

in Figures 4.8a — d for the "Star Hercules' dynamics.
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CHAPTER 5

LINEAR FILTERING/KALMAN FILTERING PROBLEM

5.1 Introduction

Dynamic ship positioning control systems require filters to remove the
large high-frequency wave motion signals EQQJ. This ensures that the
thrusters do not respond to the high-frequency wave motion and,
consequently, reduces energy loss and wear on the thrusters. Some
dynamic positioning systems employ Notch filters [}§1J57J. However,

Kalman filtering techniques have been used throughout this work.

Kalman filtering is a technique which produces an optimum estimate of

the state of a system, from a succession of measurements. A knowledge

of the dynamic behaviour and error characteristics of the system is an
essential pre-requisite. The Kalman filter includes a model of the system
dynamics and. can therefore provide separate low and high frequency state
estimates. The Kalman estimator is shown in Figure 5.1 and is defined

by the following state and output equations:

§=A_>E+K(E—§_)+BE ceveieneaeenees (5.1)

y = Cx N 152
where

A = filter system ﬁatrix

K = filter gain matrix

z = observations

2 = filter output

g = state estimates

B, C = filter input and output matrices

The Kalman gain matrix K(t) of equation (5.1) above can be partitioned
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into low and high frequency gain matrices as:

Ko (1)
K(t) = |=-=2c—0—- cerennensees (5.3)

k()

This matrix can be evaluated for a given noise information (Appendix 3-—
Kalman algorithm). The process noise covariance matrix -related to ran—
—dom forces, is defined on the basis of commoﬁ practice, while the
measurement noisé covariance matrix can be defined with acceptable
accuracy from a knowledge of the measuring system. "The evaluated
time-varying Kalﬁan gain matrix eleménts settle to a constant value
after approximately 20 seconds (Section 5.3), and thus these gains can
be pre-computed off-line in some cases and stored (Section 6.3). By
using a constant or semi-constant gain Kalman filter, the overall cost

of the control system can be reduced by saving some computing time.

5.2 Kalman Algorithm

Kalman filter theory is well known[}S],[ﬁO],[pSJ. A step by step
application to the dynamic ship positioning systems can be summarised
as follows:

(i) Develop a system model in order to formulate a state vector (x)
which describes the system at any given time.

(ii) Determine the state of the input.(g) and the dynamic relationship
between (u) and (x). | |
(iii) Assess the likely procesé noise (W) and its covariance matrig
Q.

(iv) Determine the measurements to be made (y), and the associated
output matrix (C) relating the vector (y) to the state vector (x).

(v) Assess the likely error or noise in the measurements (v) and its

covariance matrix (R).
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(vi) Finally determine the initial state estimate and its error
covariance matrix (P).
The Kalman filter can be implemented using the continuous-time
‘differential equations of the system represented in state-space form,
but the simulatiqns using digital computef have been performed in
discrete-time form. In actual practice, a Kalman filtering scheme
involves digital computations on an on-line process control by computer,
and hence the discrete-time form of the system deséription is more

appropriate for implementation and can be written as:

5&+1)=%&)+@&)+@&) " eeesesesscess (5.4)

z(k) = Hx(k) + v(k) o R ¢ )
where:

® = state transition matrix

A = input driving matrix

I' = noise driving matrix

H = output matrix

Having fed the filter with the necéssary information, the next
operational stages will be as follows: |
(i) Store the previous best estimate (the initial values at the
start) of the stéte (gp'and its covariance matrix (P) at time instant
(v).
(ii) The system represented by the usual'differential equation and in

the discrete form (Figure 5.2a) will be:

x(k + 1) =®x(k) + du(k) + Tw(k) P - X))

z(k) = Hx(k) + v(k) ceeeeceecess (5.7)

(iii) The prediction (Figure 5.2b). The problem is to obtain

x(k + 1[k), i.e. to estimate the value of (x) at (k + 1) instant, given
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Figure (5.2) (a): The System in Discrete Form Representation

Rk + 1]K)

u(t) Z(k + 1K)
SO A - H e

=]

Figure (5.2) (b):Open Loop Prediction (the filtef)
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all the measurements up to instant (k). The previous estimate_g(klk)

is known:
Rk + 1|k) = 9R(k|k) + Au(k) B & 15-))
Sk +1® = BR(k + 1]K) ererenaeas vee (5.9)

(iv) The correction. There will be an error between the measured and

the predicted output:

z(k + 1]k) = z(k + 1) - 2(k + 1]k) - N ¢ 18 [0
To compensate for such differences:

R+ 1k + 1) = 2k + 1]K) + KZ(k + 1]K) Ceereeeaas (5.11)

which defines the Kalman filter, where:

is the Kalman gain matrii, with Kz(k)'and Kh(k) as the low and high
frequency parts of the gain matrix respectivéiy.

(v) The estimation. For a given instant (k + 1),
x(k + 1K + 1) = (I - KH) (3x(k|k) + Bu(k)) + Kz(k + 1) ..... (5.12)

"~ - .
where Eﬁklk) is the previous estimate, and z(k + 1) is the current

measurement.

As mentioned above, Kalman filter basically involves a model of the
system and is therefore particularly appropriate for separating the low
and high frequency motions of the vessel. The filtering problem is

thus one of estimating the low-frequency motion of the vessel so that

control can be applied. The Kalman filter will be shown to be suitable
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for obtaining the estimates of the low-frequency states. The Kalman
algorithm is illustrated in Appendix 3, while the schematic diagram of
the Kalman filter applied to the dynamic ship positioning problem is

shown in Figuré 5.3.

5.3 Implementations and Simulation Results

5.3.1 Software Descriptions

The application of Kalman filtering technique to the dynamic positioning
problem is a complicated process of estimation and control, and hence,
the availability of a high-speed, digital computer is- the

prime contributing factor to the success of such applications.

The full Kalman filter together with ship dynamics and the related
control were simulated on an ICL 1906S digital computer using the
FORTRAN4 computer language and GEORGE4 operating system. The computer
program has been written in a form suitable for making changes for
different practical investigations of using the reduced-order Kalman
filter, semi-constant gain filter, etc. Calculations of the optimal
feedback control matrix have been performed and fed into the main

data block. Subroutines for generating the uncorrelated measurement
and process noise signals have been written by Patton [Si] and used here
[75]. Two different subroutines were used for simulating the filter
and the ship and basically called FILTER and DYN. The initial part of
the program sets up the ship and filter parameters. Subroutine
PHIDELTA is used to compute the state transition matrix @k and the
driving matrix Ak for the simulations. Subroutine DYN is used to
advance the state variables of the ship model by one step interval
using the transition equation. The control input signals are also

calculated in this subroutine. The Kalman filter gain, state estimates
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and the associated error covariance matrix are calculated by a
successive call to subroutine FILTER using the filter algorithm given
in Section 5.2. The basic computer flow chart for the whole system

simulations using the full Kalman filter algorithm is shown in Figure

5.4 [1]

5.3.2 Filter and Control Implementatidns for 'Wimpey Sealab Vessel

Dynamic positioning control for "Wimpey Sealab" ship has been performed
using the linear Kalman filter and the stochastic oétimal state

estimate feedback control. The Kalman filter is time-varying although
the filter gain matrix becomes constant after about twenty seconds.

Full Kalman filter algorithms for this application have been

implemented using results from Section 5.2. The low-frequency part of
the ship and filter dynamics are independent of the weather conditions
variations and have been assumed linear for closed loop feedback control.
Hence, the optimal control gain matrix assumed constant which were

calculated off-line and stored.

As the weather conditions vary, different parameters of the sea-wave
simulator change (Appendix 2). Different tests were performed, and
results for Beaufort number 8 conditions will Be presented here. The
ship is assumed to be subjected to disturbance forces of 4 x 10 °
per-unit force for sway and 9 x 10 ° per-unit turning moment for yaw.
Computer plots shown in Figures 5.5 to 5.15 inclusive illustrate the
system behaviour together wi;h the filter estimates . (shown by a dotted
curve) for a step input of 0.02 per—unit into sway motions. These
responseé represent full low and high frequency parts of the ship
dynamics using Kalman éstimator with the following definitions:

State (1): low—frequency sway velocity
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Parameter Settings

;

Read Control Gain &
Noise Statistics

\

Generate Measurement
& Process Noise

T

Call PHIDELTA for
Filter and Ship

!

Set Iterative FLAG

Call DYN for Ship
Simulation ‘

t

Call FILTER for
Filter Calculations

ondition on Iterative

Graph Plot

y

<i— END/STOP <:>

Figure (5.4) : Computer Flow Chart of Kalman Filtering and Control
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Figure (5.A): Sway low-frequency true and estimated position - state 2
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State (2): 1low-frequency sway position

State (3): 1low-frequency yaw angular velocity

State (4): low-frequency yaw angle

State (9): high-frequency sway ﬁosition

State (13): high—-frequency yaw angle

Figures 5.16 and 5.17 display the control signals into sway and yaw
motions respectively for the system simulations with some saturation
on the thrusters (such saturations and other non-linearities within the
thruster devices will be considered in detail in Chépter 7). Figure
5.18 illustrates the effect of the control signal saturation on the

speed of the system responses in sway motion.

5.3.3 Filter and Control Implementations for''Star Hercules'Vessel

The same software structure was used here for the implementation of
Kalman filter algorithms and dynamic positioning control for the vessel

"Star Hercules" as that of Section 5.3.2 of the vessel "Wimpey Sealab'.

Computer plots of Figures 5.19 to 5.29 demonstrate the system responses
with the corresponding filter estimates (shown by a dotted curve) of
"Star Hercules" motions under dynamic positioning control and for a
step input of 0.02 per-unit into sway motion. These responses show the
system behaviour when the ship is subjected to a disturbance force of

4 x 10-.G per—unit force for sway and 9 x 10-8 per-unit turning moment

for yaw.

Results displayed in this section were based on the "Star Hercules"
dynamics of Section 3.2.4 and the corresponding optimal control obtained

from Section 4.5.
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5.4 Concluding Remarks

In this chapter, dynamic ship positioning control has been implemented
successfully using Kalman filtering techniques and optimal stochastic
control. This scheme has been implemented based on models of the

vessels "Wimpey Sealab" and "Star Hercules'". System responses show good
estimation and control. The saturation on the thrusters, illustrated

by Figures 5.16 §nd 5.17, has a damping effept demonstrated by the slow
sway position response of Figure 5.18. Saturation . in the thrusters is an
inherent feature of the actual system implementation. The Kalman filter is
a time-varying filter, and hencé the filter gain matrix has been

computed at each sampling instant. Typical values of the filter gain

for both "Wimpey»Sgaléb" and "Star Hercules" will be listed below,

corresponding to the constant filter gain region:

(i) TFilter gain (Wimpey Sealab) = [ 0.0618 0.0125 |
0.2235 0.0234
0.0383 , 0.1390
0.0658 0.3460
0.0013 0.0026
0.0000 0.0000

-3.0208 0.0837
-1.0127 =0.0465
0.4034 -0.0216
0.9550. 0.0035
0.2312 -1.8244
-0.1203 -1.0832
-0.0584 0.2267
_0.0118 0.7270 _
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(ii) Filter gain (Star Hercules) = | 0.0443 0.0005 |
0.1544 0.0014
0.0047 0.0440
0.0062 0.1418
0.0012 0.0000
0.0000 0.0000

-1.3888 0.0019
-0.5104 ~0.0038
0.2515 ' -0.0010
0.3689 0.0006
0.0193 -0.9929
~0.0071 ~0.3887
-0.0046 0.2006
| 0.0011 0.2459 _

These filter gains represent a sample»from the constant region of the

gain matrix shown in Figures 5.12, 13, 26 and 27. The system responses are
acceptable from the practical point of view; however, tle response

speed can be varied by tuning the controller and its related weightings

(Chapter 4).
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CHAPTER 6

PRACTICAL INVESTIGATION INTO THE USE OF KALMAN FILTERING FOR DYNAMIC

POSITIONING

6.1 Introduction

Kalman filtering techniques have been found suitable for many industrial
applications in recent years. They have been implemented successfully
for a nuclear reactor control problem,for a marine navigation system [53]
and in the metal industry [44]. The filtering scheme has shown to be

' very reliable and practical in its applications to the dynamic ship
positioning problem. However, inaccuracies in the system model and
incorrect filter dynamics representation, especially with the required
approximations and necessary linearisations could frequently cause a loss
of system reliability. Theoretically, the Kalman filter is a statistical
technique which prpduces the optimum estimates of the state vectors of
the linear/linearised dynamic system from a suCcéssion of noisy measure-
ments. A knowledge of the dynamical behaviour and error characteristics
of the system is an essential pre-requisite. In practice, the necessary
information required to construct the Kalman filter is oniy abproximately
known. Hence, one of the objectives of this chapter is to investigate

the quality of the system representation in the filter structure.

The Kalman filter scheme has been widely used to solve the linear/
non-linear estimation problem because of its practicability and

robustness. However, this solution adds some complexity and also the

large number of dimensions in the augmented state is a severe

computational disadvantage for large multivariable systems[76]. Contribution

will be made here to reducing such filtering and control computational
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costAby two different ways as applied to our specific ship positioning
scheme [9 3] R [97] :
(i) Semi-constant gain Kalman filter (Section 6.3).

(ii) Reduced-order Kalman filter (Section 6,2)

Dynamic ship positioning using the Kalman filtering techniques gives a
system performance substantially better than can be obtained by systems
employing conventional filtering networks [Si]. InAprevious chapters,
a fundamental implementation of the Kalman filter and optimal stochastic
control were established and applied to the two vessels under
consideration (Chapter 3). However, to evaluate the goodness of any
scheme, the following steps should be noticed and investigated:

(i) Cost.

(ii) Reliability and robustness.
(iii) Accuracy.
Hence, the above factors will be considered and investigated in this
chapter since adequate filter models, enough initial condition
information and realistic noise statistics can be difficult to achieve

in practice.

6.2 Reduced-Order Kalman Filter

It is normally assumed that none of the states may be measured directly
and in this case, the Kalman filter ﬁas the same dimension as that of
the plant. In dynamic positioning problems, Kalman filter estimates
the low-frequency states-for state feedback control [3]. Part of

the low-frequency states are associated with the aétuators ouﬁput,
which may be measured without contamination by noise [6] [37. It follows
that a reduction in the dimension of Kalman filter may be achieved,
equal to the number of the measurable states [80]. In such cases, the

feedback control scheme will consist of direct state-feedback combined
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with state—estimate-feedback.

The use of direct state—feedback from the measurable states, and the
consequent reduction in size of tﬁe filter has several indirect
advantages [éé]. Direct state~feedback improves the transient response
of the system, since this feedback loop would otherwise contain a filter
which degrades performance. The reduction in the dimension of the
filter also reduces modelling errors, since only part of the plant is
represented in the filter for state estimation. The actuators are
non—linéar elements, and hence assuming their states as measurable
variables will reduce the effect of the non-linearities within the

modelled plant.

In applying the above simplification to the dynamic positioning problem
using Kalman filtering techniques and considered for sway and yaw
motions only, two states can be measured corresponding to the states of
the two sway and yaw thrusters [éi]. Hence, the dimension of the
Kalman filter will be reduced from 14 states down to 12 states. The
reduction in size of the Kalman filter is particularly valuable in
dynamic ship positioning control sysiems since the size of on-board

computer is limited.

The following analysis will illustrate the application of the combined
state and state estimate control to the dynamic ship positioning control
systems [}i]. The ship dynamics can be represented by the usual linear

state equation as:

X, Ay Ay || X Y 9,
= + u + cecesrseces (6.1)
32 0 Ay, X2 B, W2

J<
I
/M
Q
i
o
L1
s

veesecesess (6.2)

B
n
(o'
(@)
o
L
"
+
<

cesseaeeees (6.3)
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where the system has been partitioned into a measurable part X,
which includes the thrusters, and the remaining state variables x, .
u is the thrusters control signals and y is the total position of the

vessel from some reference point.

w,, W, and v are white noise signals with covariance matrices Q,» Q,
and R respectively. A2;= 0, since the thruster states do not depend
upon the other state variables in most industrial problems. The system

is illustrated in Figure 6.1.

Since some of the states are assumed to be ﬁeasurable (the thruster
states), the size of Kalman filter algorithm and the related filter
model structure used in Chapter 5 for simulation will be reduced in
proportion to those measurable states. The structure of the ship
model will remain unchanged.

The system responses based on the above proposed reduced—order Kalman
filter for estimation are illustrated in Figures 6.2 to 6.6. These
simulations have been carried out using data from "Wimpey Sealab"
vessel of Section 3.2.3. States (7) and (1) and their estimates of
Figures 6.5 and 6.6 are the high—fréquency sway position and yaw
heading respectively which correspond to states (9) and (13) and their

estimates in the full Kalman filter of Chapter 5.

6.3 Semi-Constant Gain Kalman Filter

The iﬁplémentation of Kalﬁan or éxtended Kalman filters for estimation
and control is a straightforward procéss copie& from the actual plant
dynamics to be controlled. This nature of the filter dynamics gives

it the. practicability for qn—line estimation. However, the computation
time required to implement the filter could exceed the usual practical

limit for real-time applications. This difficulty can be clearly
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realised when a limited space only is available for on-board computers
and processing equipment especially for ship positioning or space
applications. Basically, the high computational burden encountered by
using Kalman algorithms for estimation is mainly concerned with the
re-computations of the error covariance matrix by solving the Riccati
equation and with the calculations of the related Kalman gain matrix,
and hence a great saving in computing time can be obtained by
pre-computing and storing the filter gain matrix. In the linear case,
the system simulation results for both "Wimpey Sealéb" and "Star
Hercules" vessels of Chapter 5 have shown that elements of Kalman gain
matrix settle to a constapt‘value after approximately twenty seconds
from the initial condition. This fact could give the possibility of
applying a partitioning process on the gain calculations in which the

gain matrix can be assumed constant and need not be computed on-line

after twenty seconds. [57] s [24] > [56] .

In this section, full simulation of the ship using Kalman filter for
estimation and based on data from'"Wimpey Seﬁlab" were performed on the
basis of the above parthﬁnningprocedure of the filter gain calculations.
To ensure the stability of the system behaviour and to reduce the effect
of using constant Kalman gain for system implementation, the filter

gain has been assumed constant after 28 seconds rather thaﬁ after 20
seconds. System responses for the ship low-frequency controlled position
énd heading together with the total ;ow and high frequency ship
trajectory are shown in Figures 6.7, 6.8 and'6;9 respectively, and are
for step input of 0.02 pér—unit into sway with the ship hull subjected

to the same disturbance forces described in Section 5.3.2. These
responses show no loss of accuracy with the advantage of reduced

computing time. Selected elements of the XKalman gain matrix have also

been shown in Figures 6.10 and 6.11.

117



' (o2s) aurl

f 93TIS ~ 2uipnay pojrwllss pue onxy Lousnbaxj-moy dNiGt (8°9) o1u2yy

T 23v1s - uolitsod polEWIIS3 pur ani3 Aouanbaaj-mol diys $(L°9) 9angd

14
(22s) auw1l
001 089 o9 07 oc
\
i -~ o
[N N 1/ 7 . ~ ’
\, \r 7 — ~ N [ -
p ! Vv Ty /
N8 - N r

¢l 0~
Gl0°0-
800 0-
2C0°0-
v00°0-
c¢0G "0~
000°0
G670 -
70070
?00°0
g§00°0
01070
clio’o

(suetpel) ajSue mex

(001/s2132u) uoritsod Kemg

118



Zujpeay pue uor3ysod pajsuilse pus am13 diys 18301 :(6°9) andy4 >. - 020 °0-
! I
_ \ 1 5i0°0-
1 610°0~

1 500°0-

.=

21000 "0

——— ]
=~

il
1

500°0

/ ) 4 0610°0
. A ‘| S10°0

" - 0200

- 5¢0°0

e /O 1 0500
\ | 1 5500
SINIWIUNSYIN NQILISOd AVA ONY AVAS 404 S107d

(luvgbu) 913ur Avx ‘(001/82132w) uoyarsod Kemg
119




uoijisod andk 2oy suped uvewpey Louonbary ydyy pue mop: (1t 9) a0 g

001 08 09 0% 02
, X e o e —
-4
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII _
||||| ——— |
N §
AMIVD &M HOJd dANND adllod '\ |
~— Tl
|
4
i
1
|
]
'
-

uogitcol Lems aoj suped uvrvurey Louwnbary ydiy pue Mol ﬁom.wv wanlid

001 08 09 07 0c¢

MIVO dM HOJ JAHND CHLIOQ

P N W |

3

Y —

600
$0°0
010
$1°0
020
520
050
%50
070
G%°0

N oo

<
PP ITITMNN——O

[5al
o

. . .

QOO TOOOOTOO

NoOnNo

120



6.4 TFilter Mismatching

Before an effective control strategy can be implemented, there must be
available an adequate model of the dynamics ;f the controlled plant,
so that simulation settings may be chosen in more realistic fashion.
The applications 6f Kalman filtering theory developed to date assume
that system dynamics are completely known and are precisely modelled
in the filter. Clearly, this will never be true in'practice since for
a highly complex system, there is often a lack of knowledge of part of
the plant behaviour. Although the Kalman filtering scheme has proved
to be practically useful in a variety of industrial applications, it
has become apparent that insufficient care in constructing the filter
can easily lead to entirely unacceptable system responses[ﬁQ][SB][bZﬂ.Such
mismatch between the filter and the plant models can cause sensitivity
problems and even divergence of a Kalman filter [26_] [89] [:100] [86]. Such
modelling errors can arise when the nominal parametefs used to construct
Kalman filter are different from the paramefefs used to construct the
actual plant. Mismodelling may arise from individual or combined
effects of errors in:

(i) the actual mathematical formulation of the éystem dynamics,

(ii) measurement signal processing,

(iii) noise and environmental statistical considerations.

For the purpose of this study, a Kalman filter has been implemepted for
dynamic positioning control and constructed to consist of low and high
frequency subsystems. The high-frequency ﬂynamics are to represent the
simulated sea waveform (Section 3.3). Tests were obtained for different
sea conditions and vary from Beaufort number 5 for a calm sea state to

the worst sea condition of Beaufort number 9. Throughout the design and
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implementation of Kalman filtering for the dynamic ship positioning
under consideration,’the high-frequency dynamics were developed on the
rbasis of data for Beaufort number 8 sea conditions. These system
developments of the high-frequency dynamics for Beaufort number 8 sea
conditions were copied into the filter, and hence, the filter structure
will represent a model of the actual ship dynamics (the high-frequency

part).

The purpose of this sectiqn is to investigate the mismatching effect

on system behaviour by using the filter model of Beaufort number 5 data,
but using information for the ship dynamics derived from Beaufort number
8 conditions. The actual changes in the system and filter dynamics can
be noticed from the system and filter sub-matrices of the sway

high-frequency motion.

Ship sway high-frequency sub-matrix = [ 0.0 2.728 0.0 0.0
0.0 0.0 2.728 0.0
0.0 O.OA 0.0 2.728
-0.22 -0.662 -1.572 -2.455 |

Filter sway high-frequency sub-matrix = | 0.0 2.728 0.0 0.0
0.0 0.0 2,728 0.0

0.0 0.0 0.0 2.728

-1.292 -2.626 =-3.853 -4.037

The above data and full system simulations were based on "Star Hercules"
dynamics. Selected system responses are shown in Figure 6.12 to 6.16

and titled as appropriate.

122



(92s8) awy3

% 23e1s - uol3rsod pajewrisa pue ani3y Kousnbaij-mol mex :(g1°9) 2andrg

(295) auwyj
vo

7 23835 - uolitsod paivwlisa pue aniy K>usnbaij-mol Aemg :(z1°9) 2and14

<

(sueipea) aj3ue meg

(001/s2133w) uorirsod Keag

123



(d3s) auyy

€1 23€3s - uoyaisod pajrwiise

pue ana3 Aduanbaaj-ydyy mex :(51°9) 2andyy

(001/52132u) uor3isod Aemg

(sueipel) ai8ue aey

124



duyipeay pue uorirsod diys jelol :(91°9) @anB1g

Iy

\

SINIWIHNSYIN NOILISOd AVA ONY AVAS 04 S107d

516°p-
0100~
500 0~
6000
5000
01070
51070
6200
52070
¢50°0

560 0

(suerprx) Butpeay aex ‘(001/%2132w) uor3rsod Aeag

125



6.5 Reliability Tests

Ship dynamics and filter structure are traditionally determined from

the formulation of a set of matﬁematical equations representing the

ship motions togetﬁer witﬁ the hydrodynamic forceé acting on the hull.
These are usually obtained from tests on scaled models on thé basis

of a reasonably good knowledge of the environmental and measurement
noise statistics. Estimation of the system state vectors for control
from noisy observations is the prime principle of Kalman filtering
operations. Kalman algorithms for dynamic positioning applications
provide the conditional mean of the state estimates. This widely

known algorithm assumes exact knowledge of the system dynamiés, of

the initial error and state statistics, and of both system and
measurement noise statistics. In practice, however, the stochastic
environmental forces represented by the appropriate noise streams are ndt
necessarily constant, and their characteristics ére not always certain,
The purpose of this éection is to investigate the effect of a
misidentified noise on the system response and filter estimations. Hence,
Kalman algorithm reliability and robustness can be assessed by examining
its applicability when the noise factor of the dynamics information is
subject to uncertainty. This is carried out by increasing the plant and
measurement noise included in the simplétion of the plant itself, whilst

the filter algorithm operates with the old usual noise conditions.

System simﬁlations were investigated using the full Kalman filter
algorithm with the ship observation noise covariance being increased,
keeping the filter with  the usual noise information. Figures6.17 to
6.20 show the low-frequency and high-frequency of the ship trajectories
together with the filter estimates of these trajectories (the dotted

curves) for both sway and yaw motions. These computer plots show the
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system responses under dynamic positioning control for the case when

the observation noise covariance within the system has been increased
100 times. Data from "Wimpey Sealab" of Sections 3.2.3 and 3.3 were

emplbyed in here for the above simulations and used for Kalman

implementations of Chapter 5.

6.6 Concluding Remarks

The main remarks which can be made here will outline the robustness and
practicability of using the Kalman filtering techniéue for estimation
within the proposed dynamic positioning control loop. Such remarks

can be assessed by a straightforward examination of the system
behaviour for the different tests ana investigations carried out
throughout this chapter. These conclﬁding remarks can be summarised
now and listed as follows:

(1) Measuring the thruster output reduces the size of the system and
hence reduces the uncertainty throughout the linearisations and
approximations in developing the system dynamics.

(ii) The time-varying Kalman gain matrix settles to a constant value
after twenty geconds, and hence, using a constant gain matrix at this
pointyand for the rest of the operations Wwill produce
significant savingsin computation, cost and storage.

(iii) Deviations of the filter estimations from the actual system
state output is very cle;r when operating under dynamic positioning
control with the ship model represented by Beaufort number 8 sea
conditions keeping the filter model represented by Béaufort number 5
sea conditions (calm sea state).

(iv) Finally, system responses are presented for the case when system
observation noise was increased by 100 times the usual noise statistics
used within the filter. Many tests were carried out to show that the
results represent the limit for reliable filter performance.
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CHAPTER 7

NON-LINEAR FILTERING/EXTENDED KALMAN FILTER

7.1 Introduction

An obvious extension of the technique of employing Kalman filtering
scheme to the dynamic ship positioning (Chaptér 5), is the consideration
of the non-linearity of the dynamics of the system (low and high
frequency parts of the ship dynamics), and hence the required
filtering and control strategy. As shown in Gﬁapter 3, the system
dynamics can be represented by a set of non-linear differential
equations. These equations were obtained from a set of tests carried
out on a scaled model, Section 3.2. However, Chapter 3 outlined a
reasonable scaling and linearisation of the non-linear dynamics, as
well as an approximation to the formulation of the high-frequency part
of the dynamics. Thence, a straightforward application of Kalman
filtering and state estimate feedback control, Chapter 5, proved
efficient and produced improved system response. In practice, the
low-frequency part of the system dynamics needs to be éimulated using
the actual stochastic non-linear based differential euqations. Hence,

an extended form of Kalman filter must be used.

The propoéed extended Kalman filter can be used for both state and
parameter estimation [4Q}[69]. Such an extended Kalman filter for the high
frequency non-linear system model was first proposed by Grimble and
Patton (Section 7.3) [?Q] based upon a linearisation of the system
function of non-linearity about the most recent update of the estimate

of the state vector'(g(t)) at time (t). The dynamics of the filter are

thus locally linear. The linearisation and discretisation process at
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each step should be repeated, and the Kalman gain matrix must be

re-computed.

The actual non-linear low-frequency part of the system dynamics can be

represented by the following differential state equation:

d s

3¢ 2(t) = £, (x,(8), t) + Dow (t) + Bou(t) veseeresess (7.1)
with the measurement equation:

Eg(t) = sz(t) + X£(t) cevesessess (7.2)

where 9&(t) and Xg(t) are the process and measurement noise vectors
respectively [101] . The above proposed scheme of extended Kalman filter for
high-frequency non—linearities and parameter estimation can be applied
here for the low-frequency dynamics of the system of equatiﬁn (7.1).

The linearisation of f2(§£(t)’ t) above and the updating of the filter
dynamics will be based on the same strategy as that of the high-frequency
case. In addition, the system matrix of the LF dynamics needs the

same linearisations and system updating processes for control

calculations (Section 7.2).

7;2 Non-Linear Filtering and Control

This section extends the discussion of optimal estimation and control

for linear systems to the more general case described by the non-linear
stochastic differential equation of (7.1). The non-linearities within

the low-frequency dynamics will be considered here. The main part of
these non-linearities 1is the non-linearities of the thruster devices,

and hence, will be considered in detail[94]. The main goal of this section
is to provide insight into the applications of non-linear estimation,

hence optimal feedback control can be applied. The extended Kalman
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filter system can be combined with optimal feédback control and applied
to the low-frequency part of the dynamics by analogy with the separation
principle [?i] of linear stochastic control theory. The extended
Kalman filter dynamics will be assumed locally linear about some
operating point, and hence, the filter gain matrix and the estimation
process would be followed as from the linear filtering rules. It is
postulated that the optimal control gain matrix can be calculated using
a similar philosophy to that used for calculating the filter gain

matrix (48],[4] Figure 7.1.

7.2.1 System Description including Thrusters Non-Linearities

To indicate the non-linear control prdblem,'the thruster devices
(Section 2.2 and Figure 2.3) and their associated non-linearities are to
be considered. The type of thrusters fitted on"Wimpey Sealab'vessel

is considered in here with its related data (Figure 2.5). The thruster
has both dead zone and saturation characteristics (the dead zone for
"Wimpey Sealab'" is approximately 1-2 per cent of the rated value of the

thrust) (Figure 7.2).

The non~linear continous time low-frequency model may be represented
by the following non-linear stochastic differential equation:

S xg(0) = £y (£), £) + Dy () + Boup () wueennvnnnnns (7.3)

where Ek(t) is a Wiener process with incremental covariénce of.gzdt.‘

The state vector 5&(t) contains the sway and yaw velocities and positions
as well as the thruster states for sway and yaw (xs and Xg respectively).
Now, consider the thruster devices non-linearities of Figure 7.2,
system state space representation of the low-frequency model including

the proposed non-linearities can be written as:
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X1 = anx + apsxs + B Y Ni(xe)xs + BY,N (%e)xe
%, =x

X3 = @y X; + a5,X; + BzYa}‘{l (xg)xg + BzYu}‘{z(_’Es).Es

Xy = X3

o=_ +

%= b X5 + by,

X, = =boyx, + b,u, I R

where‘Na(gs) anddN;(gs) are non—linear functions of the thruster devices
in sway and yaw respectively. The thruster non-linearities have been

approximated and assumed to be of the following exponential form:

(sign (xg)).Fy. (L - e @ X% N ¢ 25

)«;(Es)
‘Ng(ﬁe)

(sign (x6)).Fi.(1 - e "2%6) eeerrnaees (7.6)

where F, = 0.02 and F, =A6;%§-. F, and F, values have been approximated

to an exponential function with some saturation. This gross
" approximation of the low-frequency dynamics is better than the linear

approximation normally employed.

Now, the next step will be consddered, in which the linearisation of
the system and filter matrices can proceed. To obtain these linearised
matrices for filter gain and optimal feedback gain calculations, some

partial differentiations must be performed (Appendix 4).

)
= (N®)
must be defined for the following two separate regions of each state:

0 <x;, <® and - <x. < 0

0 < < ® and =o < . < 0

Xs

Thence, for
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3 ~F
X5 7 05 33-{__50\(1(355)) = F,Fye 2 (|25 )
and
Xs < 0’-le (N1(x5)) = F Fpe F2 (|x5]) teecrceransannas . (7.7
- 2.
Similarly, for
X > 0 B—BX Ny (xe)) = Flee—Fz( END
Xe
and
X6 < 0, g%s(N;(Es)) = F,Fje BlxD L. ceeeecennen .. (7.8)

ayss a1gs @35 and a3 of the system matrix of equation (7.4) can be
formulated in terms of the current system state estimate using the
non-linear equations (7.5), (7.6) for the actual system simulations,
and updated using the linearised equations (7.7) and (7.8) for filter

gain and control gain calculationms.

7.2.2 The Filtering Algorithﬁ

Consider the general case. of a non-linear system described by the

following stochastic differential equation:

x(t) = £(x(t), t) + Bu(t) + Duw(t) cevereenes (7.9)
with the output equation:

y(t) = Cx(t) ciecsneeaes (7.10)
and observations of:

z(t) = Cx(t) + v(t) cecseceenes . (7.11)

where f is a non-linear function of the state vector, and B, D and C
are the input, noise and output matrices respectively. The process

noise (W) and the measurement noise (v) are both Gaussian zero mean
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signals with covariances of Qf and Rf respectively, and with the

following expectations:

E{w()} =0
E{v(k)} =0
E{o@k) w ()} = Q8 ;
E{v() v ()} = ReS .

CE{w®) v()} =0

for all k and j since all the noise sequences are independent, with

Kronecker delta function of:

ij

ij

0, for all k # j

1, for all k = j

System states for the purpose of this study (Chapter 3) can be '

expressed as:

in which §£(t) here will refer to the non-linear low—frequency part

of the system dynamics.

The discrete-time Kalman filter scheme for the above non-linear system
of equations (7.9) and (7.11) [49],[3],[48] has the problem of getting the

required state estimate to be used for closed loop control.

A step-by-step implementations of the filter scheme as it has been
used within the system simulations can be summarised as follows:

(1) The predicted state at (k + 1) instant is,

B + 1) = £G&[K) + A ulk) eeeeeees (7.12)
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since the system input has been fed into the filter as well as into
the plant (Figure 7.1).
(ii) Based on (i), the state estimates at (k + 1) can now be

calculated.

Xk + 1]k + 1) = x(k + 1]k) + K(k + l)tl(k +1) - Cx(k + 1|K)]
ceeees (7.13)

where K(k + 1) is the Kalman gain matrix which has been calculated
from the linearised filter dynamics.
(iii) The linearisation and updating processes of the filter system
matrices(Ak) and'(Af) can now begin. The filter matrix (Af) will be used
for actual filter simulations thereafter, while the linearised (Ak)
matrix will be used for Kalman gain matrix calculations:

Ak(linearised)=<g§ Af (x, (k + 1)) n cevesssens (7.18)

(iv) Now Kalman gain matrix K(k + 1) can be obtained, first by

calculating the predicted error covariance matrix,

P(k + 1]k) = & (k + Ilk)P(k]k)@lT{(k +1[k) + T (k + 1K) |
QT (k + 1]k) | Ceveeeans (7-15)
where
P(klk) = [-0'0:]1u is the initial error covariance matrix.
Therefore

K(k + 1) = P(k + 1]k) ¢'[ Pk + 1[)c” + R, 17 .. (7.16)

where Rf and Qf are the measurement and process covariance matrices
respectively.

(v) Finally, the error covariance matrix is:

P(k + 1]k + 1) = (I - K(k + 1)C)P(k + 1|k) (T - K(k + 1)C)"

+ K(k + )R K (k + 1) e, (71D)
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(vi) Given the expected values of the initial state, error covariance
matrices and filter dynamics, one can use the above equation
iteratively to obtain the state estimates at any future sampling

instant (k + 1).

7.2.3 The Control Algorithm

In the dynamic positioning problem under consideration, the control
problem is one of using the filter low-frequency estimates for a closed
feedback loop. These estimates will be assumed to represent the true
system states for the control purpose. The next step in here is to
calculate the feedback control gain matrix on the basis of optimal

stochastic control theory.

In the linear stochastic optimal control problem (Chapter 4),
determination of the optimal feedback control requires the solution of
the matrix Riccati equation [102]; The optimgl control philosophy for the
non~linear stochastic system under consideratioﬁ can be explained as
follows: 7

(i) Linearise the system locally around the most recent state
estimates using the extended Kalman filter philosophy.

(ii) Estimate the step ahead conditional mean of the state vector
(Chapter 5).
(iii) 1In here, linearisation and updating of thé‘system matrix can be
carried out in analogy to the process in Section 7.2.2 (iii). The
A-matrix is to include the actual non-linearities for system simulafions,
while the A,-matrix is to represent the linearised structure of the system
matrix for control gain calculations.

3

3%

A; (linearised) = A(x, (k + 1)) ceeeceee (7.18)

15¢>

X =
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(iv) The process of calculating the control gain matrix (Kc) can now
begin to control the non-linear system of equation (7.1). This process
will involve the iterative solution of the following steady-state

‘Riccati equation over the specific sampling instant [8{][88]:

_,T _ —1T
O =A,P +PA, -PBR BQIF::+ Q. cerereenes (7.19)
and it is such that the performance criterion,
T T T
J=f () q x(t) +u (£) Ru(t) dt C eeeneeass (7.20)

o
is minimised, where A is the locaily-linearised low-frequency part of
the system matrix for control calculations. By is the low-frequency
part of the input matrix. RC and QC are the control weighting matrices.
These matrices were chosen optimally [39], Ei], (Section 4.3).

(v) Finally, once solution to the Riccati equation Pc of equation
(7.19) is obtained, the control gain matrix at that specific instant can

be calculated as:

-1 T
KC—RC BQ,PC oes s 000000 (7.21)

7.2.4 Simulation Results

Simulation results will be presented in here to illustrate the idea of
non-linear control of the above section (7.2). These simulations are
based on data from the vessel "Wimpey Sealab" (Chapter 3), with éontrol
weightings of Chapter 4 and filter specifications of Chapter 5.
Non-linearities within the low-frequency part of the system will be
éonsidered in here with the high-frequency dynamics assumed constant and
the canonical state-space form for both sway and yaw motions have been

used as from Chapter 3.

Full system simulations combining both 1low and high frequency dynamics
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using extended Kalman filter for control can now be summarised. The
system responses for a étep input of 0.02 per-unit into the sway
direction are shown -in Figures 7.3 to 7.7 inclusive, where Figures 7.3
and 7.4 show the non-linear behaviour of the low-frequency vessel
position and heading respectively,'while Figures 7.5 and 7.6 show the
corresponding high-frequency vessel posipion and heading respectively.
Figure 7.7 shows the combined low and high frequency trajectories.
Throughout these simulations, the ship and filter matrices were updated
and linearised every two intervals of the simulatioﬁs. However,
linearising every five intervals (Figures 7.8 to 7.10) for s&ay and yaw
low-frequency position and heading as well as the ship total position
shows no. loss of accuracy and a significant saving in system simulation

cost. Filter estimates are again shown by dotted curves.

7.3 Parameter Estimations

Kalman filtering for estimating the state veectors of system under
dynamic positioning control has been widely applied because of the
reliability of the filter performance. Such performance depends

mainly on the availability of the required information to construct the
Kalman fiiter. Most of this information is approximately known with>
some parametef uncertainties within the main body of the plant model.
Such ﬁncertainties could cause the requirement for non-linear estimations
using the extended Kalman filter as state‘and parameter estimator.
Hence, the problem of doing accurate estimation when some of the ship
and filter models parameters are not precisely known involve parameter
estimations with all the consequences of increased system dimensions and

undesirable complexity in implementiﬁg the filter algorithm [64]-

The problem of parameter estimation in a noisy stochastic dynamic

system using extended Kalman filter for state and parameter estimation
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has received considerable attention [61] ,[62:],[79],[83] because of its
importance in system model building and control. Basically, the

unknown parameteré to be estimated must be represented dynamically
within the whole system structure and estimated in a similar way to

that of the state estimation procedure. Hence, the filter dimension.
will be increased by the number of the unknown parameters to be
estimated; Kalman thebry cannot be applied in here directly and a form
of extended Kalman filter is required with all the necessary applications

of the linearisation and updating procedures.

Previous chapters outlined the step by step implementations of Kalman
filtering techniques for dynamic positioning applications. The system
was assumed to consist of low-frequency and high-frequency parts and
so the filter model. Non-linearities within the low-frequency part of
the system dynamics have been considered in Section 7.2 using extended

Kalman filter to estimate the system states vectors for control.

In this section, work done by Balchen [12]=aﬁd Grimble and Patton [ﬁg]

will be summarised, which has been mainly involved with the investigation
of the non-linearities within the high—frequency part of the system
dynamics and the related state and parametef estimations using extended
Kalman filter. J G Balchen (1976) has proposed an extended Kaiman

filter for dynamic ship positioning problem in wﬁich the high-frequency
subsystems have been modelled by harmonic oscillators; The frequency of
the oscillators is assumed equal for both sway and yaw motions and needs

to be estimated as an unknown parameter using an additional state variable.
Hence, the system matrix for sway motion which is identical to the yaw

motion will be:
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with system state vectors of:

h
X1

h
X2

h
X3

where x? represents the high-frequency sway :-velocity, xg represents
the high-frequency sway position, and xg represents the dominant

angular wave frequency to be estimated.

Disadvantages with using Balchen's method led to the use of the
alternative technique proposed by Grimble and Patton [ééj. This
alternative approach uses an extended Kalman filter which is based on

a more accurate model of the sea wave energy spectrum (Section 3.3). An
assumption for au approximate non-linear sea spectrum was made in
Section 3.3 to develop and implement the high-frequency part.of the system
dynamics. The state space representation of the system high-frequency
model were :developed in companion canonical form for different Beaufort
numbers and sea conditions and assumed identical for both sway and yaw.

The system matrix for sway motion can be presented as:

0 Tb 0 o}
Aiw ) 0 0 Tb o
0O O 0 Tb

_-Oh, 03 =02 =03 _

where Tb is the per-unit system time constant, and a;, Q2, O3 and Oy

are constant parameters for a specific Beaufort number and vary in
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proportion to the weather conditions. The main purpose of the proposed
extended Kalman filter in here in addition to estimating the system
state vectors is to include a subsystem for estimating the above four
parameters (¢;, 02, 03 and 0y) for different weather conditions,
together with the rest of the system sfates. Thence, the new filter
high-frequency system matrix for both sway and yaw will have the

following structure:

in which Aﬁ is a (4 x 4) matrix corresponding to the unknown four
parameters to be estimated. 1In this case, the discrete-time Kalman

filter for the dynamic positioning problem may be defined as:

Z2(t + 1) = £(z, u(r)) + K [y(t) - Cx(t)] veeeeeeea(7.22)
where
. ()
z(t) = |-
CIO)

~ - . . . ‘ 3
and_ﬁ(t) are the original low and high frequency system state estimates
~ .
while 6(t) are the parameter estimates. K(t) is the Kalman gain matrix,

and can be partitioned as:

R(E) = | K ()

where Kl(t) and Kh(t) are the filter low and high frequency gain matrices

respectively while Ke(t) is the parameter estimator gain. The filter
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gain matrix should be computed at each sampling instant and
linearisations and system updating should be performed in a similar

manner to those of Section 7.2.

7.4 Concluding Remarks

Work in this chapter has shown that the structure of the extended

Kalman filtering scheme can be used for control. The use of such an
approach to control system design has been shown to produce more realistic
system responses. For the purpose of studying fhe ﬁon—linear control of
the low-frequency part of the ship under dynamic positioning control,
the thrust-producing devices and their related non-linearities were
considered. Figure 7.8 shows the sway position for a step input of 0.02
into sway motion which indicates good estimation but with slow.overall
system response. Control weighting matrices were adjusted but with
little improveﬁent on the speed of the system responses. Such slowness
of response is mainly caused by the non-linearities considered and the
extended Kalman filter applications with all the related linearisations
performed. The basic philosophy of non-linear filtering and control
throughout this work was based on the processes of linearising and
updating the system in terms of the filter estimates at each sampling
instant. This will impose a high computational burden. Simulations
shown in Figﬁre 7.7 and Figure 7.10 are the ship trajectories based on
linearising and updating the system every two intervals and five

intervals respectively, with a cost saving and no loss of accuracy.

Parameter estimation for the dynamic positioning problem is an essential
technique by which the uncertainties within the system dynamics can be
overcome. Grimble and Patton [;Q] did a substantial amount of work in
this field and hence it has been summarised here for its relationship to the

idea of non-linear control (Section 7.2).
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CHAPTER 8

OVERALL CONCLUSIONS

The major aims of the work in this case study was achieved successfully
and reported in this thesis. From the basic design considerations and
the related practical investigations, it has been shown that the Kalman
filtering technique is suitable for the dynamic ship positioning problem
under consideration. It uses the actual available information on

the dynamical behaviour of the process generating the measurements as
part of the filter structure. Although information about the model is
included in the filter, model inaccuracies within the ship dynamics are

a dominant limiting factor in the Kalman filter performance.

System dynamics were provided by GEC Electrical Projects from
experiments on a model of the ship using a set of tank and wind

tunnel tests for the three degrees of freedom. Some interaction
between swaY. and yaw motions was considered and the whole system

design for filter and control was carried out successfully for both
motions simultaneously. Basic equations used to build the Kalman
filter were based oﬁ the ship dynamics obtained from the above-mentioned
experimental teéts. The system measurements were the only source of
information available for the filter from the outside world during its
operation. A back-up taut-wire source of measurement is employed

along with the acoustic system since water disturbances, such as fish
passing and air bubbles, can cause a loss of the pulses required by the
the set of the hydrophones to generate the desired measurements.
Grimble and Patton [51] did some comparison work on the

practicability of using Notch filters and PID controllers or the

*alternative Kalman filter and stochastic optimal control and showed
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that a better system response could be obtained by using the latter
scheme. In this work, a Kalman filtering scheme was implemented
successfully using stochastic optimal control theory within dynamic
positioning control for two vessels, "Wimpey Sealab" and "Star

Hercules". The proposed scheme bas been installed on the latter vessel
and commissioned. The Kalman filter, while offering the most potential
improvement in estimation accuracy, is inherently linear since it
represents the linearised ship model. The required approximations

can result in system and filter modelling errors. waever, more
realistic representations have been considered throughout the simulations

of the system including non-linearities.

In the early stages of this work, linearised systems have been
considered for Kalman filter implementation and a simple plant has

been modelled but there is no reason to believe that the results
obtained are not typical of what may be found using a more complex
model. Several important factors have been studied and these

impose a degree of limitation on the accuracy and ease of implementation
of the Kalman filter algorithm for the dynamic positioning problem

under consideration. These factors are:

(1) the accuracy of the filter structure as a true model of the
actual plant,
(ii) the availability and uncertainty of the different parameters of
the plant model,
(iii) the choice of process and measurement noise statistics and
their corresponding covariance matrices affect the Kalman gain
calculations and hence the elements of these matrices should be

accurately chosen and fed into the filter.
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(iv) on-board computer storage capacity to handle the complexity of
the scheme structure and the related calculations and storage

requirements.

Several investigations have been carried out to show the reliability and
robustness of using the Kalman filter for estimation within the dynamic
positioning control loop despitetﬂu&above restrictions and limitations.
These can be listed as follows:

(i) Introducing the reduced-order Kalman filter reduces the size of
the filter, which has the advantage of minimising the modelling errors
since the filter does not inélude the model of the directly measured
thruster _subs&stem. An additional advantage with using this séheme
is a reduction in the computer storage requirement especially when a
high dimension filter is used for state and parameter estimations.

(ii) Full Kalman filter simulations show that the filter gain matrix
becomes constant after approximately 20 seconds. One of the
disadvantages of using the time-varying Kalman filter is the
computational burden associated with the filter gain calculations, and
hence partitioning the filter gain calcuiations’into a time-varying
region of up to 20 seconds and a constant region for the rest of the
simulations shows a significant saving on the filtering and control
process.

(iii) The mismatching problem was investigated by simulating the system
with the Kalman filtér using Beaufort number 5 dynamics,keeping the ship
with a worst sea condition dynamics of Beaufort number 8. The system
and filter responses showed some deviations in the filter estimates.
Hénce, to ensure good estimation accuracy, the filter structure should
represent a higher Beaufort number than that expected of the real plant.

(iv) As mentioned above, noise statistics are an important factor in

shaping the filter behaviour. Tests havebeen carried out by increasing
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the measurement noise statistics of the system keeping the filter
with only the usual information. The filter gave acceptable estimates
to show its reliability up to a critical noise level (shown in Section
6.5) where the filter behaviour cannot be relied upon, corresponding

to the case when the noise covariances were increased by 100 times.

Kalman filtering models for the dynamic positioning problem have

been extended to include some of the system non—linearities. Such
investigations have shown that a form of extended Kalman filter can

be used to provide the necessary state estimates for closed loop
non-linear control. The use of such an approach to control system
design (Chapter 7) is shown to produce more realistic system responses.
A practical algorithm for on-line estimation and control of a noisy

non-linear system has been implemented with some computational load.

Further research can be concerned with the procedure of partitioning
the non-linear system of Chapter 7. The linear constant part of the
dynamics can be dealt with separately in the usual way usiné a
linear Kalman filter with the advantages of reduced implementation

cost.
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APPENDIX 1

NOTES ON PER-UNIT SYSTEM OF TIME SCALING

All the equations of motion for both"Wimpey Sealab"and"Star Hercules"
vessels have been represented in per—unit. Both time and amplitude

scaling have been applied.
Consider the following general differential equation:

£ x(t) = A x(6) + B u(t) R ¢ b

which has been represented in a real time. Now suppose that time scale

change from real time (t) to per-unit time (t), where

-~

t = £ and t, is the base time
ty b :

Then the plant differential equation will become:

a—%gg(t“tb) = t, (Ax(t7tp) + Bu(t ty)) B 73

o e\ o n- . <

(€)=t (Ax (£%) + Bu(t ty)) N &)
where §o(t\) is the per-unit value of the state vector.
In order to determine the values of the control Q and R matrices, and

hence the state feedback gain matrix, the maximum permissible deviations

in the per-unit thruster control signals are required.

The general base units for the per-unit system differes for different
kindsof vessels, which depend upon the size and the geometry of the vessel,

and can be summarised for both"Wimpey Sealab"and"Star Hercules!
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(1) "Wimpey Sealab'Vessel

Mass (m) = 5670 tonne
Length (Lpp) = 94,49 metre
Gravitational Acc. () = 9,81 m/sec?
Time Vf;;7§ = 3.104 seconds
Velocity /f;;éﬁ = 30.44 m/sec
Force ' (mg) = 55,620 KN
Moment (mgL) = 5,256,000 { KN-m
Angular Velocity ¢§7£. = 0.3222 rad/sec

From which:
The base time = ty = 3.104 sec
The amplitude scaling factor = 95 m
Assuming that all the thrusters acting in one direction, the maximum

force is (40) tones or (400) KN, then

per—unit sway force = %00 . 0.007 = 0.01

55.6 x 10°
and the maximum torque is 90 m x 20 tonnes which is (1800) m tonne or
(18000 KN metres, then
18000
per-unit torque = ——— = 0,003 = 0,004
5,256x 10°

The assumption has made that, the thruster time constant is to be (2)

seconds or (2/3.104 = 0.644 pu) and hence,

b; = b, = 1/0.644 = 1.55
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(ii) "Star Hercules"Vessel

Mass m = 4377 tonne

Length L =73 metres
PP

Time Vipp/g = 2,728 seconds

Gravitatianal Acc. | g = 9,81 m/sec?

Force mg = 42.940 KN

Moment mngp = 3,134,500 | KN.m

From which:
The base time = 2.728
and for (2) seconds thruster's time constant, which is (2/2.728 = 0.733

pu), b, = b, =1/0.733 = 1.364.
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APPENDIX 2

HIGH FREQUENCY MODEL PARAMETERS

By examining the high frequency part of the dynamics, the general

structure of the system A-matrix for sway or yaw is:

-oy -3 -0 -0

where T, = 3.104 secs for 'Wimpey Sealab'while the parameter o;, Oz, O3
and Oy varies in proportion to the weather conditions as indicated in
the following ZTable 1 for "Wimpey Sealab'vessel for Beaufort number 5
(calm sea) to Beaufort number 9 (the worst weather conditions), and the

corresponding Beauforts number 5 and number 8 of Table 2 for''Star

n
Hercules vessel.

Beaufort No (e3] az Qa3 Oy
5 4.594 | 4.384 | 2.988 | 1.470
6 3.663 | 2.698 | 1.452 | 0.556
7 3.166 | 2.119 | 0.974 | 0.341
8 2.794 | 1.789 | 0.754 | 0.251
9 2.545 | 1.353 | 0.486 | 0.131

Table No (1)

Beaufort No o, a2 a3 Oy
5 4.037 | 3.853 | 2.626 | 1.292
Table No (2)
8 2,455 1.572 | 0.662 | 0.22
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APPENDIX 3

CALCULATION OF THE KALMAN GAIN MATRIX

The position measurements are not defined in continuous form but are
sampled at regular intervals. The system simulation and the Kalman
filter have both been modelled using their discrete forms. The

resulting discrete equations are as follows:

x(k + 1) = &k + 1,k)x(k) + Au(k) + Tw(k) rrrreeeeee (D)

z(k) = Cx(k) + v(k) R 3|
with

E{w(k)} = 0 E{ow’ ()} = a8, 5 vereeeees (3)

E{v(k)} = 0 Elv(oy’ (D) = B, e (8

and where skj is the Dirac function. The matrices A and T are related

to their continuous-time counterparts by

T
A= fo $(T)B dt N )
T
T = fo ®(T)D dt RN ()|
and
®(k + 1, k) A ¥(t,) I ¢)

where T, is the sampling interval.
The state estimatevis given by calculating the predicted state

Xk + 1|k) = ok + 1|K)R(k|k) + Au(k) ceeneeeaes (8)
and then calculating the estimated state at the instant (k + 1), using

X+ 1k + 1) = x(k + 1]|k) + R(k + 1) (y(k + 1) = CR(k + 1|k)).(9)
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The Kalman gain matrix K(k + 1) can be obtained, first by calculating

the predicted error covariance matrix
T : T
P(k + 1|k) = ¢(k + 1|k)P(k|k)® (k + 1|k) + IQr R ¢ o))
for some initial error covariance P(kfk), and then calculating
T T -1
K(k + 1) = P(k + 1|k)C [CP(k + 1]k)C" + R] ceeeaees (11)
Finally, the error covariance matrix is obtained using

P(+ Uk +1) =(T - R(k + DOP( + 1[k) (T - K(k + 1DO)"

+ K(k + DRE (k + 1) ceeiee. (12)

The above equations can be used iteratively to obtain the state
estimate at any future sampling time, given the initial state and

covariance.
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APPENDIX 4

EXTENDED KALMAN FILTER/PROPAGATING THE CONDITIONAL MEAN OF THE STATE

ESTIMATE AND ITS ASSOCIATED COVARIANCE

In order to extend the problem of optimal estimation and control for
linear systems to the general case of a system with non-linearity,
consider the following non-linear stochastic differential equations of

the system dynamics:
x(t) = £(x(t), t) +w(t) N ¢ D)
in which f is a function of the state x(t).

The problem will be the estimation of the state x(t) using the non-linear

measurements, which is described in its discrete form as:

t k=1, 2,... : N ¢

B = BEED) * Y

where Bk is a function of the state‘z(tk) and depends on the index k at

each sampling period.

Both o and v, are white gaussian noise of zero mean, with E(vk) = E(wk)
- ; . I, _
= 0 where E(.) is the expected value of °* and E(vkvj ) = Rk 6kj’
T . . .
E(wkwj ) = Qk ij and E(wkvj) = 0 for all k, j, since all the noise
sequences are independent, where the Kronecker delta functions
6kj =0 k#]

=1 k = ]

Given the non-linear system equation of motion and the measurement
equation, and the problem is to calculate the minimum variance estimate
of x(t). The minimum variance estimate of x(t) is the conditional mean

of the state x(t).
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Suppose that the measurements data are given at time 1 and the

3 " A »
conditional mean estimate of the state vectoriz(tk_l) is known. Then

by integrating both sides of equation (1) from time te1 to tk, the
propagated state at instant tk will be:
t t
x(t) = x(g )+ I Cf£(x(D), AT + f Cw(T)dT ceeeeaa(3)
t t

k-1 k-1

taking the expectation, differentiation of both sides of equation (3),
taking into consideration the noise characteristics mentioned above,

produces:

£t<t

o1 € eeeenn ()

-;_t_ E[’zg(t):] =E[£(§_(t), t)] where t 5

In equation (2) above, all the measurements taken up to time t

k-1°
E[g(tk_l)] ='§(tk—l) is the initial condition

Refer to equation (4). Over the time interval tk-l t< tk’ the

solution of equation (4) is the conditional mean of x(t) which is:

é(t) = E[£(x(t), t)] tk-ll‘s £ <t N )

The initial condition is the conditional mean of the state at tk-l which

is assumed known.

The estimation error covariance matrix is defined as:
~ ~ T
P(t) A E[(x(t) - x(t))(x(t) - x(t))"] N ()

The differential equation for the estimation error covariance will be:
o o T .T A A A A
P(t) = E[&(t) x ()] + E[x(t) X ()] - %() X (£) = %(£) X (£)er (D)

substitute forig(t) from equation (1) and for_g from equation (5) into
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equation (7):

o) = B[ + wxl] +Efx(e + 0] - e[F & - 2 e[
| | .
-E[f 5] +E[x£] < 2 E[] - E[E]F" + 2 J Q(t) 8(t-mdr
k-1
p(t) = E[f x] +E[x £] - x E[£7) - £[£] £ + q (©) ceeees (8)

Refer to equation (5), denote E[-f_(_}i, t)] as _:‘_E: (x(t), t).

Now expand £(x, t) in a Tylar series about the current estimate of the
state vector, then take the expectation of both sides to compute

£(x(t), t), as follows:

of
£(2§_, t) =_f_(l{_, t) +-a_-2$ §=g(_-§) + LN eeev e s (9)
Fx, t) = £(&, t) + 0 + ... vereneess(10)

substitute the first-order approximation of f(x, t) from equation (10)

into equation (5)

X(t) = £(%(t)) tp SE<E R ¢ A )

To find an approximate differential equation for the estimation error
- . . - . A oo -
covariance matrix, define matrix F(x(t), t) whose ijth element is:

3.‘?_1(5(‘:)’ t)
'f'i.j (E(t) s t) é axj (t)

x(t) = x(t)

P(t) = E[f x'] + Efx £ - XE[E] - E[gng + Q) eeeeee...(12)

using equation (9):

. R of n
P(t) = E[fx, O + 5| @~ Dx ]+ e £] -

%>

.§=
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T of AT AT
~RE[EQ 0+ g (@ x)7] - E[E] 2+ a®)
Clx=2
~ ,I\T a_f_ ~N T
= £, O)x + 52 E[(x - ®x] + E[x £]

>

x=x
A T ~ A ~ af_T . T
-xE G 0 -EE@- DT 5 - E[£]&" + Q(v)
T lx=%
_x E[x - & - 8D
Elx-% |
T
Y:
+EfE-DE -] | +am
Clx=z
£ of
_ % P(t) + P(t) = + Q(t)
Elx- g BERE

P(t) = F(R(£), t) P(t) + P(t) FL(R(t), t) + Q(t)

tk-1£t<tk ...oo-oo-oc-oo(lB)

Equations (11) and (13) are an approximate expression for propagating

the conditional mean of the state and the estimation error covariance

for tk-l £t< tk' Those equations have got the structure of Kalman

filter and referred to as extended Kalman filter.
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