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KALMAN FILTERING TECHNIQUES APPLIED TO THE DYNAMIC SHIP POSITIONING 
PROBLEM

A A G Al-Takie

Abstract
The dynamic ship positioning problem using Kalman filtering techniques 
is considered. The main components of the system are discussed. The 
ship dynamics, based on a linearised model, are represented by state 
equations. These equations involve low and high frequency subsystems.
A simplified design procedure for the implementation of a Kalman filter 
is described based on the linearised equations of motion. The Kalman 
filter involves a model of the system and is therefore particularly 
appropriate for separating the low and high frequency motions of the 
vessel. The filtering problem is one of estimating the low-frequency 
motions of the vessel so that control can be applied. An optimal ’ 
feedback control system simulation based on optimal stochastic control 
theory is used. The optimal control performance criterion weighting 
matrices Q, R were pre-selected and the optimal feedback gain matrix 
was computed. This control scheme involves the low-frequency part
of the ship model. The Kalman filter has been simulated on a digital 
computer for different modelled operating conditions. The computer 
simulation results showing the behaviour and responses of the Kalman 
filter applied to the dynamic ship positioning problem were 
investigated. The system dynamics vary as the weather conditions vary 
and can be classified from a calm sea condition (Beaufort number 5) to 
the worst condition (Beaufort number 9). Different tests involving 
systems modelling and filter mismatching have been carried out.
Another field in which the robustness of a Kalman filter has been 
assessed involved a test in which the system observation noise 
covariance was increased keeping the filter with the usual noise 
information. Saving in both computation and computer storage 
requirement were achieved using a form of semi-constant filter gain and 
reduced-order Kalman filter respectively.
System non-linearities have been considered and a non-linear control 
algorithm was proposed and implemented using an extended Kalman filter. 
These non-linearities involve the thruster dynamics and the associated 
low-frequency part of the system model.
All data that have been used within this work for system implementation 
were obtained from two different models ("Wimpey Sealab" and "Star 
Hercules" vessels). Our system has been employed by GEC Electrical 
Projects Limited, Rugby, for a new vessel ("Star Hercules") and this 
has been commissioned and is currently operating successfully off 
Brazil.
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CHAPTER 1

GENERAL ASPECTS OF THE DYNAMIC POSITIONING PROBLEM

1.1 General Introduction

Since the end of World War II, it has been increasingly realised that 

the seabed and rock beneath are rich in mineral resources which should be 
exploited. The best known example is the offshore oil reserves. 

Initially, exploitation was limited to shallow water close to the shore 

but it has moved progressively into deeper water and less hospitable 

locations. Early exploration for oil production was carried out from 
fixed platforms. Inspection and maintenance work on fixed structures 

involve extensive use of diving services and lifting facilities. From 
these has arisen the need for the floating vessel with the necessary 
technique to keep it stationary with respect to some reference point. 

Recently many floating drilling rigs and drill ships have been intro
duced and many of these are working in the North Sea. In addition to 
drilling, offshore operations involve:

(i) coring

(ii) surveying
(iii) cable laying 

(iv) dredging 

(v) diving 
(vi) fire fighting 

The most significant limitation of using the conventional floating vessel 

is the difficulty of anchoring in deep water. To overcome these 

limitations, the concept of a dynamic positioning technique was intro

duced. Dynamic ship positioning is defined as the technique for main- 
* taining the position of a vessel stationary over a specific preselected



point on the seabed without the use of anchoring systems. The second 

definition of dynamic positioning is that the vessel may be moving at 
controlled speed, which can be extended to include the tracking 
problem.

The process of automatically controlling a ship or floating platform 
position and heading [li] £l9] over a preselected area is concerned with 

providing the necessary thrust in appropriate quantity and direction 
to match the mean loads imposed on the vessel by environment and other 
forces. This will involve using:

(i) a combination of thruster mechanism and propulsion 

(ii) position and heading measuring devices 

(iii) wind speed sensor 
(iv) control computer

The design of an automatic position and heading control system for a 

vessel depends on the required criteria, which must be satisfied by 
the vessel and its control system (or computer control system) to 

perform its mission, on the environmental conditions in the area where 
the vessel will operate and on the expected behaviours of the vessel 
for changing weather.

The control system is part of a closed loop system, schematically 
shown in Figure 1.1. The main components are:

(i) measurement subsystem, including all devices for generating the 
information to be processed by the computer,

(ii) the filter to attenuate the unwanted signals and to generate the 
required estimates for state feedback control,

(iii) the controller, of which the output is sent to the propulsors 

(main propellers and other thrusters),

(iv) thrust generating system to drive the vessel to the required
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position.

This control scheme should be capable of:

(i) controlling the propulsors for maintaining a reference position 

and heading under specified weather conditions (with the ability to 
react to changing weather conditions), with a maximum allowable radial 
position error of 3 per cent of the water depth,'
(ii) avoiding high-frequency fluctuations in the thrust demand 
(filtering problem) since this may cause unnecessary wear of the 
propulsors and waste of energy,
(iii) controlling the propulsors for changing the position or heading 

of the ship in case a new reference position or heading is selected.

Dynamic positioning systems with on-line computer control involve 

one of the following [3Ĉ  :

(i) Simplex computer control, where longer term or more accurate 

position keeping is necessary, such as for support purposes. This 

fully automatic control system is an economic scheme and it normally 
comprises:

(a) one computer complete with monitoring unit and peripherals 
controllers

(b) one operator console, with full set-up, control and 
display

(c) one position measurement system
(d) set of environmental and attitude sensors

(ii) Duplex computer control, which is usually used for oil exploration 

drilling vessels, which is required to remain on station for long periods 

of time.A Full automatic duplex dynamic positioning system comprises of:

(a) two computers complete with monitoring units and peripheral
controllers

4



(b) one operator console, with full set-up, control and 
display,

(c) two position measurement systems,

(d) two sets of environmental and attitude sensors.

The design of a vessel*s dynamic positioning system involves a 

compromise between the two conflicting requirements of accuracy of 
position holding and the need to suppress the thrusters response to 

part of the wave motions. These external forces are assumed to consist 
of low-frequency and high-frequency forces. The thrusters response 

to the first order high-frequency wave motions is oscillatory in 
nature, and involves an extra power demand and wear and tear of the 
thrust-producing mechanisms, without any gains in counteracting vessel 
motion due to the above waves and forces.

The accuracy of the dynamic positioning system will depend to a certain 

extent on the philosophy of the wave filter selection method and the 
corresponding controller design procedure. Thus, the amount of the 
thrusters oscillations will depend on the wave filter attenuation and 

the controller bandwidth. Filtering for the dynamic positioning 
problem can be defined as the process of operating upon the corrupted 

information (the noisy measured system output) to attempt to construct 
a signal which can be used for control purposes [l8j, [22]]. The control 
systems for the first dynamically positioned vessels [3lj,[30j included 

Notch filters and PID controllers. Using such a scheme, the position 

measurement signal can be filtered out to obtain a comparatively good 

estimate of the low-frequency part of the vessel motions, and hence, 
control can be applied [23]• An introduction to Notch filter 

networks is given in Section 1.2

5



Using the above conventional Notch filter scheme with PID control can 

cause some difficulties since a compromise should be made between 
improved filtering and good control system performance. Such diffi
culties led to the use of the alternative Kalman filtering technique 
together with modern stochastic optimal control theory. The 

Kalman-Bucy filter [58], Q>o], [47], [46] has assumed a role of ever 
increasing importance over recent years in the field of filtering and 
estimation of processes, and its applications in dynamic systems. 
Theoretically, the Kalman filter gives the unbiased, minimum variance 
estimation of the state vectors of a linear or linearised dynamic 
system when output measurements are provided which represent a 

linear function of the system states with some additive white noise.

In practice, optimum performance will be very hard to realise since 
the information required to construct the Kalman filter is only 
approximately known. Hence, to get the best filtering and estimation, 

the Kalman filter has to be provided with as much information as 
possible concerning the noise statistics and system dynamics.

In dynamic vessel positioning the low-frequency part of the system 

states are required to be estimated by the Kalman filter so that control 

can be applied. Kalman filter dynamics, based on the separation 
theorem [2l] , [54] will involve a model of the actual low and high 
frequency part of the system dynamics (Figure 1.2), and hence, the 
estimated high-frequency state vectors can be ignored, while the 

estimated low-frequency states can be fed back to be used within the 
control loop. An introduction into the use of the Kalman-Bucy 
filtering scheme and its applications to the dynamic positioning 

problem for this study will be given in Section 1.3.

6
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1.2 Notch, PIP Filtering and Control

Notch filters [99j , [103̂ 3 have been developed and used in dynamic ship
positioning for some years with relatively good results. If the control 

system were purely analogue 7 this filter would obviously be preferred. 
With digital processors available, other filter structures might yield

will be introduced in the next section. A Notch filter is often used 
in dynamic positioning problems to attenuate the high-frequency wave 
motion signals from the position measurement system. The Notch filter 
must be capable of providing a constant attenuation ratio either for a 

fixed sea wave resonant frequency or for a range of resonant frequencies. 
A typical range of Notch frequencies [5l] would be 0.06 Hz to 0.12 Hz 

corresponding to Beaufort scale number 9 down to 5 (Appendix 2). To 
provide a wide band-stop characteristic it is necessary to use a 
cascaded system of Notch filters with each section tuned to a 

particular resonant frequency [20] , [l3[]. In this application three 
such cascaded sections are normally used. The Notch filter transfer 
function can be defined jioij by:

additional advantages. A Kalman filter with such properties

bd 2S +  0)

H(s) (1.1)
s + s + 01

A  - 2d2
where:

Notch centre frequency (rad/sec)

b the 3 dB bandwidth of the Notch (rad/sec)

d the attenuation ratio at the Notch centre frequency
The above parameters w, b and d can be used to describe the Notch

network. For a three cascaded section of this network the above

transfer function H(s) can be written as
i=n

H(s) = n 6.(s) 
i=l

(1.2)
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where: n = 3 (for three cascaded sections), and:

o kjdj 2
s + A  9a? s + Wi

V ® ) = ~ — ---bi -------*■................................... .(1-3)2 +   j- S + 0)
A  - 2di

where:
ok the ith section centre frequency
b. the ith section 3 dB bandwidthl

d. the ith section attenuation ratiol

1.3 Alternative Kalman Filtering and Stochastic Optimal Control Solution

Considerable research has been devoted during the last twenty years to 

various problems in the estimation of the states of linear dynamic 
systems using system measurements corrupted by Markov 

noise. The Kalman-Bucy filtering technique for such, applications has 

been thoroughly examined in the literature. The optimal, continuous 
time filtering problem for the case of linear system dynamics, additive 

measurements and Gaussian white disturbance measurement noise was 
first solved by Kalman (1960) [58] and Kalman and Bucy (1961) [6o] . 

Specifically they considered the problem of finding the unbiased, 
minimal variance state estimate x(t) of the system state x(t) in the 

presence of stochastic input disturbances and output measurement 
additive noise.

The problem of state estimation of noisy systems using Kalman filtering 
scheme requires a knowledge of the system structure and its parameters QT]. 

If the system is linear or linearised and its different parameters are 

known, the solution is a straightforward application of Kalman 

algorithms for filtering and estimation and is given by Kalman and Bucy 
(1961). In actual industrial applications, some of the plant

9



parameters may be unknown and hence it is necessary to estimate them 

together with the system states simultaneously. This parameter 

estimation problem requires the extension of the Kalman filtering 
scheme to include the system non-linearity. This will involve the 
implementation of the extended Kalman filter. This form of 

non-linear filter problem can be dealt with by constructing an 
additional linear dynamic model corresponding to the unknown parameters. 
The parameter equations are added to the system model equations and the 
combined states and parameter variables of this augmented model are to 
be estimated. Feedback control can be applied using the low-frequency 

part of the state estimates only (Figure 1.3). All the necessary 
information concerning the process and observation noise as well as 

system inputs have to be fed into the proposed filter dynamics for good 
estimation and filtering accuracy. The non-linear filtering problem 
for systems with random inputs is of great importance in control 
processes, especially in industrial situations. The Kalman filter has 

been proved to be efficient and reliable for many industrial 

applications.

The Kalman filtering scheme and its application to the dynamic 
positioning problem has been proposed by the Norwegians (Balchen et al, 
1976 Balchen*s design involves a more complicated and
computationally inefficient form of filter in which some of the 
high-frequency parameters were estimated. An alternative solution to 
the linear and non-linear Kalman filtering problems with their 

applications to the dynamic ship positioning problem was proposed and 

used by Grimble Q>l] , [49]] . The use of the proposed alternative 
solution of Kalman filtering combined with the optimal control 
theory to the dynamic positioning problem was part of a Case 

research study supported by GEC Electrical Projects Limited, Rugby

10
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and carried out by a team of researchers. This work on dynamic 
positioning using Kalman filtering was an extension of in depth 
study of general filtering and control problems by Grimble [35], [33], 
[36] . The simulations were involved in some high-frequency parameter 
estimations to estimate some of the unknown parameters within the 

high-frequency dynamics using an extended Kalman filter [49]t [52] . 
These estimated parameters are to affect the high-frequency block 

of the system dynamics structure which varies in accordance with 
the weather and sea conditions (Beaufort 9 for the worst sea condition 
down to Beaufort 5 for calm sea).

The team research provided a basic design for the dynamic ship 
positioning problem using Kalman filtering techniques based on data 
available from the "Wimpey Sealab" vessel. The author produced a 
complete design for the implementation of Kalman filtering and 

optimal stochastic control with its applications to the dynamic 
positioning problem based on data from the new "Star Hercules" 
vessel. This vessel has already been commissioned by GEC Electrical 

Projects Limited, Rugby. The author has also contributed to an 

original idea in which a special form of extended Kalman filter has 
been used employing the optimal control loop within the low-frequency 

part of the vessel dynamics. This form of non-linear control 
caters for the non-linearities within the low-frequency dynamics and 
deals specifically in detail with the non-linearity of the thruster 

devices which form part of the low-frequency dynamic structure 
(Chapter 7).

12



1.4 Thesis Layout

In the previous sections of Chapter 1, the overall dynamic vessel 

positioning problem has been introduced and its usefulness for 

exploitation processes and other industrial applications were outlined. 
An introduction for the use of Notch, or Kalman filtering techniques 
within the dynamic positioning control loop were finally drawn in 

Sections 1.2 and 1.3 respectively.

Chapter 2 contains a brief description of the main basic parts of the 

dynamic positioning systems. This will include the overall system 

structure, the systems for measuring the position of the vessel, the 

thrust producing devices (for both "Wimpey Sealab" and "Star Hercules" 
vessels) and finally, the general statistics of both the process and 
observation noise.

Chapter 3 includes the basic linearised mathematical equations 

representing both the low and high frequency motions of the vessel. 

These differential equations have been formulated on.the basis of data 
obtained from a set of "tank-tunnel-tests" and carried out by GEC
Electrical Projects Limited, Rugby. These data were provided for both

"Wimpey Sealab" and "Star Hercules" vessels. Finally, system matrices
were summarised for control and system simulations.

In Chapter 4, Grimble1s approach for the selection of the Q and R 
control weighting matrices has been implemented and used within the 

problem of the dynamic ship positioning. A form of the separation 

theorem has been used and the matrix Riccati equation was solved to 

calculate the optimal feedback gain matrix. Finally, the low-frequency 

dynamics for both "Wimpey Sealab" and "Star Hercules" vessels were 

. simulated for the selection of the optimal Q and R matrices, and hence

13



the selection of the optimal gain matrix for future design (Chapters 

5, 6).

Chapter 5 contains the main design results for a complete implementation 
and installation of the dynamic positioning system on both "Wimpey 
Sealab" and "Star Hercules" vessels using linear Kalman filtering and 
stochastic optimal control techniques. This chapter has been extended 
to include tests and investigations into the reliability and 

robustness of the Kalman filter algorithm and its application to the 
dynamic ship positioning problem.

In Chapter 6 the reliability and goodness of the Kalman filter and its 

application to the dynamic ship positioning are to be investigated 

and several tests to be carried out to examine the scheme robustness.

Chapter 7 deals mainly with the case of non-linear filtering and control. 

Non-linearities in both the high-frequency and low-frequency dynamics 

of the system were studied and an extended Kalman filter has been used.

Finally, in Chapter 8, all the design procedures and results were 

concluded, together with some future work recommendations.

14



CHAPTER 2

MAIN PARTS OF THE DYNAMIC SHIP POSITIONING SYSTEMS

2.1 Introduction

The design of on-line computer control of a vessel position and 

heading under dynamic positioning control depends on certain criteria. 
These must be satisfied by the vessel and its control system in order 

to perform its mission (drilling, diving, fire fighting, etc), in the 
environmental conditions in the area where the vessel will operate 

and on the expected behaviour of the vessel under these environmental 
conditions. In dynamic positioning only the vessel motion in the 

horizontal plane (surge, sway and yaw) are controlled, where the ship 

will be regarded as a rigid body. The vessel motions induced by the 

waves are oscillatory motions with frequencies equal to the wave 

frequencies. At the same time the vessel drift from its original 
position is due to forces induced by the wind and the current. The 

vessel motion is assumed to consist of a low-frequency component and a 
high-frequency component. To keep the vessel motions, induced by the 
external forces, within the required allowable limits, the vessel is 

fitted with a set of thrusters (Section 2.2). Considering the 
requirements and environmental conditions, it may be stated that the 
control system should be designed to accept the relatively high-frequency 

motions without any counter-act measures, while the low-frequency 
motions should be reduced and controlled on the basis of the required 

accuracy for the different applications within the dynamic positioning 

technique (Table No 2.1).

As it has been defined,dynamic positioning is the technique for

15



AC
CU
RA
CY

3% 
Wa
te
r 

de
pt
h

± 
3 
m, 

He
ad
in
g 

± 
2°

He
ad
in
g 

±1
°,
 
Ex
cu
rs
io
n 

1.5
 
m 

ma
xi

mu
m

± 
15 

me
tr
es

EN
VI
RO
NM
EN
TA
L 

CO
ND
IT
IO
N

Cu
rr
en
t

(k
no
ts
)

CO t-H r—1

We
at
he
r 

up 
to 

se
ve
re
 
ga
le
 

or 
sto

rm 
co
nd
it
io
ns

Wa
ve
s

(m
et
re
s)

3.
9

4.
5

2.
0

Wi
nd

(k
no
ts
)

25 30 20

(U
(6

4J Cu td 60H o C£3 CL H •H(=» cl •U0 ■u
60 w C 60e <u •H
•H 60 er-4 C CL•H <1)
•H > SJ >-iU •H cr •H
P o W

16

Ta
bl
e 

(2
.1
):
 
The

 
re
qu
ir
ed
 
po
si
ti
on
 

ac
cu
ra
cy



maintaining the position of a vessel above a reference point on the 

seabed without the use of anchors. This is to be achieved by 

employing a set of active thrusters controlled by a computer. The 

error within the position can be monitored using different kinds of 

measurement techniques. These measurements could be corrupted by noise. 
The main components in the dynamic positioning systems are the thrusters, 
the measurement systems, filter and the computer control (Figures 2.1,

i
2.2). System input signals from wind sensor, gyro compass and position 
measurements are fed into the control system and its associated computer 

to produce a command signal to the thrusters for appropriate action.

This computer control system should be capable of:
(i) controlling the propulsors for maintaining a reference 

position and heading under specified adverse weather conditions, with 
a maximum allowable radial position error of 3 per cent of water depth 
or 7 metres (whichever is the smaller in case of drilling), or 

controlling the propulsors to maintain the vessel at a constant speed,

(ii) avoiding high-frequency fluctuations in the thrust demand since 

this may cause unnecessary wear of the propulsors and power consumption,

(iii) controlling the propulsors for changing the position or heading 
of the ship in case a new reference position or heading is selected.

In this chapter the thrusters, the measurement systems and the 
associated noise will be considered in detail, while the control system 
and the related filtering are due to be considered later.

2.2 Thruster Devices
2.2.1 Introduction

The dynamic ship positioning system has been defined as the process of 

automatically controlling a ship, or floating platform position and 

heading above a pre-selected fixed position on the seabed by using a
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Figure (2.2): Schematic Diagram of the Dynamic Positioning 

System supplied for Wimpey Sealab
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set of thrust-producing devices. In a dynamically positioned system 

the forces required to overcome the effects of wind, waves and currents 

are provided by propellers, and the vessel pre-selected position 

can be maintained by the use of a combination of thrusters and the main 
propulsion unit. Numerous types of thrusters are used for the dynamic 

ship positioning problem including plain propellers, ducted propellers 

and cycloidal propellers [73l, (Figure 2.3). "When thrusters or 
propellers are operated on a dynamic positioning vessel, the force and 

moment produced on the hull are not only due to the thrust devices 

since interactions arise due to pressure changes on the hull, and these 
should be taken into consideration in some cases.

The principal types of thrust-producing units are:
(i) screw propellers or thrusters,

(ii) cycloidal propellers (Voith Schneider units),
(iii) pump type thrusters,

(iv) transverse tunnel thrusters, and

(v) steerable thrusters.
Figure (2.3) shows the most common configuration being used. The 

thrusters have both dead zone and saturation characteristics (the dead 

zone for "Wimpey Sealab" is approximately 1-2% of the rated value of 

the thrusters [49))• The size of thrusters required is determined by 

the largest magnitude of the steady drift forces and moments. To avoid 
the unnecessary wear and tear on the thrusters the control system should 
not attempt to compensate for the high cyclic vessel motions.

2.2.2 Thrusters used on "Wimpey Sealab11 vessel

George Wimpey and Company Limited have been involved in offshore 

drilling for many years. The dynamic positioning system, Figure 2.2, 

has been developed and included in the "Wimpey Sealab" vessel in
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(a) Fixed Transverse Tunnel Thrusters 
and Main Propellers

(b) Cycloidal Propellers

5.12 m 1.9 m __  ^

Thruster
Direction

Thruster
Direction

Forward Thrusters

AFT Thrusters

(c) Stearable Thruster

Figure (2.3): Possible Bow and Stern Thruster Configuration
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November 1972. The vessel (Figure 2.4) was the first British owned 

dynamically positioned drillship, and it has been used for site 

investigation in addition to the drilling activities. "Wimpey Sealab" 
employs retractable a.c. motor driven thrusters with variable pitch 

propellers (Figure 2.5). The vessel has two rotatable bow and two 

rotatable stern thrusters (capable of 360° rotation and each rated at 
12.5 tonnes). The basic configurations of the thrusters are fully 

rotatable outboard propellers. Data from "Wimpey Sealab" were used 

as the basic information for the implementation of the dynamic 

positioning technique throughout this work (Chapter 3).

2.2.3 Thrusters used on "Star Hercules" vessel

"Star Hercules" vessel (Figure 2.6) is the other vessel to be 
considered in this work. Data from the "Star Hercules" have been 

obtained and used for design and simulation implementations.

The control thrust for the "Star Hercules" is provided by the main 

engine and by two forward and one aft tunnel thrusters. Thruster 

locations used on "Star Hercules" are shown in Figure 2.7 and have the 

following specifications:

The thrust 
producing device

Maximum thrust 
(tonne force)

Thruster lever arms relative 
to centre of gravity

Main Engine 28 (FWD)
19 (REV)

FWD.FWD Thrusters 5.1 31.03 metres
AFT.FWD Thrusters 9.1 28.62 metres
AFT. Thrusters 5.1 28.62 metres
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2.2.4 Thrusters applied forces

The fore and aft thrusters on "Wimpey Sealab" act at angles <j>i and $2 
relative to the vessels coordinates respectively (Figure 2.5). Let the 
thrusters forces be fj_ and f2 respectively for the fore and aft 

thrusters. Then the thrusters force in the surge direction is:

f 1 cos + f2 cos (f>2

the total force in the sway direction is: 

f 1 sin + fz sin <J>2

and the total force in the yaw direction is 

fj&j sin (f̂ - f2&2 sin (j>2

(2.1)

(2.2)

(2.3)

where = &2 = 10 metres ("Wimpey Sealab"). Hence, the per-unit 
equations in a matrix form (Appendix 1) will be:

surge force 
sway force 

yaw force

cos ({), cos <f)t
sin (f)x

• 1 ^2 . .—  s m  (p1 s m  <J>2 _

sin (J>2
  O 1

f"L_ 2

(2.4)

where:

f19 f2 are the per-unit values of f , f2 respectively.

is the per-unit base length = 30 metres 
0 < ̂  < 1, 0 < < 1 and \

The matrix in equation (2.4) can be written in appropriate notation as:

~Yii ^12 COS (J)j cos 4>2

Y = ^21 Y22 = sin (f)x sin d)2
- ̂ 31 ^32 - '̂1 * A-

- T ~  sin *1 _ t  ^  J

(2.5)
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2.3 Position and Heading Measurement Systems

Dynamic positioning system is basically the technique in which control 

signals can be applied to propellers and thrusters for specific action 

based on information concerning position and heading deviations from 

the pre-determined limits. In recent years the need for dynamic 
positioning has been increased by the problems associated with oil 

exploration and production. With these applications, accuracy will be 
one of the main requirements. Accuracy within dynamic positioning 

systems depends to some extent upon the reliability and availability 
of the information regarding position, heading and different wind and 
environmental forces as measured and fed into the system.

System inputs (Figure 2.2) could come from:
(i) wind sensor, measuring the wind speed and direction,

(ii) gyro compass, for heading measurements,

(iii) position measurements, which could be provided by one or more 
of the following techniques:

(a) hydroacoustic systems (with 122-305 m ideal depth of operation)
(b) radionavigation systems, and
(c) taut wire systems.

Due to the demand for accuracy within the dynamic positioning systems, 
the most commonly used technique for measuring the position (Figure 

2.8) is based on an acoustic system where a beacon is deployed on the 
seabed and designed to transmit signals at a frequency around 20 KHz 
jjL5] at specific time intervals. The pulses transmitted by the beacon 
are received at an array of hydrophones fitted at the hull underneath 

the vessel, and the position of the vessel relative to the beacon is 

computed from the time differences in receiving the signal. These
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Difference in 
arrival time of pulses

Beacon

Figure (2.8): Simplified Two Dimensional Representation of

the Acoustic System

Constant
tension
winch

Follower Pulley

Figure (2.9): Simplified Diagram of the Taut-Wire System
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position calculations are carried out by the on-board computer on the 

basis of the following formula:

_ -l vfits Dvdty = D tan (sm — ^—    (2.6)

where:
y the displacement of the vessel

<St the difference in the time of arrival of the pulses

at two of the hydrophones set 

v the velocity of sound in water
D the water depth
d the separation between the two hydrophones

The great disadvantage with this technique in providing position 
reference deviations are the sensitivity to acoustic noise and air 

bubbles in the signal transmission line Q.6). In addition to the accuracy 
requirement of the measurements, reliability and repeatability are also 

required. With the hydroacoustic system in operation alone, blocking 
of measurements in 20-40 per cent of the operation time may occur. To 
avoid the loss of the measurement signal, and to improve the 

reliability of the measurement systems, various back up systems can be 
used. The most commonly used system is the taut wire system shown in 

Figure 2.9, which consists of a sinker weight, wire, tensioning winch 

and inclinometer. The wire is maintained in tension by means of the 
constant-tension winch, which is also used to raise and lower the sinker?: 
weight when required. The measurement inaccuracy within the taut wire 

system may arise from the effect of the sea currents and the catenary 
effect on the wire due to its weight. Measurement systemsdeveloped by 

GEC and installed on "Wimpey Sealab" are to consist of one beacon and 

two sets of hydrophones using the computer to calculate the vessel 

position. These acoustic position measurement systems are backed by the
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taut wire measuring system shown in Figure 2.10. The vessel heading 
measurements are obtained-by the ship gyro compass.

As to the applications of dynamic ship positioning, considered in this 

work, the vessel position accuracy is about ±3 per cent of the water 

depth of 200 metres and ±2 per cent in 500 metres of water depth. The 
vessel positional accuracy can be defined by the following expression:

Radial Error = ei.d + W/2 + ez •........  (2.7)

where:
e2 is the per unit error of the position measurement system 
d is the water depth 

W is the peak to peak wave motion 
e2 is the accuracy of the control loop

2.4 Process and Measurement Noise Analysis

The vessel motions under dynamic positioning control are assumed to 
consist of low and high frequency components. Our main concern in 

this section is the low-frequency part of the motions, which are 

assumed to be due to the current, wind and the second order wave 

forces (Section 3.2). The mean wind forcing level and the sea current 

speed and direction are all normally assumed constant over a period of 
time and up to several hours [74] . Like all environmental phenomena, 

wind has a stochastic nature which greatly depends on time and location. 
To compensate for such uncertain forces, the low-frequency part of the 

system dynamic is excited by random variables. These random variables 

are modelled as stationary zero mean and Gaussian white noise sequences. 

Stationarity of these sequences [87] can be pictured as the absence of 
any drift in the ensemble of realisations as time proceeds.
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Mathematically, this means that the probability distribution and 

density functions are unchanged over some specific period of 
time.

The wind forces are often the most important disturbance acting on the 
vessel. Wind feedforward control is often used to counteract the 
effect of steady wind (Figure 1.1) and hence, it will be assumed that 
the vessel positioning will be affected by a white component of wind 

only. The noise analysis can be extended to include the study of both 
process and observation noise, which in turn affect the system 
estimation for them causing the plant uncertainties.

2.4.1 The Process Noise

The process noise will be considered here in terms of their covariance 

matrices. The continuous or discrete time noise covariance matrices 
are related by the step length of the system simulations time interval 

(At), and hence the discrete process covariance matrix will be:

Q - —D At   (2.8)

where At is the step length time interval =0.1 and QD is the discrete

form of Q. The process covariance matrix (Q) is assumed to consist of
a Q submatrix corresponding to the low-frequency part of the system £
dynamics, and a submatrix corresponding to the high-frequency part 
of the dynamics.

The high-frequency submatrix in Q is determined by the least squares 

fitting procedure [34~] and assumed to be unity (i.e. = I).

The low-frequency part of the system dynamics has a matrix 

determined by the mean wind forcing level (in per-unit, see Appendix 1).
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Hence, per-unit sway force = 126.8/55620 = 0.00228, and per-unit yaw 
torque = 1636/(55620 x 94.5) = 0.00031. Thus, for two degrees of 

freedom in sway and yaw, the low-frequency part of Q-matrix will be:

(0.00228)2 0.0
0.0 (0.00031)

2.4.2 The Observation Noise

The observation or measurement noise and their related covariances 
will be examined here. The position measuring systems are always 

contaminated by superimposed noise and assumed to have a standard 

deviation cr = V 3 metre. The per-unit position measurement noise 
covariance (Appendix 1) therefore will become:

o' (sway) = 0.0033 and (cf)2 = 0.1 x lO-4

The yaw angle standard deviation is assumed to be one degree, and 

hence

0s (yaw) = 0.02 radians in per-unit and (ov) = 4 x 10
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CHAPTER 3

THE SHIP MOTION

3.1 Introduction

The motion of a ship induced by the waves is an oscillatory motion with 

frequencies equal to the wave frequencies [l8]. At the same time the 
ship drifts off from its original position in the wave direction.
Drift of the ship is also induced by the external environmental 
forces of wind and current. The current speed and direction may be 

constant over some period of time. Current speed and direction changes 
could occur but these changes are slow compared with fluctuations of 
wind speed and direction. The wind may be treated as a random Gaussian 
process (white Gaussian noise throughout the modelling and simulation). 
The ship motion is also induced by the wave forces which consist of a 
small drift second-order component and a very large first-order 
oscillatory component.

Depending on the type of the external acting forces the ship motion [3] 
is assumed to consist of a low-frequency component and a high-frequency 

component. The combined motion of the vessel due to both low and high 

frequency components [12] is indicated in Figure 3.1. The low-frequency 
motion in the range of 0.0 - 0.04 Hz (which is 0.0 - 0.251 rad/sec) is 
assumed to be induced by:

(i) forces generated by the thrusters and propellers,
(ii) hydrodynamic and interaction forces due to the ship motion 

relative to the water [25] ,

(iii) wind forces,

(iv) induced second-order wave forces.
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The low-frequency motion will be the combination of the applied forces 

due to the thrust devices and due to the wind and waves. So that for 

one degree of freedom:

Total force = f + f,    (3.1)a b

where:
f represents the applied forces due to (i), (iii) and (iv) above, 

f^ represents the hydrodynamic forces in (ii) above.

The high-frequency motions in the range 0.05 - 0.25 Hz (equivalent to

0.314 - 1.57 rad/sec depending on the actual sea spectrum) are assumed 
to be due to the first-order wave motions. These motions are of a very 

large level and cause the oscillatory motions of the vessel. These 
motions cannot be effectively counteracted because of the limited thrust 
of the propulsors. The basic assumption for the development of models 
of the vessel to correspond to the high-frequency motion is that the 
sea state is known and can be described by a spectral density function. 
The high-frequency wave motions are normally modelled using the 
Pierson-Moskowitz sea spectrum [*5l] .

In the worst case the vessel motions are simply the Pierson-Moskowitz 

excitation since the vessel dynamics filter the sea wave spectrum.

In dynamic positioning^only the vessel motions in the horizontal plane 

(surge, sway and yaw) are controlled. Heave, roll and pitch motions 
(Figure 3.2a) are neglected. All motions will be referred to the body 

axes of the vessel (Figure 3.2b).

Surge motion has only a minor effect upon the directional stability of 

the ship. Sway motion mainly occurs due to the imbalance of wind and 
tidal forces acting upon the vessel. Yawing is induced by orbital
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Figure (3.2) (a): Cartesian Coordinate System
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Figure (3.2) (b): Earth and Body Axes Coordinate System
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motions of the water in the wave [73]. There is differential static 

pressure on the hull because of the shape and the gyroscopic couple due 
to the imposition of rolling motion on the pitching ship. Sway and yaw 
motions are normally associated with each other. To simplify the 
situation, the equations of motion of the vessel in sway and yaw only 
will be considered. This is possible because the linearised equations 

of motion indicate that surge motion can be assumed decoupled from the 
sway and yaw motions, and hence it can be considered and controlled 

separately #

3.2 Low-Frequency Dynamics

3.2.1 Introduction

A study of the dynamic positioning control of a vessel at sea requires 

the formulation of a set of equations which describe its dynamic 
behaviour under the forces imposed on it by the environment of wind, 
waves and current flow as well as by its own thrust producing devices 
[l04][7].These equations of motion which represent the vessel dynamics 

are assumed to involve a complex multiplicity of coefficients for 
reasonable accuracy and good modelling to be achieved. Such equations 
will be regarded as the basis of the whole modelling and simulation 
involving the position control scheme of the vessel. However, the need 
is apparent for a simplification of the set of equations which give a 

more realistic feel of the vessel dynamics.

For an efficient control scheme using Kalman filtering, a good 

mathematical model of the vessel dynamic is required. The reason for 
this is that the Kalman filter uses the model dynamics, together with 

some knowledge of the noise statistics, to generate the unbiased 

estimates of the system states. This assumption will introduce the need 

for some reasonable means of linearisation based on common practice,
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and at the same time provide reasonable representation, good accuracy 

and simplicity.

The low-frequency part of the vessel dynamics should describe:

(i) the wind and wave forces,
(ii) the part of the vessel dynamic to be controlled,
(iii) the thruster dynamics, and
(iv) the interaction between the thrusters devices and the vessel

dynamics.

The dynamic ship positioning system controls the low-frequency part of 

the ship motion in surge, sway and yaw. Treating the ship as a rigid 

body [l04j having freedom of movement in surge, sway and yaw, but 
restricted in heave, pitch and roll. These movements are taken with 

respect to the body axes (Figure 3.2b). The vessel dynamics are 
represented by a set of non-linear differential equations, then 
linearisation procedure has to be applied to these equations for control 

purpose. The linearised form of the ship equations have the following 
differential state equation form:

2£o 2̂.-2 + ^2— 2 + 2̂.-2 + ^2— 2   (3.2)A/ yv A/ A/ A/ A/ A/ A/A /

where:
9x^(t) £ R are the system state vectors

u^(t) £ R3 are the control inputs to the thrusters

w^(t) £ R3 are white noise signals representing the random
forces applied to the vessel 

n^(t) £ R3 are the wind disturbance forces 
is the system matrix 
is the input matrix 

and are the noise matrices.
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Different parameters and coefficients of equation (3.2) above have been 

obtained from a set of tank and wind tunnel tests, carried out by the 

National Physical Laboratory on two different models, namely "Wimpey 

Sealab" and "Star Hercules". The obtained non-linear set of equations 
have to be linearised, time-scaled and converted into per-unit form, 

before it can be used in the control loop. Originally, these dynamic 
equations were provided by GEC Electrical Projects Limited, Rugby, and 
derived from first principles of Newtonfs laws of motion.

3.2.2 Derivation of the Low-Frequency Dynamics

The body axes are chosen to be the principle axes of the vessel for 
the derivation of the dynamic equations with its origin located at the 
centre of gravity (Figure 3.2b). For the position control of a vessel, 
interest is directly concerned with the motions in the horizontal plane 
of surge, sway and yaw (Figure 3.2a).

Regarding the vessel as a rigid body having freedom in surge, sway and 

yaw, but restricted in heave, roll and pitch, the equations of motion

can simply be represented by [iOA] ;

X = m(u - rv)   (3.3)

Y = m(v + ru)   (3.4)

N = Izzi   (3.5)

The forces and moment acting on the vessel in equations (3.3) to (3.5), 
X, Y and N respectively can be considered as a sum of two components as 
shown in the following equations:

XA + XH = “ rv)   (3.6)
YA + Yr = m(v + ru)   (3.7)

NA + %  = 1zzt   (3.8)
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where XA , YA and NA represent the applied forces and moment due to

the thrust-producing devices, and to the environment of wind and
second-order wave drifts.

XH, y h and Nh represent the hydrodynamic forces and moment due to 
relative motion between the vessel and the water. To determine the 

equations of motion, expressions for Xjj, Yg and Njj are required, 
appropriate to a vessel making small movements about a fixed reference 

position.

Xfl, Yjj and Njj are assumed to be a function of the velocities and
accelerations (u, v, r, u, v and r). It is assumed that the velocity

and acceleration dependent forces can be separated. Acceleration 
dependent forces, referred to as added masses and added iiiertia are 
X^, Y^ and N^, which depend on the nature of the body motion and flow 
pattern.
m : mass of the vessel.

I : radius of gyration.

The above equations in (3.6) to (3.8) can now be written as:

XA + x£ ^ “ Y^rv + xH («*v,r)‘ = m(u - rv)   (3.9)

YA + Yv * + V U + V u’v ’r> = + ru> ■ •••....  (3*10>
Na  + Nf r + NR (u,v,r) = I^r   (3.11)

Equations (3.9) to (3.11) can be rearranged into the following form:

(m - Xfi)u - (m - Y^)rv = XA + X ^ u ^ r )    (3.12)

(m - Y^)v + (m - X^)ru = YA + YR(u,v,r)   (3.13)

(Izz ~ V *  = NA + NH (u’v’r)   (3'14)

These non-linear equations can be dimensioned using the appropriate base 
units, based on the specifications and dimension of the vessel under
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consideration. The per-unit variables are shown by using a primed 

symbol, and are obtained using the following base units:

u = _ _ _  , v =    , r « —
•^ppg *%pS > V Lpp

.v u .s v ru =  —  , v = —  , r = — 7-—g g g/Lpp

£ = —  , Y ' = —  , IT = — ^—mg mg mg pp
K-t ^zz

pp-
t = ■■-■■■■ ■ , K _

zz Lpp

I .  = m'(K')2 = (K' )2zz z^ zz

where:
Lpp is the length between the perpendiculars

g is the gravitational acceleration (= 9.81 m/sec2)
K is the radius of gyration in yaw (= 0.243) zz

The above per-unit system formulas are valid for a vessel with small 
fixed displacement, which is the case of the dynamic positioning 
problem.

ii it3.2.3 Low-Frequency Equations for Wimpey Sealab Vessel

There are a variety of methods by which an estimation of the different 

coefficients in equations (3.12) to (3.14) can be achievedl These 
methods are mainly based on experimental results on a model of the 

vessel in tank tests, or on a theoretical basis using previous 
experimental evidence. An estimation of the coefficients for the drill 
ship "Wimpey Sealab" is obtained by a combination of results from tank 
tests and theory, performed at the National Ph}rsical Laboratory [l04j. 

After reference to the base unit details of "Wimpey Sealab" in Appendix 

1, the set of non-linear equations (3.12) to (3.14) can be expressed as:
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(1 + 0.044)us - (1 + 0.84)r'vv = + 0.092(v')2

- 0.138iTlf   (3.15)
(1 + 0.84)v" + (1 + 0.044)r"uv = - 2.58v"lT

- 1.84(0 3/lT +0.068r"|r"|   (3.16)
((Kk )2 + 0.0431)rv = - 0.764u"v" + 0.258vKUvZZ ii

- 0.162r"|r"|   (3.17)

where:
UK = modulus of the vessel velocity (surge and sway) = /(uK)2 + (v)2. 

The prime is used to denote the per-unit variable. Equations (3.15) to 
(3.17) above represent the vessel motions in surge, sway and yaw with 

respect to the vessel axes.

For the dynamic ship positioning system, the vessel deviations from its 

reference position are assumed relatively small, and hence a reasonable 

linearisation process can be applied to get a form of linear state 
equations for simulation and control. Previous experience with Notch 

filter designs [5l],[99] suggests that a linear low-frequency model 

can be good enough for the design and control of the dynamic ship 
positioning system using a Kalman filtering scheme. The linear state 

equations can be obtained using Taylor expansions [65] and some useful 
approximation to the non-linear dynamics [l04]. However, a number of 
linearised models could be obtained for different sea current and state 
of environment. The following linearised dynamics have been used which 
correspond to a Beaufort number 8 sea state with a mean wind velocity

of 19 m/sec:

1.044u*‘ = - 0.01593uv   (3.18)

1.84vK = - 0.1004v*' + 0.002981r%   (3.19)

0.1022r" = - 0.007101^ + 0.005859v'   (3.20)
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As a result of the little interaction between the surge and the sway 

and yaw motions within the above equations, simulation and control will 
be applied initially using the sway and yaw motions only and described 

by equations (3.19) and (3.20). Surge motion then can be simulated 
separately.

The low-frequency model for sway and yaw motions is to include the 
velocity, position and heading of the sway and yaw, as well as to
represent the thruster dynamics. The thrusters have been modelled by

simple first order lag terms with two seconds time constant real
time. Referring to Section 2.2, Section 2.4 and Figure 3.3, the overall 

low-frequency dynamics for "Wimpey Sealab" can be represented by the
following state space equation and its related details:

-Z = AZ-Z + BZ-Z + B9^Z + E£nit   (3.21)

where:
2£̂ (t) £ R6 is the system state vectors in. which, 

xi (t) = sway velocity
X2 (t) = sway position

X3 (t) = angular velocity 
(t) = yaw heading 

xs (t), X6(t) = thruster outputs
u^(t) £ R2 are the control inputs

0)̂ (t) £ R2 and n^(t) £ R2 are process and disturbance noise.
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With:

h

T
D* ■

e t =

a n 0.0 a l 3 0.0 V . Y23x“ ~0.0 0.0 ~
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a 3 1 0.0 a 3 3 0.0 Y 332 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -b! 0.0 bi 0.0

__0.0 0.0 0.0 0.0 0.0 -b2 -
_ 0.0 b2

0.0 0.0 0.0 0.0 0.0
_0.0 0.0 $2 0.0 0.0 0.0

ei3i 0.0 e3$2 0.0 0.0 0.0

-  e2̂ 1 0.0 0.0 0.0 0.0

The low-frequency components of the position and heading is given by:

To = -U
= CsAl (3.22)

where:
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0

Substituting for the above different variables in terms of the respective 

approximated and calculated values, the following system matrices can be 
obtained:

Ai

0.0546 0.0 0.0016 0.0 0.5435 0.272
1.0 0.0 0.0 0.0 0.0 0.0
0.0573 0.0 -0.0695 0.0 3.268 -1.634
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -1.55 0.0

0.0 0.0 0.0 0.0 0.0 -1.55

(3.23)
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B£ =

E* =

0.0 0.0 0.0 0.0 1.55 0.0

0.0 0.0 0.0 0.0 0.0 1.55

0.5435 0.0 0.0 0.0 0.0 0.0
0.0 0.0 9.785 0.0 0.0 0.0

0.384 0.0 0.0 0.0 0.0 0.0
0.0 0.0 6.92 0.0 0.0 0.0

(3.24)

(3.25)

  (3.26)

The above linearised equations have been time-scaled with 3.104 as the 

time normalisation factor for "Wimpey Sealab" vessel (Appendix 1).

3.2.4 Low-Frequency Dynamics of "Star Hercules" Vessel

Using the step by step procedures outlined in Section 3.2.3 above, the 

linearised equations of motion for the three degrees of freedom, 

(surge, sway and yaw), based on per-unit data from the "Star Hercules" 
(Appendix 1) are:

1.033u" = X* - 0.01088u*“A
1.709V** = Y" - 0.03307v*“ + 0.00221r"A
0.1042r" = N" - 0.003272r" + 0.004344v* A

(3.27)
(3.28)

(3.29)

Taking a time normalisation factor of 2.728 and considering sway and 

yaw motions for simulation and control, different elements of the system 
matrix will be:

“n  
ai3 
a. 15 

331 
a33 

a36

-0.03307/1.709 = -0.01935 per-unit 

0.002210/1.709 = 0.00129 

1.0/1.709 = 0.585
0.004344/0.1042 =0.04168 

-0.003272/0.1042 = -0.0314 
1.0/0.1042 = 9.596
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a55 a66 “1.364

Therefore the A-B-C matrices building up the low-frequency dynamics 

for "Star Hercules" will be:

-0.01935 0.0 0.00129 0.0 0.585 0.0
1.0 0.0 0.0 0.0 0.0 0.0
0.04168 0.0 -■0.0314 0.0 0.0 9.596

> II

0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -1.364 0.0

_0.0 0.0 0.0 0.0 0.0 -1.364

T ~ 0.0 0.0 0.0 0.0 1.364 0.0
Z ~ _ 0.0 0.0 0.0 0.0 0.0 1.364

~ 0.0 1.0 0.0 0.0 0.0 0.0

n ii

0.0 0.0 0.0 1.0 0.0 0.0

High-Frequency Dynamics

... (3.30)

... (3.31)

... (3.32)

3.3.1 Introduction

Section 3.1 outlined a brief introduction to the high-frequency motion 
of the vessel. The high-frequency motions are the linear wave induced 
ship motions, which take place at the wave frequency. A mathematical 
model of the vessel for automatic control system implementation can 
only be made if the characteristics of all its components are known. 
Therefore, the high-frequency motions of the vessel have to be 

determined and fed into the system together with the low-frequency part 
of the vessel dynamics.

The automatic control system must be capable of avoiding high-frequency 

fluctuations since this may cause unnecessary wear of the thruster 
devices. Balchen, J G [li] , [ll] modelled the high-frequency part of the
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ship dynamics using separate harmonic oscillators in each degree of 

freedom (surge, sway and yaw).

Since the frequency of the wave motion is time-variant and unknown, the 

dominant oscillator frequency must be estimated as a parameter in the 

state space equations [49]. For simplicity, all oscillators are assumed 

to be running with the same frequency and that will reduce the cost of 
simulation. The oscillator frequency can be estimated individually 

using an extended Kalman filter.

As an alternative to the above approach by Balchen, Grimble adopted a 
fundamental assumption for the development of models for the 
high-frequency motion of a vessel, in which the sea state is regarded 

as known and can be described by a spectral density function. An 
internationally accepted sea spectrum is similar to the Pierson- 
Moskowitz sea spectrum. The vessel dynamics act as a filter on the 

sea spectrum for different Beaufort sea states [l7] . The worst case 
high-frequency motion of the vessel is determined by the Pierson- 
Moskowitz spectrum alone. Grimble1s approach for estimating the 
unknown parameters within the high-frequency dynamics using extended 

Kalman filters will be considered in Chapter 7.

3.3.2 Development of the High-Frequency Model

The internationally accepted sea wave spectrum, which is similar to the 

Pierson-Moskowitz spectrum for a stationary wave system can be defined 
by the following sea spectrum:

—b / I*
S(o)) = —  e W m?sec   (3.33)0)

where
0) is the frequency in rad/sec
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a = 4.894 

b = 3.109 (hi, )2/ 3

hi , is the significant wave height in metres, which is defined by / 3
taking 99 waves, choosing the 33 largest waves and then calculating 
the mean of bne third of the peak to peak magnitude of these waves.

The above sea spectrum can be obtained by passing a white noise source 

into a rational transfer function [49]. Therefore, to fit the sea 
spectrum S(co) above, consider:

S0«») = (|G(j(0)|)2. Ac    (3.34)

in which Aq is the white noise amplitude.
For a unit magnitude white noise,

S0(u>) = (|G(j(0)|)2. X   (3.35)

where:

Ks2
G(s) “ 2 2 2 2    (3.36)(S + QjS + UjXs + oz s + 0)2)

in which 019 a2, OJj, 0)2 and K are constants for a given sea spectrum, and 
given in Appendix 2. These constants can be determined by minimising 
the integral of the squared error criterion:

j = r *  (S(w) - So(u))2 d(i)    (3.37)
o

over a range of frequency from zero to com. The worst case 
high-frequency dynamic of a vessel can be represented by a white noise 

source input to the above transfer function G(s) in each degree of 
freedom. The state space representation of the high-frequency dynamic 

of the vessel in sway and yaw motions can be expressed in a companion 

form as:
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(3.38)

where:

x^(t) £ R1* for each degree of freedom,

\
r * sw 0.0

0.0 *ha

h 0.0
_ 0.0

< a
(3.39)

The above sub-matrices 

same structure of:

and in sway

" 0.0 Tb 0.0 0.0~

0.0 0.0 Tb 0.0

0.0 0.0 0.0 Tb

-a 3 ”a2 -« i -

and

h h

0.0 
0.0 
0.0
k (3.40)

where T^ = 3.104 sec for the "Wimpey Sealab" and = 2.728 for the 

"Star Hercules". The parameters 0Cj, ct2, a3 and are constant for a 
given weather condition and a specific vessel as indicated in Appendix 
2 for both the "Wimpey Sealab" and the "Star Hercules" vessels. The 
values displayed in both tables are to correspond to Beaufort number 5 
(calm sea) to Beaufort number 9 (the worst weather condition) for 
the "Wimpey Sealab" and the corresponding Beaufort number 5 and number
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8 for the "Star Hercules" vessel.

The high-frequency component of the position of the vessel is given by 

the following output equation:

Zh!
_ŷhz -J

= ch2h (3.41)

where:

Ch ■
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

(3.42)
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CHAPTER 4

THE STOCHASTIC OPTIMAL CONTROL PROBLEM

4.1 Introduction

Optimal control problem,have attracted and received a great deal of 
attention during recent years owing to an increasing demand for systems 
of high performance especially for industrial applications. A solution 
to the stochastic control problem [40],[42],[lO], [27] is the next step in 

applying the optimal control theory to the multivariable industrial 
systems with noisy observations [43] , [63] , [90] , [95] .

The essential components of a control system are:

(i) the system dynamics of the plant to be controlled,
(ii) measurement systems, and 
(iii) the controller, which is the heart of the control system, which 
compares the measured values to their desired values and adjusts the 
input variables to the plant.

There are two traditions in control, which may be classified as, 
classical, which is based on a transfer function representation of the 
system, and modern control theory which deals directly with the differential 

equations, representing the system dynamics and often uses optimisation 

theory. Throughout this work the state space differential equations 

procedure will be adopted to implement the controllers. One basic 
difficulty with these optimal controllers is that they are often 
impractical, if not physically impossible to implement. Typically, the 

feedback portion of the optimal control system is a function of all the 
states of the system ]~85] . This would be satisfactory provided that all the 

‘states were accessible [63] , [8] or available for measurements. In this case
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a straightforward solution to the optimal stochastic control problem 

using the system states for direct feedback control would be extremely 
difficult. However > {[21.3,[5l]|,[59̂  9 since the system is linear or linearised 
(non-linear systems control will be considered in Chapter 7), and the 
measurements are directly or indirectly available then a special form 

of the separation theorem can be used and the optimal stochastic 
controller calculations can be separated (Figure 4.1) into:
(i) a filter (Kalman filter in our case) to generate.the conditional 

mean of the system states, and
(ii) a solution to the linear optimal control problem using the 

estimated states in (i) as true states of the system.

Hence, the separation theorem as applied to this specific problem can 
be defined as follows: "In linear/linearised systems with quadratic 

error criterion and subjected to Gaussian inputs, the optimal stochastic 
controller is synthesised by combining an optimal estimation (Kalman 
estimator) with a deterministic optimal control".

In the dynamic ship positioning problem the system is assumed to 
consist of a low-frequency part to be controlled and a high-frequency 
part to be attenuated using the filtering scheme. The dynamic 
positioning control systems use the state estimates corresponding to the 
low-frequency model in the Kalman filter for closed loop feedback control. 
If the filter is working efficiently the control system will only respond 
to the low-frequency position error signal and thus the thruster 

modulation will be minimised. Hence, the purpose of the on-board 
computer [104J is to input error signals of the ship position and operate 
on them to output thrust magnitude and direction commands to the thrusters, 

so that ship position and heading are maintained at their fixed 
reference values against the environmental disturbance. Thus, the
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Ship

Control

Filter
Figure (4.1): Filter and control using a form of the

separation theorem
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control system is mainly required to:

(i) maintain the vessel within the radial position error tolerance 

band (Table 2.1),
(ii) control the heading of the vessel (specially in the worst 

weather conditions), and
(iii) minimise thruster modulation and the consequence of energy 

losses.

In general, there are some difficulties in applying optimal control to 
multivariable industrial systems. Two problems are of relative 
importance to this work and were investigated in some detail. The first 
is concerned with the implementation of the optimal control algorithms
(Section 4.2) and the second arises in the selection of the performance
criterion weighting matrices Q and R (Section 4.3).

4.2 Control Algorithm

An optimal control algorithm for the stochastic multivariable system of 

the dynamic positioning problem is summarised in this section. The 

plant linearised state equations may be derived as:

x(t) = Ax(t) + Bii(t) + Du(t) ..........  (4.1)

jz(t) = Cjjf(t) + v(t) ..........  (4.2)

where:
x(t) £ Rn (n = 6 as system low-frequency states in sway and yaw)

u(t) £ Rm (m = 2)
jz(t)£R (r = 2) is the observations
v(t), o)(t) are the uncorrelated additive measurement and process

noise respectively.

The stochastic control strategy employing Kalman estimator can be assumed 

* to include two procedures:
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(i) Obtain the conditional mean estimate of the low-frequency part 
of the dynamics to be controlled, using a Kalman filter, and assume the

estimates as truely representative of the system states for the state

feedback loop.
(ii) Calculate the feedback control gain matrix by solving the 

deterministic control law [14] , [28] , [32] , [41] »'[66] .
The above assumptions in (i) and (ii) are often deferred to as the

separation theorem [2l[], which involves two separate problems of 
estimation and control (Figure 4.2) to solve the optimal stochastic 

control (Section 4.1).

In solving the above.optimal control problem, some rules or measures 

need to be specified subject to certain'constraints in order to minimise 
the deviations of the system behaviour from the ideal pre-selected ones. 

Such measures are usually provided by the optimisation of the performance 
criterion (index). The performance criterion is important because, to 
a large degree it determines the nature of the resulting optimal control 

through its cost weighting matrices Q, R. Details of the selection 
procedure of both Q and R are considered in Section (4.3).

The steady state performance criterion to be minimised may be defined as:
T

J(u) = limit ~  E { / x^(t) .Q.x(t) + tiT (t) .R.^(t)dt} .... (4.3)
T-k » Z i  - t

where Q ^ 0 and R > 0 are the positive semi-definite and positive
Tdefinite weighting matrices respectively, while x (t) is the transpose 

of x(t). From the above separation principle, the optimal control 

signal can be found as:

_uc(t) = -K°x(t) ........  (4.4)

. where x(t) are the best current conditional mean estimates of the system
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c - • • •states x(t), and K is the optimal feedback gam matrix.

In dynamic ship positioning*control is not needed for the high-frequency 
subsystem, and hence the overall gain matrix of the feedback control 

loop will have the following form:

KC = [ Kc5, 0 ]   (4-5)

and the corresponding control signal will be:

Uc (t) = C k C o ]
SA(t)

L V e) J
(4.6)

where are high-frequency system state estimates. The gain
• cii • • •matrix K may now be calculated by solving the steady state Riccati

equation [70]:

0 = A*P0 + P0 A0 - P0 B-R^BoP- + Q......... ............. (4.7)£ £°° £°° £ £°° £ £ £°o
and

KcJ = R-'b^ ..............................................  (4.8)

Subscript (£) is used to refer to the low-frequency subsystem, while 

subscript (°°) denotes the steady state solution of the matrix Riccati 
equation. and of equation (4.7) are the low-frequency plant 

system and input matrices respectively. P ^  is the steady state 

solution of the matrix Riccati equation corresponding to the 
low-frequency part of the system dynamics to be controlled.

The solution of the above Riccati equation can be obtained by a number 

of methods [l4},[62],[77],[8l] . The solution to the steady state or algebraic 
matrix Riccati equation used throughout this work is an extension to the

work done by Grimble and Patton [49]] and it has been using the
eigenvector method of MacFarlane (1963) [70]j. The method used is to
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form the 2n x 2n matrix of:

W =
A

Q
(4.9)

where n = 6 (the system dimension of the low-frequency part of the ship
dynamics for sway and yaw motions). Now, compute eigenvalues and 

eigenvectors of the above matrix (W). The eigenvalues of this matrix 
are symmetrically disposed in the complex plane, and if the eigenvectors 
corresponding to the most stable eigenvalues with negative real parts 

are found, then the following (2n x n ) eigenvectors matrix can be 

written as:

where P ^  is the solution of the steady state matrix Riccati equation.
• • cii • •The feedback gain matrix (K ) can now be computed using equation

One of the main criticisms in dealing with the design of optimal 

controllers for industrial applications is concerned with the selection 
of the performance criterion weighting matrices Q and R. For some time 

there has been no neat method of selecting a suitable value for the Q 
and R weighting matrices and thus the designer must resort to trial and 
error procedures to achieve reasonable values of Q, R for improved 
performance of the system responses. An investigation and simulation 
work have been carried out [2] to help with the selection of the

U1
U = (4.10)

U2

then the P ^  - matrix can be found as:

-1
P0 = -U2.U1£00 (4.11)

(4.8)

4.3 Selection of the Performance Criterion Weighting Matrices



weighting matrices Q, R for the control loop as applied to the dynamic 

ship positioning problem. These investigations were based on recent 

techniques developed by Grimble [j39j , [38] on the design of an optimal 
controller using multivariable root loci. The author contributed to 

the computer implementation of the technique and the applications of 
the technique to the dynamic ship positioning problem. Expressions 

are obtained below from which the performance criterion weighting 
matrices Q and R may be calculated.

Consider the optimal output regulating problem [39]] >[72] as applied to the 

following linear multivariable system:

x(t) = A2c(t) + Bii(t)   (4.12)

y(t) = Cx(t)     (4.13)

with
x(t) E Rn
u(t) £ Rm
y(t) e Rm

and the system (A,B,C) is assumed to be square, since additional plant 

outputs may be defined in (4.13) to square up the system. This action 
only affects the following performance criterion:

CO
J(0,~) = J yT(t)Qyy(t) + uT (t) Ry u(t) dt     (4.14)

for zero cross-products matrix (i.e. no interaction between the input 

and the output of the system). Qy and Ry are the weighting matrices 
for the output regulator control loop [68] . Now a straightforward conversion 

can be performed on equation (4.14) to obtain the energy weighting Q, R 
for the state (estimated state) feedback control as applied to our 

dynamic positioning problem (R values will be as those of Ry).
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y(t) = Cx(t)   (4.15)

T T TSubstitute (4.15) in (4.14) with ŷ (t) = C x (t) and derive the weighting 
Q-matrix for the state feedback control case as:

Q = CTQyC     (4.16)

Hence the values of Q and R matrices can be selected on the same 
principle as in Grimble [39], with the necessary above conversion for 
the state feedback loop.

Q = ((CBN)T)“ 1(CBN)"1     (4.17)

R = (NT)*" 1A°° n” 1   (4.18)

where:

>T r  °C 00 00 “1N = LXi » X 2 >  ZmJ

and v“ v» ... are the set of the system eigenvectors.

A“ A diag{( -t )2 , ( i  )2 ....  ( 4, )2 }Aj Az 'Sn

and A^ (i = 1, 2,..., m) are the system eigenvalues.

The above expressions of equations (4.17) and (4.18) were derived for 
the case when CB is full rank, i.e.,

rank (CB) = m or |CB| ^ 0   (4.19)

The case when CB is not full rank will be considered now as applied to 

the example of the dynamic positioning problem using the dynamics of the 
"Wimpey Sealab" vessel [3], [2] . In applying the above technique to this 
example (Section 3.2.3), the following have to be noted. The first Markov 
parameter (C^B^) is not full rank, the second Markov parameter (C^A^B^) 

is not full rank either, but the third Markov parameter (C^A^B^) is full
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rank, and thence

0.84243 0.4216
5.0654 -2.5327

det.(CjAjB^) = -4.2692.
where A^, B^, are the low-frequency part of the ship system, input 
and output matrices based on data from the "Wimpey Sealab1' vessel 

(Section 3.2.3).

Expressions for Q and R from equations (4.17) and (4.18) can be 

repeated to obtain:

Q = ((CJlAjBJlN)T)_ 1(C(,A^BJlN)"1 ........... (4.20)

R = . P O V ' . A j . l T 1]  . (4.21)

where / is a positive real scalar which affects the values of the control 

energy R-weighting matrix to shape the system responses.

A. — diag{-———6 « 0, ..., 0 13 (X?)6’ a ”)6’ (xs)

In a more general case where the first (k) Markov parameters are zero 
(|CB|= 0, |CAB| = 0, ..., |cAk”*B|=0), and (CAkB) is full rank, the 
expressions of equations (4.20) and (4.21) become:

Q = ((CAkBN)T)_1(CAkBN)_1 ...........  (4.22)
R = /[(NT)"1.A^+1.N'"1J   (4.23)

where

Aoo _ k ,. ■ 1 .2(k+l) , 1 v 2(k+l) •.
\ +1 = (-D diagi ( -53 ) ,...,( Too ) >A i Am

Using equations (4.20) and (4.21) above for Q and R, different
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combinations of Q and R values have been selected and system simulations 
for different cases were investigated based on data from the "Wimpey 

Sealab". These cases were summarised in the next section in which 

full simulation of the low-frequency part of the ship and calculation 

of the optimal feedback gain matrix were considered.

4.4 Simulations and Results
4.4.1 Case (a)

In this test, the control signal for the first input (sway motion) is
1.5 times faster than that of the second input (yaw motion), i.e.,

00xx = 1. , 00 
5 X2 , assume unity eigenvectors (N = I2),

>̂n
 

N> 
8 ti , then, X* = 1.5

AT = dias —  )6 (.00 ' 9 'A1 x2 J
= diag{0.08799, 1.0}

" 0.08779 0.0 “
R = /A3 = /

_ 0.0 •l.°_

” 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.7597 0.0 -0.17555 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

Q = 0.0 -0.17555 0.0 0.0487 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

R- matrix for system simulations varies as f takes the following values 
for best response to be chosen.

S ={icf\ io-3, l , 10 , io3 , io6}

System responses of the low-frequency dynamics of the "Wimpey Sealab"
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“ 3 . .are shown in Figures 4.3a - d for f = 10 and m  Figure 4.4a - d for

f - 1.0. Both system responses were presented here as the best
responses of case (a) for a step input of 0.02 p.u. into sway. The
optimal feedback gain matrices for both systems have been calculated,

-3for f = 10 , as:

KcZ
-26.87 -63.67 -4.39 -10.48 -5.18 -0.024
-23.81 -37.46 -3.95 6.24 -0.002 -3.22

and for f = 1.0,

KcZ-
-2.87 -2.05 -0.44 -0.32 -1.20

-2.54 -1.17 0.41

-0.024

0.19 -0.002 -0.66

4.4.2 Case (b)

Throughout this test, the two inputs are non-interactive and required to 

be at the same speed. Hence choose = 1.0. Let N = I2 and the
Q-matrix remains unchanged as from case (a).

R1 = diag {1.0 , 1.0}
1.0 0.0'
0.0 1.0

R = /Rj

The systems of the "Wimpey Sealab" have been simulated for different 
values of /,

R i -

f ={io-6, io-5, io-", 10-3, 1.0, 10}

and the responses for a step input of 0.02 p.u. into sway are presented

here in Figures 4.5a - d for the case when f = 1.0. The optimal feedback 
r Z -gam matrix K for this case is:
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Kc£
-1.30 -0.59 -0.21 -0.097 -0.67 -0.005
-2.54 -1.18 0.41 0.19 -0.005 -0.67

4.4.3 Case (c)

In this case (see Grimble ),

Ri =
26.36797 -12.47397

-42.47397 6.59232

R = / R 2 

while:
,TQ = C . C 
0.0

Q =

1.0 0.0
0.0

1.0
0.0 0.0

0.0

and J3 takes values of the following range:

/ ={io” 3, 1.0, 10.0}

Based on the above selected values of Q and R, system responses of the 

"Wimpey Sealab" for 0.02 p.u. step input into sway are presented in 
Figures 4.6a-d for the selected case when / =1.0 with the following 

feedback gain matrix:

Kc£
-1.28 -0.58 -0.26 -0.13 -0.74 0.038
-2.57 -1.19 0.30 0.13 -0.17 -0.59
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4.5 Concluding Remarks

Values of the weighting matrices Q and R were selected using the new 
technique by Grimble [39] which showed that these weightings depend on

• . C O  # 00the choice of the eigenvalues (Â .) and the eigenvectors (v^). The 
chosen values of Q, R have been used in solving the matrix Riccati 
equation to obtain the optimal feedback gain and hence to simulate the 

system. The dynamics of the "Wimpey Sealab" have been simulated over a 

range of Q and R values (cases (a) to (e)), in which R-matrix took 
multiple values fbr a range of J3 values. Some selected tests were 

presented and the system responses for sway and yaw input-output vectors 
were considered. The test of the simulation, including case (d) and 
case (e) was documented in a separate report by the author Qf} . Among 
the presented responses, case (b) with J5 = 1.0 has been selected for 
the control loop and its application to the dynamic ship positioning 
problem. It has been selected, since it has given a good system 
response and since it represents a test for a non-interactive, same 
speed input, which is the case of the dynamic positioning problem. After 
Q and R are specified there remain the procedures of solving the 

Riccati equation and calculating the feedback gain matrix thereafter, 
and for any specified system. Solution of the Riccati equation is the 

process of obtaining the steady state P-matrix. For systems based on 
data from the "Wimpey Sealab" vessel (Section 3.2.3), the P-matrix was 
found to be:

8.40 4.61 -0.82 -0.46 0.84 1.67
4.61 4.07 -0.45 -0.40 0.38 0.77

-0.82 -0.45 0.22 0.12 0.13 -0.27
-0.46 -0.40 0.12 0.11 0.063 -0.12
0.84 0.38 0.13 0.063 0.43 0.003
1.67 0.77 -0.27 -0.12 0.003 0.43
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and hence the corresponding optimal gain matrix is:

-1.30 -0.59 -0.21 -0.097 -0.67 -0.005_
_-2.54 -1.18 0.41 0.19 -0.005 -0.67

The calculation of the optimal feedback control using the above 

selected values of Q and R for a system based on data from the "Star 
Hercules" vessel of Section 3.2.4 was performed, and the optimal 

feedback gain matrix.found as:

-1.40 -0.44 0.0 0.0 -0.51 0.0
0.0 0.0 -0.09 -0.03 0.0 -0.53

The above calculated feedback gain matrices for both the "Wimpey 
Sealab" and the "Star Hercules" will be used for closed loop control 
for different applications of the dynamic positioning problem 
considered throughout this work. At this stage, the low-frequency 
part of the "Wimpey Sealab" and the "Star Hercules" have been 
simulated using their corresponding values of the feedback gain and 
for a step input of. 0.02 p.u. into yaw rather than sway. These 

responses are shown in Figures 4.7a - d for the "Wimpey Sealab" and 

in Figures 4.8a - d for the "Star Hercules" dynamics.
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CHAPTER 5

LINEAR FILTERING/KALMAN FILTERING PROBLEM

5.1 Introduction

Dynamic ship positioning control systems require filters to remove the 
large high-frequency wave motion signals [99]. This ensures that the 
thrusters do not respond to the high-frequency wave motion and, 
consequently, reduces energy loss and wear on the thrusters. Some 
dynamic positioning systems employ Notch filters [l3]] ,[57] . However, 

Kalman filtering techniques have been used throughout this work.

Kalman filtering is a technique which produces an optimum estimate of

the state of a system, from a succession of measurements. A knowledge 

of the dynamic behaviour and error characteristics of the system is an 
essential pre-requisite. The Kalman filter includes a model of the system 
dynamics and. can therefore provide separate low and high frequency state 

estimates. The Kalman estimator is shown in Figure 5.1 and is defined 
by the following state and output equations:

x = Ax + K(_z - y) + Bu........................ ..............  (5.1)

y = Cx...................................................... (5.2)
where

A E filter system matrix 
K E filter gain matrix 
_z E observations 
y E filter output 

x E state estimates

B, C E filter input and output matrices 

The Kalman gain matrix K(t) of equation (5.1) above can be partitioned
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into low and high frequency gain matrices as:

K(t) =
V t )

(5.3)
L y t ) j

This matrix can be evaluated for a given noise information (Appendix 3— 
Kalman algorithm). The process noise covariance matrix-related to ran_ 
-dom forces, is defined on the basis of common practice, while the 
measurement noise covariance matrix can be defined with acceptable 

accuracy from a knowledge of the measuring system. The evaluated 
time-varying Kalman gain matrix elements settle to a constant value 
after approximately 20 seconds (Section 5.3), and thus these gains can 

be pre-computed off-line in some cases and stored (Section 6.3). By 
using a constant or semi-constant gain Kalman filter, the overall cost 

of the control system can be reduced by saving some computing time.

5.2 Kalman Algorithm

Kalman filter theory is well known [58] , [60], [98j . A step by step 

application to the dynamic ship positioning systems can be summarised 

as follows:
(i) Develop a system model in order to formulate a state vector (x) 

which describes the system at any given time.
(ii) Determine the state of the input Cu) and the dynamic relationship 

between (u) and (x).
(iii) Assess the likely process noise (u)) and its covariance matrix

(Q).
(iv) Determine the measurements to be made (y) , and the associated 

output matrix (C) relating the vector (y) to the state vector (x).

(v) Assess the likely error or noise in the measurements (v) and its 

covariance matrix (R).
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(vi) Finally determine the initial state estimate and its error 

covariance matrix (P).
The Kalman filter can be implemented using the continuous-time 
differential equations of the system represented in state-space form, 

but the simulations using digital computer have been performed in 

discrete-time form. In actual practice, a Kalman filtering scheme 
involves digital computations on an on-line process control by computer, 

and hence the discrete-time form of the system description is more 

appropriate for implementation and can be written as:

3c(k + 1) = $2£(k) + Au(k) + ra)(k) ............... (5.A)

z_(k) = H2£(k) + v(k) ............... (5.5)
where:

$ = state transition matrix 
A = input driving matrix 
T = noise driving matrix 
H = output matrix

Having fed the filter with the necessary information, the next 

operational stages will be as follows:
(i) Store the previous best estimate (the initial values at the 

start) of the state (x) and its covariance matrix (P) at time instant 
(t).
(ii) The system represented by the usual differential equation and in

the discrete form (Figure 5.2a) will be:

x(k + 1) = $ 2c(k) + Ajj(k) + Tw(k) ............... (5.6)

ẑ (k) = Hx(k) + v(k) ............... (5.7)

(iii) The prediction (Figure 5.2b). The problem is to obtain
x(k + l|k), i.e. to estimate the value of (x) at (k + 1) instant, given
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Figure (5.2) (a): The System in Discrete Form Representation

x(k + 1|k)
u(t)

Figure (5.2) (b) : Open Loop Prediction (the filter)
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all the measurements up to instant (k). The previous estimate x(k|k) 

is known:

x(k + 11k) = $x(k|k) + Ajj(k)    (5.8)
z^k +ljk) = Hx(k + ljk)   (5.9)

(iv) The correction. There will be an error between the measured and 

the predicted output:

z(k + 11k) = z(k + 1) - S(k + 1 |k) ;............. (5.10)

To compensate for such differences:

x(k + 1 |k + 1) = x(k + 1 1k) + K?(k + l|k)   (5.11)

which defines the Kalman filter, where:

K(k) =

is the Kalman gain matrix, with K^(k) anc* ^h^) as t*ie ^ow an(* high 
frequency parts of the gain matrix respectively.

(v) The estimation. For a given instant (k +1),

x(k + lfk + 1) = (I - KH)($x(k|k) + Au(k)) + Kẑ (k + 1) ....  (5.12)

where x(k|k) is the previous estimate, and js(k + 1) is the current 
measurement.

As mentioned above, Kalman filter basically involves a model of the 
system and is therefore particularly appropriate for separating the low 

and high frequency motions of the vessel. The filtering problem is 
thus one of estimating the low-frequency motion of the vessel so that 
control can be applied. The Kalman filter will be shown to be suitable
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for obtaining the estimates of the low-frequency states. The Kalman 

algorithm is illustrated in Appendix 3, while the schematic, diagram of 
the Kalman filter applied to the dynamic ship positioning problem is 

shown in Figure 5.3.

5.3 Implementations and Simulation Results
5.3.1 Software Descriptions

The application of Kalman filtering technique to the dynamic positioning 

problem is a complicated process of estimation and control, and hence, 
the availability of a high-speed, digital computer is the 

prime contributing factor to the success of such applications.

The full Kalman filter together with ship dynamics and the related 
control were simulated on an ICL 1906S digital computer using the 

FORTRAN^ computer language and GE0RGE4 operating system. The computer 

program has been written in a form suitable for making changes for 
different practical investigations of using the reduced-order Kalman 
filter, semi-constant gain filter, etc. Calculations of the optimal 
feedback control matrix have been performed and fed into the main 

data block. Subroutines for generating the uncorrelated measurement 
and process noise signals have been written by Patton [j>lj and used here 

[75]3. Two different subroutines were used for simulating the filter 

and the ship and basically called FILTER and DYN. The initial part of 

the program sets up the ship and filter parameters. Subroutine 
PHIDELTA is used to compute the state transition matrix ^  and the 

driving matrix A^ for the simulations. Subroutine DYN is used to 
advance the state variables of the ship model by one step interval 

using the transition equation. The control input signals are also 
calculated in this subroutine. The Kalman filter gain, state estimates

88



1T333  3
Cu O<4-1 * o3 CO rH3  u 3 *4-1 O o CO3 H w3  3 34J 3 3 33 co O
rH 3 3 *33 O 3 3O «3 &  *9rH 4-1 0 33 a o crCJ *3 O 3

i1

/*s
1-43  34 - 1 + 0 33 »3 34-1 ,1*5 4-1 3 /—•>

co s—/ 3 rH 0 Os3 3 O •
3  4-1 O 4 O 3 m,3 3 3 .3 m w
3 3  ,—vQ) e*CJ r̂4 3jj w  w o0 3 3 , rH •H•H 0 3 /—N + 3rtf *3 3 00 33 3  CO • A5 33  CO 3 m  v~< O'|1| O H N 3

i 1

3  T3
t— l 3
,3 3 3
3 O
rH 3•H 3
3 3 ----- 3> CO rb53 0) n-'

XK* 3 3
3 3 O,3 co 3  3 3
3 3 P  1-4 3O 3  3 3
3  *3 0 3 3
3  > H 3O 3 P  3 >
3 3 co 3 O
CO P4 3  3 O

3 3
3 33 3 3
3 3 o
CO CO •3

3 3
3 •r4 3
,3 3
3 3 a*

3 3
3
3 33 3 /-\i—1 3 rH /—s
3 0 CM
O •3 + rH
rH 3 •
3 CO jsj m
CJ 3 '_✓ <̂ /

V
3
3B•H
4J
CO
3
33a)M}-i
3

CJ

<U*3
4-1

m ho
CO
COa)oo3Cu
0),3
4-1

mo
03u00
3
•3
'O

a
•3
4-1cd033
O
CO

C O

in
a)
3
300

•r4pH

CO
3
4-1CO0
•H
4-1
CO<U
J-la)
4-1 
r—I
•H
IW
3  3 0 
I-I
3
«
U-lo
CO3
O

•H
4-4
3
4-13
S3
r H

■i*
•H

89



and the associated error covariance matrix are calculated by a 

successive call to subroutine FILTER using the filter algorithm given 
in Section 5.2. The basic computer flow chart for the whole system 

simulations using the full Kalman filter algorithm is shown in Figure 

5.4, [l].

5.3.2 Filter and Control Implementations forWimpey Sealab" Vessel

Dynamic positioning control for "Wimpey Sealab" ship has been performed 
using the linear Kalman filter and the stochastic optimal state 
estimate feedback control. The Kalman filter is time-varying although 

the filter gain matrix becomes constant after about twenty seconds.

Full Kalman filter algorithms for this application have been 
implemented using results from Section 5.2. The low-frequency part of 

the ship and filter dynamics are independent of the weather conditions 

variations and have been assumed linear for closed loop feedback control. 
Hence, the optimal control gain matrix assumed constant which were 
calculated off-line and stored.

As the weather conditions vary, different parameters of the sea-wave
simulator change (Appendix 2). Different tests were performed, and

results for Beaufort number 8 conditions will be presented here. The
ship is assumed to be subjected to disturbance forces of 4 x 10 6

— 8per-unit force for sway and 9 x 10 per-unit turning moment for yaw. 

Computer plots shown in Figures 5.5 to 5.15 inclusive illustrate the 
system behaviour together with the filter estimates (shown by a dotted 

curve) for a step input of 0.02 per-unit into sway motions. These 
responses represent full low and high frequency parts of the ship 

dynamics using Kalman estimator with the following definitions:

State (1): low-frequency sway velocity
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START

Condition on Iterative 
FLAG ^  "

END/STOP

Set Iterative FLAG

Parameter Settings

Call DYN for Ship 
Simulation

Graph Plot

Read Control Gain & 
Noise Statistics

Call FILTER for 
Filter Calculations

Generate Measurement 
& Process Noise

Call PHIDELTA for 
Filter and Ship

Figure (5.4) : Computer Flow Chart of Kalman Filtering and Control
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State (2): low-frequency sway position

State (3): low-frequency yaw angular velocity

State (4): low-frequency yaw angle
State (9): high-frequency sway position

State (13): high-frequency yaw angle

Figures 5.16 and 5.17 display the control signals into sway and yaw 
motions respectively for the system simulations with some saturation 
on the thrusters (such saturations and other non-linearities within the 
thruster devices will be considered in detail in Chapter 7). Figure 
5.18 illustrates the effect of the control signal saturation on the 
speed of the system responses in sway motion.

5.3.3 Filter and Control Implementations foruStar HerculesnVessel

The same software structure was used here for the implementation of 

Kalman filter algorithms and dynamic positioning control for the vessel 
"Star Hercules" as that of Section 5.3.2 of the vessel "Wimpey Sealab".

Computer plots of Figures 5.19 to 5.29 demonstrate the system responses 

with the corresponding filter estimates (shown by a dotted curve) of 
"Star Hercules" motions under dynamic positioning control and for a 
step input of 0.02 per-unit into sway motion. These responses show the
system behaviour when the ship is subjected to a disturbance force of

—  6 — 84 x 10 per-unit force for sway and 9 x 10 per-unit turning moment
for yaw.

Results displayed in this section were based on the "Star Hercules" 
dynamics of Section 3.2.4 and the corresponding optimal control obtained 
from Section 4.5. .
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5 .A Concluding Remarks

In this chapter, dynamic ship positioning control has been implemented 
successfully using Kalman filtering techniques and optimal stochastic 

control. This scheme has been implemented based on models of the 

vessels "Wimpey Sealab" and "Star Hercules". System responses show good 

estimation and control. The saturation on the thrusters, illustrated 
by Figures 5.16 and 5.17, has a damping effect demonstrated by the slow 
sway position response of Figure 5.18. Saturation in the thrusters is an 

inherent feature of the actual system implementation. The Kalman filter is 
a time-varying filter, and hence the filter gain matrix has been 

computed at each sampling instant. Typical values of the filter gain 

for both "Wimpey Sealab" and "Star Hercules" will be listed below, 

corresponding to the constant filter gain region:
(i) Filter gain (Wimpey Sealab) = 0.0618 0.0125

0.2235 0.0234

0.0383 0.1390

0.0658 0.3460

0.0013 0.0026
0.0000 0.0000

-3.0208 0.0837

-1.0127 -0.0465

0.403A -0.0216
0.9550 0.0035
0.2312 -1.8244

-0.1203 -1.0832

-0.0584 0.2267

0.0118 0.7270
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(ii) Filter gain (Star Hercules) = 0.0443 0.0005
0.1544 0.0014

0.0047 0.0440

0.0062 0.1418

0.0012 0.0000

0.0000 0.0000

-1.3888 0.0019

-0.5104 -0.0038

0.2515 -0.0010

0.3689 0.0006

0.0193 -0.9929
-0.0071 -0.3887

-0.0046 0.2006
0.0011 0.2459

These filter gains represent a sample from the constant region of the 

gain matrix shown in Figures 5.12, 13, 26 and 27. The system responses are 
acceptable from the practical point of view; however, the response 

speed can be varied by tuning the controller and its related weightings 

(Chapter 4).
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CHAPTER 6

PRACTICAL INVESTIGATION INTO THE USE OF KALMAN FILTERING FOR DYNAMIC 

POSITIONING

6.1 Introduction

Kalman filtering techniques have been found suitable for many industrial 

applications in recent years. They have been implemented successfully 

for a nuclear reactor control problem,for a marine navigation system [53] 
and in the metal industry [44]. The filtering scheme has shown to be 

very reliable and practical in its applications to the dynamic ship 
positioning problem. However, inaccuracies in the system model and 

incorrect filter dynamics representation, especially with the required 
approximations and necessary linearisations could frequently cause a loss 

of system reliability. Theoretically, the Kalman filter is a statistical 
technique which produces the optimum estimates of the state vectors of 
the linear/linearised dynamic system from a succession of noisy measure

ments. A knowledge of the dynamical behaviour and error characteristics 
of the system is an essential pre-requisite. In practice, the necessary 
information required to construct the Kalman filter is only approximately 
known. Hence, one of the objectives of this chapter is to investigate 
the quality of the system representation in the filter structure.

The Kalman filter scheme has been widely used to solve the linear/ 

non-linear estimation problem because of its practicability and 
robustness. However, this solution adds some complexity and also the 

large number of dimensions in the augmented state is a severe 

computational disadvantage for large multivariable systems [76]. Contribution 
will be made here to reducing such filtering and control computational
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cost by two different ways as applied to our specific ship positioning 

scheme [9̂ 1 > :
(i) Semi-constant gain Kalman filter (Section 6.3).

(ii) Reduced-order Kalman filter (Section 6.2)

Dynamic ship positioning using the Kalman filtering techniques gives a 
system performance substantially better than can be obtained by systems 
employing conventional filtering networks []9l]. In previous chapters, 
a fundamental implementation of the Kalman filter and optimal stochastic 
control were established and applied to the two vessels under 

consideration (Chapter 3). However, to evaluate the goodness of any 

scheme, the following steps should be noticed and investigated:
(i) Cost.
(ii) Reliability and robustness.

(iii) Accuracy.
Hence, the above factors will be considered and investigated in this 
chapter since adequate filter models, enough initial condition 

information and realistic noise statistics can be difficult to achieve 
in practice.

6.2 Reduced-Order Kalman Filter

It is normally assumed that none of the states may be measured directly 
and in this case, the Kalman filter has the same dimension as that of 

the plant. In dynamic positioning problems, Kalman filter estimates 
the low-frequency states-for state feedback control [3]. Part of 

the low-frequency states are associated with the actuators output, 
which may be measured without contamination by noise [6j [37]. It follows 

that a reduction in the dimension of Kalman filter may be achieved, 

equal to the number of the measurable states [SO]] . In such cases, the 
feedback control scheme will consist of direct state-feedback combined
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with state-estimate-feedback.

The use of direct state-feedback from the measurable states, and the 
consequent reduction in size of the filter has several indirect 

advantages [ p O • Direct state-feedback improves the transient response 
of the system, since this feedback loop would otherwise contain a filter 

which degrades performance. The reduction in the dimension of the 
filter also reduces modelling errors, since only part of the plant is 
represented in the filter for state estimation. The actuators are 

non-linear elements, and hence assuming their states as measurable 
variables will reduce the effect of the non-linearities within the 
modelled plant.

In applying the above simplification to the dynamic positioning problem 
using Kalman filtering techniques and considered for sway and yaw 
motions only, two states can be measured corresponding to the states of 

the two sway and yaw thrusters [37]. Hence, the dimension of the 
Kalman filter will be reduced from 14 states down to 12 states. The 
reduction in size of the Kalman filter is particularly valuable in 

dynamic ship positioning control systems since the size of on-board 
computer is limited.

The following analysis will illustrate the application of the combined 
state and state estimate control to the dynamic ship positioning control 
systems [37]. The ship dynamics can be represented by the usual linear 
state equation as:

ii _ HH<1

-*2 - _ 0

1 =  [ c. o !_1 |x

£ =  [ C1 0 ] x

A i2 
A 2 2 J X,

"  0 ‘ “ l "
U + ..............  (6.1)

_ B 2 _ qj?

(6.2)
(6.3)
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where the system has been partitioned into a measurable part 
which includes the thrusters, and the remaining state variables Xj • 
u is the thrusters control signals and y is the total position of the 

vessel from some reference point.

03i, w2 and v are white noise signals with covariance matrices Q x, Q2 

and R respectively. A2i= 0, since the thruster states do not depend 

upon the other state variables in most industrial problems. The system 

is illustrated in Figure 6.1.

Since some of the states are assumed to be measurable (the thruster 

states), the size of Kalman filter algorithm and the related filter 
model structure used in Chapter 5 for simulation will be reduced in 
proportion to those measurable states. The structure of the ship 
model will remain unchanged.
The system responses based on the above proposed reduced-order Kalman 
filter for estimation are illustrated in Figures 6.2 to 6.6. These 
simulations have been carried out using data from "Wimpey Sealab" 
vessel of Section 3.2.3. States (7) and (11) and their estimates of 
Figures 6.5 and 6.6 are the high-frequency sway position and yaw 
heading respectively which correspond to states (9) and (13) and their 
estimates in the full Kalman filter of Chapter 5.

6.3 Semi-Constant Gain Kalman Filter

The implementation of Kalman or extended Kalman filters for estimation 
and control is a straightforward process copied from the actual plant 
dynamics to be controlled. This nature of the filter dynamics gives 

it the practicability for on-line estimation. However, the computation 

time required to implement the filter could exceed the usual practical 
limit for real-time applications. This difficulty can be clearly

112



W CO
<u

W  COqj <y

a w to

o•H
5
6  Q
CMO
CO• H■U
•H
OwCJO
CJ4J
■uCO
CJJSH

vC 
'__'

a)UDMl•H

113



in in InOC>
OC> in

8

(OOl/®3-1*3®) UOT3TSOd X b «S ‘(SUBTpBJ) 3|8uc «BX

114



CjC j

O

O

O
f \  O  OJ <rO  O  O  OO  O  O  O

(\!Cj'^'0st(\iQ2^'0 - .   ■ —  Cj Cj O  00 no <r—  O  O  OO  O  O  O
v? NO COo  o  o  of\ c\. -----C j C j C j C j C j C j C j C j C j C j

C  C  C  . C  C  C  C  C  C
(O O l/s a a a a ia ) u o p T s o d  Avns

O O O O O O O O O O  
( s m r ip u j )  sxS ue  nvx

115

Fi
cu

re
 

(6
.*0

 
tY

aw
 

lo
w

-f
re

qu
on

cy
 

tru
o 

an
d 

er
.ti

.T
at

cd
 

j>
or

,lt
ic

n 
- 

st
at

i



o

o

oo o IT.

O O O O oI o oI
(O O l/s a ja a u i) u o ia is o d  fans

t ^ n a 10 Cj 1C ^  01 ^  ^  ^
Q Q Q Q o o c i i S Q i c i c i c i

(sueipej) ax Sue nejx *

116



realised when a limited space only is available for on-board computers 
and processing equipment especially for ship positioning or space 
applications. Basically, the high computational burden encountered by 

using Kalman algorithms for estimation is mainly concerned with the 
re-computations of the error covariance matrix by solving the Riccati 
equation and with the calculations of the related Kalman gain matrix, 
and hence a great saving in computing time can be obtained by 

pre-computing and storing the filter gain matrix. In the linear case, 

the system simulation results for both "Wimpey Sealab" and "Star 
Hercules" vessels of Chapter 5 have shown that elements of Kalman gain 

matrix settle to a constant value after approximately twenty seconds 

from the initial condition. This fact could give the possibility of 
applying a partitioning process on the gain calculations in which the 
gain matrix can be assumed constant and need not be computed on-line 
after twenty seconds. [57]] , Jj24], [56]] .

In this section, full simulation of the ship using Kalman filter for 
estimation and based on data from "Wimpey Sealab" were performed on the 
basis of the above partitioning procedure of the filter gain calculations. 
To ensure the stability of the system behaviour and to reduce the effect 

of using constant Kalman gain for system implementation, the filter 

gain has been assumed constant after 28 seconds rather than after 20 
seconds. System responses for the ship low-frequency controlled position 

and heading together with the total low and high frequency ship 
trajectory are shown in Figures 6.7, 6.8 and 6.9 respectively, and are 
for step input of 0.02 per-unit into sway with the ship hull subjected 

to the same disturbance forces described in Section 5.3.2. These 
responses show no loss of accuracy with the advantage of reduced 
computing time. Selected elements of the Kalman gain matrix have also 
been shown in Figures 6.10 and 6.11.
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6.4 Filter Mismatching

Before an effective control strategy can be implemented, there must be 

available an adequate model of the dynamics of the controlled plant, 
so that simulation settings may be chosen in more realistic fashion.
The applications of Kalman filtering theory developed to date assume 

that system dynamics are completely known and are precisely modelled 
in the filter. Clearly, this will never be true in practice since for 

a highly complex system, there is often a lack of knowledge of part of 
the plant behaviour. Although the Kalman filtering scheme has proved 
to be practically useful in a variety of industrial applications, it 

has become apparent that insufficient care in constructing the filter 
can easily lead to entirely unacceptable system responses [29] [55] [92]. Such 
mismatch between the filter and the plant models can cause sensitivity 

problems and even divergence of a Kalman filter [26] [s$] [lCO] [86] . Such 
modelling errors can arise when the nominal parameters used to construct 
Kalman filter are different from the parameters used to construct the 
actual plant. Mismodelling may arise from individual or combined 

effects of errors in:
(i) the actual mathematical formulation of the system dynamics,

(ii) measurement signal processing,
(iii) noise and environmental statistical considerations.

For the purpose of this study, a Kalman filter has been implemented for 

dynamic positioning control and constructed to consist of low and high 
frequency subsystems. The high-frequency dynamics are to represent the 
simulated sea waveform (Section 3.3). Tests were obtained for different 

sea conditions and vary from Beaufort number 5 for a calm sea state to 
the worst sea condition of Beaufort number 9. Throughout the design and
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implementation of Kalman filtering for the dynamic ship positioning 

under consideration, the high-frequency dynamics were developed on the 

basis of data for Beaufort number 8 sea conditions. These system 
developments of the high-frequency dynamics for Beaufort number 8 sea 
conditions were copied into the filter, and hence, the filter structure 
will represent a model of the actual ship dynamics (the high-frequency 
part).

The purpose of this section is to investigate the mismatching effect 
on system behaviour by using the filter model of Beaufort number 5 data, 

but using information for the ship dynamics derived from Beaufort number 

8 conditions. The actual changes in the system and filter dynamics can 
be noticed from the system and filter sub-matrices of the sway 
high-frequency motion.

Ship sway high-frequency sub-matrix = 0.0 2.728 0.0 0.0
0.0 0.0 2.728 0.0
0.0 0.0 0.0 2.728
■0.22 -0.662 -1.572 -2.455

Filter sway high-frequency sub-matrix = 0.0 2.728 0.0 0.0
0.0 0.0 2.728 0.0
0.0 0.0 0.0 2.728

-1.292 -2.626 -3.853 -4.037

The above data and full system simulations were based on "Star Hercules’ 
dynamics. Selected system responses are sbown in Figure 6.12 to 6.16 
and titled as appropriate.
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6.5 Reliability Tests

Ship dynamics and filter structure are traditionally determined from 

the formulation of a set of mathematical equations representing the 

ship motions together with the hydrodynamic forces acting on the hull. 
These are usually obtained from tests on scaled models on the basis 
of a reasonably good knowledge of the environmental and measurement 
noise statistics. Estimation of the system state vectors for control 
from noisy observations is the prime principle of Kalman filtering 
operations. Kalman algorithms for dynamic positioning applications 
provide the conditional mean of the state estimates. This widely 
known algorithm assumes exact knowledge of the system dynamics, of 
the initial error and state statistics, and of both system and 
measurement noise statistics. In practice, however, the stochastic 
environmental forces represented by the appropriate noise streams are not 

necessarily constant, and their characteristics are not always certain.
The purpose of this section is to investigate the effect of a 
misidentified noise on the system response and filter estimations. Hence, 

Kalman algorithm reliability and robustness can be assessed by examining 
its applicability when the noise factor of the dynamics information is 
subject to uncertainty. This is carried out by increasing the plant and 

measurement noise included in the simulation of the plant itself, whilst 
the filter algorithm operates with the old usual noise conditions.

System simulations were investigated using the full Kalman filter 
algorithm with the ship observation noise covariance being increased, 

keeping the filter with the usual noise information. Figures 6.17 to 
6.20 show the low-frequency and high-frequency of the ship trajectories 

together with the filter estimates of these trajectories (the dotted 

curves) for both sway and yaw motions. These computer plots show the
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system responses under dynamic positioning control for the case when 

the observation noise covariance within the system has been increased 
100 times. Data from "Wimpey Sealab” of Sections 3.2.3 and 3.3 were 
employed in here for the above simulations and used for Kalman 

implementations of Chapter 5.

6.6 Concluding Remarks

The main remarks which can be made here will outline the robustness and 

practicability of using the Kalman filtering technique for estimation 
within the proposed dynamic positioning control loop. Such remarks 
can be assessed by a straightforward examination of the system 
behaviour for the different tests and investigations carried out 
throughout this chapter. These concluding remarks can be summarised 
now and listed as follows:

(i) Measuring the thruster output reduces the size of the system and 

hence reduces the uncertainty throughout the linearisations and 
approximations in developing the system dynamics.
(ii) The time-varying Kalman gain matrix settles to a constant value 

after twenty seconds, and hence, using a constant gain matrix at this 
point*and for the rest of the operations will produce 

significant savings in computation, cost and storage.

(iii) Deviations of the filter estimations from the actual system 
state output is very clear when operating under dynamic positioning 

control with the ship model represented by Beaufort number 8 sea 
conditions keeping the filter model represented by Beaufort number 5 
sea conditions (calm sea state).

(iv) Finally, system responses are presented for the case when system 

observation noise was increased by 100 times the usual noise statistics 

used within the filter. Many tests were carried out to show that the 

results represent the limit for reliable filter performance.
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CHAPTER 7

NON-LINEAR FILTERING/EXTENDED'KALMAN'FILTER

7.1 Introduction

An obvious extension of the technique of employing Kalman filtering 

scheme to the dynamic ship positioning (Chapter 5), is the consideration 
of the non-linearity of the dynamics of the system (low and high 
frequency parts of the ship dynamics), and hence the required 

filtering and control strategy. As shown in Chapter 3, the system 
dynamics can be represented by a set of non-linear differential 

equations. These equations were obtained from a set of tests carried 
out on a scaled model, Section 3.2. However, Chapter 3 outlined a 

reasonable scaling and linearisation of the non-linear dynamics, as 
well as an approximation to the formulation of the high-frequency part 
of the dynamics. Thence, a straightforward application of Kalman 

filtering and state estimate feedback control, Chapter 5, proved 
efficient and produced improved system response. In practice, the 
low-frequency part of the system dynamics needs to be simulated using 
the actual stochastic non-linear based differential euqations. Hence, 
an extended form of Kalman filter must be used.

The proposed extended Kalman filter can be used for both state and 
parameter estimation [j+9j [j69j . Such an extended Kalman filter for the high 

frequency non-linear system model was first proposed by Grimble and 
Patton (Section 7.3) [j49] based upon a linearisation of the system 
function of non-linearity about the most recent update of the estimate 

of the state vector (x.(t)) at time (t). The dynamics of the filter are 
thus locally linear. The linearisation and discretisation process at
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each step should be repeated, and the Kalman gain matrix must be 

re-computed.

The actual non-linear low-frequency part of the system dynamics can be 

represented by the following differential state equation:

~  x(t) = f^(x^(t), t) + D ^ ( t )  + B^u(t) .........  (7.1)

with the measurement equation:

z^(t) = H^x(t) + v^(t)....................................  (7.2)

where ^(t) and are t*ie Process and measurement noise vectors
respectively [lOlJ. The above proposed scheme of extended Kalman filter for 

high-frequency non-linearities and parameter estimation can be applied 

here for the low-frequency dynamics of the system of equation (7.1).
The linearisation of f^(x^(t), t) above and the updating of the filter 
dynamics will be based on the same strategy as that of the high-frequency 
case. In addition, the system matrix of the LF dynamics needs the 
same linearisations and system updating processes for control 
calculations (Section 7.2).

7.2 Non-Linear Filtering and Control

This section extends the discussion of optimal estimation and control 

for linear systems to the more general case described by the non-linear
stochastic differential equation of (7.1). The non-linearities within
the low-frequency dynamics will be considered here. The main part of 
these non-linearities is the non-linearities of the thruster devices, 
and hence, will be considered in detail [94J . The main goal of this section 

is to provide insight into the applications of non-linear estimation, 
hence optimal feedback control can be applied. The extended Kalman
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filter system can be combined with optimal feedback control and applied 

to the low-frequency part of the dynamics by analogy with the separation 

principle Q>l] of linear stochastic control theory. The extended 

Kalman filter dynamics will be assumed locally linear about some 
operating point, and hence, the filter gain matrix and the estimation 

process would be followed as from the linear filtering rules. It is 
postulated that the optimal control gain matrix can be calculated using 

a similar philosophy to that used for calculating the filter gain 
matrix [̂ 48j, j~4] Figure 7.1.

7.2.1 System Description including Thrusters Non-Linearities

To indicate the non-linear control problem, the thruster devices 

(Section 2.2 and Figure 2.3) and their associated non-linearities are to 
be considered. The type of thrusters fitted on"Wimpey Sealab" vessel 
is considered in here with its related data (Figure 2.5). The thruster 

has both dead zone and saturation characteristics (the dead zone for 
"Wimpey Sealab" is approximately 1-2 per cent of the rated value of the 

thrust) (Figure 7.2).

The non-linear continous time low-frequency model may be represented 
by the following non-linear stochastic differential equation:

x^Cb) = t) + D ^ ( t )  + B^u^(t) ............  (7.3)

where fjĵ (t) is a Wiener process with incremental covariance of Q£dt.
The state vector contains the sway and yaw velocities and positions
as well as the thruster states for sway and yaw (x5 and respectively). 
Now, consider the thruster devices non-linearities of Figure 7.2, 

system state space representation of the low-frequency model including 
the proposed non-linearities can be written as:
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Xi = a21Xi + a13x 3 + P^iKiCxs^s + $1^X2 

' * 2  =  * 1

is = a 3l2£l + a 3 3— 3 + +

i *  = £ 3

Xs= -biX5 + biUi

ie= -h2*G + b2a2  (7-4)

where ]^l (x5) and are non“linear functions of the thruster devices
in sway and yaw respectively. The thruster non-linearities have been 
approximated and assumed to be of the following exponential form:

XiQis) = (siSn (£5)) *F 1 - C1 “ e F2— 5)   (7.5)
/^(iie) = (sign (xg^.Fj.U - e Fz— 6)   (7.6)

where F x = 0.02 and F2 = q-^t • ^1 anc* ^2 vaiues have been approximated
to an exponential function with some saturation. This gross 
approximation of the low-frequency dynamics is better than the linear 
approximation normally employed.

Now, the next step will be considered, in which the linearisation of 
the system and filter matrices can proceed. To obtain these linearised 

matrices for filter gain and optimal feedback gain calculations, some 
partial differentiations must be performed (Appendix 4).

4  ¥ ( - )

must be defined for the following two separate regions of each state:

0 < x:5 < 00 and _co < xs < 0
0 < xc < 00 and -°° < x„ < 0— b — 6

Thence> for
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TZ  ( K j f e ) )  = F 1F 2e " F 2 ( l - = l )■5 dX5

and
x 5 < 0 , - 1  <Ki(x5)) = FiF2e F 2 (l*sp ..................  (7 .7)

oil 5
Similarly, for

x6 > 0 , = F ^ e ' ^ I ^ P

and

ie < 0. 4: (f4(x6)) " FiF2e............... ...................  (7.8)_6

a i5» a i6» a 35 and a 36 of the system matrix of equation (7.4) can be 
formulated in terms of the current system state estimate using the 

non-linear equations (7.5), (7.6) for the actual system simulations, 
and updated using the linearised equations (7.7) and (7.8) for filter 

gain and control gain calculations.

7.2.2 The Filtering Algorithm

Consider the general case, of a non-linear system described by the 

following stochastic differential equation:

x(t) = f(x(t), t) + Bu(t) + Dw(t) ..........  (7.9)

with the output equation:

y(t) = Cx(t) ..........  (7.10)

and observations of:

z(t) = Cx(t) + v(t) ............ (7.11)

where f is a non-linear function of the state vector, and B, D and C 
are the input, noise and output matrices respectively. The process 
noise (oj) and the measurement noise (v) are both Gaussian zero mean
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signals with covariances of and respectively, and with the 

following expectations:

E{w(k)} = 0 
E{v(k)} = 0
E{w(k)V(j)} = Qf6kj
E{v(k) vT(j)} = Rf5fcj 
E{w(k) v(j) } = 0

for all k and j since all the noise sequences are independent, with 
Kronecker delta function of:

<5 . = 0, for all k ^ jkj
6, . =1, for all k = jkj J

System states for the purpose of this study (Chapter 3) can be 
expressed as:

x(t) = gt(t)
L^(t) J

in which here will refer to the non-linear low-frequency part

of the system dynamics.

The discrete-time Kalman filter scheme for the above non-linear system 

of equations (7.9) and (7.11) [̂ 9j,[Y],[48] has the problem of getting the 
required state estimate to be used for closed loop control.

A step-by-step implementations of the filter scheme as it has been 
used within the system simulations can be summarised as follows:

(i) The predicted state at (k + 1) instant is,

i(k + l|k) = f(x(k|k)) + Af u(k)   (7.12)
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since the system input has been fed into the filter as well as into 

the plant (Figure 7.1).
(ii) Based on (i), the state estimates at (k + 1) can now be 

calculated.

x(k + l|k + 1) = x(k + 11k) + K(k + l)£y(k + 1) “ Cx(k + l|k)]
  (7.13)

where K(k + 1) is the Kalman gain matrix which has been calculated 
from the linearised filter dynamics.
(iii) The linearisation and updating processes of the filter system 
matrices(A^) and (Â .) can now begin. The filter matrix (Â ) will be used 
for actual filter simulations thereafter, while the linearised (A^) 
matrix will be used for Kalman gain matrix calculations:

£
A^ (linearised)= A^ (x, (k + 1)) .........  (7.14)

X  = X

(iv) Now Kalman gain matrix K(k + 1) can be obtained, first by 

calculating the predicted error covariance matrix,

P(k + l|k) = \(k + l|k)P(k|k)^(k + 1 |k) + I* (k + 1 |k)k
Qfr£(k + 1 1 k)  (7.15)

where
P(k|k) = [0.0] is the initial error covariance matrix.

Therefore
K(k + 1) = P(k + 1 |k) CT [cP(k + l|k)CT + R ] “ *   (7.16)

where and are the measurement and process covariance matrices 
respectively«

(v) Finally, the error covariance matrix is:

P(k + 1|k + 1) = (I - K(k + l)C)P(k + l|k)(I - K(k + 1)C)T

+ K(k + l)Rf KT(k + 1)    (7.17)
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(vi) Given the expected values of the initial state, error covariance 

matrices and filter dynamics, one can use the above equation 

iteratively to obtain the state estimates at any future sampling 

instant (k + i).

7.2.3 The Control Algorithm

In the dynamic positioning problem under consideration, the control 
problem is one of using the filter low-frequency estimates for a closed 
feedback loop. These estimates will be assumed to represent the true 
system states for the control purpose. The next step in here is to 
calculate the feedback control gain matrix on the basis of optimal 

stochastic control theory.

In the linear stochastic optimal control problem (Chapter 4), 

determination of the optimal feedback control requires the solution of 
the matrix Riccati equation [l02j. The optimal control philosophy for the 

non-linear stochastic system under consideration can be explained as 

follows:
(i) Linearise the system locally around the most recent state 

estimates using the extended Kalman filter philosophy.
(ii) Estimate the step ahead conditional mean of the state vector 

(Chapter 5).
(iii) In here, linearisation and updating of the system matrix can be 
carried out in analogy to the process in Section 7.2.2 (iii). The 

A-matrix is to include the actual non-linearities for system simulations, 

while the Aj-matrix is to represent the linearised structure of the system 
matrix for control gain calculations.



(iv) The process of calculating the control gain matrix (Kc) can now 

begin to control the non-linear system of equation (7.1). This process 
will involve the iterative solution of the following steady-state 

Riccati equation over the specific sampling instant [84][88] :

0 = A ^ P  + P A l0 - P B0R ~ bTp + Q   (7.19)c c c X, c £C xc

and it is such that the performance criterion,
T

J = / (x^(t) x^) + RpiiCt) ^t   (7.20)
o

is minimised, where A ^  is the locally-linearised low-frequency part of 
the system matrix for control calculations. is the low-frequency 
part of the input matrix. R£ and are the control weighting matrices. 
These matrices were chosen optimally [39] , Qf], (Section 4.3).

(v) Finally, once solution to the Riccati equation Pc of equation 

(7.19) is obtained, the control gain matrix at that specific instant can 
be calculated as:

K = R*" 1bTp   (7.21)C C X- c

7.2.4 Simulation Results

Simulation results will be presented in here to illustrate the idea of 
non-linear control' of the above section (7.2). These simulations are 
based on data from the vessel "Wimpey Sealab" (Chapter 3), with control 
weightings of Chapter 4 and filter specifications of Chapter 5. 
Non-linearities within the low-frequency part of the system will be 
considered in here with the high-frequency dynamics assumed constant and 
the canonical state-space form for both sway and yaw motions have been 
used as from Chapter 3.

Full system simulations combining both low and high frequency dynamics
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using extended Kalman filter for control can now be summarised. The 

system responses for a step input of 0.02 per-unit into the sway 

direction are shown in Figures 7.3 to 7.7 inclusive, where Figures 7.3 
and 7.4 show the non-linear behaviour of. the low-frequency vessel 
position and heading respectively, while Figures 7.5 and 7.6 show the 
corresponding high-frequency vessel position and heading respectively. 

Figure 7.7 shows the combined low and high frequency trajectories. 
Throughout these simulations, the ship and filter matrices were updated 
and linearised every two intervals of the simulations. However, 
linearising every five intervals (Figures 7.8 to 7.10) for sway and yaw 

low-frequency position and heading as well as the ship total position 
shows no loss of accuracy and a significant saving in system simulation 

cost. Filter estimates are again shown by dotted curves.

7.3 Parameter Estimations

Kalman filtering for estimating the state vectors of system under 
dynamic positioning control has been widely applied because of the 

reliability of the filter performance. Such performance depends 

mainly on the availability of the required information to construct the 
Kalman filter. Most of this information is approximately known with 
some parameter uncertainties within the main body of the plant model.
Such uncertainties could cause the requirement for non-linear estimations 
using the extended Kalman filter as state and parameter estimator.

Hence, the problem of doing accurate estimation when some of the ship 
and filter models parameters are not precisely known involve parameter 
estimations with all the consequences of increased system dimensions and 

undesirable complexity in implementing the filter algorithm jj64[] .

The problem of parameter estimation in a noisy stochastic dynamic 

system using extended Kalman filter for state and parameter estimation
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has received considerable attention [6lJ , [67] , [79], {j83̂  because of its 

importance in system model building and control. Basically, the 

unknown parameters to be estimated must be represented dynamically 

within the whole system structure and estimated in a similar way to 
that of the state estimation procedure. Hence, the filter dimension, 

will be increased by the number of the unknown parameters to be 
estimated. Kalman theory cannot be applied in here directly and a form 

of extended Kalman filter is required with all the necessary applications 

of the linearisation and updating procedures.

Previous chapters outlined the step by step implementations of Kalman 

filtering techniques for dynamic positioning applications. The system 
was assumed to consist of low-frequency and high-frequency parts and 

so the filter model. Non-linearities within the low-frequency part of 

the system dynamics have been considered in Section 7.2 using extended 
Kalman filter to estimate the system states vectors for control.

In this section, work done by Balchen [l2[J and Grimble and Patton [49] 

will be summarised, which has been mainly involved with the investigation 

of the non-linearities within the high-frequency part of the system 
dynamics and the related state and parameter estimations using extended 
Kalman filter. J G Balchen (1976) has proposed an extended Kalman 

filter for dynamic ship positioning problem in which the high-frequency 
subsystems have been modelled by harmonic oscillators. The frequency of 
the oscillators is assumed equal for both sway and yaw motions and needs 
to be estimated as an unknown parameter using an additional state variable. 

Hence, the system matrix for sway motion which is identical to the yaw 
motion will be:
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.SO)
0 0

1 0 0

0 0 0

with system state vectors of:

r- h i  Xl
hX2
hX3

tl tlwhere xi represents the high-frequency sway velocity, X2 represents
the high-frequency sway position, and X3 represents the dominant
angular wave frequency to be estimated.

Disadvantages with using Balchen*s method led to the use of the 

alternative technique proposed by Grimble and Patton (49]. This 
alternative approach uses an extended Kalman filter which is based on 
a more accurate model of the sea wave energy spectrum (Section 3.3). An 
assumption for an approximate non-linear sea spectrum was made in 
Section 3.3 to develop and implement the high-frequency part.of the system 

dynamics. The state space representation of the system high-frequency 

model were (developed in companion canonical form for different Beaufort 

numbers and sea conditions and assumed identical for both sway and yaw.
The system matrix for sway motion can be presented as:

so) 
\  =

0 Tb 0 0
0 0 Tb 0
0 0 0 Tb
■CLi+ -ot 3 -a2 -ai

where Tfe is the per-unit system time constant, and ai, (*2, 0L 3 and on* 
are constant parameters for a specific Beaufort number and vary in
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proportion to the weather conditions. The main purpose of the proposed 

extended Kalman filter in here in addition to estimating the system 

state vectors is to include a subsystem for estimating the above four 

parameters (cti, 012, ct3 and ai*) for different weather conditions, 
together with the rest of the system states. Thence, the new filter 

high-frequency system matrix for both sway and yaw will have the 

following structure:

parameters to be estimated. In this case, the discrete-time Kalman 
filter for the dynamic positioning problem maybe defined as:

and x(t) are the original low and high frequency system state estimates
while _0(t) are the parameter estimates. K(t) is the Kalman gain matrix, 
and can be partitioned as:

0

0

in which is a (4 x 4) matrix corresponding to the unknown four

£(t + 1) = f(z, u(t)) + K(t)[y_(t) - Cx(t)] (7.22)

where

z(t) =
x(t)

0(t)

■K*(t)
K(t) = K^Ct)

- Ke (t)-

where K.̂ (t) and are the filter low and high frequency gain matrices
respectively while Kg(t) is the parameter estimator gain. The filter



gain matrix should be computed at each sampling instant and 

linearisations and system updating should be performed in a similar 

manner to those of Section 7.2.

7.4 Concluding Remarks

Work in this chapter has shown that the structure of the extended 

Kalman filtering scheme can be used for control. The use of such an 

approach to control system deign has been shown to produce more realistic 

system responses. For the purpose of studying the non-linear control of 
the low-frequency part of the ship under dynamic positioning control, 

the thrust-producing devices and their related non-linearities were 
considered. Figure 7.8 shows the sway position for a step input of 0.02 
into sway motion which indicates good estimation but with slow overall 

system response. Control weighting matrices were adjusted but with 
little improvement on the speed of the system responses. Such slowness 

of response is mainly caused by the non-linearities considered and the 
extended Kalman filter applications with all the related linearisations 
performed. The basic philosophy of non-linear filtering and control 
throughout this work was based on the processes of linearising and 

updating the system in terms of the filter estimates at each sampling 
instant. This will impose a high computational burden. Simulations 

shown in Figure 7.7 and Figure 7.10 are the ship trajectories based on 
linearising and updating the system every two intervals and five 

intervals respectively, with a cost saving and no loss of accuracy.

Parameter estimation for the dynamic positioning problem is an essential 

technique by which the uncertainties within the system dynamics can be 
overcome. Grirable and Patton [49] did a substantial amount of work in 
this field and hence it has been summarised here for its relationship to the 
idea of non-linear control (Section 7.2).
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CHAPTER 8

OVERALL CONCLUSIONS

The major aims of the work in this case study was achieved successfully 

and reported in this thesis. From the basic design considerations and 

the related practical investigations, it has been shown that the Kalman 

filtering technique is suitable for the dynamic ship positioning problem 
under consideration. It uses the actual available information on 

the dynamical behaviour of the process generating the measurements as 

part of the filter structure. Although information about the model is 

included in the filter, model inaccuracies within the ship dynamics are 
a dominant limiting factor in the Kalman filter performance.

System dynamics were provided by GEC Electrical Projects from 

experiments on a model of the ship using a set of tank and wind 
tunnel tests for the three degrees of freedom. Some interaction 

between sway, and yaw motions was considered and the whole system 

design for filter and control was carried out successfully for both 

motions simultaneously. Basic equations used to build the Kalman 

filter were based on the ship dynamics obtained from the above-mentioned 

experimental tests. The system measurements were the only source of 
information available for the filter from the outside world during its 
operation. A back-up taut-wire source of measurement is employed 
along with the acoustic system since water disturbances, such as fish 

passing and air bubbles, can cause a loss of the pulses required by the 
the set of the hydrophones to generate the desired measurements.
Grimble and Patton [5l] did some comparison work on the 

practicability of using Notch filters and PID controllers or the 

‘alternative Kalman filter and stochastic optimal control and showed
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that a better system response could be obtained by using the latter 

scheme. In this work, a Kalman filtering scheme was implemented 
successfully using stochastic optimal control theory within dynamic 
positioning control for two vessels, "Wimpey Sealab" and "Star 

Hercules". The proposed scheme has been installed on the latter vessel 

and commissioned. The Kalman filter, while offering the most potential 

improvement in estimation accuracy, is inherently linear since it 
represents the linearised ship model. The required approximations 
can result in system and filter modelling errors. However, more 

realistic representations have been considered throughout the simulations 
of the system including non-linearities.

In the early stages of this work, linearised systems have been 

considered for Kalman filter implementation and a simple plant has 
been modelled but there is no reason to believe that the results 

obtained are not typical of what may be found using a more complex 

model. Several important factors have been studied and these 
impose a degree of limitation on the accuracy and ease of implementation 

of the Kalman filter algorithm for the dynamic positioning problem 
under consideration. These factors are:

(i) the accuracy of the filter structure as a true model of the 
actual plant,
(ii) the availability and uncertainty of the different parameters of 

the plant model,
(iii) the choice of process and measurement noise statistics and 

their corresponding covariance matrices affect the Kalman gain 

calculations and hence the elements of these matrices should be 

accurately chosen and fed into the filter.
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(iv) on-board computer storage capacity to handle the complexity of 

the scheme structure and the related calculations and storage 

requirements.

Several investigations have been carried out to show the reliability and 

robustness of using the Kalman filter for estimation within the dynamic 
positioning control loop despite the above restrictions and limitations. 
These can be listed as follows:

(i) Introducing the reduced-order Kalman filter reduces the size of 

the filter, which has the advantage of minimising the modelling errors 
since the filter does not include the model of the directly measured 

thruster subsystem. Ah additional advantage with using this scheme 
is a reduction in the computer storage requirement especially when a 
high dimension filter is used for state and parameter estimations.
(ii) Full Kalman filter simulations show that the filter gain matrix 

becomes constant after approximately 20 seconds. One of the 
disadvantages of using the time-varying Kalman filter is the 

computational burden associated with the filter gain calculations, and 
hence partitioning the filter gain calculations into a time-varying 
region of up to 20 seconds and a constant region for the rest of the 

simulations shows a significant saving on the filtering and control 
process.

(iii) The mismatching problem was investigated by simulating the system 
with the Kalman filter using Beaufort number 5 dynamics, keeping the ship 

with a worst sea condition dynamics of Beaufort number 8. The system 
and filter responses showed some deviations in the filter estimates . 

Hence, to ensure good estimation accuracy, the filter structure should 

represent a higher Beaufort number than that expected of the real ulant.
(iv) As mentioned above, noise statistics are an important factor in 

shaping the filter behaviour. Tests havebeen carried out by increasing



the measurement noise statistics of the system keeping the filter 
with only the usual information. The filter gave acceptable estimates 

to show its reliability up to a critical noise level (shown in Section 

6.5) where the filter behaviour cannot be relied upon, corresponding 

to the case when the noise covariances were increased by 100 times.

Kalman filtering models for the dynamic positioning problem have 

been extended to include some of the system non-linearities. Such 

investigations have shown that a form of extended Kalman filter can 
be used to provide the necessary state estimates for closed loop 

non-linear control. The use of such an approach to control system 

design (Chapter 7) is shown to produce more realistic system responses. 
A practical algorithm for on-line estimation and control of a noisy 
non-linear system has been implemented with some computational load.

Further research can be concerned with the procedure of partitioning 

the non-linear system of Chapter 7. The linear constant part of the 
dynamics can be dealt with separately in the usual way using a 
linear Kalman filter with the advantages of reduced implementation 
cost.
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APPENDIX 1

NOTES ON PER-UNIT SYSTEM OF TIME SCALING

All the equations of motion for both"Wimpey Sealab"and"Star Hercules" 

vessels have been represented in per-unit. Both time and amplitude 
scaling have been applied.

Consider the following general differential equation:

x(t) = A x(t) + B u(t)   (1)

which has been represented in a real time. Now suppose that time scale
change from real time (t) to per-unit time (t^), where

 ̂ ttv = —— and t, is the base time 
“b b

Then the plant differential equation will become:

-J~,x(t'tb) = tb (Ax(t'tb) + Bu(t'tb))   (2)

ĵ Ct') = thCAx̂ t') + BuCt'th))   (3)

where *-s t*ie value of the state vector.

In order to determine the values of the control Q and R matrices, and 
hence the state feedback gain matrix, the maximum permissible deviations 
in the per-unit thruster control signals are required.

The general base units for the per-unit system differes for different 
kinds of vessels, which depend upon the size and the geometry of the vessel, 
and can be summarised for both"Wimpey Sealab"and"Star Hercules"
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(i) "Wimpey Sealab" Vessel

Mass (m) = 5670 tonne

Length (L ) PP = 94.49 metre

Gravitational Acc. (8) = 9.81 m/sec2

Time • V 8 = 3.104 seconds

Velocity A PPS = 30.44 m/sec

Force (mg) = 55,620 KN

Moment (mgL) = 5,256,000 KN-m

Angular Velocity /gTT = 0.3222 rad/sec

From which:
The base time = = 3.104 sec

The amplitude scaling factor = 95 m 
Assuming that all the thrusters .acting in one direction, the maximum 
force is (40) tones or (400) KN, then

per-unit sway force  ---------   = 0.007 - 0.01
55.6 x 10

and the maximum torque is 90 m x 20 tonnes which is (1800) m tonne or 
(18000 KN metres, then

18000
per-unit torque = ----------- = 0.003 - 0.004

5,256 x 106

The assumption has made that, the thruster time constant is to be (2) 
seconds or (2/3.104 = 0.644 pu) and hence,

b 1 = b2 = 1/0.644 = 1.55
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(ii) "Star HerculesnVessel

Mass m = 4377 tonne

Length LPP = 73 metres

Time •Vs = 2.728 seconds
Gravitational Acc. 8 = 9.81 m/sec2
Force mg = 42.940 KN

Moment mgLPP = 3,134,500 KN.m

From which:

The base time = 2.728 
and for (2) seconds thruster’s time constant, which is (2/2.728 = 0.733 

pu), bj = b2 = 1/0.733 = 1.364.
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APPENDIX 2

HIGH FREQUENCY MODEL PARAMETERS

By examining the high frequency part of the dynamics, the general 

structure of the system A-matrix for sway or yaw is:

0 Tb 0 0

0 0 Tb 0

0 0 0 Tb
-ait -a 3 -a 2 -ai

where = 3.104 secs for'Vimpey Sealab"while the parameter ai, a2, 013 

and at* varies in proportion to the weather conditions as indicated in 
the following Table 1 for ,rWimpey Sealab" vessel for Beaufort number 5 

(calm sea) to Beaufort number 9 (the worst weather conditions), and the 
corresponding Beauforts number 5 and number 8 of Table 2 for"star 
Hercules"vessel.

Beaufort No ai a2 a 3 ai*

5 4.594 4.384 2.988 1.470

6 3.663 2.698 1.452 0.556
7 3.166 2.119 0.974 0.341

8 2.794 1.789 0.754 0.251

9 2.545 1.353 0.486 0.131

Table No (1)

Beaufort No aj a2 a3 ai*

5 4.037 3.853 2.626 1.292
8 2.455 1.572 0.662 0.22

Table No (2)
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APPENDIX 3

CALCULATION OF THE KALMAN GAIN MATRIX

The position measurements are not defined in continuous form but are 

sampled at regular intervals. The system simulation and the Kalman 
filter have both been modelled using their discrete forms. The 
resulting discrete equations are as follows:

x(k + 1) = $(k + l,k)x(k) + Au(k) + ro)(k)   (1)
£(k) = C5c(k) + v(k)   (2)

with
E{0J(k)} = 0 E {to (k) 6JT (j.) } = Q<5 . . (3)

E{v(k)} = 0 E{v(k)vT(j)} = ..........  (4)

and where 6, . is the Dirac function. The matrices A and P are related kj
to their continuous-time counterparts by 

Ti
A = / $(x)B dx .........  (5)o

Ti
r = / $(x)D dx .........  (6)0

and

$(k + 1, k) A $(xx)    (7)

where Xi is the sampling interval.

The state estimate is given by calculating the predicted state

x(k + l|k) = $(k + l|k)x(k|k) + Au(k) .........  (8)

and then calculating the estimated state at the instant (k + 1), using

x(k + l|k + 1) = £(k + l|k) + K(k + 1) (y(k + 1) - Cx(k + l|k)).(9)
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The Kalman gain matrix K(k + 1) can be obtained, first by calculating 
the predicted error covariance matrix

P(k + 1|k) = $(k + l|k)P(k|k)$T (k + 1|k) + rQrT   (10)

for some initial error covariance P(k[k), and then calculating

K(k + 1) = P(k + 1 |k)CT [CP(k + l|k)CT + r |-1   (11)

Finally, the error covariance matrix is obtained using

P(k + l]k + 1) =(I - K(k + 1)C)P(k + 11k) (I - K(k + 1)C)T
+ K(k + l)RKT(k +1) ___.... (12)

The above equations can be used iteratively to obtain the state 
estimate at any future sampling time, given the initial state and 

covariance.
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APPENDIX 4

EXTENDED KALMAN FILTER/PROPAGATING THE CONDITIONAL MEAN OF THE STATE 
ESTIMATE AND ITS ASSOCIATED COVARIANCE

In order to extend the problem of optimal estimation and control for 
linear systems to the general case of a system with non-linearity, 
consider the following non-linear stochastic differential equations of 
the system dynamics:

x(t) = .£(x(t), t) + oi(t)   (1)

in which f is a function of the state x(t).

The problem will be the estimation of the state x(t) using the non-linear 
measurements, which is described in its discrete form as:

^  = 4 W t k»  + Vfc k = l, 2,...   (2)

where is a function of the state an(* depends on the index k at
each sampling period.

Both and are white gaussian noise of zero mean, with E(v^) = E(oĵ )

TECtô M. ) = 6^ and E(tû Vj) = 0 for all k, j, since all the noise

sequences are independent, where the Kronecker delta functions
6 . = 0 k f jkj

= 1 k = j

Given the non-linear system equation of motion and the measurement 

equation, and the problem is to calculate the minimum variance estimate 

of x(t). The minimum variance estimate of x(t) is the conditional mean 
of the state x(t).
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Suppose that the measurements data are given at time t^  ̂and the
/Nconditional mean estimate of the state vector x(t, ,) is known. Then— k-1

by integrating both sides of equation (1) from time t to t , the
K -  J- K

propagated state at instant t^ will be:

u(T)dT .......(3)x(t) = x(tk_x) + j f(x(T)t T)dT +
tk-l Sc-l

taking the expectation, differentiation of both sides of equation (3), 
taking into consideration the noise characteristics mentioned above, 
produces:

_d_
dt E [x(t)J =E[f_(x(t), t)] where tfc-1 t < tfc ....... (4)

In equation (2) above, all the measurements taken up to time t, -.
xC“ i

is the initial condition 

Refer to equation (4). Over the time interval t . < t < t, , theK"" i» [C
solution of equation (4) is the conditional mean of x(t) which is:

x(t) = Eff(x(t), t)] tk-:L < t < tfc ....... (5)

The initial condition is the conditional mean of the state at t, , whichk-1
is assumed known.

The estimation error covariance matrix is defined as:

P(t) A E^(x(t) - x(t))(x(t) - x(t))^] ....... (6)

The differential equation for the estimation error covariance will be: 

P(t) = E [x(t) xT(t)J + E[x(t) xT(t)] - x(t) xT (t) - x(t) xT (t)« • (7) 

substitute for x(t) from equation (1) and for x from equation (5) into
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equation (7):

P(t) = Eftf + UJ)x̂ ] + E Qc(f_ + to)T] - E [fj xT - x E[fTJ

= E[f / ]  + E[x fT] - x E[fTJ - E[f]iT + 2
ft

Q(t) S(t-T)dT
'k-1

P(t) = E [f xTJ + EQt - x E [ f - E [fj xT + Q (t) (8)

Refer to equation (5), denote E[f(x, t)J as _f (x(t), t).

Now expand f/x.» t) in a Tylar series about the current estimate of the 
state vector, then take the expectation of both sides to compute 

f_(x(t), t), as follows:
3f

f(x, t) = f(x, t) + 3x /v (x - x) + ... x = x —  —

f(x, t) = f(x, t) + 0 + ...

(9)

(10)

substitute the first-order approximation of f.(x, t) from equation (10) 
into equation (5)

x(t) = f(x(t)) tfe-1 < t < tk (11)

To find an approximate differential equation for the estimation error 
covariance matrix, define matrix F(x(t), t) whose ijth element is:

3f.(x(t), t)
x(t) = x(t)lij W ‘). t) A —  ¥x-(ty

P(t) = E[f x1] + E[x f1] - xE[fT] - E[f]xT + Q(t) .........(12)

using equation (9):



9f
x

A.

ife + -gj

- S E[f (x, t) + (-^ 

9f

(x - x))T] - e QQ xT + Q(t)
/s

X  =  X

E [(X - 2£)x̂ ] + E jjX f̂ ]
X  =  X

Aw T  ^ rA A rT-i- x _f (x, t) - E [x(x - _x) J 9i
9x - E[f]xT + Q(t)

X  =  X

9f_
9x

E [(x - x) (xT - xT)]
A

X  = 2t

+ E [(x - x) (xT - X T )]
9f'
9x + Q(t)

X  =  X

31
9x

9f
P(t) + P(t) —

X  = X

+ Q(t)
X  =  X

P(t) = F(x(t), t) P(t) + P(t) F (x(t), t) + Q(t)

^-1  ̂ K h. (13)

Equations (11) and (13) are an approximate expression for propagating 
the conditional mean of the state and the estimation error covariance 
for £ t < t^. Those equations have got the structure of Kalman
filter and referred to as extended Kalman filter.
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