
Levering object-oriented knowledge for service-oriented 
proficiency

STUBBINGS, Gary and POLOVINA, Simon <http://orcid.org/0000-0003-2961-
6207>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/6750/

This document is the Accepted Version [AM]

Citation:

STUBBINGS, Gary and POLOVINA, Simon (2013). Levering object-oriented 
knowledge for service-oriented proficiency. Computing, 95 (9), 817-835. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


DOI 10.1007/s00607-013-0304-6
The final publication is available at http://link.springer.com

Levering Object-Oriented Knowledge for
Service-Oriented Proficiency

Enhancing Service Capability in Developers

Gary Stubbings* · Simon Polovina

Archived: 22 January 2013

Abstract As more and more enterprise systems endeavour to interconnect
seamlessly by using a Service-Oriented Architecture (SOA) a number of chal-
lenges are beginning to surface as a result of the differences in understanding
between Object-Orientated Programming (OOP) and service-orientation in
technical development teams. These differences are thus explored to deter-
mine the potential of subsidising gaps in knowledge through relational learn-
ing in order to better prepare development environments for service migra-
tion. It emerges that the principles of Service-Oriented Programming (SOP)
can be used within OOP by selectively identifying the existing knowledge
found within object-orientation and traditional programming methodologies.
The benefit of this approach proposes to lever the expertise of object-oriented
developers so as to build service-ready computer software and encourage the
seamlessness of SOA.

Keywords Object-Orientation · Service-Orientation · Developer Capability ·
Expertise · Programming Approach · Knowledge Transfer · Service-Ready

PACS PACS 89.20.Ff

Mathematics Subject Classification (2000) MSC 68M11 · MSC 68U35

Gary Stubbings MSc BSc
t-mac Technologies Ltd,
Sheffield Road, Chesterfield,
Derbyshire, S41 8JT
Tel.: +44 (0)844 287 0007
E-mail: garystubbings@bcs.org.uk

Dr. Simon Polovina
Conceptual Structures Research Group,
Communication and Computing Research Centre,
Sheffield Hallam University, Cantor Building,
153 Arundel St, Sheffield, UK, S1 2NU
Tel.: +44 (0)114 225 6825
E-mail: s.polovina@shu.ac.uk

http://link.springer.com/article/10.1007/s00607-013-0304-6


2 Stubbings, Polovina

1 Motivation and Object of Research

Modern software development techniques evolve around the use of object-
orientation. However, there is an increasing drive to develop applications using
distinct services that facilitate the reuse of business processes through func-
tions rather than objects. As such a number of frameworks and standards have
emerged from the evolution of traditional software practices [27]. In contrast,
some believe that much of what seems to be modern innovation is actually the
rediscovery of existing approaches [41], and that it is important to consider
software development on different levels by focusing upon the varying layers
of abstraction and reusability. This claim is well justified by the frequency in
which traditional object-orientated systems are later extended with service-
oriented features such as that of Web services. However, such applications are
commonly bundled with a number of constraints that obstruct the simplest
approach and thereby demand needlessly complex service integration. In order
to resolve these issues we agree with Yang [40] who argues that the consider-
ation of these two paradigms together, rather than separately, could lead to
a simpler integration process and thus eliminate the need for complex SOA
approaches.

Similarly, a number of practitioners [12,20,27] consider the transfer from Object-
Oriented Programming (OOP) to Service-Oriented Programming (SOP) an
evolutionary process and as a result believe that, due to the enterprise-centric
nature in which services are used, the ensuing SOP methodologies only contain
a subset of the original object-oriented principles. However, despite their sim-
ilarities (such as association and granularity) they still have their own unique
aspects and methods of handling remote invocation. Fundamentally, in OOP
the objects are aware of each other’s existence and actively work together to
complete business tasks [8], whereas a Service-Oriented Architecture (SOA)
typically includes a combination of loosely coupled services with straightfor-
ward interactions [36, p. 64]. From a high-level analysis of the two paradigms
(Tab. 1) it is clear that whereas OOP is more focused on building the in-
ternals of applications through reusability, SOP encourages a combination of
techniques focused around achieving a high level of exposure.

This chain of thought draws attention to a critical quandary in software devel-
opment, in that it is difficult to choose the best approach when both business
requirements and technology are continuously changing. Dori [10] discusses
how software engineering techniques traditionally used for object-orientation
could be adapted for use in service development and thus suggests that the
exploration of existing and standardised approaches, by considering the two
paradigms in tandem, could lead to simpler service integration. Marks [28],
on the other hand, argues that the primary purpose of SOA within a business
environment should be as a means of connectivity rather than a replacement
of technology and that there is nothing wrong with using conventional OOP
methods for building the internal workings of a system. More accuratly, Erl



Enhancing Service Capability in Developers 3

Table 1 A contrast between OOP and SOP

Aspect Object-Orientation Service-Orientation

Concepts Modelling, Architectural Design,
Programming

Modelling, Architectural Design

Exposure Methods Services

Focus Component-level Business-level

Communication Primarily internal Internal and external (Interoper-
able)

Standards Extensive standards and tech-
niques with proposed solutions
and high maturity

Specific standards in terms of
the goals but no precise solution
due to system diversity

Complexity Medium to high with a more
controlled environment

High, specifically where there is
little control over technology

[12] underpins an existing connection between the two domains, advising that
the integration of services which encapsulate object-oriented logic will have
an effect on the underlying system design, from which many of the service
complexities arise. Accordingly, we recognise that an ideal union of the two
would conclude with an approach for developing services that inherit all of the
object-oriented fundamentals whilst also increasing extensibility and reusabil-
ity.

Although these two paradigms can be used alongside each other to develop
semantic models it can be argued that most of the existing approaches and
frameworks show a clear separation whereby focus is placed on either one or
the other and rarely the two together. However, as both paradigms include the
same data and underlying processes we believe that the transition to a SOA is
only subject to a systems design. When a company decides they want to make
an existing system process-driven a number of factors need to be considered;
ideally the system would be componentised with an abstracted business logic
layer and would require minimal change, however, if the development team
were unfamiliar with service-orientation when the initial design took place
then it is reasonable to assume that the resulting system would not accom-
modate service changes so easily. Arsanjani [3] considers the layers of SOA
adoption, the first level considers implementing individual Web services from
tasks contained within the existing application, however, more often than not
the functionality is embedded and not readily accessible. This results in a large
quantity of refactoring in order to pull the functionality out and expose it as
a service. Understandably, this often leaves development teams learning new
approaches and choosing appropriate integration technologies which results in
system branching, splitting of resources and an increased risk of bugs. How-
ever, more often than not, even when software systems are componentised,
the underlying functionality is still limited to that of the original hierarchy,
undermining the purpose of loose-coupling in SOA.



4 Stubbings, Polovina

In order to address these concerns we argue that if the original system and its
team were better prepared then there would have been mechanisms in place to
facilitate the change without impairing functionality. Although we are mindful
that there are many distinct solutions for integrating service-like behaviour in
software systems, we are also aware of both their quantity and complexity. We
are thus led to the hypothesis that knowledge found in existing OOP methods
coupled together with a clear understanding of object-oriented competency
in developers could lead to new approaches for both teaching the underlying
principles of SOP and developing more adaptable object-oriented systems,
thus eliminating the intricacy of service integration. By assuming basic object-
oriented competency we argue that future research will be able to focus less
on robustness and more on good object-oriented design practices, statelessness
and scalability. We accordingly examine the research gap with respect to these
goals. In the next section (Sect. 2) we explore programming competency in
software developers, followed by Sect. 3 which discusses adaptable development
processes for knowledge transfer, and finally Sect. 4; where we consider the
potential of enhancing service proficiency.

2 Programming Competency in Contrast

There is a general perception that developers have a greater understanding
of OOP than SOP, however, the extent of this difference in knowledge is
relatively unknown. Competency is an important factor for narrowing down
potential candidates for both knowledge transfer and for building extensible
object-oriented systems. We theorise that most developers in industry are now
actively using or have used object-orientation. Accordingly, similar to Karsten
& Roth’s [26] approach into student computer competence and confidence,
which used self-efficiency to offer insight into how individuals perceive their
capability in performing specific tasks, we conducted a short experiment ask-
ing 30 computer programmers from around the United Kingdom to assess their
knowledge and confidence in the two domains.

As expected, all 30 of the participants had used object-orientation whereas
only 20 had experience with SOP. We broke this down further; identifying
that over half had more than 3 years of educational attainment with at least
some industry experience and that it was this control group that accounted for
the majority of the 20 who had service-oriented experience. The participants
were then asked to assess their knowledge of the two programming paradigms.
From the initial results, a rating of 2.77 to 1.67 (Tab. 2) shows that the ma-
jority of participants perceived their knowledge of OOP to be higher than
that of SOP, and that 96.7% rated their understanding of object-orientation
as knowledgeable or above.

Further analysis showed that respondents who had selected SOP also had a
higher level of ability in OOP (Tab. 3), accounting for the majority of experi-
enced and expert results.



Enhancing Service Capability in Developers 5

Table 2 Self-rating of knowledge

None Beginner Conversant Experienced Expert Rating

OOP 0.0% (0) 3.3% (1) 36.7% (11) 40.0% (12) 20.0% (6) 2.77
SOP 13.3% (4) 26.7% (8) 40.0% (12) 20.0% (6) 0.0% (0) 1.67

Table 3 Self-rating of knowledge in only those who admitted SOP experience

None Beginner Conversant Experienced Expert Rating

OOP 0.0% (0) 10.0% (2) 20.0% (4) 50.0% (10) 20.0% (4) 2.8
SOP 0.0% (0) 25.0% (5) 45.0% (9) 30.0% (6) 0.0% (0) 2.05

The participants were asked how confident they were when implementing the
two paradigms (Tab. 4). Inline with self-rating, the results showed a higher
level of confidence in implementing object-oriented systems than that of service
components.

Table 4 Perceived confidence

None Some Moderately Very Completely Rating

OOP 3.3% (1) 10.0% (3) 16.7% (5) 40.0% (12) 30.0% (9) 2.83
SOP 23.3% (7) 36.7% (11) 10.0% (3) 26.7% (8) 3.3% (1) 1.50

Unsurprisingly, the most confident participants consisted of those who had
selected SOP (Tab. 5), with high-end ratings in both self-assessment and con-
fidence.

Table 5 Perceived confidence in only those who admitted SOP experience

None Some Moderately Very Completely Rating

OOP 5.0% (1) 10.0% (2) 15.0% (3) 35.0% (7) 35.0% (7) 2.85
SOP 10.0% (2) 35.0% (7) 10.0% (2) 40.0% (8) 5.0% (1) 1.95

While there is no simple way to validate the claims of the participants, these
results underpin the problem domain by presenting a greater level of perceived
knowledge in OOP. Although object-orientation is clearly more mature we are
also aware that SOP is no new concept and has proven itself as an essential
part of software development. However, this is clearly not reflected in the
participants knowledge; thus opening further research gaps with regards to why
the results present such a difference in understanding. Although we identify
that these statistics alone only offer a basic understanding of the varying levels



6 Stubbings, Polovina

of ability we also recognise that in future investigations a precise difference
in competency would be required for analysing methods and techniques for
knowledge transfer.

Maintaining an understanding of current approaches in an area as diverse as
SOA has many challenges, Baarda [4, p. 9] suggests when a business has gone
for a prolonged period of time without a need for services then it is likely it
will suffer from a slip in paradigm focus when service needs arise, thus making
service integration more difficult. Presumably, these difficulties also present
themselves within businesses that have never previously thought about service
implementation and as such, in Sect. 3, we discuss how a promising solution
could be to construct service-ready software systems using existing developer
skillsets.

3 A Service-Ready Development Process

The use of object-orientation has eased the design of core information systems
in businesses for the past 20 years [18]. However, much in the same way that
the early 90’s saw a change in focus towards object-orientation; many software
development teams are facing a new dilemma as service-orientation promises
another paradigm shift. This new driving need for services originates from a
demand to expose core system functions, however, unlike its predecessors shift
from procedural programming, service-orientation is often considered to be
an extension of object-oriented principles. Nevertheless, the problem with any
paradigm shift is that years of accumulated knowledge, skills and experience
cannot always be directly applied in a new context. Accordingly, we argue that
before moving toward service-orientation software developers need to think in
fundamentally new ways, and thus explore strategies to support the transition.

Erl [12] presents a number of guidelines for designing service-oriented classes
whereby object-oriented methods are used in contrast. Although this is a good
approach in principle the object-oriented counterparts used in the examples
are not as they would appear within a typical system. For example, they all
return raw types and can be easily translated to single classes, as such; the dif-
ferences in the examples are relatively easy to understand because the classes
are already in a state that we consider being service-ready. We believe that
having the system objects in this service-ready state simplifies later transition
and should be considered prior to developing object-oriented systems.

3.1 Alternative technologies and approaches

Although we have discussed some of the problems with incorporating services
in complex systems, there are already a number of technologies that pertain to
the same ideals of a service-ready approach. However, whilst it is possible to



Enhancing Service Capability in Developers 7

implement middleware technologies to deliver such an environment, we argue
that the difficulty and thus level of competency required is dependent upon
technology in question. We are henceforth led to consider the claims of lan-
guages like Erlang [2] and it’s derivative Scala, which boast “programmer skills
are fully re-usable” [37]. These languages attempt to enable the development of
massively scalable real-time systems by following the Communicating Sequen-
tial Process (CSP) model, which is different from a typical object as it allows
for data to be encapsulated within a process, offering a form of decoupling
which keeps the core objects the same.

These languages enable software developers to be more productive by provid-
ing common patterns which standardise the way software is written. However,
McBeth [29], offers a balanced view of Scala, and proposes a number of argu-
ments that oppose the language’s claims. He outlines how “Scala incorporates
features and concepts that are not familiar to many programmers” and out-
lines how there is still a learning curve, which is made difficult with the limited
commercial support, documentation and tool maturity. He goes on to suggest
that organisations are generally opposed to Scala because of the limited de-
veloper pool and the additional cost of training which, from our experience,
is made more difficult by developers in the professional community being un-
willing to even try another approach until mandated at the corporate level.
We are thus led to conclude that, although Scala fits in with many of the
ideals of service-readiness; what comes as second nature to experienced soft-
ware developers is often overlooked by novices and as such an approach rather
than technology would allow for the gradual introduction of small changes in
the Object-Orientated Analysis and Design (OOAD) process, increasing the
likelihood of developer commitment.

Udell [38] suggests that SOA is an intellectual style that supports the combina-
tion of these approaches in an attempt to simplify a complex solution and that
as a result, a number of frameworks and standards for services have emerged
from the evolution of software practices. Decision modelling is an approach
adopted from software engineering concepts which has led to the development
of SOAD (SOA Decision Modelling), a set of concepts and RADM (Reusable
Architectural Decision Model), a set of recurring decisions for SOA [42]. We
argue that, although these frameworks help with the identification of business
requirements, only a small proportion of the ensuring methods lend assistance
to the development process itself, making service development considerations
difficult for novices to grasp.

3.2 What it means is to become service-ready

In order to ease the difficulties associated with service-orientation, we propose
a need for increasing service-awareness in developers who are traditionally
focused towards programming using object-orientation.



8 Stubbings, Polovina

A lot of work has been put into good software design; however, studies such
as Voigt’s [39] method of identifying flaws in systems and the conceptual ap-
proach to improve existing software through coding standards by Fowler et
al. [13] are typically motivated by conflicting advice and focus upon post-
development solutions. In contrast to these approaches we propose to enhance
the developer’s ability to identify potential integration problems by increasing
awareness of the service principles. One way in which this can be achieved
is by using common, well-founded and appropriate object-oriented principles
as mechanisms for knowledge transfer. Rather than teaching SOP directly,
the underlying principles would instead be introduced during the development
stages by using the same delivery methods of the common object-oriented
principles, but adapted where appropriate to address the new context.

To this end we consider two attitudes towards teaching object-orientation.
Firstly, that of Ragonis & Ben-Ari’s [34] who propose an object-first approach
which demonstrates object-orientation prior to basic programming concepts,
and secondly, that of Buck & Stucki [7] who suggest that students are exposed
to complex object-orientation too early and advise that the basic building
blocks should be taught first. Seeing the value in both approaches we perceive
how a service-first approach could use a combination of the two, offering a so-
lution which introduces the service principles prior to intricate object-oriented
implementation techniques. This service-first approach would educate devel-
opers in both the characteristics of services and how a system’s design can
cater for their integration.

Although there are research gaps with regards to exploring a shift in complex-
ity from services to objects through the addition of software design constructs
we argue that, as developers are far more competent in OOP, the relocation
of difficulties to the more well-known domain would produce higher quality
software systems. Moreover, we foresee the introduction of architectural deci-
sions from the service domain could have many advantages over teaching SOP
outright, and contribute towards exposing business processes whilst providing
continuity and enabling the development of well-structured object-oriented
systems that are more accommodating to modern service requirements.

4 Exploring a Service-Ready Solution

In our experiment (Sect. 2) we found that a surprising number of developers
were unfamiliar with service-orientation, suggesting that SOP is yet to position
itself as a core aspect of software development. In order to address this lack of
expertise we discuss how a service-ready approach could target the complexity
issues behind service-orientation (Sect. 3). However, this approach presents
a number of challenges; the foremost, which we will discuss in this initial
investigation, is how to represent the principles of service design [11].



Enhancing Service Capability in Developers 9

Portraying the service principles and their relevance to an object-oriented sys-
tem is clearly more difficult than simply offering the non-contextual informa-
tion, and as such we consider methods and techniques outlined in software
development literature by pursuing those that are suitable for presenting the
service principles in an object-oriented environment. We hypothesise that any
object-oriented methodology that can be adapted to demonstrate the logic be-
hind a service principle would make a suitable delivery method for knowledge
transfer and thus lever the existing expertise of object-oriented developers. To
this end, we begin our investigation with Erl’s [12] comparison of principles
for two reasons. Firstly, to discover potential ways in which an object-oriented
system could be designed to accommodate service components, and secondly
to dissect his guidelines for designing service-oriented classes so as to identify
their feasibility in a service-ready context.

4.1 Approaches that Unify SOA

Josuttis [25, p. 26] describes SOA as “an architectural paradigm for dealing
with business processes distributed over a large landscape of existing and new
heterogeneous systems”, and summaries the key technical concepts as services,
interoperability, and loose coupling. We consider the definition of a service-
ready architecture to be similar in definition, but without the service and
interoperability concepts. Instead, we propose to analyse the approaches to
SOA that promote loose coupling in order to discover appropriate patterns
that can be applied to object-oriented systems so that services can easily
integrate or even evolve from of existing functions when the need arises.

A typical approach for SOA introduces a layer of abstraction that enables new
and existing object-oriented systems to be integrated into the business through
an Enterprise Service Bus (ESB). The role of an ESB is to act as a universal
connectivity middleware solution which enhances communication and simpli-
fies integration [36]. ESBs are a popular business solution due to their ability
to retain existing investment in resources whilst providing additional tools for
interaction with other business processes, accordingly, we argue that this ap-
proach underpins our study as the quantity of retained resources will always
subject to system design.

The Service Development Life Cycle (SDLC) takes an iterative SOA devel-
opment approach and incorporates eight phases [32, p. 661]. However, in our
approach we only concern ourselves with a subset of these, the most significant
of which being service Planning, Analysis and Design for our service-ready ob-
ject managers (or pseudo services). Zimmermann et al. [43] suggests that these
early service design stages are supported by approaches like Service-Oriented
Modelling and Architecture (SOMA) and complementary techniques such as
UML. SOMA [23] defines three service modelling steps comprising of Identifica-
tion, Specification and Realisation; these steps consist of sub-steps prescribing



10 Stubbings, Polovina

several artefacts with appropriate techniques at each level. They identify that
it is around these steps that grounds for new processes and guidelines may be
determined.

Similarly, IBM’s [22] Rational Unified Process (RUP) provides an adaptable
framework which can be tailored to meet organisations specific needs as it sup-
ports a range of disciplines and best practices. Having a number of variations,
such as Agile Unified Process and Enterprise Unified Process; its potential lies
within its engineering principles and best practices, which have already been
adapted for SOA development [30].

Whilst all these approaches support each other, we consider SOMA to be the
most significant to our service-ready approach as it focuses on how business
functions can be translated into service-based applications in the design phase.
However, before we can accurately analyse these SOA approaches, we first
place emphasis on identifying some basic guidelines for service-ready object
design and consider the characteristics of our pseudo services.

4.2 Service-Ready Design for Object-Orientation

We begin our investigation by looking at the service principles and compar-
ing their meaning in each of the two programming paradigms. With this we
discuss their adapted suitability to the service-ready approach we outlined in
Sect. 3.2 through the identification of similar guidelines and appropriate design
patterns.

4.2.1 Encapsulation

Although encapsulation means the same thing in both paradigms, Erl [12]
suggests that they are used somewhat differently.

“Services still encapsulate logic and implementations, just as objects
do... However, within service-orientation, the term encapsulation is
used more so to refer to what is being enclosed within the container” -
Erl [12]

In a service-ready system we envisage encapsulation taking place in distinct
manager classes using the Mediator design pattern [15]; this pattern would
expose methods via corresponding interfaces for the given context, or multiple
interfaces; one for use in the internals of the application and one (providing
less functionality) for external.

“Mediator promotes loose coupling by keeping objects from referring to
each other explicitly, and it lets you vary their interaction indepen-
dently.” - Gang of Four [15]



Enhancing Service Capability in Developers 11

However, the Mediator pattern is not without problems, Freeman et al. [14,
p 623] states that a drawback of using the pattern is that it is easy for objects
to become too complex without proper design. Subsequently, we consider how
our pseudo services should be designed by expending upon existing service
guidelines such as Erl’s [12] “Do not define public attributes in interfaces”.
Erl proposes that the removal of attributes from public interface forces all
communication through methods and therefore places control of state man-
agement within the service. In a service-ready context this guideline is of some
significance as, although they are not typically stateless, we argue that object
managers alone should adhere to the Single Responsibility Principle (SRP) for
handling a specific domain aspect.

We are thus led to consider the alignment of the service-ready approach to
SOA through the design of its ensuing manager classes and how the Mediator
pattern proposes a kind of pseudo service which we see to be consistent with a
basic service [25, p 63]. We consequently argue that, in order to later support
the first stage of expansion to SOA, Allen’s [1] guidelines for achieving the
optimum level of granularity for a low level service are entirely relevant for
our own service-ready classes:

1. It should be possible to describe the service in terms of function, informa-
tion, goals, and rules, but not in terms of groups of other services.

2. The function set of a service should operate as a family unit that offers
business capability.

3. A single role should take responsibility for the service (SRP).
4. The service should be as self-contained as possible (autonomous).

In object-orientation the Observer pattern is often used instead of the Me-
diator as whilst they both provide a separation-of-concerns it also promotes
association. Both patterns support decoupling through the use of inversion
of control (IoC), whereby the simple objects are considered to be more com-
municative and managers alone are responsible for handling objects. However,
unlike the Observer pattern the Mediator promotes further decoupling by keep-
ing objects from referring to each other explicitly, this enforces the SRP by
allowing communication handling in a specific class. Accordingly, in order to
decouple our service-ready manager classes and simulate service behaviour, we
propose to substantiate such guidelines with design rules that restrict message
types to those that are either built-in types to the language or instances of the
containing object.

4.2.2 Inheritance

Erl [12] argues that inheritance is discouraged in service-orientation, except
through its contract and logic.

“Due to the emphasis on individual service autonomy and reduced inter-
service coupling, inheritance between services is generally discouraged
within service-orientation.” - Erl [12]



12 Stubbings, Polovina

Nevertheless, there still needs to be a constant awareness that in the future any
coarse-grained service may need to be decomposed into finer grained services.
Accordingly, Erl’s [12] guideline “Use inheritance with care” also relates to how
the components of an object-oriented system are bound through inheritance
structures whereby complex relationships make it more difficult to physically
separate services.

Josuttis [25, p. 46] underpins this argument stating that “loose coupling has
drawbacks. For this reason, loose coupling should never be an end in itself”. In
order to address these challenges whilst still retaining the advantage of using
inheritance in a service-ready intermediary state, we propose using separate
class definitions for the internals and externals of a system through an expan-
sion of Ragonis’ [34] approach which uses simple and composed classes. The
concept of simple refers to a class whose attributes are of built-in types to
the language, and composed refers to a class that has attributes of different
user-defined types. Similar in design to the Bridge design pattern [15, p. 23],
this approach suggests two implementations per object, simple to support use
with other services by exhibiting abstracted behaviour, and extended to en-
able associations with other objects. As a complex inheritance structure is
more difficult to decompose we thus propose a constraint whereby inheritance
should only be used on an extended object domain model for a specialised
hierarchy, placing emphasis on the chosen levels of abstractions for its success.

Almost all design patterns use inheritance to some extent [15, p. 23], the level
of inheritance restricts what patterns can be used. At its most basic level we
expect a service-ready system to reuse functionality through the use of “mixin
classes” [15, p. 25] for the two contexts. Whilst this takes away some of the
advantages of object-orientation, the Adapter design pattern can be used to
retain some benefits as it allows developers to convert the interface of a class
into another so that unrelated classes can work together [15].

4.2.3 Association, Composition and Aggregation

Services have little to no ownership structure and as such are free to invoke
capabilities within each other. Furthermore, when we talk about composition
in service-orientation we refer to a collection of services that should be able to
act independently and are not limited to an ownership hierarchy.

“As with composition, aggregation does not apply to service-orientation
because it is still based on a ‘has-a’ ownership structure... In service-
orientation, the term ‘composition’ refers to an assembly or aggregate of
services with no predefined ownership structure. Therefore, the rules as-
sociated with OOAD composition do not apply to service-orientation...”
- Erl [12]



Enhancing Service Capability in Developers 13

Nevertheless, despite these constraints basic association, aggregation and com-
position can still be achieved in the underlying logic through the use of design
patterns. However, as service interaction most closely resembles a “uses-a”
relationship we argue that other forms of communication should be avoided
in a service-ready system. This style of design is often considered best prac-
tice in object-oriented systems and as such we believe that as with Erl’s [12]
guideline “Avoid cross-service relationships”, a service-ready systems design
should use design patterns that allow for a clear separation and discourage
cross-communication between methods in order to avoid later conflicts.

Decomposition is the simplest approach to extending object-oriented systems
whereby existing functionality is exposed as a set of services for reuse in other
parts of the business [27]. Through a combination of approaches SOA and
OOP can enable the orchestration of requirements without needing to worry
about platform so as to represent distinct, single purpose functional contexts.
To this end, the SRP will be considered in a service-ready approach in order
to offer separation in terms of the two basic manager types. Entity (or data)
managers for business objects with CRUD-like behaviour (such as get order)
and logic managers for specific processes (such as process order). These pseudo
services would be decomposed in the same way a well-design object-oriented
system would expect by following the Don’t Repeat Yourself (DRY) principle
so as to reduce redundancy by extracting reusable logic into separate specified
functions.

When designing service-based systems, the desired functionality of the soft-
ware is divided in the same way as component-based systems. However, SOA
differs in integration as the services are loosely coupled through their mes-
sage exchange [32]. Although other distributed programming approaches ex-
ist; such as the Common Object Request Broker Architecture (CORBA) and
Microsoft’s Distributed Component Object Model (DCOM), we argue that a
service approach offers the most flexibility and that such restrictions on the
external part of the object domain model would enable simpler interactions
for future consideration.

Erl’s [12] guideline is similar to that of one of the core object-oriented de-
sign principles outlined by the Gang of Four [15]. The principle “Favor object
composition over class inheritance” argues that object composition and dele-
gation in particular provide flexible alternatives to inheritance for combining
behaviour. However, they also argue that heavy use of object composition
can make designs harder to understand, which undermines the purpose of our
approach.

The motivation behind delegation is what drives the need for service compo-
sition as it is arguably one way of making composition as powerful for reuse
as inheritance [15]. The use of delegation differs in essence as the requester
does not receive a result, only a promise that the work will be carried out [6,



14 Stubbings, Polovina

p. 466]. Whilst this level of decoupling is appropriate for separating various
responsibilities across large-scale systems, we consider delegation to only be
appropriate when it simplifies rather than complicates [15, p. 31], and that
the delegation pattern is more of an approach for the encompassing service
methods that may come later rather than the opening service-ready design.

4.2.4 Generalisation, Specialisation and Abstraction

Erl [12] discusses how both generalisation and specialisation are closely related
to abstraction in object-orientation as no formal inheritance relationships are
defined.

“Within the context of service design, generalization and specialization
relate directly to granularity. The more specialized a service, the greater
its degree of service-level granularity.” - Erl [12]

Similarly, abstract classes are not used directly within service-orientation, how-
ever, as finding the correct functional context of each service is an important
part of the design process Erl [12] believes that they are of some use when
identifying granularity. Accordingly, his guideline “Use abstract classes for
modelling, not design” proposes advantages when present in an object-oriented
context as they can still be used informally to ensure consistency and (although
they are of no use in the service context) can be helpful for considering service
candidates whilst modelling.

The effectiveness of decomposition is often dependent upon the existing levels
of abstraction. Fortunately for novices, a well-defined architecture is relatively
simple to achieve through the implementation of class interfaces [12]. The
core difference between the two paradigms lies within the complexity of the
returned values whereby only a minimal public interface, which uses base-types
(or simple types in WSDL 2.0) would play a key role in designing a service-
ready interface. The simple and extended contexts could be supported by the
Facade pattern [15, p 199], whereby a unified interface can be used in each of
the two subsystems.

In addition, as service abstraction also aims to limit access to service imple-
mentation through contacts (interfaces), we consider Erl’s [12] guideline “Limit
class access to interfaces” to be appropriate in a service-ready system, which
would make use of specific interfaces for public access and limit interaction
to the relevant domain segments. However, a service-ready context would also
consider this principle on different levels and present extended classes that
support a basic ownership structure for use in the internals of the application
so that they can be abstract in design to support basic association, aggregation
and composition for polymorphic behaviour and code reuse. The difference be-
ing that, only the simple context would strictly adhere to the aforementioned
Mediator pattern (Sect. 4.2.1). In addition, as sub-classing is not an option



Enhancing Service Capability in Developers 15

in a service context, there are a couple of patterns which could be used to
support the design of such objects. These include the Decorator [15], which
allows the addition of responsibilities in objects, and the Proxy which provides
a substitute when it’s inconvenient or undesirable to access a subject directly
[15]. Both approaches would allow one service to manage multiple states.

In order to carry out OOAD with service readiness in mind it can be argued
that modelling is an important aspect as it grants novices a visual represen-
tation of what they are aiming to achieve. A cross-section of the modelling
techniques [10], suggests that decoupling need not be specific to SOA, and
that a similar affect could be achieved within OOP to help prepare systems
for service integration. In theory, this alone would make the later transition
simpler. However, retaining the object-oriented advantages whilst suggesting
this guideline is a different matter entirely, and would inevitably shift the focus
during the design phase to modelling without complex relationships whereby
new informative and communicational objects would be introduced in their
place.

4.2.5 Polymorphism

Inheritance between objects and services is different because there is no formal
concept of subtyping in service-orientation. Since polymorphism is generally
reliant on this specific form of inheritance, which is commonly known as “true
inheritance” [9], it also is not used in the same way within service-orientation.
The closest thing to it is derived from the support of service contracts or
interfaces (through interface inheritance) in the underlying implementation,
whereby CRUD-style operations can be exposed for consistency.

Glen [16] discusses how XML extensions can be used to support polymor-
phic web services by providing basic inheritance capabilities, thus enabling
the use of base objects in services. However, the paper continues by discussing
that, whilst this provides some degree of polymorphic behaviour, it is still no
substitute for object-orientation, as web services generally adopt a stateless
invocation pattern.

“This typically results in similar or identically named capabilities across
numerous services.” - Erl [12]

This links to the Open-Closed Principle (OCP) which is central to the success
of service-integration as it suggests classes should support extension but dis-
allow modification. This common best practice refers to interface consistency
and suggests that the system structure should support override and extension,
thus keeping the same name for a consistent service contract.



16 Stubbings, Polovina

4.3 Findings and Feasibility

We argue that with the right guidance a service-ready approach could be
formed to empower developers, enabling them to produce object-oriented sys-
tems that can both easily accommodate services and support the transition to
SOA. In his article Erl [12] compares the service principles to object-orientation
in order to help readers understand the problem domain. We recognise this
method of knowledge representation as an easy way to demonstrate our service-
ready ideas and as such have considered our own principles by looking at those
found within existing literature [1,12,15,25].

An alignment of basic service design principles and the goals of our service-
ready manager classes (pseudo services) are made apparent in Sect. 4.2.1, we
thus consider the same guidelines for achieving the optimum level of granular-
ity but also conclude that the following would be valuable when designing a
service-ready object-oriented system:

1. Always use interfaces, but encourage the separation of internal and external
logic, whereby the core logic is kept within the internals of the application
(Encapsulation).

2. Use inheritance on common functionality within the internals of the appli-
cation (Polymorphism).

3. Interfaces should use a consistent naming convention, so as to avoid over-
head when switching over to use service contracts at a later date (Poly-
morphism).

4. Avoid functional overlap by ensuring individual interfaces are used for pub-
lic access (Inheritance).

5. Avoid forms of communication between external parts of the application
(services) other than a uses-a relationship (Inheritance).

6. Avoiding complex relationships and plan for multiple implementations for
internal and external aspects (Delegation).

7. Separate into groups, such as managers for handling CRUD-like behaviour
for entities and services for handling business processes (Association, Com-
position and Aggregation).

8. Only use managers for handling simple objects, thus enabling a clear sep-
aration of concerns (Abstraction).

We discussed each of the service principles and their associated guidelines
to come up with our own basic guidelines for novices (above). In addition, we
considered design patterns to provide direction during implementation, as they
often come bundled with extensive literary support making them relatively
easy for novices to learn and understand. However, from our experience novices
seldom use patterns (or at least the correct one) because it is difficult to select
the most appropriate for a given solution [15]. As such, whilst any patterns
which facilitate scalability and adhere to one or more of the service principles
are theoretically applicable, we have initially supplemented each area with
appropriate behavioural patterns that simplify object composition.



Enhancing Service Capability in Developers 17

While behavioural patterns are targeted towards code separation and avoid-
ing functional overlap, creational patterns play an important part as systems
evolve to depend more on object composition than class inheritance [15, p. 96].
In contrast to creational patters, which are relatively easy to implement (as
all creational patterns have the same goal), many structural patterns such as
the object system layer [17] have evolved from the need to resolve complexi-
ties found in the integration process. Nonetheless, Yang et al. [40] argues that
current approaches are somewhat lacking for service composition and in later
works [31] unifies these principles and concepts to promote an approach for
extending conventional SOA. The extension of these early approaches are of
some significance as their adaption to a new context may open the way for
further service-ready design aspects.

In this section we have discussed how objects may be designed to act like
services so that novices with little to no understanding of SOA can design
a system that supports its adoption. The overall goal of this approach is to
be able to later expose these existing functions as services with relative ease
due to a more appropriate structure. By designing object-oriented systems
that support services we expect to increase the service-oriented expertise in
novice developers, however, the delivery of such ideas will be core to their
understanding.

Riel [35] suggests that an experienced system analyst can interrogate a design
to identify its strengths and weaknesses and that consequently, much work has
been put into place to capture this skill through the development of heuristics.
In addition, we consider that due to their extensive use in industry; heuris-
tics not only offer the simplest implementation, but would also support us in
identifying existing concepts that closely adhere to Erl’s [11] service-oriented
principles. There are many varying types of heuristics that have been explored
by a number of authors [5,24,35], however, in their study into automatic prob-
lem detection Bär & Ciupke [5] found that heuristics from different sources
contained both a mixture of similarities and contradictions. Accordingly, we
foresee that such a delivery method would need to consider how the introduc-
tion of patterns into an unknown environment could conflict with any already
in place so as to not compromise their underlying purpose.

5 Conclusion

5.1 Implications

While OOP ordinarily has limitations exposing processes, SOAs present core
business logic as services. However, the ability to manage large-scale change
and bridge the gap between functions and system operations requires devel-
opers to have the right skillsets.



18 Stubbings, Polovina

The service-ready design methodology offers a different perspective to tradi-
tional software engineering techniques whereby focus is placed on reducing
complexity rather than offering a solution to a specific set of requirements.
By providing a collection of guidelines that uses object-orientated syntax to
prepare systems and their developers for knowledge transfer we believe com-
petency would be increased to permit even the most intricate service adoption
techniques.

Possible implications for such work could bring about frameworks for facilitat-
ing skill transfer whilst acting as an enabler for change within organisations.
This change, to consider service-oriented principles, has advantages from a
business perspective through the modernisation of methods and approaches
that would allow for the continued use of existing assets.

5.2 Future

Throughout this paper we have outlined the advantages of a service enriched
environment. Using this mind-set we anticipate that future work would see the
extension of traditional classes in order to prepare object-oriented systems for
service integration [33], however, in contrast to existing approaches we foresee
that the service-ready ideals would not offer any advantage until much later
in the product life-cycle. Although we looked at approaches that unify SOA
(Sect. 4.1), we foresee a need to analyse RUP and SOMA to identify specific
approaches that align with the service-ready guidelines and pseudo service
characteristics outlined in this paper (Sect. 4.3), along with investigations into
studies that look into the early introduction of service components through
additional constructs, such as that of Guizzardi et al. [19, p. 5] who create
stereotypes to support object modelling.

In his work Dori [10] recognises the differences in the top-level design processes
of the two paradigms and proposes an underlying model for SOA called the
Object-Processes Methodology (OPM) which enables the graphical represen-
tations of objects, states and processes.

“While OO puts objects and their encapsulated behavior at the center
stage, emphasizing primarily rigid structure, SOA hails services as the
prime players to cater primarily to behavior.” - Dori [10]

Similar to our own objective, this approach sets out to enable developers to
begin thinking in fundamentally different ways during software design. How-
ever, as we have primarily focused upon the levels of granularity, our goal to
ultimately simplify service integration for novices still has a number of short-
comings, accordingly, in future works; modelling would be an excellent place to
continue our research as it helps visually portray our ideas and place focus on
all aspects of service design. Moreover, while we have identified design patterns
that help achieve our goal, we foresee a need to conduct an in-depth analysis



Enhancing Service Capability in Developers 19

of existing techniques from industry for identifying services, including other
structural patterns which may be altered to align to one of the service-oriented
principles.

Finally, we recognise that heuristics are another good first delivery element
for service-ready design as they often contain object-oriented strategies that
adhere to the service principles. In future work we will consider qualitative
associated studies such as that of Ragonis & Ben-Ari [34] who evaluate student
marks in order to identify 58 conceptions and difficulties for analysis as carried
out by novices and that of Holland et al. [21] who identify equivalent concerns
in teaching OOP with a list of students’ misconceptions and a probable source
for each. The identification of such potential problem areas will ultimately be
used to expose which object-oriented methods effectively interpret the service
principles.

5.3 Summary

From our initial findings we foresee little need to re-educate developers with ex-
pertise in OOP, forcing them to learn a different paradigm needlessly. Rather,
the benefits of SOA can be exploited and integrated with OOP. Through this
service-ready approach, OOP expertise can resolve the technical dichotomies
between it and SOA, bridging the gap between two programming perspectives
that are often considered individually and aligning the latest trends in both
paradigms to provide an avenue from which key topics like inheritance and
hierarchy can be compared and discussed. We are thus persuaded that the
service-ready approach is a positive way forward, and seek its adoption whilst
taking on board such considerations as it progresses.

In this paper we reflect upon a present lack of understanding when it comes
to identifying when and where to use OOP and SOP, and that as a result mis-
takes in process are only realised after it is too late. Subsequent investigations
would identify the point at which novices are made aware of such difficul-
ties and the implications it has on service-oriented software. This information
can then be analysed alongside common challenges, existing methodologies,
approaches that unify SOA (Sect. 4.1) and modelling aspects for knowledge
transfer. This analysis would then discover a number of appropriate research
methods and techniques that fit the service principles, ultimately producing a
seamless conceptual framework for a service-ready object-orientated approach
to software development.

References

1. Allen, P.: Service Orientation: Winning Stratergies and Best Practices. Cambridge
University Press, New York, NY, USA (2006)



20 Stubbings, Polovina

2. Armstrong, J.: The development of erlang. SIGPLAN Not. 32(8), 196–203 (1997).
doi:10.1145/258949.258967

3. Arsanjani, A.: Toward a pattern language for service-oriented architecture and inte-
gration, part 1: Build a service eco-system. http://www.ibm.com/developerworks/

webservices/library/ws-soa-soi/ (2005). Accessed 30 October 2011
4. Baarda, P.J.: Your SOA needs a business case. http://www.via-nova-architectura.

org/files/magazine/baarda.pdf (2008). Accessed 18 February 2012
5. Bär, H., Ciupke, O.: Exploiting design heuristics for automatic problem detection. In:

Workshop ion on Object-Oriented Technology, ECOOP ’98, pp. 73–74. Springer-Verlag,
London, UK (1998)

6. Brown, P.: Implementing SOA: Total Architecture in Practice. TIBCO Press Series.
Prentice Hall (2008)

7. Buck, D., Stucki, D.J.: Design early considered harmful: Graduated exposure to com-
plexity and structure based on levels of cognitive development. SIGCSE Bull. 32(1),
75–79 (2000). doi:10.1145/331795.331817

8. Clark, D.: Designing OOP solutions: Identifying the class structure. In: Be-
ginning Object-Oriented Programming with VB 2005, pp. 11–30. Apress (2006).
doi:10.1007/978-1-4302-0095-6 2

9. D’Andrea, V., Aiello, M., Aiello, M.: Services and objects: Open issues. In: European
workshop on OO and Web Service, pp. 23–29 (2003)

10. Dov, D.: SOA for services or UML for objects: Reconciliation of the battle of giants
with object-process methodology. In: SwSTE, pp. 147–156. IEEE Computer Society,
Herzlia, Israel (2007). doi:10.1109/SwSTE.2007.10

11. Erl, T.: SOA Principles of Service Design (The Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ, USA
(2007)

12. Erl, T.: Service-orientation and object-orientation part i: A comparison of goals and
concepts. http://www.soamag.com/I15/0208-4.php (2008). Accessed 29 January 2011

13. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

14. Freeman, E., Freeman, E., Bates, B., Sierra, K.: Head First Design Patterns. O’ Reilly
& Associates, Inc. (2004)

15. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1994)

16. Glen, S.: Polymorphic web services, part 1: Polymorphic data (2008). URL http://

www.ibm.com/developerworks/xml/library/ws-polymorphic/. Accessed 07 December
2012

17. Goedicke, M., Neumann, G., Zdun, U.: Message redirector. In: Proceedings of EuroPloP
2001, Sixth European Conference on Pattern Languages of Programs. Irsee, Germany
(2001)

18. Graham, I., O’Callaghan, A., Wills, A.: Object-oriented methods: principles & practice.
Addison-Wesley Object Technology Series. Addison-Wesley (2000)

19. Guizzardi, G., Wagner, G., van, M.S.: A formal theory of conceptual modeling univer-
sals. In: Workshop on Philosophy and Informatics (WSPI), Cologne, Germany, 2004.
Deutsches Forchungszentrum fur Kunstliche Intelligenz (2004)

20. Hoffman, K.: Microsoft Visual C# 2005 Unleashed, chap. Designing for Service-Oriented
Architectures (SOA). Pearson Education (2006)

21. Holland, S., Griffiths, R., Woodman, M.: Avoiding object misconceptions. SIGCSE Bull.
29(1), 131–134 (1997). doi:10.1145/268085.268132

22. IBM: Rational process library. http://www.ibm.com/software/awdtools/rmc/library/
(2003). Accessed 05 December 2012

23. IBM: Service-oriented modeling and architecture. http://www.ibm.com/

developerworks/library/ws-soa-design1/ (2004). Accessed 07 December 2012
24. Johnson, R.E., Foote, B.: Designing Reusable Classes. Journal of Object-Oriented Pro-

gramming 1(2), 22–35 (1988)
25. Josuttis, N.M.: SOA in Practice: The Art of Distributed System Design. O’Reilly,

Beijing (2007)

http://dx.doi.org/10.1145/258949.258967
http://www.ibm.com/developerworks/webservices/library/ws-soa-soi/
http://www.ibm.com/developerworks/webservices/library/ws-soa-soi/
http://www.via-nova-architectura.org/files/magazine/baarda.pdf
http://www.via-nova-architectura.org/files/magazine/baarda.pdf
http://dx.doi.org/10.1145/331795.331817
http://dx.doi.org/10.1007/978-1-4302-0095-6_2
http://dx.doi.org/10.1109/SwSTE.2007.10
http://www.soamag.com/I15/0208-4.php
http://www.ibm.com/developerworks/xml/library/ws-polymorphic/
http://www.ibm.com/developerworks/xml/library/ws-polymorphic/
http://dx.doi.org/10.1145/268085.268132
http://www.ibm.com/software/awdtools/rmc/library/
http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.ibm.com/developerworks/library/ws-soa-design1/


Enhancing Service Capability in Developers 21

26. Karsten, R., Roth, R.M.: The relationship of computer experience and computer self-
efficacy to performance in introductory computer literacy courses. Journal of Research
on Computing in Education 31(1), 14–24 (1998)

27. Koskela, M., Rahikainen, M., Wan, T.: Software development methods: SOA vs. CBD,
OO and AOP. http://www.soberit.hut.fi/t-86/t-86.5165/2007/final_koskela_

rahikainen_wan.pdf (2007). Accessed 20 December 2010
28. Marks, E.A.: Service-Oriented Architecture (SOA) Governance for the Services Driven

Enterprise. Wiley Publishing (2008)
29. Mcbeath, J.: Scala pros and cons. http://www.scala-lang.org/node/8462 (2010). Ac-

cessed 30 October 201
30. Mittal, K.: Service oriented unified process (soup). http://www.kunalmittal.com/html/

soup.html (2010). Accessed 24 December 2012
31. Papazoglou, M.P., Heuvel, W.J.: Service oriented architectures: approaches, technologies

and research issues. The VLDB Journal 16(3), 389–415 (2007). doi:10.1007/s00778-
007-0044-3

32. Papazoglou, M.P., Traverso, P., Ricerca, I., Tecnologica, S.: Service-oriented computing:
State of the art and research challenges. IEEE Computer 40, 38–45 (2007)

33. Ragonis, N.: Teaching object-oriented programming to novices. Ph.D. thesis, Weizmann
Institute of Science (2004)

34. Ragonis, N., Ben-Ari, M.: A long-term investigation of the comprehension of
OOP concepts by novices. Computer Science Education 15, 203–221 (2005).
doi:10.1080/08993400500224310

35. Riel, A.J.: Object-Oriented Design Heuristics, 1st edn. Addison-Wesley (1996)
36. Rosen, M., Lublinsky, B., Smith, K.T., Balcer, M.J.: Applied SOA: Service-Oriented

Architecture and Design Strategies. Wiley Publishing (2008)
37. Scala: The scala programming language. http://www.scala-lang.org/node/25 (2008).

Accessed 30 October 2012
38. Udell, J.: The spiral staircase of SOA. InfoWorld 27(40), 46–46 (2005)
39. Voigt, J.: Characterising the use of encapsulation in object-oriented systems (2009)
40. Yang, J., Papazoglou, M.P.: Service components for managing the life-cycle of service

compositions. Inf. Syst. 29(2), 97–125 (2004). doi:10.1016/S0306-4379(03)00051-6
41. Zdun, U.: Pattern-based design of a service-oriented middleware for remote

object federations. ACM Trans. Internet Technol. 8(3), 15:1–15:38 (2008).
doi:10.1145/1361186.1361191

42. Zimmermann, O.: SOA decision modeling (SOAD). http://soadecisions.org/soad.

htm (2009). Accessed 17 December 2012
43. Zimmermann, O., Schlimm, N., Waller, G., Pestel, M.: Analysis and design techniques

for service-oriented development and integration. pp. 606–611 (2005)

http://www.soberit.hut.fi/t-86/t-86.5165/2007/final_koskela_rahikainen_wan.pdf
http://www.soberit.hut.fi/t-86/t-86.5165/2007/final_koskela_rahikainen_wan.pdf
http://www.scala-lang.org/node/8462
http://www.kunalmittal.com/html/soup.html
http://www.kunalmittal.com/html/soup.html
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1080/08993400500224310
http://www.scala-lang.org/node/25
http://dx.doi.org/10.1016/S0306-4379(03)00051-6
http://dx.doi.org/10.1145/1361186.1361191
http://soadecisions.org/soad.htm
http://soadecisions.org/soad.htm

	Motivation and Object of Research
	Programming Competency in Contrast
	A Service-Ready Development Process
	Exploring a Service-Ready Solution
	Conclusion

