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Abstract

Current machine vision systems (or at least their performance critical parts) are predo
minantly implemented using statically typed programming languages such as C, C++, or 
Java. Statically typed languages however are unsuitable for development and maintenance 
of large scale systems.

When choosing a programming language, dynamically typed languages are usually 
not considered due to their lack of support for high-performance array operations. This 
thesis presents efficient implementations of machine vision algorithms with the (dynam
ically typed) Ruby programming language. The Ruby programming language was used, 
because it has the best support for meta-programming among the currently popular pro
gramming languages. Although the Ruby programming language was used, the approach 
presented in this thesis could be applied to any programming language which has equal 
or stronger support for meta-programming {e.g. Racket (former PLT Scheme)).

A Ruby library for performing I/O and array operations was developed as part of this 
thesis. It is demonstrated how the library facilitates concise implementations of machine 
vision algorithms commonly used in industrial automation. That is, this thesis is about 
a different way of implementing machine vision systems. The work could be applied to 
prototype and in some cases implement machine vision systems in industrial automation 
and robotics.

The development of real-time machine vision software is facilitated as follows

1. A just-in-time compiler is used to achieve real-time performance. It is demonstrated 
that the Ruby syntax is sufficient to integrate the just-in-time compiler transparently.

2. Various I/O devices are integrated for seamless acquisition, display, and storage of 
video and audio data.

In combination these two developments preserve the expressiveness of the Ruby program
ming language while providing good run-time performance of the resulting implementa
tion.

To validate this approach, the performance of different operations is compared with 
the performance of equivalent C/C++ programs.
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“Plan to throw one away; you will anyhow.”

Fred Brooks - The Mythical Man-Month

“If  you plan to throw one away, you will throw away 
two.”

Craig Zerouni

“H ow sad it is that our PCs ship without programming 
languages. Every computer shipped should be pro
grammable - as shipped.”

Word Cunningham

“I didn ’tg o  to university. D idn ’t even finish A-levels. But 
I have sym pathy for those who did.”

Terry Pratchett
Introduction

Machine vision is a broad field and in many cases there are several independent ap

proaches solving a particular problem. Also, it is often difficult to preconceive which 

approach will yield the best results. Therefore it is important to preserve the agility of the 

software to be able to implement necessary changes in the final stages of a project.

A traditional application of computer vision is industrial automation. That is, the cost 

of implementing a machine vision system eventually needs to be recovered by savings 

in labour cost, increased productivity, and/or better quality in manufacturing. M ost m a

chine vision systems however are still implemented using a statically typed programming 

language such as C, C++, or Java (see Section 2.2). Development and maintenance of 

large scale systems using a statically typed language is much more expensive compared 

to when using a dynamically typed languages (Nierstrasz et al., 2005).

This thesis shows how the dynamically typed programming language Ruby can be 

used to reduce the cost of implementing machine vision algorithms. A Ruby library is in

troduced which facilitates rapid prototyping and development of machine vision systems. 

The thesis is organised as follows

• Section 1.1 discusses interpreted programming languages

• Section 1.2 introduces the notion of dynamically typed programming languages

•  Section 1.3 states the contribution of this thesis

•  Section 1.4 gives an outline of the thesis

Historically software for machine vision systems was predominantly implemented in 

compiled languages such as assembler or C/C++. Most compiled languages map effi

1.1 Interpreted Languages

i



ciently to machine code and they don’t use a run-time environment for managing vari

ables and data types. Concise and efficient code is a requirement especially for embedded 

systems with limited processing power and memory (e.g. see Figure 1.1 for an example 

of an embedded system involving computer vision).

Figure 1.1: Optical parking system for a car

The downside of using a compiled language is that a developer is required to make 

changes to the source code, save them in a file, compile that file to create a binary file, and 

then re-run that binary file. In contrast, interpreted languages offer considerable savings 

in development time. In an interpreted language the developer can enter code and have it 

run straight away. Figure 1.2 shows that the feedback cycle in an interpreted language is 

much shorter than the one of a compiled language.

Compiled language Interpreted language

Figure 1.2: Feedback cycle in a compiled and in an interpreted language

A shorter feedback cycle consumes less time as the developer does not need to spend 

time waiting for the result of the previous change. The immediate feedback also fits well 

with the human learning process. Immediate feedback about the progress being made 

is a requirement for the human mind to enter a state of “flow” where it operates at full 

capacity (Nakamura and Csikszentmihalyi, 2002; DeMarco and Lister, 1987).



Even though interpreted languages have been applied to machine vision as early as 

1987 (see Mundy (1987)), machine vision systems are still predominantly implemented 

using compiled languages. The reason is that if an embedded system is produced in large 

quantities, it is possible to offset the considerable software development cost against small 

per-unit savings in hardware cost. However this trade-off might become less important 

with the advent of modern embedded hardware (Figure 1.3 for example shows the Gum- 

stix board which is an embedded computer capable of running an operating system).

Figure 1.3: ARM Gumstix boards

It can be argued that the widespread adoption of compiled languages is currently 

hampering innovation (Nierstrasz et ah, 2005). The publication by Roman et al. (2007) 

demonstrates that robotic projects can greatly benefit from the properties of the interpreted 

programming language Ruby. Interpreted languages not only allow for concise code, they 

also make interactive manipulation of data possible where one can confirm the results 

immediately.

1.2 Dynamically Typed Languages

The benefits of using an interpreted language are quite obvious. A less visible but never

theless important issue is the difference between statically typed languages and dynami

cally typed languages. Note that this issue should not be confused with the issue of strong 

typing versus weak typing. A language is statically typed if all type checks are performed 

at compile-time. Dynamically typed languages on the other hand perform type checks 

at run-time and allow to define new types at run-time. Dynamic typing however makes 

early method binding impossible which has a negative impact on run-time performance. 

Figure l .4 gives an example. In C++ the “+” operation can be compiled to a machine 

instruction {e.g. “ADD AX, 1”). The method “t e s t ” is limited to processing integers. In

_



Ruby however it is in general impossible to determine whether the value of “x” always 

will be an integer. For example the value might be a floating point number or a rational 

number.

in t t e s t ( in t  x)
{ def te s t (x )

return x + 1; x + 1
} end
/ /  . . .  # . . .

in t y = t e s t (42); y = te s t  42
/ /  . . .  z = te s t  Complex::I

C ++ (early method binding) Ruby (late method binding)

Figure 1.4: Early vs. late method binding

Type safety is a term to describe the fact that static typing prevents certain program

ming errors such as type mismatches or misspelled method names from entering produc

tion code. With static typing it is possible to reject these kind of errors at compile time. 

Statically typed languages are engrained in safety critical systems such as nuclear power 

plants, air planes, and industrial robots because of increased type safety. Figure 1.5 gives 

an example where the bug in the C ++ program is rejected by the compiler. The equivalent 

Ruby program however discovers the error only at run-time and only for certain input.

#include <stdlib.h>
int main(int argc, char *argv[])
{

in t x = a to i (a r g v [ l ] ) ; 
i f  (x == ®) x += "test";
/ /  error: invalid conversion from 
/ /  ’const char*’ to ’i n t ’
return Q; x = ARGV[®]. to_i

} x += "test" i f  x == ®

C++ (static typing) Ruby (dynamic typing)

Figure 1.5: Static typing vs. dynamic typing. Comment lines (preceded with “//”) show 
the output of the compiler

However statically typed implementations tend to become inflexible. That is, when a 

developer wants to modify one aspect of the system, the static typing can force numerous 

rewrites in unrelated parts of the source code ( IYatt and Wuyts, 2007). Development and 

maintenance of large scale systems using a statically typed language is much more ex

pensive compared to when using a dynamically typed languages (Nierstrasz et al., 2005). 

Heavy users of statically typed languages tend to introduce custom mechanisms to deal 

with the absence of support for reflection and meta-programming in their language (see 

the CERN’s C++ framework for example Antcheva et al. (2009)).

4



Though offering some safety, static typing does not prevent programming errors such 

as numerical overflow or buffer overflow (Tratt and Wuyts, 2007). That is, the efficiency 

gained by using C or C++ is at the cost of security (Wolczko et al., 1999). Figure 1.6 

shows two programs where numerical overflow occurs if a native integer type of insuffi

cient size is chosen. A well known example is the failure of the first Ariane 5 (shown in

#include <iostream> 
using namespace std; 
in t main(void)
{

in t  x = 2147483648; 
x += 1;
cout «  x «  endl;
/ /  -2147483647 
return Q;

}

#include <iostream> 
using namespace std; 
int main(void)
{

long x = 2147483648; 
x += 1;
cout «  x «  endl;
/ /  2147483649 
return ©;

}

32-bit integer 64-bit integer

Figure 1.6: Static typing and numeric overflow. Comment lines (preceded with “//”) show 
the output of the program

Figure 1.7) due to an arithmetic overflow (see talk by Fenwick, 2008). That is, even when

Figure 1.7: Ariane 5 disaster caused by numerical overflow

using static typing, it is still necessary to use techniques such as software assertions or 

unit tests to prevent runtime errors from happening.

Dynamic typing on the other hand allows to combine integers, rational numbers, com 

plex numbers, vectors, and matrices in a seamless way. The Ruby core library makes use 

of dynamic typing to represent integers, big numbers, floating point numbers, complex 

numbers, and vectors work together seamlessly (see Section 2.3.3 for more details).

Ruby data types do not map well to native data types (i.e. the integer and floating-point 

registers of the hardware). For example Ruby integers do not exhibit numerical overflow
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and the boundaries of Ruby arrays are resized dynamically. Furthermore dynamic typ

ing requires late binding of method calls which is computationally expensive on current 

hardware (Paulson, 2007). This thesis tries to address these problems by defining repre

sentations of native types in a Ruby extension1 (see Section 1.3).

1.3 Contributions of this Thesis

The title of this thesis is “Efficient Implementations of Machine Vision Algorithms using 

a Dynamically Typed Programming Language”, The Ruby extension implemented in the 

context of this thesis makes it possible for researchers and developers working in the field 

of image processing and computer vision to take advantage of the benefits offered by this 

dynamically typed language. The phrase “efficient implementation” was intentionally 

used in an ambiguous way. It can mean

• machine efficiency: The run-time performance of the system is sufficient to imple

ment real-time machine vision systems.

•  developer efficiency: The programming language facilitates concise and flexible 

implementations which means that developers can achieve high productivity.

The contribution of this thesis is a set of computer vision extensions for the existing 

Ruby programming language. The extensions bring together performance and productiv

ity in an unprecedented way. The Ruby extensions provide

• extensive input (I)/output (O) integration for image- and video-data

• generic array operations for uniform multi-dimensional arrays

-  a set of objects to represent arrays, array views, and lazy evaluations in a 

modular fashion

-  optimal type coercions for all combinations of operations and data types

The work presented in this thesis brings together several concepts which previously 

have not been integrated in a single computer vision system:

• expressiveness: An library for manipulating uniform arrays is introduced. A generic 

set of basic operations is used to build computer vision algorithms from the ground 

up.

• lazy evaluation: Lazy evaluation of array operations makes it possible to reduce 

memory-I/O. This facilitates the use of general purpose GPU (GPGPU) (not done 

as part of this thesis) where memory-I/O is the performance-bottleneck.

’Ruby libraries are generally called “Ruby extensions”
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•  array views: Shared references make it possible to extract sub-arrays without mak

ing a “deep copy” of the array.

•  transparent just-in-time (JIT) compilation: A JIT compiler and a cache are inte

grated transparently to achieve real-time performance.

•  I/O integration: The implementation also provides integration for image- and video- 

I/O (see Figure 1.8) as well as the necessary colour space conversions.

ApplicationIRB/FXRI/NaturalDocs/RDoc

Ruby

CL
Ol<N UJCX>m UJQ.CL min_i -a

.Q
Q. CL CLUL

U_

GNU+Linux operating system

Figure 1.8: Software architecture of machine vision system

The functionality was implemented in a modular way (see Section 3.4). The result is a 

comprehensive approach to implementing computer vision algorithms.

The type system and the expressions presented in Chapter 3 constitute the library 

which was developed as part of this thesis. If some of the expressions appear to be part 

of the Ruby syntax at first sight, it is due to the dynamic nature of the programming 

language. Although the Ruby programming language was used, this approach could be 

applied to other dynamically typed languages with sufficient meta-programming support. 

The approach presented in this thesis could also be used to provide transparent integration 

of graphics processing units (GPUs) for parallel processing. Finally the facilitation of 

succinct implementations of various computer vision algorithms allows for a more formal 

understanding of computer vision.

1.4 Thesis Outline

Chapter l (this chapter) showed that there is sufficient motivation to address the perfor

mance issues involved with applying a dynamically typed language to the problem of

7



implementing machine vision algorithms. Apart from offering productivity gains, dy

namically typed languages also make it possible to combine various types and operations 

seamlessly.

Chapter 2 gives an overview of the state of the art in machine vision software, illus

trating the difficulty of achieving performance and productivity at the same time. It will 

be shown that the performance of the Ruby virtual machine (VM) is significantly lower 

than the performance achieved with GNU C. But it will also be argued that ahead-of- 

time (AOT) compilation is incompatible with the goal of achieving productivity.

Chapter 3 is about the core of the work presented in this thesis. Starting with memory 

objects and native data types, a library for describing computer vision algorithms is intro

duced. It is demonstrated how this approach facilitate succinct implementations of basic 

image processing operations. JIT compilation is used to address the issue of performance.

Chapter 4 covers key issues in implementing interfaces for input and output of im

age data. Image I/O involving cameras, image files, video files, and video displays is 

discussed. The key issues are colour space compression, image and video compression, 

low dynamic range (LDR) versus high dynamic range (HDR) imaging, and graphical user 

interface (GUI) integration.

In Chapter 5 it is shown how different algorithms which are common in the field of 

computer vision can be implemented using the concepts introduced in chapter Chapter 3 

and Chapter 4.

Chapter 6 shows some examples of complete applications implemented using the Hor

netseye Ruby extension which was developed as part of this thesis (see page iii). Further

more a performance comparison is given.

At the end of the thesis Chapter 7 offers conclusions and future work.
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“There are two ways o f  constructing a software design: 
One way is to make it so sim ple that there are obviously 
no deficiencies, and the other way is to make it so com 
plicated that there are no obvious deficiencies. The first 
m ethod is far more difficult.”

Sir Charles Antony Richard Hoare

“I  am a historian and a computer programmer, but pri
marily la m  a lawyer. M y research, ongoing for a decade, 
follows a purely experimental paradigm:

1. Try to create freedom by destroying illegitimate 
pow er sheltered behind intellectual property law.

2. See what happens.

Early results are encouraging.”

Eben Moglen

State of the Art

This chapter gives an overview of the state of the art in machine vision systems, it dis

cusses the features of the Ruby programming language, and available JIT compilers are 

discussed

• Section 2.1 shows the typical structure of an object localisation system

• Section 2.2 gives an overview of a typical object localisation algorithm and how it 

is implemented

• Section 2.3 characterises the Ruby programming language by describing the para

digms it supports

• Section 2.4 points out different JIT compilers and their properties

•  Section 2.5 gives a summary of this chapter

2.1 Object Localisation

The task of an object localisation algorithm is to determine the pose of known objects 

given a camera image as input. Figure 2 .1 shows an overview of a typical object locali

sation algorithm. The processing steps are explained in Table 2.1. The processing steps

Sensor D ata Preprocessing — ► Key-Point
Localisation

Feature
Descrip tion

R eco gn ition /
Tracking

U p d a te d  
W orld M odel

Figure 2.1: Overview of a typical object localisation algorithm
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Table 2.1: Processing steps performed by a typical machine vision systems

Processing step Details

preprocessing 

key-point localisation 

feature description 

recognition/tracking

basic operations such as filtering, thresholding, mor
phology and the like are applied to the image 
a feature extraction method defines feature locations 
in the image
the descriptors for the local feature context are com
puted
the features are used to recognise and track known 
objects in the scene

are not mandatory. Some algorithms do not use feature descriptors (e.g. Geometric Hash

ing (Lamdan and Wolfson, 1988)). Some algorithms for two-dimensional (2D) object lo

calisation do not even use features at all (e.g. Fast Normalised Cross-Correlation (Lewis,

1995)).

Current three-dimensional (3D) object recognition and tracking algorithms however 

are predominantly based on feature extraction and feature matching (e.g. spin image fea

tures by Johnson and Hebert (1999), Geometric Hashing (Lamdan and Wolfson, 1988), 

Bounded Hough Transform (Greenspan et al., 2004), Random Sample Consensus (RAN- 

SAC) (Shan el al., 2004)). Approaches based on feature matching are furthermore used 

to deal with related problems such as real-time Simultaneous Localisation and M apping 

(SLAM) (e.g. Davison, 2003; Pupilli, 2006) and 3D modelling (e.g. Pan et al., 2009; 

Pollefeys et al., 2004; Tomasi and Kanade, 1992; Yan and Pollefeys, 2006).

There are more unconventional techniques (e.g. tensor factorisation (Vasilescu and 

Terzopoulos, 2007), integral images (Viola and Jones, 2001)) but they are mostly applied 

to object detection. That is, the algorithms detect the presence of an object but do not 

estimate its pose.

2.2 Existing FOSS for Machine Vision

A survey of existing free and open source software (FOSS) for machine vision has been 

conducted in order to find out about commonalities of current algorithms in use and how 

current computer vision systems are implemented.

Table 2.2 and Table 2.3 give an overview of noticeable computer vision libraries. The 

libraries where checked against a set of features. Each check mark signifies a feature 

being supported by a particular library. One can see that no library completely covers all 

the features which are typically required to develop an object recognition and tracking 

system as shown in Figure 2.1.

One can distinguish three different kinds of libraries: statically typed libraries, stati-
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Table 2.2: Existing FOSS libraries for Machine Vision I/II

feature B
le

po

C
am

el
lia

C
M

V
is

io
n

lib
C

V
D

Ea
sy

 V
is

io
n

F
ilt

er
s

F
ra

m
ew

av
e

G
am

er
a

G
an

da
lf

Camera Input 
Image Files 
Video Files 
Display 
Scripting 
Warps 
Histograms 
Custom Filters 
Fourier Transforms 
Feature Extraction 
Feature Matching 
GPL compatible

✓  ✓  ✓ ✓
✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓  

✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ 

✓ ✓ ✓
✓ ✓ ✓ 

✓ ✓ ✓  ✓ 
✓ ✓ ✓ ✓ ✓ ✓ 
✓ ✓ 
✓ ✓ ✓ ✓ ✓ ✓ ✓  
✓ ✓
✓ ✓ ✓ ✓  ? ✓ ✓ ✓ ✓

Table 2.3: Existing FOSS libraries for Machine Vision II/II

feature IT
K

/V
T

K

IV
T

L
T

Il
ib

L
us

h

M
im

as

NA
SA

 
V.

 W
.

O
pe

nC
V

Sc
en

eL
ib

V
IG

R
A

Camera Input 
Image Files 
Video Files 
Display 
Scripting 
Warps 
Histograms 
Custom Filters 
Fourier Transforms 
Feature Extraction 
Feature Matching 
GPL compatible

✓  ✓ ✓ ✓ ✓  ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

✓  ✓ ✓
✓ ✓  ✓  ✓  ✓ ✓  ✓

✓ ✓
✓ ✓ ✓ ✓ ✓
✓ ✓ ✓  ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓  ✓ 
✓ ✓ ✓  ✓ 
✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓  

✓ ✓  ✓  ✓
✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓
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cally typed extensions for a dynamically typed language, and dynamically typed libraries.

2.2.1 Statically Typed Libraries

Most computer vision libraries are implemented in the statically typed C/C++ language. 

However C++ has a split type system. There are primitive types which directly corre

spond to registers of the hardware and there are class types which support inheritance and 

dynamic dispatch. In C ++ not only integers and floating point numbers but also arrays 

are primitive types. However these are the most relevant data types for image processing. 

To implement a basic operation such as adding two values so that it will work on different 

types, one needs to make extensive use of template meta-programming. That is, all com bi

nations of operations, element-type(s), and number of dimensions have to be instantiated 

separately. For example the Frame W ave1 C-library has 42 explicitly instantiated different 

methods for multiplying arrays.

For this reason most libraries do not support all possible combinations of element- 

types and operations. Assume a library supports the following 10 binary operations

• addition (“+”)

•  subtraction

• division (“/ ”)

•  multiplication (“*”)

•  exponent (“**”)

• greater or equal (“>=”)

• greater than (“>”)

• less or equal (“<=”)

•  less than (“<”)

•  equal to (“==”)

Furthermore assume that it supports the following types as scalars and array elements

•  6 integer types: 8-, 16-, and 32-bit, signed/unsigned

• 2 floating-point types: single/double precision

Finally for every binary operation there are the following variations

•  scalar-array operation

'http://framewave.sourceforge.net/
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array-scalar operation

• array-array operation

This results in 10 • 8 • 8 • 3 = 1920 possible combinations of operations and element-types. 

That is, to fully support the 10 binary operations on these element-types requires 1920 

methods to be defined either directly or by means of C++ template programming. That 

is, static typing and ahead-of-time compilation leads to a explosion of combinations of 

basic types and operations. Listing 2.1 shows how much code is required when using 

C ++ templates to implement a element-wise “+” operator (array-array operation only) for 

the “b o o s t : : m u lti .array” data types provided by the Boost library. The implementation 

works on arrays of arbitrary dimension and arbitrary element-type.

Static typing not only leads to an explosion of methods to instanciate. A related prob

lem caused by static typing is that when a developer wants to modify one aspect of the 

system, the static typing can force numerous rewrites in unrelated parts of the source 

code (Tratt and Wuyts, 2007). Static typing enforces unnecessary “connascence” (a tech

nical term introduced by Weirich (2009), also see Appendix A .l) which interferes with 

the modularity of the software. In practise this causes problems when implementing 

operations involving scalars, complex numbers, and RGB-triplets (Wedekind et al., b). 

Figure 2.2 shows that binary operations are not defined for some combinations of the 

argument types involved. That is, it is not sufficient to simply use C ++ templates to in-

x  + y, x X

•3 s m
g o oc/3 U  PC

x  • y, x/y
RGB o o RGB o
Complex oo Complex (3o
Scalar f  \ ( )o(̂) Scalar O o

2213o
C/3

O
u

00
o
PC

2213o
00

o
U

CO
a
PC

x < y,x > y

RGB RGB

Complex oo Complex

Scalar O Scalar o
2213o
00

XJD
'E-
E
o
U

00a
PC

Figure 2.2: Binary operations for different element types (Wedekind et al., b)
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Listing 2.1: Multi-dimensional “+ ” operator implemented in C++. Comment lines (pre
ceded with “//”) show the output of the program
#include <boost/multi_array.hpp> / /  3726 lines  of code 
#include <iostream> 
using namespace boost; 
template< typename T >
T &multi_plus(T &a, const T &b, const T &c) { 

a = b + c; 
return a;

>
template< template< typename, s ize_ t ,  typename > class Arr, typename Alloc, 

typename T, s ize_t N > 
d e t a i l : :multi_array::sub_array< T, N > multi_plus

(detail::multi_array::sub_array< T, N > a, const Arr< T, N, Alloc > &b, 
const Arr< T, N, Alloc > &c) { 

typename Arr< T, N, Alloc >: :const_iterator j = b .beginO, k = c.beginO ;  
for (typename d e t a i l : :multi_array::sub_array< T, N > ::iterator  i  = 

a.beginO; i  != a.endO; i++, j++, k++) 
m ulti_plus(*i, * j , *k); 

return a;
}
template< template< typename, s ize_ t ,  typename > class Arr, typename Alloc, 

typename T, s ize_t N >
Arr< T, N, Alloc > &multi_plus

(Arr< T, N, Alloc > &a, const Arr< T, N, Alloc > &b,
const Arr< T, N, Alloc > &c) {

typename Arr< T, N, Alloc > ::const_iterator j = b .beginO, k = c.beginO ;  
for (typename Arr< T, N, Alloc > ::iterator  i  = a.beginO; 

i  != a.endO; i++, j++, k++) 
m ulti_p lus(*i, *j, *k); 

return a;
}
template < template< typename, s ize_ t ,  typename > class Arr, typename Alloc, 

typename T, s ize_t N > 
multi_array< T, N > operator+

(const Arr< T, N, Alloc > &a, const Arr< T, N, Alloc > &b) {
array< s ize_ t ,  N > shape;
s t d : : copy (a. shape () , a.shapeO + N, shape. beginO) ; 
multi_array< T, N > retVal(shape); 
multi_plus(retVal, a, b ) ; 
return retVal;

};
in t main(void) { 

multi_array< in t ,  2 > a (ex ten ts[2][2 ]);  
a [«][«] = 1; a[0] [1] = 2; a[l][®] = 3; a [ l ] [ l ]  = 4; 
multi_array< in t ,  2 > b (exten ts[2][2 ]);  
b[8][®] = 5; b[®][l] = 4; b [ l] [8 ]  = 3; b [ l ] [ l ]  = 2; 
multi_array< in t ,  2 > r(a + b ) ;
s t d : :cout «  "[[" «  r[«][®] «  ", " «  r[® ][l] «  "], ["

«  r [ l ] [«] «  ", " «  r [1][1] «  "]]" «  std::endl;
/ /  [[6 , 6], [6 , 6]] 
return 0;
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stantiate all combinations of operations and argument types. One also has to address the 

problem that binary operations usually only are meaningful only for some combinations 

of element-types.

Finally using a combination of multiple libraries is hard, because each library usually 

comes with its own set of data types for representing images, arrays, matrices, and other 

elements of signal processing.

2.2.2 Statically Typed Extensions

Some computer vision libraries come with bindings in order to use them as an exten

sion to a dynamically typed language. For example for the OpenCV2 library there are 

Python bindings (P yC V ) as well as Ruby bindings (opencv.gem4). Some projects (e.g. 

the Gamera optical character recognition (OCR) software (Droettboom et a l , 2003) and 

the Camellia"' Ruby extension) use the Simplified Wrapper Generator (SWIG6) to gener

ate bindings from C/C++ header files. This allows one to use a statically typed extension 

in an interpreted language and it becomes possible to develop machine vision software 

interactively without sacrificing performance.

Open classes and dynamic typing make it possible to seamlessly integrate the func

tionality of one library into the application programming interface (API) of another. For 

example Listing 2.2 shows how one can extend the NArray7 class to use the RM agick8 

library for loading images. The method “NArray#read” reads an image using the RMag- 

ick extension. The image is exported to a Ruby string which in turn is imported into an 

object of type “NArray”. The image used in this example is shown in Figure 2.3.

Figure 2.3: Low resolution image of a circle

However supporting all possible combinations of types and operations with a statically 

typed library is hard (see Section 2.2.1). In practise most computer vision extensions only 

provide a subset of all combinations. Listing 2.3 shows that the OpenCV library for 

example supports element-wise addition of 2D arrays of 8-bit unsigned integers (line 3).

2http://opencv.willowgarage.com/
3http://pycv.sharkdolphin.com/
4http://rubyforge.org/proj ects/opencv/
5http://camellia.sourceforge.net
6http://swig.org/
7http://narray.rubyforge.org/
8http://rmagick.rubyforge.org/
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Listing 2.2: Integrating RMagick and NArray in Ruby. Comment lines (preceded with
“#”) show the output of the program
require ’narray’ 
require ’RMagick’ 
class NArray

def NArray.read(filename)
img = Magick::Image.read(filename)[Q]
str = img. export_pixels_to_str ®, Q, img.columns, img.rows, "I",

Magick::CharPixel 
to_na s tr ,  NArray::BYTE, img.columns, img.rows 

end 
end
arr = NArray.read ’c irc le .p n g’ 
arr /  128
# NArray.byte(20,2Q):
# [ [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , ®, ®, ©, ©, ®, ®, 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ,
# [ 1 , 1 , 1 , 1 , 1 , ®, ®, ®, ®, ®, ®, ®, ®, ©, ®, 1 , 1 , 1 , 1 , 1 ] ,
# [ 1 , 1 , 1 , ®, ®, ®, ®, ©, ®, ®, ®, ®, ®, ©, ©, ®, ®, 1 , 1 , 1  ] ,
# [ 1 , 1 , ®, ®, ®, ©, ®, ®, ©, ®, ®, ®, ®, ®, ®, ®, ®, ©, 1 , 1 ] ,
# [ 1 , 1 , ®, ®, ®, ®, ®, ®, ©, ®, ®, ©, ®, ®, ®, ®, ®, ®, 1 , 1 ] ,
# [ 1 , ®, ®, ®, ®, ®, ©, ®, ®, ®, ®, ®, ©, ®, ®, ®, ®, ®, ®, 1 ] ,
# [ 1 , ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ©, ®, ©, 1 ] ,
# [ ®, ©, ®, ®, ®, ®, ®, ®, ©, ®, ©, ®, ®, ®, ®, ®, ®, ®, ®, ® ] ,
# [ ®, ®, ®, ®, ®, ®, ®, ®, ©, ®, ®, ®, ®, ®, ®, ®, ®, ®, ®, ® ] ,
#

But trying to add elements of 8-bit unsigned and 16-bit unsigned will cause an exception

Listing 2.3: Using OpenCV in Ruby. Comment lines (preceded with “#”) show the output 
of the program

1 require ’opencv’
2 include OpenCV
3 CvMat.new(6, 2, CV_8U) + CvMat.new(6, 2, CV_8U)
4 #  cOpenCV: : CvMat: 2x6,depth=cv8u, channel=3>
5 CvMat.new(6, 2, CV_8U) + CvMat.new(6, 2, CV_16U)
6 #(irb):4: warning: OpenCV error code (-2Q5) : cvAdd (84® in cxarithm.cpp)
7 #0penCV: :CvStatusUnmatchedFormats:
8 #  from ( irb ):4 : in  * + ’

9 # from (irb):4

(line 5). Other libraries such as Easy Vision9 (an extension for Haskell) even have different 

method names depending on the types of arguments involved. For example “absD iff8u” 

to compute the element-wise absolute difference of arrays of 8-bit unsigned integers or 

“sq r t3 2 f” to compute the element-wise square root of arrays of 32-bit floating point 

values.

In contrast to the previously mentioned libraries, the NArray10 (Tanaka, 2 0 10a,b) 

Ruby extension supports adding arrays with different element-types (see Listing 2.4). 

The library also does optimal return type coercions. For example adding an array with

9http://perception.inf.um.es/easyVision/
10http://narray.rubyforge.org/
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Listing 2.4: Using NArray in Ruby. Comment lines (preceded with “# ”) show the output
of the program
require ’narray’ 
a = NArray.byte 6, 2
# NArray.byte(6 ,2 ):
# [ [ fi, fi, fi, ®, ®, ® ] ,
# [ ®, 0, ®, «, ®, ® ] ]
b = NArray.sint 6, 2
# NArray. s i n t (6 ,2 ):
# [ [ fi, fi, ®, 0,  0, ® ] ,
# [ ®, ®, ®, ®, «, ® ] ]
a + b
# NArray.sint(6 ,2 ):
# [ [ ®, 0, «, ®, ®, fi ] ,
#  [ ®, fi, « ,  fi, ®, ® ] ]
2 * a + b
# NArray.sint(6 ,2 ):
# [ [ 0,  0,  0,  0, fi, fi ] ,
# [ fi, fi, fi, fi, fi, fi ] ]

Listing 2.5: Array operations in Python using NumPy. Comment lines (preceded with 
“#”) show the output of the program

1 from numpy import *
2 a = a rray([[ l ,  2], [3, 4 ] ] ,  dtype = int8)
3 b = a rray([[ l ,  2], [3, 4 ] ] ,  dtype = uintl6)
4 a + b
5 #  array([[2, 4],
6 # [6, 8 ]] ,  dtype=int32)
7 2 *  a + b
8 # array([[3 , 6],
9 # [9, 12]], dtype=int32)

single precision complex numbers (“NArray:: SCOMPLEX”) and an array with double preci

sion floating point numbers (“NArray: :DFL0AT”) will result in an array of double precision 

complex numbers (“NArray: :DC0MPLEX”). In contrast to OpenCV however, the NArray li

brary does not support unsigned integers.

A similar but more sophisticated library is N um Py11 for Python (also see Oliphant, 

2006). NumPy also offers a C-API which makes it possible to define custom element- 

types. Listing 2.5 shows that NumPy supports unsigned integer as well as signed integer 

types. In contrast to NArray the result of the type coercion is an array of 32-bit integers 

(line 4). Similar to the NArray library, NumPy is implemented in C and uses tables of 

function pointers to do operations on combinations of elements.

The problem with this approach is that the last operation shown in Listing 2.4 as well 

as Listing 2.5 (multiplying an array with two and adding another array) creates an array 

as intermediate result. That is, the result of the scalar-array multiplication is written to 

memory and then read back again when the array-array addition is performed. Since the

n http://numpy.scipy.org/
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Listing 2.6: Tensor operation with the FTensor C++ library
Index< ’i ’ , 3 > i ;
Index< ’j ’ , 3 > j ;
Index< ’k ’ , 3 > k;
Tensor2< double, 3, 3 > r, a, b; 
r ( i ,  k) = a ( i , j )  * b (j ,  k ) ;

array operations are just calls to a static library, there is no means of optimising them. 

For this reason one cannot really use this array operations in order to build higher-level 

functions without sacrificing performance!

In general it is not possible to instantiate efficient implementations of all the possible 

combinations of operations and compile them ahead-of-time. For example the FTensor 

C ++ library (see Listing 2.6 for example) allows one to instantiate various tensor opera

tions using C++ templates (Landry, 2003). However the library contains code specific 

to the dimensions 0 ,1 , . . .  ,4 . That is, the functionality of the library is diminished for 

dimensions higher than 4.

2.2.3 Dynamically Typed Libraries

Listing 2.7: Multi-dimensional “+” operator implemented in Ruby. Comment lines (pre
ceded with “#”) show the output of the program
c lass  Array 

def +(other)
z ip (o th er) . co l lec t  { |x ,y |  x + y } 

end 
end
a = [[1, 2], [3, 4]] 
b = [[5, 4], [3, 2]] 
puts (a + b ).inspect
# CC6, 6 ] ,  [6,  6]]

Listing 2.7 shows an implementation of an element-wise “+” operator (array-array 

operation) for the “A rray” data type of the Ruby standard library. It is much shorter 

than the equivalent C++ implementation shown in Listing 2.1. That is, implementing a 

computer vision library in Ruby is straightforward but there is a performance issue.

Figure 2.4 shows a performance comparison of GNU C compiled code and code in

terpreted with two different versions of the Ruby VM. One can see that in the best case 

the Ruby example is 30 times slower than the equivalent C++ example.

Ruby arrays can contain elements of arbitrary type. For example Listing 2.8 shows the 

definition of the array of integers “a” in line 1. In line 9 however one element of “a” is set 

to a string value. Also Ruby arrays support dynamic resizing and they do not suffer from 

buffer overrun. If the array index is out of bounds, a “n i l ” object is returned (e.g. see line 

7 of Listing 2.8). This means that Ruby code involving arrays is difficult to optimise. In
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#include <stdlib.h>  
#define SIZE 10®®®®®® 
in t main(void)
{

mallocCSIZE * s i z e o f ( i n t ) ) ; 
for ( i  = ®; i < SIZE; i++)

int i , *arr = ( in t  *) SIZE = 10000®®®
arr = (0 . . .  SIZE). co l lec t  { | i |  i  >

arr[i]  = i;  
free (a r r );

ruby 1.8.6 76.3s 
ruby 1.9.1 1.8s

return ®;
}

gcc 4.2.4 0.06s

Intel® Core™2 CPU T5600 @ 1.83GHz 
Linux 2.6.24-24-generic SMP i686 GNU/Linux

Figure 2.4: Processing time comparison for creating an index array with GCC compiled 
code vs. with the Ruby VM

Listing 2.8: Arrays in Ruby. Comment lines (preceded with “#”) show the output of the 
program
a = [[2, 3, 5], [7, 11, 13]]
# [[2, 3, 5], [7, 11, 13]] 
a[0]
# [2, 3, 5] 
a[Q] [2]
# 5
a[®][3]
# n i l
a[®][2] = ’x ’
# "x"
a
# [[2, 3, "x"], [7, 11, 13]]
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general it is not possible to remove the dispatcher code and the boundary checks. That is, 

the current implementation of Ruby arrays is not suitable for real-time machine vision.

A noteworthy example of a machine vision library implemented in a dynamically 

typed language is Lush12 which is based on Common Lisp. The Common Lisp program

ming language supports multi-dimensional arrays (Graham, 1994). Line 8 of Listing 2.9 

shows that the array type does not support dynamic resizing which makes it possible to 

generate more efficient code. However the array type still supports elements of arbitrary

Listing 2.9: Arrays in GNU Common Lisp. Comment lines (preceded with show the 
output of the program
(setq m (make-array ’ (2 3) :element-type ’ integer 

: in it ia l-con ten ts  ’ ((2 3 5)(7 11 13))))
; #2A((2 3 5) (7 11 13))
(aref m ®)
*** - AREF: got 1 subscripts, but #2A((2 3 5) (7 11 13)) has rank 2 
(aref m ® 2)
; 5
(aref m Q 3)
*** - AREF: subscripts (© 3) for #2A((2 3 5) (7 11 13)) are out o f  range
( s e t f  (aref m Q 2) "x")
. » ' Y "  
f  A

m
; #2A((2 3 "x") (7 11 13))

type even if an element-type was specified {e.g. line 10 of Listing 2.9). GNU Common 

Lisp doesn’t seem to support extracting array slices.

It is possible however to introduce uniform arrays as data types and use just-in-tim e 

compilation to generate efficient code at run-time. The Lush language demonstrates this 

approach (Lush was used to implement OCR software for example (Lecun et al., 1998)). 

Listing 2.10 shows some operations involving 2D arrays. Lush does not support dynamic 

resizing {e.g. line 6 of Listing 2.10) and it enforces uniform arrays {e.g. line 8 of List

ing 2.10). Although Lush does just-in-time compilation, it defaults to double-precision 

floating point numbers {e.g. line 13 of Listing 2.10) instead of doing optimal coercions 

like NArray (Listing 2.4). The problem is that implementing support for coercions of 

native types requires a substantial amount of work and there is insufficient incentive for a 

developer to invest the time given the low acceptance of the Lisp programming language 

in the image processing community.

Furthermore Lush is not a Lisp library but it is a Lisp dialect {i.e. it is an independent 

programming language). That is, there are potential integration issues when using other 

software developed in different programming languages. A library for a language with 

broader adoption such as Lisp, Racket (former PLT Scheme developed by Steele and 

Sussman (1979)), or Clojure12 would be more desirable.

12http://lush.sourceforge.net/
13http://clojure.org/
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Listing 2.10: Lush programming language. Comment lines (preceded with show the
output of the program
(setq m [ i  [2 3 5][7 11 13]])
($*0 m 0)
; [ i  2 3 5]
Cm 0 2)
; 5
(m 0 3)
*** validate-subscript : invalid subscript : 3 
(m 0 2 "x")
*** m : not a number : "x" 
m
; [ i  [ i  2 3 5]
; [ i  7 11 13]]
? (+ m 1)
= [d[d 3.0000 4.0000 6.0000]

[d 8.0000 12.0000 14.000®]]
? (* m m)
= [d[d 4.0000 9.0000 25.0000]

[d 49.0000 121.0000 169.0000]]

2.3 Ruby Programming Language

Ruby is a multi-paradigm language and it is inspired by Perl, Python, Smalltalk, Eiffel, 

Ada, and Lisp. Ruby supports the following language features

•  object-oriented, single-dispatch

•  dynamic typing

• exception handling

• garbage collection (i.e. managed environment)

•  mixins

•  closures

• continuations

•  introspection

•  meta programming

• reification

The Ruby programming language14 was designed by Yukihiro Matsumoto (see article 

by Matsumoto, 2000 for a short introduction to Ruby; see Fulton, 2006, Matsumoto, 

2002, or Cooper, 2009 for a thorough introduction). He first released his implementation

14http://www.ruby-lang.org/
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of a Ruby interpreter as free software in 1995. With Ruby version 1.9 Koichi Sasada’s 

implementation has become the current Ruby VM in use (Sasada, 2008).

The design philosophy of the Ruby programming language follows the following prin

ciples (Matsumoto, 200' )

•  Brevity: The language is expressive so that programs written in that language are 

succinct.

• Conservatism: Ruby sticks to traditional control structures to reduce the cost of 

adoption.

• Simplicity: The Ruby programming language supports simple solutions.

•  Flexibility: Ruby should adapt to the user instead of the user adapting to Ruby.

•  Balance: The Ruby programming language tries to achieve a balance between all 

previous concepts.

A brief introduction to the language features of Ruby follows.

2.3.1 Interactive Ruby

The Interactive Ruby Shell (1RB) provides a command-line interface to develop programs 

interactively. Figure 2.5 shows IRB running in an X-Terminal. IRB accepts Ruby expres-

X Interactive Ruby Shell y  ^  x

»  2 + 3
=> 5
»  class Test 
»  def in it ia liz e (  x )
»  @x = x
»  end
»  def inspect
»  "Inspecting te st object with x = #{@x}"
»  end 
»  end 
=> nil
»  t  = Test.new ‘This is  a Ruby str in g1
=> Inspecting te s t  object with x = This is  a Ruby string
»  t  + 1
NoMethodErrorJ undefined method +' for Inspecting te st object with x = This is  
a Ruby string:Test

from ( ir b ): ll
from /u sr /loca l/b in /irb l.9 :12:in  <main>'

» ■

v_______________________________________________________________________________________ -J

Figure 2.5: Interactive Ruby Shell

sions and interprets them in the same context. After evaluating the expression, IRB calls
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“# in sp e c t” on the result and prints the string returned by that method. For example if the 

user inputs “2 + 3”, IRB will call “5. in s p e c t” which returns “" 5 "”. The unquoted string 

then will be printed to standard output (here prefixed with “= > ”). Figure 2.5 furthermore 

illustrates how in the case of an error, IRB simply catches the exception and prints it to 

standard output instead.

2.3.2 Object-Oriented, Single-Dispatch

Ruby is object-oriented with single-dispatch. That is, every object is an instance of a class 

and the class defines which methods and attributes an object supports. Ruby is purely 

object-oriented in the sense that everything including arrays, integers, floating point num

bers, and classes is an object.

Ruby has open classes. That is, it is possible to add methods to a class at any point 

in time. Listing 2.11 shows an example where the already existing “Numeric” class is 

extended with a “p lu s ” method (lines 1 to 5). Afterwards the method is called (line 6).

Listing 2.11: Method dispatch in Ruby
class Numeric 

def plus(x) 
s e l f .+  x 

end 
end
y = 5 .plus 6
# 11

However there are operations in Ruby which are not overloadable. Listing 2.12 gives 

several examples of operations (logical and, logical or, conditional statements) which have 

a behaviour which cannot be changed from within the Ruby language. The advantage of

Listing 2.12: Methods in Ruby which are not overloadable
fa lse  and true
# fa lse  
fa lse  or true
# true
3 < 4 ? ’3 i s  le ss  than 4 ’ : ’3 i s  not le ss  than 4 ’
# "3 i s  le ss  than 4" 
i f  true

1
else

2
end
# 1

this is that programs are easier to understand since certain statements always have the 

expected behaviour. However this limits the meta programming capabilities of Ruby. 

This problem will be revisited in Section 3.1.
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2.3.3 Dynamic Typing

Ruby uses dynamic typing. In Listing 2 .13 the method “t e s t ” is defined. Since Ruby

Listing 2.13: Dynamic typing in Ruby
def te s t (a ,  b) 

a + b 
end
x = te s t  3, 5
# 8
x = te s t  ’a ’ , ’b ’
# ’ab’
x = te s t  3, ’b ’
# TypeError: String can’t  be coerced into Fixnum

is a dynamically typed language, it is possible to pass objects of any type as parameters. 

However the object passed for parameter “a” must support the method “+” and this method 

must accept one argument (the definition of method “t e s t ” is based on this). In a statically 

typed language an erroneous argument would cause an error message at compile time. In 

a dynamically typed language it will cause an exception at runtime (line 8).

Listing 2.14 shows how the Ruby standard library allows to combine integers, rational 

numbers, complex numbers, vectors, and matrices in a seamless way. For example line 

6 shows a complex number with rational numbers as components. Note that Ruby uses 

dynamic typing to switch between native integers and big number representations in order 

to prevent numeric overflows. Implementing a comparable library in a statically typed 

language is hard because the type system has to reflect exactly which combinations of 

data types and operations are supported. If there are n operations, there are potentially 2n 

possible composite types, each of them supporting a different subset of operations.

Note that dynamic typing and weak typing are two different properties! Ruby uses 

strong, dynamic typing.

2.3.4 Exception Handling

Like many other programming languages, Ruby supports exceptions as a means of han

dling errors without using old-fashioned return codes. Thus the “spaghetti logic” that 

results from checking return codes can be avoided. That is, exception handling facilitates 

separation of the code that detects the error and the code for handling the error without 

the semantic overhead of checking return values (Fulton, 2006). Exception handling is 

state-of-the art and supported by most modern programming languages (e.g. C ++, Java, 

Python, Ruby, and Smalltalk all support it).

Listing 2.15 shows an example where the call to “File.new ” in line 5 can potentially 

raise an exception. The exception is handled in the block starting after the “rescue” 

statement (lines 7 to 9). That is, if an error occurs during the execution of lines 2 to 6, the 

program flow will continue in the rescue clause (lines 7 to 9).
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Listing 2.14: Numerical types in Ruby
require ’mathn’ 
require ’complex’ 
require ’matrix’ 
x = -8 /  6
# -4/3
y = x * Complex(l, 2)
# Complex(-4/3, -8/3)  
z = 2 ** 40
# 1099511627776 
y + z
# Complex(3298534883324/3, -8/3)  
m = Matrix[[l, 2], [3, 4]]
# Matrix[[l, 2], [3, 4]] 
v = Vector[1/2, 1/3]
# Vector[1/2, 1/3] 
m * v
# Vector[7/6, 17/6] 
z ** 2
# 1208925819614629174706176

Listing 2.15: Exception handling in Ruby
begin

print "Enter filename: "
STDOUT. flush
file_name = STDIN.readline.delete("\n\r") 
f i l e  = File.new file_name, ’r ’
# . . .

rescue Exception => e
puts "Error: #{e.message}" 

end
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2.3.5 Garbage Collector

The Ruby VM uses the M ark & Sweep algorithm as a garbage collector. Figure 2 .615 il-

root

V
...

' i
m arked = tm e m arked = tm e m arked = true

m arked = false

■—

m arked = false m arked = tm e

Figure 2.6: Mark & Sweep garbage collector

lustrates the algorithm. Every object has a mark which initially is set to “f a l s e ”. Starting 

from the root context, the graph of references is traversed recursively and every object en

countered is marked with “true”. Afterwards all objects which are still marked “f a l s e ” 

are deallocated. Cyclical references are not a problem since only objects connected to the 

root context are marked as “true”.

2.3.6 Control Structures

Ruby supports control structures for branching (see Figure 2.7) and looping (see Fig

ure 2.8). The syntax of Ruby offers many different ways to write code with the same 

semantics. This requires the software developer to make frequent choices. But the ad

vantage is that the software developer has more control over the appearance of the code.

i f  x < 5 then 
statement1 

end

i f  x < 5 then 
statement1 

else
statement2

end

statement1 i f  y == 3

unless x >= 5 then 
statement1 

end

unless x < 5 then
statement2

else
statement1 

end

statementl unless y != 3

Figure 2.7: Conditional statements in Ruby (Fulton, 2006)

15http://www.brpreiss.com/books/opus5/html/page424.html

26

http://www.brpreiss.com/books/opus5/html/page424.html


while cond do 
statement 

end

un til  cond do 
statement 

end

for x in array do 
statement 

end

array. each do Ix| 
statement 

end

loop do 
statement 
break i f  cond 

end

loop do 
statement 
break unless cond 

end

for i  in 0 . .  n 
statement 

end

1 do for i  in  0 . . .  n do 
statement 

end

array. each_index do | i |  
statement 

end

Figure 2.8: Loop constructs in Ruby (Fulton, 2006)

2.3.7 Mixins

Ruby mixins are a unifying concept for namespaces and interfaces. That is, the “module”- 

statement in Ruby can be used to declare a namespace. For example the “Math”-module 

in Ruby contains constants such as “Math: :PI” and methods such as “Math: :cos” (or 

“Math. cos”). However Ruby modules can also be used to “mix” methods into a class (Ful

ton, 2006). When a Ruby module is included in a class, all the module’s instance methods 

become available as methods in the class as well. In that case the mixed-in module effec

tively behaves as superclass (Thomas et al., 2004). Listing 2.16 shows an example where 

the mixin “TimesThree” providing the method “three times” is mixed into the “String”

module TimesThree 
def three_times 

s e l f  + s e l f  + s e l f  
end 

end
class  String

include TimesThree 
end
’abc’ . three_times
# "abcabcabc"

2.3.8 Closures

Closures are code blocks retaining the variable scope. Listing 2.17 gives an example 

where a function returns a closure. Even after returning from the method “in c” (lines 

1 to 5), the closure returned by that method (lines 2 to 4) still has access to the method 

parameter “i ”. Note that while the vertical bar “ | ” is used to represent the absolute value 

in mathematical notation, in Ruby syntax it is used to denote the parameters of a block 

(see Table 2.4 for more detail).

class.

Listing 2.16: Mixins in Ruby
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Listing 2.17: Closures in Ruby
def in c ( i )  

proc do |v| 
v + i  

end 
end
t  = inc 5
# <Proc:Qxb742ed2c@(irb):3> 
t . c a l l  3
# 8
[1, 2, 3 ] . co l le c t  do |x| 

x ** 2 
end
# CL 4, 9]
[1, 2, 3 ] . in ject  do |v ,x |  

v + x 
end
# 6

Table 2.4: Ruby notation

Ruby syntax mathematical notation

function “f  = proc { |x | x * x }” f i x )  := J2
absolute value “x .ab s” 14

2.3.9 Continuations

Ruby supports continuations. A continuation captures the current state of the process in 

a variable. That is, the continuation offers a way to save the current program pointer and 

context. Listing 2.18 gives an example where two continuations are used to jump into and 

out of a method. The order of execution is as follows:

Listing 2.18: Continuations in Ruby
require ’continuation’ 
def tes t(c2 )  

ca llcc  do |c l |  
return c l  

end
c2 .c a l l

end
ca llcc  do |c2| 

c l = tes t(c2 )  
c l . c a l l  

end

1. The method “t e s t ” is defined (lines 2-7) and later called in line 9

2. In line 4 the continuation “c l ” is returned and execution resumes in line 10
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3. Line 10 calls the continuation so that execution resumes in line 6

4. Line 6 calls the continuation “c2” so that execution resumes after line 11 (i.e. the 

program terminates)

Basic language features such as exception handling, fibers (cooperative multi-thread

ing), and break statements can all be implemented using continuations.

2.3.10 Introspection

Listing 2.19: Introspection in Ruby
x = 5
# 5
x .c la ss
# Fixnum
x .c la s s . class
# Class
x . c l a s s . superclass
# Integer
x.is_a?(Fixnum)
# true
Fixnum < Integer
# true
5 ,respond_to?(:+)
# true
5 .methods. grep(/" f / ) . sort
# ["floor", "freeze", "frozen?"]

Introspection allows the program to “see” itself. Listing 2.19 gives some examples 

querying information about objects and their types. Using the method “m ethods” it is 

possible to get an array with the names of the methods supported by an object (line 15).

2.3.11 Meta Programming

Ruby supports meta programming. That is, the interpreter provides means of modifying 

the program during run-time. Listing 2.20 gives a few examples. Using “e v a l” one can 

evaluate strings (line 1), using “in s ta n c e  e v a l” (lines 4-6) and “c la s s  e v a l” (lines 10- 

14) one can evaluate code blocks in the context of a particular object or class, and using 

“d e fin e  method” one can create a method with the specified name and code block (lines 

11-13).

Ruby meta programming is not as powerful as meta programming in Lisp or Small

talk. For example some control structures such as while-loops and if-then-else statements 

cannot be overloaded which means that their behaviour cannot be changed.
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Listing 2.20: Meta programming in Ruby
eval ’x=5’
# 5
a = [1]
a . instance_eval do 

push 2 
end
# [ 1 , 2]
a.send :push, 3
# [1, 2, 3]
Object. const_get( ’String’) . class_eval do 

define_method ’t e s t ’ do 
reverse 

end 
end
’abc’ . t e s t
# ’cba’

2.3.12 Reification

Ruby supports some means of reification. Reification means that the program can modify 

the behaviour of the interpreter. By overloading the standard method “method_missing” 

one can implement a different behaviour for the case an unknown method was called. For 

example Listing 2.21 shows a definition of “Numeric#methodjnissing” (lines 2 to 10) 

which tries to find and call a method with the same prefix as the missing method. When

Listing 2.21: Reification in Ruby
class  Numeric

def method_missing(name, *args) 
prefix = Regexp.new(""#{name}") 
full_name = methods.find { | id | id =“ prefix  } 
i f  full_name

send(full_name, *args) 
e lse  

super 
end 

end 
end
5.mod 2
# c a l ls  5 .modulo 2

the missing method “Numeric#mod” is called in line 12, “Numeric#method_missing” is 

called which will call “Numeric#modulo” instead.

There are other hooks for handling missing constant (“const_m issing”), inheritance 

changes (“in h erited ”), module inclusions (“extend_object”), and method definitions 

(“method_added”) (Fulton, 2006).
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2.3.13 Ruby Extensions

Ruby has a C-API for developing Ruby extensions16. Compared to other APIs such as the 

Java Native Interface (JNI) it is very easy to use. The problem of the current API is that 

it does not allow for relocation of allocated memory (Sasada, 2009a) (such as required by 

compacting garbage collectors).

Listing 2.22 shows a small Ruby extension which upon loading registers the method 

“Numeric#logx”. The Ruby native interface provides type definitions {e.g. “VALUE”), 

macros {e.g. “NUM2DBL”, “RUBYJ1ETH0D_FUNC”), and methods {e.g. “rb _de f in e  jnet hod”, 

“rb floatjnew”, . . .) to manipulate the objects of the Ruby interpreter. The Ruby exten-

Listing 2.22: Example of a C-extension for Ruby
/ /  gcc -shared -fPIC -I /u sr / l ib /r u b y /1 . 8/x86_64-linux \
/ /  -o myextension.so myextension.c 
#include <ruby.h>
#include <math.h>

VALUE wrap_logx(VALUE s e l f ,  VALUE x)
{

return rb_float_new(log(NUM2DBL(self)) /  log(NUM2DBL(x)));
}

void Init_myextension(void) {
VALUE numeric = rb_const_get(rb_cObject, rb_intern("Numeric")); 
rb_define_method(numeric, "logx", RUBY_METHOD_FUNC(wrap_logx), 1);

}

sion needs to define a method where the method’s name is the base name of the library 

prefixed with “In it_ ” (here “I n i t  jnyex tension”). When the library is loaded using the 

“re q u ir e ” statement (see Listing 2.23), this method is called so that the Ruby extension 

can register new methods (here: the method “Numeric#logx”) with the Ruby interpreter.

Listing 2.23: Using the extension defined in Listing 2.22
require ’myextension’
# true 
1824.logx 2
# 1 0 .®

2.3.14 Unit Testing

Unit testing is a common practise in the Ruby community (Martin, 2009). There are sev

eral unit testing tools for Ruby. The basic Test::U nit'; framework is part of the Ruby stan

dard library. Effective testing continues to play an important role in removing software

16http://www.rubyi st.net/~nobu/ruby/Ruby_Extension_Manual.html
17http://ruby-doc.org/core/classes/Test/Unit.html
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defects (Rajendran, 2002). Ideally unit tests are automated and run after every change. 

This makes it possible to identify bugs at an early stageor when refactoring the code,

i.e. when they are being introduced. For example Listing 2.24 shows a unit test for the 

implementation of “Array#+” defined in Listing 2.7.

Listing 2.24: Unit test for “Array#+” defined in Listing 2.7
require ’t e s t /u n i t ’ 
class TC_Array < Test::Unit: : TestCase 

def test_plus
assert_equal [[6, 6], [6, 6 ]] ,

CC1, 2], [3, 4]] + [[5, 4], [3, 2]]
end

end
# Loaded suite array_plus
# Started
# .
# Finished in Q.QQ2186 seconds.
#
# 1 t e s t s ,  1 assertions, ® fa ilures ,  ® errors

With sufficient test coverage a test suite can become an executable specification of the 

behaviour of a program. For example the RSpec18 project provides sets of tests for each 

version of Ruby in order to test different implementations of the Ruby VM and measure 

their degree of compatibility.

2.4 JIT Compilers

The Ruby programming language is an interpreted, pure object-oriented, and dynamically 

typed general purpose programming language (see Section 2.3). Furthermore Ruby sup

ports closures and meta-programming. Also Ruby has a straightforward API for writing 

extensions. Finally Ruby currently is on place 11 of the Tiobe Programming Community 

Index19. However in order for developers of machine vision software to take advantage 

of the productivity gains offered by Ruby, it is necessary to address the performance issue 

(see Figure 2.4 on page 19).

2.4.1 Choosing a JIT Compiler

Since Ruby supports meta-programming, a JIT compiler in general is indispensable for 

the perfomant execution of Ruby programs. Table 2.5 shows several software projects 

which can be used to perform JIT compilation. As one can see, the level of support varies 

greatly. Of the projects shown in Table 2.5 only the Low Level Virtual Machine (LLVM) 

project by Lattner (2002) and the Rubylnline20 approach support all the desired properties.

18http://rspec.info/
19http://www.tiobe.com/index.php/content/paperinfo/tpci/
20http://rubyforge.org/projects/rubyinline
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Table 2.5: Just-in-time compilers

’!> ^
^  S  'c 5 ^>  R  ^  £  £ >>
hJ  X) s  ^  i2 i5 J  ^

register allocation ✓ »/ ✓
platform independence ✓ ✓ ✓  ✓
optimisation ✓  ✓

•  register allocation: the JIT compiler should provide an abstract machine with an 

infinite number of registers

•  platform independence: the JIT compiler should be able to generate code for at 

least x86, x86-64, and ARM

•  optimisation: the JIT compiler should provide code optimisation (preferably global 

optimisation)

Note that Table 2.5 is not complete. However the other JIT compilers are not readily 

available as a free software library with a dedicated API.

The libJIT API is worth studying because it offers insights in what constitutes a JIT 

compiler. The Ludicrous project21 provides a Ruby API to use the libJIT just-in-tim e 

compiler library. However the Ruby API does not support pointer operations.

After initially working with libJIT, in the end the Rubylnline approach was chosen for 

the work of this thesis. The C language together with the Ruby extension API is a stable 

interface for JIT compilation. Also the GNU C compiler offers state of the art optimisation 

which facilitates competitive performance. The C code is generated at runtime and an 

ordinary AOT compiler is called to produce a dynamic-link library (DLL) which can be 

loaded on-the-fly.

Note that the Ricsin project (Sasada, 2009b,c) also provides a means of embedding C 

code into Ruby programs as well. However it requires the C code to be available AOT.

2.4.2 libJIT API

This section gives a small introduction to libJIT for the interested reader.

Listing 2.25 and Listing 2.26 show a basic array operation implemented directly in 

C and implemented using libJIT. The operation takes an array as argument (line 12 of 

Listing 2.26) and increments every element of that array by one (line 23-31). This is 

performed by sequentially loading each element (line 24), adding one to it (line 25), and

21http://rubystuff.org/ludicrous/
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Listing 2.25: Array operation implemented in C
/ /  g++ -o c tes t  c te s t .c  
#include <stdlib.h>
#define SIZE 10S00Q0
unsigned char *f(unsigned char *p, unsigned char one, unsigned char *pend) 
{

for C ; p != pend; p++ )
*p += one; 

return p;
}
in t main(void)
{

unsigned char *data = mallocCSIZE * sizeof(unsigned char)); 
f(data, 1, data + SIZE); 
free(data ); 
return Q;

}

writing it back to memory (line 27). The array pointer is incremented (line 28-29) and a 

conditional branch (line 30-31) is used to continue with the next element until the whole 

array was processed.

The example demonstrates how the libJIT library exposes the JIT compiler function

ality using the following data structures:

1. a JIT context object keeping the functions

2. functions with parameters, instructions, and return value

3. values (virtual registers) of different types

• integers

•  floating point numbers

•  pointers

4. labels

The methods of the libJIT library expose the functionality of a complete compiler:

1. creating and destructing the context

2. defining functions and their arguments

3. adding instructions

• setting virtual registers to a constant

• loading values into a virtual register and writing values back to memory

• logical and mathematical operations

• control flow statements (e.g. conditional branching)
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Listing 2.26: Array operation compiled with libJIT
/ /  gcc -o j i t t e s t  j i t t e s t . c  - l j i t  
#include <stdlib.h>
#include < j i t / j i t .h >
#define SIZE 1Q®®®0® 
in t  main(void)
{

/ /  Compile function
jit_context_t context = j it_con text_create();
jit_context_build_start(context);
jit_type_t params[3];
params[0] = jit_type_void_ptr;
params[l] = j it_ ty p e_ in t;
params[2] = jit_type_void_ptr;
jit_type_t signature =

jit_type_create_signature(jit_abi_cdecl, jit_type_void_ptr,
params, 3, 1);

jit_function_t function = jit_function_create(context, signature); 
jit_value_t p, px, one, end, eq; 
j i t_ la b e l_ t  start = jit_label_undefined;
P = jit_value_get_param(function, Q); 
one = jit_value_get_param(function, 1); 
end = jit_value_get_param(function, 2); 
j it_ insn_label(function , &start);
j it_value_t tempi = jit_insn_load_relative(function, p, Q, jit_type_ubyte); 
jit_value_t temp2 = jit_insn_add(function, tempi, one); 
jit_value_t temp3 = jit_insn_convert(function, temp2, jit_type_ubyte, ®); 
j it_ insn_store_relative(function, p, ®, temp3);
jit_value_t temp4 = jit_insn_add_relative(function, p, s iz e o f ( j i t_ u b y te ) ) ;
jit_insn_store(function, p, temp4);
eq = jit_ insn_lt(function , p, end);
jit_insn_branch_if(function, eq, &start);
jit_insn_return(function, p ) ;
jit_function_compile(function);
jit_context_build_end(context);
/ /  Call function
unsigned char *data = malloc(SIZE * sizeof(unsigned char));
void *args[3];
j it_p tr  argl = data;
jit_ubyte arg2 = 1;
j it_p tr  arg3 = data + SIZE;
jit_p tr  result;
args[®] = &argl;
args[l] = &arg2;
args[2] = &arg3;
jit_function_apply(function, args, &result); 
free (d ata );
/ /  Destruct function 
j it_context_destroy(context); 
return ®;
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4. creating labels to jum p to

5. allocating virtual registers and constants

6. compiling and calling methods

2.5 Summary

This chapter has highlighted some basic difficulties with implementing machine vision 

systems. It was shown that AOT compilation of basic image processing operations is not 

feasible to due the large number of combinations of methods and parameter types. It was 

also shown that dynamic typing facilitates much more concise code than static typing.

The properties of the Ruby programming language were discussed. The Ruby pro

gramming language is an interpreted language. It is pure object-oriented and dynamically 

typed. It supports exception handling, mixins, and closures. Furthermore there is support 

for continuations and meta-programming.

Finally the choice of a JIT compiler was discussed. It was decided to use GNU C as 

a JIT compiler because the C language represents a stable interface. Also the GNU C 

compiler comes with a powerful optimiser.
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“Programming languages: performance, productivity, 
generality - p ick any tw o.”

Mario Wolczko

“Elegance and familiarity are orthogonal.”

Rich Hickey

“In ‘Elephant’ the programmer would write nothing 
about an array or database for storing reservations. A r
rays o f  course would be necessary but the com piler would 
invent them.”

John McCarthy

Handling Images in Ruby

This chapter is about the core of the work presented in this thesis. Since digital images are 

represented as 2D arrays, the way array operations are implemented is of great importance 

when developing machine vision systems. Most existing image processing libraries only 

support some combinations of operations and array element-types (also see Section 2.2.1). 

In this chapter a library for manipulating uniform arrays is introduced. The library brings 

together performance and productivity in an unprecedented way (also see Section 1.3).

• transposing array views (i.e. transposing an array “without deep copy” of elements)

• lazy evaluation of array operations (i.e. avoiding unnecessary memory-I/O for in

termediate results)

•  JIT compilation of array operations to achieve real-time performance

A set of objects is introduced to represent arrays, array views, and lazy evaluations in 

a modular fashion.

• Section 3.1 explains how meta-programming can be used to integrate a JIT compiler 

into the Ruby programming language

• Section 3.2 introduces memory objects

• Section 3.3 defines native data types based on the memory objects

• Section 3.4 presents uniform arrays based on previously introduced objects

•  Section 3.5 introduces a library for describing computer vision algorithms

• Section 3.8 gives a summary of this chapter
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It is demonstrated how this approach facilitates succinct implementations of machine vi

sion algorithms.

The software was published under the name Hornetseye. The software is provided as 

a set of packages (see page iii).

3.1 Transparent JIT Integration

The performance of the Ruby VM is significantly lower than the performance achieved 

with GNU C (see Section 2.2.3). One can achieve higher performance by introducing 

operations based on uniform arrays with native element types into the target language.

It is desirable to introduce a JIT compiler without requiring the developer community 

to accept a modification of the Ruby language. In order to test the meta-programming 

capabilities of Ruby one can implement the method “#methodjnissing” as shown in List

ing 3.1 (lines 7-13) in order to reflect on code instead of executing it. W henever an object

Listing 3.1: Reflection using missing methods
class Const

attr_accessor :inspect 
alias_method :to_s, : inspect 
def in i t ia l i z e ( s )

©inspect = s .to_s  
end
def method_missing(name, *args) 

str = "#{ s e l f  } .#{ name }" 
unless args.empty?

str  += "(#{args.join '})" 
end
Const.new str  

end
def coerce(y)

return Const.new(y), s e l f  
end 

end

of type “Const” receives a message for a method that is not implemented, it invokes the 

method “#methodjmissing” instead (I'ulton, 2006). The method creates a textual repre

sentation of the method call as shown in Listing 3.2. Listing 3.2 shows that the Ruby 

programming language supports changing the behaviour of unary negation (line 22), bi

nary plus (line 24), and element access (line 26).

However Listing 3.3 shows that meta programming support in Ruby is limited (also 

see Section 2.3.11). For example the statement in line 34 returns “a” instead of “a . or (b) ”. 

In order to implement transparent JIT integration, it is therefore necessary to restrict the 

use of the programming language to a subset of Ruby with full meta programming sup

port.

Some operations such as constructing the transpose of a 2D array merely require
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Listing 3.2: Example applying reflection to simple operations
a = Const.new ’a ’
# a
b = Const.new ’b ’
# b 
-a
# a.
a + b
# a.+(b) 
a [2]
# a[] (2)
2 * a
# 2 .*(a)
2 * a + b
# 2 .* (a).+(b)
2 * (a + b)
# 2 .*(a .+(b))

Listing 3.3: Limitations of reflection in Ruby
a or b
# a
a < b ? a : b
# a
b = a
# a
i f  a > b 

a -= b 
end
# a .-(b )  
begin

a += 1 
end until a > b 
a
# a .+ ( l)
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the data to be interpreted differently (in this case the order of array indices needs to be 

swapped). This can be achieved by deferring the calculation (i.e. implementing support 

for lazy evaluation (Abelson et al., 1996)). It turns out that this also makes it possible to 

avoid writing and reading intermediate results and to build tensor expressions.

3.2 Malloc Objects

In order to convert between native representation and Ruby values, the existing methods 

“Array#pack”' and “String#unpack”2 of the Ruby core library are used. Listing 3.4 

shows how Ruby values get converted to a Ruby string with a native representation of the 

values (line 3) and back (line 5). The methods “Array#pack” and “String#unpack” re-

Li sting 3.4: Converting arrays to binary data and back
1 array = [8x52, 8x75, 8x62, 8x79]
2 # [82, 117, 98, 121]
3 str in g  = array.pack ’c ’ * 4
4 # "Ruby"
5 array = string.unpack ’c ’ * 4
6 # [82, 117, 98, 121]

quire a template string as parameter which specifies the native data type(s) (see Table 3.1). 

Table 3.1: Directives for conversion to/from native representation

Directive Native Data Type

C Unsigned byte
c Byte
d Double-precision float
f Single-precision float
I Unsigned integer
i Integer
Q Unsigned long
q long
s Unsigned short
s Short

Since Ruby strings do not support pointer operations or multiple objects viewing the 

same memory location, “M alloc”-objects were introduced (as part of the work presented 

in this thesis). “M alloc” objects allow one to see a chunk of memory as an array of cubby

holes, each containing an 8-bit character (similar as “v e c to r - r e f ” in Scheme (Abelson 

et al., 1996)). Listing 3.5 shows an example using “M alloc” objects. The method

^ttp://www.ruby-doc.org/ruby-1.9/classes/Array.html#M®8®766
2http://www.ruby-doc.org/ruby-1.9/classes/String.html#M®88659
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Listing 3.5: Manipulating raw data with Malloc objects
require ’malloc’ 
include Hornetseye 
m = Malloc.new 4
# M a l lo c (4 )
m.write ’abed’ 
n = m + 2
# M a llo c (2 )  
n.read 2
# "cd"

“Malloc#+” is used to create a new object viewing a memory location with the given off

set (also see Figure 3.1 for a graphical illustration). An explanation of important methods

m

n = m + 2

Figure 3.1: Pointer operations (compare Listing 3.5)

is given in Table 3.2.

Table 3.2: Methods for raw memory manipulation

M ethod D escription

“Malloc.new” Allocate memory
“Malloc#read” Read data from memory and return as string
“Malloc#write” Write string data to memory
“Malloc#+” Operation for doing pointer arithmetic

3.3 Basic Types

As shown in Section 2.2.3, in general an implementation using native data types can 

be optimised much better than an implementation using Ruby data types. In order to 

facilitate implementation of real-time machine vision software, representations of native 

types starting with booleans are introduced. Note that the type system is not part of the 

Ruby programming language or the Ruby core library. The type system was developed as 

part of the work presented in this thesis.
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3.3.1 Booleans

In order to annotate a boolean value with type information, one can define a wrapper class 

for representing native booleans in Ruby (similar to “boxing” in Java3). Listing 3.6 shows 

the application of the class “BOOL”. The methods “ [ ] ” and “ []=” are used for getting

Listing 3.6: Boxing booleans
1 b = BOOL.new
2 # BOOL(false)
3 b .c la ss
4 # BOOL
5 b[]
6 # fa lse
7 b[] = true
8 # true
9 b

10 # BOOL(true)

(line 5) and setting (line 7) the boolean value encapsulated by an object of this class. 

The method “BOOL#inspect” is used to define the textual representation for the output of 

Interactive Ruby.

Listing 3.7: Constructor short cut
b = BOOL true
#  BOOL(true)

Although it is considered bad style to give Ruby methods a name starting with a capital 

letter, the language does not forbid this. This is sometimes used to define a short cut to a 

constructor such as for “BOOL .new” which then can be used as shown in Listing 3.7.

In formal language one would define types and variables as shown in Equation 3.1 

using the boolean set B := {fa lse , true).

b e B, b = true (3.1)

3.3.2 Integers

One can introduce classes to represent native integers in a similar fashion. However note 

that there are different types of native integers. That is, current central processing units 

(CPUs) usually support 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers. 

Using template classes one can achieve the behaviour shown in Listing 3.8. By specifying 

the number of bits and the signed-ness one can instantiate an integer classes (e.g. lines 

1 and 3). See Figure 3.2 for a corresponding visual representation. Furthermore one can 

define type names and constructor shortcuts for certain integer types (e.g. lines 5 and 7).

3http://eclipse.org/aspectj/doc/released/adk!5notebook/autoboxing.html
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Listing 3.8: Template classes for integer types
1 INT 16, UNSIGNED
2 # USINT
3 INT(16, UNSIGNED).new 655S5
4 # USINTC655S5)
5 u = USINT.new 65535
6 # USINTC65535)
7 u = USINT 65535
8 # USINT(65535)

INT

SIGNED

Figure 3.2: Abstract data type for 16-bit unsigned integer

In formal language usually only integers (Z) and non-negative integers (JN0) are dis

tinguished. See Equation 3.2 and Equation 3.3 for examples.

i g Z,  i = —123 (3.2)

u e  JN(), U = 234 (3.3)

3.3.3 Floating-Point Numbers

Listing 3.9: Boxing floating point numbers
FLOAT SINGLE
# SFLOAT 
FLOAT DOUBLE
# DFLOAT
FLOAT(SINGLE).new
# SFLOAT(0.®)
DFLOAT.new
# DFLOAT(®.®)
f  = DFLOAT Math::PI
# DFL0AT(3.14159265358979)

Classes for representing single- and double-precision floating point numbers are im

plemented in a similar fashion as the integer classes. The behaviour of the implementation 

is shown in Listing 3.9. See Figure 3.3 for a visual representation of the floating point 

data types.

The computer’s representation of a double-precision floating point number consists of 

64 bits. That is, the hardware can represent 264 different numbers. In mathematics the set
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FLOAT FLOAT

SIN G LE DOUBLE

Figure 3.3: Abstract data types for single-precision and double-precision floating point 
numbers

of real numbers is uncountable and represented by the symbol R  (e.g. see Equation 3.4).

7r e R , /r = 3 .1415926 ... (3.4)

3.3.4 Composite Numbers

Listing 3.10 demonstrates composite numbers such as “RGB” (for representing red, green, 

blue triplets) in Ruby. Note that the red, green, blue (RGB) class supports left-handed

Listing 3.10: Composite numbers
c = RGB 4, 5, 6
# RGB(4 ,5 ,6 )  
c - 3
# RGB(1,2,3)
7 - c
# RGB(3,2 ,1)

(line 5) and right-handed (line 3) subtraction of a scalar. Right-handed subtraction of a 

scalar is handled by the method “RGB#-”. In order to handle left-handed subtraction of 

a scalar, one has to implement the method “RGB#coerce”. This method gets called by 

“Fixnum#-” when it encounters an unknown data type. All numeric data types of the 

Ruby core library handle left-handed operations with an unknown data type in this way. 

This makes it possible to define data types at runtime and integrate them without having 

to change the implementation of existing data types. Examples of data types which are 

not part of the Ruby core are matrices and vectors.

Composite numbers are wrapped in a similar way as scalar numbers. Listing 3.11 

gives a few examples using the resulting API. Figure 3.4 illustrates how the data types 

are composed.

3.3.5 Pointers

Furthermore a pointer type is introduced. For example see Figure 3.5 showing how a 

pointer to a double precision floating point number is composed. The pointer encap-



Listing 3.11: Boxing composite numbers
c = UBYTERGB RGB(1, 2, 3)
# UBYTERGB(RGB(1 ,2 ,3 ))
c = RGB(INT(16, UNSIGNED)).new RGB(1, 2, 3)
# USINTRGB(RGB(1,2 ,3 ))
c = RGB(FLOAT(SINGLE)).new RGB(0.1, 0.2, 0.3)
# SFLOATRGB(RGB(0.1 ,0 .2 ,0 .3 ) )

INTINT FLOAT

UNSIGNED UNSIGNED SINGLE

RGB RGBRGB

Figure 3.4: Composite types for unsigned byte RGB, unsigned short int RGB, and single
precision floating point RGB values

POINTER

FLOAT

DOUBLE

Figure 3.5: Abstract data type for pointer to double precision floating point number
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sulates a “M alloc”-object. One can see a pointer object as a delayed fetch operation. 

That is, the pointer object supports lazy evaluation of fetch operations. In Chapter 3.2 

it was shown how the methods “Array#pack” and “String#unpack” convert between a 

Ruby value and a string with the native representation. Listing 3.12 shows how the m e

thods “Pointer_#store” (line 3) and “Pointer_#demand” (lines 9 and 11) can be used 

to write/read boxed values to/from memory. That is, the pointer object handles read-

Listing 3.12: Pointer objects
pO = Pointer(DFLOAT).new Malloc.new(16)
# *(DFLOAT)(Malloc(16)) 
pO. store DFLOAT(Math::PI)
# DFL0AT(3.14159265358979)
pi = p®.lookup INT(l), INT(l)
# *(DFLOAT)(Malloc(8)) 
p i.s tore  DFLOAT(Math: :E)
# DFLOAT(2.71828182845905) 
p®. demand
# DFL0AT(3.14159265358979) 
p i . demand
# DFL0AT(2.71828182845905)

ing and writing native values using the type information stored in its class. The method 

“Pointer #lookup” (line 5) facilitates pointer operations in Ruby which are used as a 

basis for defining arrays later on.

3.3.6 Ruby Objects

Listing 3.13: Boxing arbitrary Ruby objects
OBJECT ’H ello !’
# OBJECT("Hello!")
OBJECT 2 ** 127 - 1
# 0BJECT(17®141183460469231731687303715884105727)

In order to integrate the system of native types with the existing Ruby type system, a 

means of specifying non-native types is introduced. The class “OBJECT” is used to encap

sulate Ruby objects which do not have a native representation as shown in Listing 3.13. 

Note that in practise one needs to define a class based on Ruby arrays which supports 

reading/writing values and pointer operations in a similar way to “Malloc” but providing 

this functionality for Ruby objects.

3.4 Uniform Arrays

A uniform array can be seen as a special case of a function accepting one or more indices 

as arguments and returning an array element as result. For example Equation 3.5 shows a
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function returning the square of a value4.

I {1,2,3} -> Z

x  x2
(3.5)

Since the function is defined on a finite set (i.e. the set {1,2,3}), it can instead be defined 

using the function values / ( l ) ,  /(2 ) ,  and /(3 ) . That is, /  can also be represented as an 

array, vector, or sequence (e.g. the vector / '  = (1 4 9)T with / '  = 1, / 2' = 4, and / 3' = 9). 

Using the insight that matrices, arrays, vectors, and sequences are essentially different 

notations for functions, one can develop a representation which unifies these concepts.

This section shows how variables, lambda terms, lookup objects, and the basic types 

introduced in the previous section can be used as building blocks to construct multi

dimensional arrays.

3.4.1 Variable Substitution

1 vl = Variable.new INT
2 # Variable(INT)
3 v2 = Variable.new INT
4 # Variable(INT)
5 v2. subst vl => INT(7)
6 # Variable(INT)
7 v2.subst v2 => INT(7)
8 # INT(7)
9 INT(5).subst vl => INT(7)

10 # INT(5)

Listing 3.14 shows application of the variable class. The method “V ariable#subst” 

accepts a Ruby hash as argument (lines 5 and 7). It returns either a replacement for the ob

ject (line 8) or the object itself (line 6). By furthermore defining methods “INT_#subst”, 

“FLOAT #subst”, “B00L_#subst”, . . .  and have them return “s e l f ”, one can achieve the 

behaviour shown in Listing 3.14 where applying a substitution to a scalar value has no ef

fect (line 9). In formal language the substitutions shown in Listing 3.14 is specified using 

square brackets as shown in Equation 3.6 (Church, 1951; McCarthy, 1960; Barendregt 

and Barendsen, 1984).

Listing 3.14: Variable objects and substitution

v2[vi := 7] = vi 

v2[v2 := 7] = 7 

5[v, := 7] = 5

(3.6)

4here the formal notation of the form /  : 

and Y  being the domain and codomain of /

according to Heuser ( ! 9 9 1) is used with X
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3.4.2 Lambda Terms

In 4-calculus the basic operations are abstraction and application (Church, 1951; Mc

Carthy, 1960; Barendregt and Barendsen, 1984). The concept of application is also 

known as /3-reduction. For example Equation 3.7 shows the square function x —> x * x

written in lambda notation. A dot is used to separate the bound variable x from the term

x * x.

4x.x * x (3.7)

Equation 3.8 is an example of /3-reduction. Here the square function is applied to the 

number 3. The bound variable x is replaced with the value 3.

{Ax.x * x)3 — (x * x)[x := 3] —> 3 * 3  —> 3 (3.8)

A “Lambda” class was implemented in order to facilitate manipulation of lambda ex

pressions in Ruby. Listing 3.15 shows application of the class “Lambda” . The identity

Listing 3.15: Lambda abstraction and application
1 v = Variable.new INT
2 # Variable(INT)
3 1 = Lambda.new v, v
4 # Lambda(Variable(INT),Variable(INT))
5 1 . element INT(7)
6 # INT(7)

function is used as an example to demonstrate abstraction and application. The variable 

“v” becomes a bound variable in the 4-term “1” (line 3). The same example written using 

the formal system of 4-calculus is shown in Equation 3.9.

(4x.x)7 ->fi x[x  := 7] = 7 (3.9)

3.4.3 Lookup Objects

In principle one can view a one-dimensional (ID ) array as a function accepting one argu

ment. That is, given a (typed) memory pointer p  and a stride s one can define an arbitrary 

array a as shown in Equation 3.10.

a: I  f0’ 1’ "  ’” -  1} -* R  (3.10)
I i i-> fetch$i(p + i * s)

The function fe tc h R is a pristine array representing physical memory {e.g. memory of 

camera holding image data). Note that the array index is limited to a certain range, i.e. 

i e { 0 ,1 ,.. .  ,n  — 1}.

Listing 3.16 shows how an array is constructed using a pointer, a lookup object, and
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Listing 3.16: Implementing arrays as lazy lookup
1 v = Variable.new INDEX(INT(5))
2 # Variable(INDEX(INT(5)))
3 p = Pointer(DFLOAT).new Malloc.new(4Q)
4 a = Lambda.new v, Lookup.new(p, v, INT(l))
5 a [ l]  = 4.2
6 # 4.2
7 a [ l]
8 # 4.2

a lambda term. Line one creates an index variable. The size of the array becomes part of 

the type information of the variable (i.e. “INDEX(INT(5))”). Line 3 allocates 40 bytes of 

memory and creates a pointer object for interpreting the memory as a sequence of double

precision floating point numbers. In line 4 the variable and the memory are used to create 

a lookup object. Finally the variable is bound using a lambda term.

By defining the Ruby operators “ [ ] ” and “ []=” one can implement element access. 

Element-access internally is implemented as beta-reduction (see Section 3.4.2). In prac

tise the construction of arrays is hidden using the method “Sequence.new” as shown in 

Listing 3.17.

Listing 3.17: Uniform arrays
a = Sequence.new DFLOAT, 5 
a [l]  = 4.2
# 4.2 
a [l]
# 4.2

3.4.4 Multi-Dimensional Arrays

One can treat a multi-dimensional array as a function accepting multiple indices as argu

ments. Equation 3.11 shows the definition of an arbitrary 3D array m  using a memory 

pointer p  and the strides s0, s and s2.

Internally the multi-dimensional array is represented by recursively nesting “Lambda” and 

“Lookup” objects. By extending the methods “ [ ] ” and “ []= ” in a suitable manner and 

by introducing the method “MultiArray.new”, one can achieve the behaviour shown in 

Listing 3.18. The statement “MultiArray.new UBYTE, 2, 4, 3” in line 1 allocates a 3D 

array with 2 x 4 x 3  elements. Figure 3.6 illustrates the shape and the strides of the 3D 

array. The corresponding formal notation is given in Equation 3.12.

m :
R

fe tc h R(p + s2x2 + x\ + so *o)
(3.11)
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m = 
m[l,
# 3 
m[l,
# 3 
m[Q]
# 3 
m[S]
# 5 
m [l,
# 5

Listing 3.18: Multi-dimensional uniform arrays
MultiArray.new UBYTE, 2 , 4 ,  3 

2, 0] = 3

2 , 0]

[2] [1]

[2] [1] = 5

2 , 0 ]

,— ,

i

cuo
05

0 2 1 1
1 4 2 2
2 3 8 0

s/r/desb'] =
i- 1 

*=0

4 1 ]

^ [ 2 ]

4 0 ]
Figure 3.6: Shape and strides for a 3D array

{0,1} x  {0,1,2,3} x {0,1,2} -> {0,1,. ..,255}
m : <

[  ( * 0  X \  X 2 )  l->  f e t c h m ,. . .,255)(P +  S2 X 2 +  S i  X \  +  5 0 x 0 )

(3.12)

Note that the methods “ [ ] ” and “ []=” are defined in a fashion which makes it possible 

to specify either the major index first (e.g. “m[Q] [2] [1 ]” in line 6 of Listing 3.18) or the 

minor index first (e.g. “m [ l ,2 ,0 ] ” in line 4 of Listing 3.18). It is also possible to access 

the same element using hybrid notation (e.g. “m[2,®] [1 ]”). This makes it possible to 

interpret the 3D array of scalars as a 2D array m' of 2D vectors or as a 2D array m" array 

of ID functions. See Equation 3.13 for the corresponding formal domain specifications 

(the actual array definitions are omitted here for brevity).

m  : {0,1,2,3} x {0,1,2} -> { 0 ,1 , . . . ,  255}2
(3.13)

m" : {0, 1,2,3} x {0,1,2} -> ({0, 1} -> {0, 1 , . . . ,  255})
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3.4.5 Array Views

In the Ruby language the declaration “1 . .  5” is a short cut for “Range.new 1, 5,

f a l s e ”. Ranges are similar to intervals in mathematics, e.g. [1,5] in this case5. On the 

other hand “1 . . .  6” is a short cut for “Range .new 1 , 6 , t r u e ” which is a right-open

interval. The mathematical notation is [1,6) in that case6. The method “ [ ] ” (and also the 

method “ []=”) can be extended so that they accept “Range” objects.

Listing 3.19 shows some examples where sub-arrays of a 2D array are specified using 

ranges. Note that while the vertical bar “ | ” is used to represent the absolute value in 

mathematical notation, in Ruby syntax it is used to denote the parameters of a block (see 

Table 2.4 for more detail). Note that the order of the dimensions of the resulting array is

Listing 3.19: Array views
m = lazy(5, 4 ) { | i , j | i + j * 5 }
# MultiArray(INT,2):
# [ [ ®, 1, 2, 3, 4 ] ,
# [ 5, 6, 7, 8, 9 ] ,
# [ 1®, 11, 12, 13, 14 ] ,
# [ 15, 16, 17, 18, 19 ] ]
u = m[l . .  2]
# MultiArray(INT,2):
# [ [ 5 , 1 ® ] ,
# [ 6 , 11 ],
# [ 7, 12 ] ,
# [ 8, 13 ] ,
# [ 9, 14 ] ]
v = u [ 1 . .  3]
# MultiArray(INT,2):
# C [ 6, 7, 8 ] ,
# [ 11, 12, 13 ] ] 
v = m[l . .  3, 1 . .  2]
# MultiArray(INT,2):
# C [ 6, 7, 8 ] ,
# [ 11, 12, 13 ] ] 
v = m[ 1 . .  2] [1 . .  3]
# MultiArray(INT,2):
# [ [ 6 , 7 , 8 ] ,
# [ 11, 12,  13 ] ]

cycled n times where n is the number of ranges specified. For example after declaring “m” 

in line 1, the values 5 , 6 , 7 , . . .  appear in one row of the array. However extracting the sub 

array “u” (line 7) changes the order of the array indices so that the same elements now 

appear in one column.

Figure 3.7 illustrates the advantage of this semantics: It allows one to specify the ma

jor indices first by invoking the operation “ [ ] ” twice and specifying the ranges separately 

(e.g. “m[l . .  2] [1 . .  3]”). But it also allows one to specify the minor indices first

by invoking the operation “ [ ] ” only once (e.g. “m[l . .  3, 1 . .  2 ]”).

5 [a, b] denotes the closed interval from a to b. That is, [a , b ] := {jc e  R |a  < x  <  b)
6[a, b ) denotes the right-open interval from a to b. That is, [a, b) := {jc e  IR|a < x < b]
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v = m[ 1 .. 3, 1 .. 2 ] 
o r

v = m[ 1 .. 2 ][ 1 .. 3 ]

Figure 3.7: Extracting array views of a 2D array

The equivalent formal notation for the definition of the sub arrays v is shown in Equa

tion 3.14.
[ {0, 1,2} x {0,1} -» Z

v : \ (3.14)
(x0 x \ ) i—> m(x0 + 1, X\ + 1)

3.5 Operations

Table 3.3 gives an overview of generic array operations which can be found in computer 

vision algorithms, “a” and “b” are parameters, and “r” is the result. Each of “r”, “a”, and 

“b” denotes a scalar or an array depending on the operation. In some cases a function 

“f ” is involved, “i” and “j ” are array indices. Note that this set of array operations is 

not complete since it does not cover operations involving multi-dimensional arrays (e.g. 

matrix-vector multiplication). Also it is not minimal since an array-scalar binary function 

can be created using a constant array and an array-array binary function.

3.5.1 Constant Arrays

As shown in Section 3.4.3, one can see arrays as functions where the indices are the 

arguments of that function. A 1D constant array carr where the value of each element is 

0 becomes a constant function as shown in Equation 3.15.

carr := Ai.O (3.15)

Lines 4, 7, and 11 of Listing 3.20 show different ways of using the lambda class 

introduced in Chapter 3.4.2 to create a function returning 0. Using closures it is possible 

to define the method “la z y ”. The method accepts the shape of the array as argument and a 

closure for generating the array elements. For example one can construct a constant array 

using the statement “la zy (5 ) { (9 }” . Note that it is possible to define multi-dimensional 

arrays by nesting calls to “ la z y ”.



Table 3.3: Generic set of array operations

operation array index

read element r -a(b )
read sub-array r(i) =a(i+b) i
constant array r(i) =a i
index array r(i) =i i
unary function r(i) =f(a(i)) i
scalar-array binary function r(i) =f(a,b(i)) i
array-scalar binary function r(i) —f(a(i),b) i
array-array binary function r(i) =f(a(i),b(i)) i
accumulate r =f(r,a(i)) i
warp/mask r(i) =a(b(i)) i
unmask r(b(i)) -a ( i)  i
downsampling r(i) =a(b*i) i
upsampling r(b*i) =a(i) i
integral r(i) = r(i-l)+a(i) i
map r(i) —b(a(i)) i
histogram r(a(i)) - r(a (i))+ l i
weighted hist. r(a(i)) II i-t ¥

convolution r(i) =r(i)+a(i-j)*b(j) i,j

3.5.2 Index Arrays

In practise index arrays can be useful (e.g. for computing warp fields). In the ID case the 

simplest index array is the identity function id shown in Equation 3.16.

id := Ai.i (3.16)

Listing 3.21 gives a few examples of index arrays and how they can be constructed 

using the “lazy” method. The index arrays “x” and “y” (lines 1 and 6) are useful for 

computing warp fields in practise. The class method “indgen” is a short cut for creating 

a multi-dimensional index array.

3.5.3 Type Matching

Type matching is introduced in order to conveniently convert Ruby values to native values. 

Figure 3.8 illustrates how a Ruby value is passed on to the “M atch# fit” method of each 

native type class:

•  “Sequence # f i t ” rejects the value because it is not an array

•  “RGB # f i t ” rejects the value because it is not an RGB value

•  “FLOAT # f i t ” rejects the value because it is not a floating point number
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Listing 3.20: Constant arrays
Lambda.new Variable.new(INDEX(INT(5 ) ) ) ,  UBYTE.new(0)
# SequenceCUBYTE):
# [ 0, 0, 0, 0, 0 ] 
lazy(5) { 0 }
# Sequence(UBYTE):
# [ 0, 0, 0, 0, 0 ] 
lazy (3, 2) { 0 }
# MultiArray(UBYTE,2):
# C [ 0. 0 ] ,
#  C 0 ,  0 ,  0 3 ]
lazy(2) { lazy(3) { 0 } >
# MultiArray(UBYTE,2):
#  C [ ®.  ®,  © 3 ,
# [ 0, 0, 0 3 3

Listing 3.21: Index arrays
x = lazy(3, 3) { | i , j |  i  }
# MultiArray(INT,2):
#  C C 0 ,  1,  2 3 ,
#  [ 0 ,  1,  2 3 ,
#  [ 0 ,  1,  2 3 3
y = lazy(3, 3) { | i ,  j | j }
# MultiArray(INT,2):
#  [ [ 0 ,  0 ,  0 3 ,
#  [ 1,  1,  1 3 ,
#  [ 2 ,  2 ,  2 3 3
idx = lazy(3, 3) { | i , j |  i  + j * 3 }
# MultiArray(INT,2):
# [ [ 0, 1, 2 3,
#  [ 3 ,  4 ,  5 3 ,
#  [ 6 ,  7 ,  8 3 3
MultiArray(INT, 2 ) . indgen 3, 3
# MultiArray(INT,2):
#  [ [ 0 ,  1 ,  2 3 ,
#  [ 3 ,  4 ,  5 3 ,
#  [ 6 ,  7 ,  8 3 3

OBJECT: :M atch#fit 

B ool::M atch#fit 

INT_::M atch#fit 

FLOAT_::Match#fit 

RGB_::M atch#fit 

S equence_ ::M atch#fit

UBYTE

1 2 7

Figure 3.8: Type matching
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•  “INT # f i t ” accepts the value because it is an integer between - 2 63 and 264 -  1. The 

method returns “UBYTE” because this is the smallest native integer sufficient to hold 

the value “127”

That is, the method “Match#fit” determines whether the corresponding native type is the 

best fit for the given Ruby value. Listing 3.22 shows how this simplifies declarations of 

native arrays.

Listing 3.22: Type matching
Sequence[1, 2, 3]
# Sequence(UBYTE):
# C 1, 2, 3 ]
Sequence[1, 2, -1]
# Sequence(BYTE):
# [ 1, 2, -1 ]
Sequence[1.5, RGB(1, 2, 3)]
# Sequence(DFLOATRGB):
# [ RGB(1.5 ,1 .5 ,1 .5 ) ,  RGB(1. ®, 2. Q, 3. Q) ]
MultiArray[[1, 2], [3, 4]]
# MultiArray(UBYTE,2):
# [ [ 1 , 2 ],
# [ 3, 4 ] ]

3.5.4 Element-Wise Unary Operations

Listing 3.23 shows element-wise operations in Ruby. The method “A rray#collect” ac

cepts a closure as argument which computes 2 jc + 1 for each element x  of the argument 

in this example. In order to facilitate more concise code, one can define methods which

Listing 3.23: Element-wise unary operations using “A rray#collect” 
a = [1, 2, 3]
a .c o l le c t  { | x | x * 2 + l }
# [3,  5, 7]

make it possible to use a shorter notation as shown in Listing 3.24. The problem how

ever is that eager evaluation will create intermediate results. For example evaluation of 

the statement “a * 2 + 1” will create the intermediate result “a * 2” and then add “1” to 

each element. That is, an array to store the intermediate result is allocated and the values 

are written to it only to be read back again immediately. If one were to use lazy evaluation 

this would not happen (see Figure 3.9). That is, in order to have concise code as well as 

performant code, it is important to facilitate lazy evaluation.

Listing 3.25 shows how lazy unary operations can be represented internally using 

objects (e.g. of type “Elementwise(proc { |x | -x }, proc { | t |  t  })”). That

i s , , here the unary operation is characterised using following information

55



1
2

3
4
5
6
7
8

9
10

11
12
13
14
15
16
17
18
19

Listing 3.24: Short notation for element-wise operations
class Array 

def *(scalar)
co l lec t  { Ix| x * scalar } 

end
def +(scalar)

co l lec t  { |x| x + scalar } 
end 

end
# E xam ple u se  
a = [1, 2, 3] 
a * 2 + 1
# [3, 5, 7]

S’ s. 

1 *2 f  A 

2 + 1 KL—> f  ^
3>— *2. >--<+ 1 K

>---------<
2 <=> 4 5>— *2 „ + 1 K >—<
3

V- ^<=> 6L J
7

r *\
i [3]

(2l (5]>--<
3 7 ̂ J

lazy evaluation

eager evaluation

Figure 3.9: Avoiding intermediate results by using lazy evaluation

Listing 3.25: Internal representation of unary operations
s = Sequence(INT)[1, 2, 3]
# Sequence(INT):
# [ 1, 2, 3 ]
ElementWiseCproc { |x| -x }, :-@, proc { | t |  t.contiguous }).new s
# Sequence(INT):
# [ -1, -2, -3 ] 
lazy { -s  }
# Sequence(INT):
# [ -1, -2, -3 ] 
lazy { IiI - s [ i ]  }
# Sequence(INT):
# [ -1, -2, -3 ]
-s
# Sequence(INT):
# [ -1, -2, -3 ]
(-Sequence[ :a, 1, :b])[1]
# NoMethodError: undefined method for :a:Symbol
lazy { -Sequence[:a, 1, :b] >[1]
# -1
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1. “proc { | x | -x  A closure (see Section 2.3.8 with the operation to apply to each 

element

2. A unique symbol to identify the operation (for debugging purposes and to

compute a cache key)

3. “proc { 111 t  A closure for computing the data type of the result

This representation is preserved when doing lazy evaluation (e.g. when executing the 

statement “lazy  { - s  }”). When doing eager evaluation (the default) the operation will 

be applied to each element and the result is stored in a new array (e.g. when executing 

the statement “- s ”). The difference between lazy and eager operations becomes visible 

when using operations in combination with element access. Line 16 Listing 3.25 shows 

that eager evaluation of “-S equence[:a , 1, :b ]” will throw an exception since “ :a” is 

a symbol and does not support negation. However it is possible to perform the operation 

lazily and extract the second element of the result without computing the other elements 

as shown in line 18.

Equation 3.17 shows how one can use formal language to describe the application of 

a unary operator to an index array as an example.

-  (Ai.i) = Ai. -  i (3.17)

Note that in practise it is not necessary to normalise the expression. For example it is not a 

problem if “lazy  { | i |  - s [ i ]  }” and “lazy  { - s  }” have different lazy representations.

3.5.5 Element-Wise Binary Operations

Listing 3.26: Element-wise binary operations using “A rra y # c o lle c t” and “A rray#zip” 
a = [1, 2, 3]
# [1, 2, 3]
b = [-1, 1, 3]
#  [-1 , I* 3] 
a .zip  b
# [[1, -1], [2, 1], [3, 3]]
a .z ip (b ) .c o l le c t  { |x ,y |  x + y >
#  [®, 3, 6]

Listing 3.26 shows how one can perform element-wise addition of two arrays in Ruby. 

The method “A rray#zip”7 merges elements of both arrays. Afterwards “A rra y # c o lle c t” 

performs element-wise addition using the array of pairs as input.

Binary operations with support for lazy evaluation are introduced in a similar fashion 

as unary operations. That is, they are internally represented as objects (e.g. of type

7http://www.ruby-doc.org/core/classes/Array.html#MQ®2198
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“Elem entw ise(proc { | x , y |  x + y } ,  : + , proc { | t , u |  t .c o e rc io n  u })”) and the 

representation is only preserved in lazy mode. In practise binary operations occur as 

array-array-, array-scalar-, and scalar-array-operations as one can see in Listing 3.27. In

Listing 3.27: Internal representation of binary operations
s = Sequence(INT)[1, 2, 3]
# Sequence(INT):
# C 1, 2,  3 ]
Elementwise(proc { |x ,y | x + y } ,  :+, proc { | t ,u |  t .coercion u }) .  

new s, UBYTERGB(RGB(1, 2, 3))
# Sequence(INTRGB):
# [RGB(2 ,3 ,4 ) ,  RGB(3 ,4 ,5 ) ,  RGB(4,5,6)] 
s + RGB(1, 2, 3)
# Sequence(INTRGB):
# [ RGB(2 ,3 ,4 ) ,  RGB(3 ,4 ,5 ) ,  RGB(4,5,6) ]
RGB(1, 2, 3) + s
# Sequence(INTRGB):
# [ RGB(2 ,3 ,4 ) ,  RGB(3 ,4 ,5 ) ,  RGB(4,5,6) ] 
s + s
# Sequence(INT):
# [ 2,  4, 6 ]

a similar fashion as in the case of unary operations, the binary operation is characterised 

by the following information

1. “proc { | x , y | x + y }” : A closure with the operation to apply to each pair of 

elements

2. A unique symbol to identify the operation (for debugging purposes and to

compute a cache key)

3. “proc { 11, u | t .  coerc ion  u A closure for deriving the data type of the result

Equation 3.18 show examples of formal representation of array-scalar, scalar-array, 

and array-array binary operations.

(Ai.f(i)) + c = A i.f( i) + c

c + (Ai.f( i)) = Ai.c + f ( i ) (3.18)

(Ai.f(i)) + (Ai.g(i)) = Ai.f(i) + g(i)

Furthermore there are unary and binary methods. For example “Math, s q r t ( x ) ” will 

compute the square root of x, “Math. a ta n 2 (y , x )” will compute the polar angle of (x y )T.

However methods and operators are just different forms of notation for element-wise op

erations. That is, they are handled the same way as element-wise operations.
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3.5.6 LUTs and Warps

3.5.6.1 LUTs

Like any other array, one can understand a lookup table (LUT) as a function. Element

wise lookup can be understood as element-wise application of that function. See List

ing 3.28 for example.

Listing 3.28: Element-wise application of a LUT
MultiArray[1, 2, 0 ] . lu t  Sequence[ :a, :b, :c]
# Sequence(OBJECT):
# [ :b , : c , :a ]

In general it is desirable to support multi-dimensional LUTs, i.e. using vectors with 

multiple dimensions as lookup index. Furthermore it is possible to have LUTs with multi

dimensional arrays as elements. Equation 3.19 shows application of the LUT / to the array 

a.

b{x)(y) = l(a{x))(y) (3.19)

The array a is interpreted as an n \-dimensional array with ^-dim ensional vectors as el

ements. The m-dimensional vectors are used for a lookup with /. See Equation 3.20 for 

the types of a , /, and the result b.

a : V  -» I V 2, / :  V 2 -> ( V 3 —> K), b : V  -> ( V 3 -> K) (3.20)

Listing 3.29 shows how to use a LUT for computing a pseudo colour image. First

Listing 3.29: Creating a pseudo colour image
class Numeric 

def clip(range)
[ [ s e l f ,  range.begin].max, range.end].min 

end 
end
colours = Sequence.ubytergb 256 
for i  in 0. . .256

hue = 240 - i  * 240.® /  256.0 
colours[i] =

RGB(((hue - 180).abs - 6 0 ) .c l ip (0 . . . .60) * OxFF / 60.0,
(120 - (hue - 120).a b s ) .c l ip ( 0 . .. .60) * OxFF / 60.0,
(120 - (hue - 240).abs) . c l ip (0 .. . .60) * OxFF / 60.0)

end
MultiArray. load_ubyte(ARGV[0]) . lu t(co lo u r s) . save_ubytergb ARGV[1]

the “Numeric” class is extended with a method for clipping numbers to a certain range 

(lines 1-5). Then a colour palette with 256 elements is allocated (line 6) and populated 

with values (lines 7-13). Figure 3.10 shows a plot of the colour channels of the resulting 

palette. Finally an image is loaded, element-wise lookup is performed, and the resulting
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Figure 3.10: Pseudo colour palette

image is written to disk (line 14). Figure 3.11 shows a thermal image used as input and 

the corresponding pseudo colour image created with afore mentioned program.

input image output image

Figure 3.11: Thermal image displayed with pseudo colours (source: NASA Visible Earth)

Listing 3.29 shows how the concepts introduced in previous chapters apply to im

plementation of image processing algorithms. The implementation of the pseudo colour 

visualisation is both concise and real-time capable.

3.5.6.2 W arps

An image warp is essentially the same as element-wise lookup. That is, the image is used 

as a LUT and the input data is a 2D array of warp vectors. Listing 3.30 shows how one can 

convert a topographical image from equirectangular to azimuthal projection. Note that in 

this example the components of the warp vectors are two separate arrays {i.e. “an g le” in 

line 6 and “ra d iu s ” in line 5). The array class of the Ruby language was extended so that 

the expression “ [an g le , ra d iu s ]  . lu t( im g )” (line 7) can be used to specify the arrays
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Listing 3.30: Warp from equirectangular to azimuthal projection
img = MultiArray. load_ubytergb ’world.jpg’ 
w, h = *img.shape 
c = 0.5 * (h - 1)
x, y = lazyCh, h) { | i , j |  i  - c }, lazy(h, h) { I i , j I j - c } 
radius = lazy { Math.hypot(x, y ) .to _ in t  }
angle = lazy { ((Math.atan2(x, y) /  Math::PI + 1) * w /  2 ) .to_ in t  } 
[angle, rad ius]. lu t(im g). save_ubytergb ’polar.jpg’

holding the components of the warp vectors.

Figure 3.12 illustrates how the components of the warp vectors are constructed. The

X\  X2 £ ( x U X 2) ^Jx 2 +  x 2

Figure 3.12: Visualised components of warp vectors

visualisation was inspired by Baker and Matthew (2004). Arrays with x\ and x2 values 

are used to construct arrays with the angle and radius of the azimuthal projection. The 

result of applying the warp is shown in Figure 3.13.

input image output image

Figure 3.13: Warping a satellite image (source: NASA Visible Earth)

3.5.7 Injections

Apart from element-wise functions (e.g. LUTs) one frequently encounters the fold-left 

(fo ld l ) operation in functional programming. The operation is also known as the reduce 

part of Google’s MapReduce implementation (Lammel, 2008). Given a binary function
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A —> 5  —> B and a value of type B, the fo ld l  operation yields a function taking an array 

as argument which does cumulative application of the binary function (Hutton, 1999) (see 

Equation 3.21).

(A -> B B) -> B -> ((1N0 A) —> 5)
(3.21)

fo ld l ( f ,  v)([xu x2, x3, . . . ] )  = / ( . . .  / ( / ( / ( v ,  x l), x2), x 3 ) ,. . . )

Note that /<?/d/ is left-associative. When applying the fold operation to non-associative 

operations (e.g. division or subtraction) it is important to distinguish between left-as

sociative (fo ldl)  and right-associative folding (fold-right (foldr)). In Ruby the fo ld l  

operation is known as injection. Listing 3.31 shows two ways of specifying an injection 

for computing the product of all elements of an array. The equivalent formal expression

Listing 3.31: Left-associative fold operation in Ruby
[2, 3, 5, 7, 11]. in j e c t ( l )  { |a ,b | a * b }
# 231®
[2, 3, 5, 7, 11]. in jec t  1, :*
# 231®

using the product symbol is shown in Equation 3.22.

j j *, w here* := ( 2 3 5 7  11)  (3.22)

Listing 3.32 shows how an injection can be represented internally using an object of 

class “I n je c t”. The closure (or nameless function) “proc { | a , b |  a * b }” is con-

Listing 3.32: Internal representation of injections
s = Sequence[2, 3, 5, 7, 11]
# Sequence(UBYTE):
# [ 2, 3, 5, 7, 11 ]
v = Variable.new INDEX(s. s ize)
# Variable(INDEX(INT(5)))  
vl = Variable.new INT
# Variable(INT)
v2 = Variable.new INT
# Variable(INT)
block = proc { |a ,b | a * b } .c a l l  v l ,  v2
# *(Variable(INT), Variable(INT))
in ject = Inject.new s . element(v), v, INT(l), block, v l ,  v2
# INT(231®)
Sequence[2, 3, 5, 7, 1 1 ] . in je c t (1) { |a ,b | a .to_ in t * b }
# 231®

verted to an object by passing it “V ariab le” objects as parameters (line 10). The end of 

the listing shows how the operation might be invoked in practise (line 14).

The image processing operations “min”, “max”, and “range” can be implemented us

ing fo ld l  (see Listing 3.33). Injection can be implemented recursively. The injection
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Listing 3.33: Various cumulative operations based on injections
m = MultiArray[[2, 3, 5], [7, 11, 13]]
# MultiArray(UBYTE,2):
# [ t 2, 3, 5 ] ,
# [ 7, 11, 13 ] ]
m.min
# 2 
m.max
# 13
m.range
# 2..13

is applied to each dimension separately. For example Figure 3.14 shows the recursive 

computation of the sum of an array. Other associative operations such as computing the

S " \  

1 4 [7}
2 5 8

(3' 6 9V J

12
+ +> 15

V J r  \

Sfi
45

Figure 3.14: Recursive implementation of injection (here: sum)

maximum, minimum, or the product can be computed in the same recursive manner as 

well.

Using Ruby closures and “Variable” objects it is possible to develop a concise nota

tion for sums. For example ID and 2D sums as shown in Equation 3.23.

2

“> := Y j mi‘

Jl '  3 (3.23)

v := L  E  m  e  Z 3*2
7=1 i=l

The corresponding Ruby code to compute u and v is shown in Listing 3.34. Note that

Listing 3.34: Concise notation for sums of elements
m = MultiArray[[2, 3, 5], [7, 11, 13]]
# MultiArray(UBYTE,2):
# [ [ 2, 3, 5 ] ,
# [ 7, 11, 13 ] ] 
u = sum { | i  | m[i] }
# Sequence(UBYTE):
# [ 9, 14, 18 ]
v = sum { | i , j |  m [i, j] }
# 41
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Listing 3.35: Tensor operations in Ruby (equivalent to Listing 2.6)
a = MultiArray. dfloat 3, 3 
b = MultiArray.dfloat 3, 3
r = eager { I i ,k| sum { | j |  a [ i , j ]  * b [j,k ] } }

it is not even necessary to specify the ranges for the index variable because they can be 

inferred from the element access.

3.5.8 Tensor Operations

The “la z y ” method and the “sum” operator (see Chapter 3.5.1 and Chapter 3.5.7) in com

bination with unary and binary element-wise operations (see Chapter 3.5.4 and Chap

ter 3.5.5) are sufficiently generic to implement tensor operations. Listing 2.6 shows a 

tensor operation implemented using the FTensor C++ library. The equivalent Ruby im

plementation is shown in Listing 3.35. The “eager” performs the operation lazily the 

same way as the “la z y ” method does. However it forces the result to be computed and 

stored in a new array.

3.5.9 Argmax and Argmin

The definitions of the operations argmax and argmin are given in Equation 3.24 and Equa

tion 3.25

argmin ( / ( f ) )  := ( f  |Vx' : / ( f )  <  f { x ' ) \  (3.24)
j?

argmax ( / ( f ) )  := ( f  |V j?  : / ( f )  >  f(x ')}  (3.25)
J?

where f  is any coordinate in the ^-dimensional input array / .  The operations return the 

argument for which the function attains the maximum or the minimum value. Listing 3.36 

shows three operations:

1. ID argmax for locating the maximum of each row (line 10)

2. Instruction for extracting the maxmimum of each row (line 10)

3. 2D argmax for locating the maximum (line 13)

The listing demonstrates how to construct a warp for extracting the maximum of each row 

of the input array. Note that the argument operation returns an array (or several arrays) if 

the input array has more dimensions than the argument.

The argument functions are implemented recursively using warps as illustrated in Fig

ure 3.15. First the argument maximum of each row is located. The locations are used as 

coordinates for a warp to select the maximum of each row. Using the warped array, the
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Listing 3.36: Argument maximum
m = MultiArray[[1, 2, 3], [4, 5, 9], [7, 8, 3], [7, 6, 4]]
# MultiArray(UBYTE,2):
# [ [ 1. 2, 3 ] ,
# [ 4, 5, 9 ] ,
# [ 7, 8, 3 ] ,
# [ 7, 6, 4 ] ]
argmax { | i |  m .unroll[i] }
# [Sequence(INT):
# [ 2 , 2 , 1 , ® ]]
m.warp argmax { | i |  m .unroll[i] } . f i r s t ,  lazy(4) { | i |  i  }
# Sequence(UBYTE):
# [ 3, 9, 8, 7 ] 
argmax { I i , j I m [i,j]  }
# [2 , 1]

 ̂ 2 0TTO ■=> [ 2V  A  V.-----

c   V"--------

|=> [3 9 817
V  A  

Figure 3.15: Recursive implementation of argument maximum

1
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column of the maximum can be determined. The column in turn is used to determine 

the row of the maximum by selecting the appropriate element from the array of argument 

maxima determined earlier.

3.5.10 Convolution

Convolution filters are commonly used to define image features. Equation 3.26 gives the 

definition of a ID convolution (discrete case).

ci := ^  ak b0+k-i, where o = (3.26)

In the continuous case a convolution integral as shown in Equation 3.27 is used.

(a <8> b)(x) := J 'a (x )  b(z -  x) dz (3.27)

Once can perform a ID convolution by first computing a product table and then com 

puting diagonal sums of it as shown in Figure 3.16. Furthermore one can see the compu-

C\ a\ • Z?2 +  a 2 ’

C2 — CL\ ’ b\ +  0-2 ’ Z?2 dr CLt, • £>3

C3 — Cl2 ' b \  CIt, ’ Z?2 T  ^ 4  ' ^3

C4  — CI3  ’ b \  +  CI4  * Z?2 T  ^ 5  * b 3

Z?3 C5 =  • b \  +  • Z?2  +  ^ 6  * ^3

Figure 3.16: Diagonal injection

tation of diagonal sums as a special case of diagonal injection. Listing 3.37 shows how 

this is done in Ruby. The internal representation of diagonal injections is similar to the 

one of ordinary injections (see Chapter 3.5.7). Variables are used to convert the closure 

(declared in line 7) to an object (line 27). The diagonal injection is constructed in line 

29. The array index of the result is bound using a lambda expression (line 33). In practise 

diagonal injections and convolutions are implemented as methods. The end of the listing 

shows how they can be invoked (lines 36 and 39).

Two-dimensional convolutions can be calculated using the same concept. In this case 

a four-dimensional product table and two sequential diagonal injections are used. See
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Listing 3.37: One-dimensional convolutions in Ruby
a = Sequence[G, 1, 0, 0, 0, 2, 0, 0]
# Sequence(UBYTE):
# [ 0, 1, 0, 0, G, 2, G, G ] 
b = Sequence[1, 2, 3]
# Sequence(UBYTE):
# [ 1, 2, 3 ]
product = a .table(b) { |x ,y |  x * y }
# MultiArray(UBYTE,2):
# [ C 0, G, G ] ,
# [ 1, 2, 3 ] .
# [ G, 0, G ] ,
# [ 0, o , G ],
# t 0, 0, G ] ,
# [ 2, 4, 6 ] .
# [ 0, 0, G 3 ,
# C 0, o , G ] ]
i = Variables.new Hornetseye:: INDEX (n il)
# Variable(INDEXONT(nil)))
j = Variable.new Hornetseye::INDEX(nil)
# Variable(INDEX(INT(nil)))
k = Variable.new Hornetseye::INDEX(nil)
# Variable(INDEX(INT(nil)))
v l = Variable.new product. typecode
# Variable(UBYTE)
v2 = Variable.new product. typecode
# Variable(UBYTE)
block = proc { |x ,y |  x + y  } .c a l l  v l ,  v2
# +(Variable(UBYTE).Variable(UBYTE))
term = Diagonal.new product.element(j).element(k), i ,  j ,  k, n i l ,  block, v l ,  v2
# . . .
i . s i z e  = j . s i z e
# INT(8)
c = Lambda.new i ,  term
# Sequence(UBYTE):
# [ 1, 2, 3, 0, 2, 4, 6, 0 ]
c = lazy { | j , i |  a [ i ]  * b[j] } . diagonal { |x ,y |  x + y }
# Sequence(UBYTE):
# [ 1, 2, 3, 0, 2, 4, 6, G ] 
c = a.convolve b
# Sequence(UBYTE):
# [ 1, 2, 3, 0, 2, 4, 6, G ]

67



1
2
3
4
5
6
7
8
9

10
1 1
12

13
14
15
16
17

Listing 3.38: Two-dimensional convolutions in Ruby
m = MultiArray. i n t (6, 4 ) . f i l l ! ;  m[l, 1] = 1; m[4, 2] = 2 ;  m
# MultiArray(INT,2):
# [ [ ®, ®, ®, 0, ®, ® ] ,
# [ ®, 1, ®, ®, ®, ® ] ,
#  [ ® ,  ®,  ®,  ®,  2 , ® ] ,
# [ ®, ®, ®, ®, «, ® ] ]
f  = MultiArray(INT,2 ) . indgen 3, 3
# MultiArray(INT,2):
# [ [ ®, 1 , 2 ] ,
# [ 3, 4, 5 ] ,
# [ 6, 7, 8 ] ]
m.convolve f
# MultiArray(INT,2):
#  [ [ ®, 1 , 2 , ®, ®, ® ] ,
# [ 3, 4, 5, ®, 2, 4 ] ,
# [ 6, 7, 8, 6, 8, 1® ] ,
# [ ®, ®, ®, 12, 14, 16 ] ]

Listing 3.38 for a demonstration of 2D convolutions. An array “m” (line 1) and a filter 

“f ” (line 7) are declared. The array is convolved with the filter in line 12.

Figure 3.17 shows a moving average filter applied to an image. This filter operation

i i i m i e a s i B s m m i

M i l
V I I I

input image moving average

Figure 3.17: Applying a moving average filter to an image

can be implemented using convolutions as shown in Listing 3.39 (gamma 1.0 was as

sumed). The 2D moving average filter is a separable filter, i.e. it can be separated into 

two consecutive ID convolutions, which is computationally more efficient.

3.5.11 Integral

An integral image (or a summed area table) is an array with the sum of all elements with 

indices lower or equal to the current set of indices. For example Equation 3.28 shows the
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Listing 3.39: Moving average filter implemented using convolutions
n = 15
ma_x = lazy(n, 1) { 1 } 
ma_y = lazyCl, n) { 1 >
(MultiArray. load_ubytergb(ARGV[Q]) . to_usintrgb. 
convolve(ma_x).convolve(ma_y) /  n ** 2 ) . save_ubytergb ARGV[1]

definition of a ID integral array and Equation 3.29 the definition of a 2D integral array.

i

bi = Y , at (3'28)
k=0 

j  i

bi,, = (3-29)
/ = 0  k=0

Integral images can be used to quickly compute the sum of elements in a rectangular 

region of the input data. If the sum of elements for many rectangles is required it can

be computationally more efficient to make use of an integral image (e.g. as in the real

time face detection algorithm by Viola and Jones (2001)). In practise integral arrays are

computed iteratively. The 1D case is shown in Equation 3.30.

bo = cio
(3.30)

bi = bi-i + a j

The ID algorithm can be used recursively to compute multi-dimensional integral arrays. 

The 2D case is shown in Equation 3.31.

i

bo,i = ^  ao,k

*=0 . (3.31)

b j , i  — b j —i j  +  a j k  

k= 0

Figure 3.18 gives an example of recursion for computing a 2D integral image. First each 

row is integrated and then integration is performed on each column of the resulting array.

Note that lazy computation of integral images is inefficient since the computation of 

an element can depend on the values of all other elements in the worst case. Therefore 

integral images are always computed eagerly and the result is stored in memory.

Listing 3.40 uses an integral image to apply a moving average filter to an image (as

suming gamma 1.0). Note that the image boundaries are omitted here for simplicity so 

that the output image is smaller than the input image (see Figure 3 .19).
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Figure 3.18: Recursive implementation of integral image

integral image moving average

Figure 3.19: Computing a moving average filter using an integral image

Listing 3.40: Moving average filter implemented using an integral image
img = MultiArray. load_ubytergb ARGV[S] 
w, h = *img.shape; n = 9 
int = img.to_intrgb.integral 
a = int [n . . .  w, n . . .  h]
b = int[G . . .  w - n, n . . .  h]
c = int[n . . .  w, Q . . .  h - n]
d = int[® . . .  w - n ,  0 . . .  h - n ]
((a - b - c + d ) / n * *  2 ) . save_ubytergb ARGV[1]
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Listing 3.41: Conditional selection as element-wise operation
class  Node 

def sgn
(self<Q ). conditional -1, ( s e l f> 8 ) . conditional(1,0) 

end 
end
Sequence[ - 3 , - 2 , - 1 ,0 , 1 ,2 , 3 ] .sgn

Listing 3.42: Injection with a conditional
Sequence[false, true, true, f a l s e ] . inject(Q) { |a ,b | a + b .conditional(1, ®) }
# 2

3.5.12 Masking/Unmasking

Piecewise functions such as the signum function shown in Equation 3.32 can be imple

mented using the element-wise conditional function as shown in Listing 3.41.

sgn(x) :=
1 x  > 0

0 x — 0 (3.32)

-1  otherwise

The conditional function simply is a ternary element-wise operation.

However it is not possible to combine a conditional operation with an injection in an 

efficient manner, e.g. when computing the number of elements for which a condition is 

true (see Equation 3.33).

^  1 where M c Z  (3.33)
xeM

When using the conditional function as shown in Listing 3.42, the number of additions 

will be 4. An efficient implementation would only require 1 or 2 additions.

Listing 3.43 shows an implementation using a masking operation to perform an injec

tion on a subset of an array. A constant array is masked (line 2) and the sum of elements 

is computed (line 5). This implementation only needs 1 addition. Masking is especially 

useful when doing complex operations on a small subset of an array.

Listing 3.44 shows an example using a masking and an unmasking operation. A mask 

to select elements greater than zero is created (line 4). Then the operation 6 divided by

Listing 3.43: Injection on a subset of an array
1 S = Sequence[false,, true, true,
2 m = la z y (s .s iz e )  { 1 }.mask s
3 # Sequence(UBYTE):
4 # [ 1, 1 ]
5 m. inject { |a ,b | a + b }
6 # 2
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Listing 3.44: Element-wise operation on a subset of an array
s = Sequence[Q, 1, 2, S]
# Sequence(UBYTE):
# [ ®, 1. 2, 3 ] 
m = s > 0
# Sequence(BOOL):
# [ fa lse ,  true, true, true ] 
(6 /  s.mask(m)).unmask m
# Sequence(UBYTE):
# C «, 6, 3, 2 ]

MultiArray[[®, Q], [2, 1], [1, 1] ] . histogram 3
# Sequence(UINT):
# [ 2, 3, 1 ]
MultiArray[[®, ®], [2, 1], [1, 1 ] ] .histogram 3, 3
# MultiArray(UINT,2):
# [ C 1, 0, ® ] ,
# [ 0, 1, 1 ] ,
# [ ®, ®, ® ] ]

x is performed on the masked array and the result is “unmasked” (line 7). That is, the 

implementation performs an element-wise operation on a subset of an array.

Note that the design of the Intel Larrabee architecture for parallel processing also 

includes masking and unmasking operations. They are called “vcompress” and “vex- 

pand” (Abrash, 2009).

3.5.13 Histograms

A histogram is a record of the number of pixels in an image or a region that fall into partic

ular quantization buckets in some colour space (horsyth and Ponce, 2003). Equation 3.34 

shows the definition of the histogram of a.

In a similar way as with integral images, the computational complexity of computing a 

single element is the same as the complexity of computing all elements of a histogram. 

Therefore histograms are computed eagerly as well.

Listing 3.45 shows a Ruby program which first computes a ID histogram (with three 

elements) of the values of a 2D 2 x 3  array (line 1). Listing 3.45 furthermore demonstrates 

that the 2D array given as input can be interpreted as a ID array of 2D vectors resulting 

in a 2D (3 x 3) histogram (line 4).

Listing Listing 3.46 shows computation of a colour (here RGB) histogram. The 

expression “re fe re n c e  »  2” (left-shift by two) divides the red (/?), green (G), and blue

Listing 3.45: Two-dimensional histogram

h(y) = <H{a}(y) = ^  j 1 a(x) = y 

0 otherwise
where a : W  -> !N0n2, h : JN0”2 -> IN0 (3.34)
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Listing 3.46: Histogram segmentation 
reference = MultiArray. loacLubytergb ’neon.png’
h is t  = (reference »  2 ) .histogram(64, 64, 6 4 ) .convolve lazy(5, 5, 5) { 1 }
img = MultiArray. loacLubytergb ’neontetra.jpg’
seg = (img »  2 ) . l u t ( h i s t ) . convolve lazy(9, 9) { 1 }
(img * seg).normalise.save_ubytergb ’f i s h .jp g ’

(B) values by 4 resulting in 64 quantisation steps for each channel (line 2). The 64x64x64  

reference histogram is convolved with a 3D moving average to reduce noise (line 2). The 

reference histogram then is used as a LUT with another image (line 4). Finally a moving 

average filter is applied to the result (line 4). Some example data is given in Figure 3.20. 

The input image is a picture of a tropical aquarium with Neon Tetra fish. The histogram of

Input image

Reference
image Output image

Figure 3.20: Histogram segmentation example

the reference image is used as a LUT. The result is used to create an output image which 

highlights the areas which have similar colours as found in the reference image. Although 

the floor of the aquarium is not fully discarded, the algorithm is able to highlight most of 

the fish visible in the image.

The histograms of the red, green, and blue colour channels of the reference image 

are shown in Figure 3.21, i.e. three ID histogram. The histogram segmentation exam

ple however uses a 3D histogram which is more difficult to visualise. See Figure 3.22 

for a visualisation of the 3D histogram using a visual representation inspired by Barthel 

(2006) (the visualisation was created using the POV-Ray ray tracer (POVRay, 2005)). 

Note that in practise it is often preferable to use a colour space which is independent of 

the luminosity {e.g. hue, saturation, and value (HSV)).

3.6 JIT Compiler

In order to achieve real-time performance, each array operation is converted to a C method 

on-the-fly. The C method is compiled to a Ruby extension {i.e. a shared object (SO) file 

or a DLL). This library is loaded dynamically and the method is registered with the Ruby 

VM. Then the method is called with the appropriate parameters (also see Chapter 2.3.13).
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Figure 3.21: Histograms of the red, green, and blue colour channel of the reference image

Figure 3.22: 3D histogram
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Listing 3.47: Lazy negation of integer
a = INT 5
# INT(5)
b = Elementwise(proc { |x| -x }, :-@).new a
# Continued in Listing 3.48 . . .

Listing 3.48: Stripping values from an expression
# . . .  continuing from Listing 3.47 
r = Pointer(INT).new
term = Store.new r, b
variables, values, skeleton = term.strip
# [ [Variable(*(INT)), Variable(INT)], [*(INT)(Malloc(4)), INT(5)],
# Store(Variable(*(INT)), -@(Variable(INT)))] 
types = var iab les .co l lec t  { |var| var.meta }
# [*(INT), INT]
# Continued in Listing 3.49 . . .

The following sections explain how the C code is generated.

3.6.1 Stripping Terms

Listing 3.47 shows a simple negation of an integer value. A lazy negation is instantiated 

explicitly to avoid immediate evaluation in Ruby. The equivalent in formal notation is 

shown in Equation 3.35.

a = - 5 ,  b = - a  (3.35)

In practise it is necessary to compute the values of every expression at some point 

and store the value(s) in memory. In this case it can be done by introducing the opera

tion storez which has a side-effect on the memory location pointed to by r as shown in 

Equation 3.36.

storez(r, - a )  (3.36)

3.6.2 Compilation and Caching

In order to generate the corresponding C code, the expression of Listing 3.47 is stripped 

as shown in Listing 3.48 in line 4. The stripping operations results in variables, the 

corresponding values, and a skeleton of the expression. To avoid repeated compilation of 

the same expression, a unique descriptor of the expression will be used as a method names. 

Listing 3.49 shows how the method name is computed. The hash table “ la b e ls ” with 

labels for the variables is created (line 2) in order to distinguish expressions where only 

the order of variables is different. This hash table is used to generate a unique descriptor 

for the stripped expression (line 4). Since method names in C cannot contain special 

characters, a translation table is used to replace special characters with alphanumerical 

ones (lines 6-7).
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Listing 3.49: Generating a unique descriptor
# . . .  continuing from Listing 3.48
labels = Hash[*variables. zip((8  . . .  variables . s i z e ) . to_a). fla tten]
# {Variable(*(INT))=>®, Variable(INT)=>l} 
descriptor = skeleton.descriptor labels
# "Store(VariableQC*(INT)),-@(Variablel(INT)))" 
method_name = ( ’_ ’ + d escrip tor). t r ( ’ ( ) ,+\-*/%.@?~&|"<=>’ ,

’8123\456789ABCDEFGH’)
# "_Store8Variable8858INT112498Variablel8INTlll"
# Continued in Listing 3.58 . . .

Listing 3.50: Using special objects to generate C code
# . . .  continuing from Listing 3.49 
c = GCCContext.new ’extension’
f  = GCCFunction.new c, method_name, *types 
subst = Hash[*variables. zip(f.params). f la tten]
# {Variable(*(INT))=>*(INT)(param8), Variable(INT)=>INT(paraml)} 
skeleton .subst(subst). demand
f.compile
# Continued in Listing 3.52 . . .

The variables of the stripped expression are substituted with parameter objects (i.e. 

“paramO”, “param l”, . . . )  as shown in line 28 of Listing 3.50. This expression is re

evaluated (by calling “#demand”) in order to generate C code (line 28). In this example 

the code for a function to compute - a  is generated. This is achieved using operator 

overloading. That is, re-evaluating generates code instead of performing the actual com 

putation. Listing 3.51 shows the C method generated by above example. In addition 

code for registering the method and for converting the arguments is generated. The code 

is not shown here. See Listing 2.22 for a complete listing of a Ruby extension.

The compiled code becomes a class method of the class “GCCCache”. Listing 3.52 

shows how the method is called. The arguments are extracted from the values (line 32). 

The C method is called and it writes the result to the specified memory location (line 

34). Note that the code is sufficiently generic to handle cases where the result of the 

computation is a composite number or an array.

Listing 3.51: The resulting C code to Listing 3.50
VALUE _Store8Variable8858INT11249QVariablel8INTlll(unsigned char *param8,

int paraml)
{

in t v81; 
in t vQ2; 
v81 = paraml; 
v82 = - (v 8 1 );
*(int *)(param8 + 8) = v82;

}
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Listing 3.52: Calling the compiled method
31 # . . .  continuing from Listing 3.50
32 args = values. co l lec t  { |arg| arg.values } . f la tten
33 # [Malloc(4), 5]
34 GCCCache. send method_name, *args
35 r
36 # INT(-5)

3.7 Unit Testing

The implementations of the various array operations presented in this chapter and the JIT 

compiler are tested using unit testing (also see Section 2.3.14.)

Scalar operations can be seen as units which can be tested individually. Listing 3.53 

shows a few tests for operations on boxed integers (introduced in Section 3.3.2).

Listing 3.53: Some unit tests for integers
require ’t e s t /u n i t ’ 
require ’multiarray’ 
c la ss  TC_Int < Test: :Unit: :TestCase 

I = Hornetseye: : INT 
def I(*args)

Hornetseye: : INT *args 
end
def test_int_inspect

assert_equal ’INT’ , I .inspect  
end
def test_typecode

assert_equal I, I.new.typecode 
end
def test_shape

assert_equal [ ] ,  I.new.shape 
end
def test_inspect

assert_equal ’INT(42)’ , 1 (4 2 ) . inspect 
end
def test_plus

assert_equal 1(3 + 5), 1(3) + 1(5) 
end 

end
# Loaded su ite  irb
# Started
# .........
# Finished in 0.001675 seconds.
#
# 5 te s t s ,  5 assertions, 0 fa ilures ,  0 errors

Array operations are tested in a similar fashion. Listing 3.54 shows a few tests for ar

ray operations. Technically speaking these are functional tests, since the array operations 

are not tested separately from the scalar operations.
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Listing 3.54: Tests for array operations
require ’t e s t /u n i t ’
require ’multiarray’
class  TC_Int < Test::Unit: :TestCase

0 = Hornetseye::OBJECT
1 = Hornetseye::INT
C = Hornetseye: : INTRGB 
M = Hornetseye::MultiArray 
def S(*args)

Hornetseye: : Sequence *args 
end
def M(*args)

Hornetseye: :MultiArray *args 
end
def test_multiarray_inspect

assert_equal ’MultiArray(OBJECT, 2 ) ’ , M(0,2 ) . inspect 
assert_equal ’MultiArray(OBJECT, 2 ) ’ , S (S (0 )) . inspect 

end
def test_int_inspect

assert_equal ’INT’ , I .inspect  
end
def test_typecode

assert_equal 0, M(0, 2).new(3, 2).typecode 
assert_equal I, M(I, 2).new(3, 2).typecode 
assert_equal C, M(C, 2).new(3, 2).typecode 

end
def test_shape

assert_equal [3, 2], M(0, 2).new(3, 2 ) . shape 
end
def test_inspect

assert_equal "MultiArray(OBJECT, 2 ) : \n [[ :a ,  2, 3 ] , \n  [4, 5,
M[[:a, 2, 3], [4, 5, 6 ] ] . inspect

end
def test_plus

assert_equal M[[2, 3, 5], [3, 5, 7 ]] ,
M[[1, 2, 4], [2, 4, 6]] + 1

assert_equal M[[2, 3, 5], [3, 5, 7 ]] ,
1 + M[[1, 2, 4], [2, 4, 6]]

assert_equal M[[-l, 2, 3], [4, 5, 6 ]] ,
M[[-3, 2, 1], [8, 6, 4]] +
M[[2, 0, 2], [-4, -1, 2]]

end
def te s t_d ila te

assert_equal [[1, 1, 0], [1, 1, 0], [0, 0, 0 ]] ,
M[[1, 0, 0], [0, 0, 0], [0, 0, - 1 ] ] .d i la te .to _

end
end
# Loaded suite  irb
# Started
# ...............
# Finished in 2.230944 seconds.
# 7 t e s t s ,  12 assertions, 0 fa ilu res ,  0 errors
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3.8 Summary

In this chapter a Ruby library for implementing machine vision algorithms was developed. 

A set of native basic types was introduced. It was shown that multi-dimensional, uniform 

arrays can be represented as lazy pointer operations. That is, multi-dimensional arrays 

are just a special case of functions. Finally a generic set of operations on these data types 

was introduced. In some cases it was shown, how this array operations relate to image 

processing.



Seldon: “I  have said, and I say again, that Trantor will lie 
in ruins within the next three centuries.”
A dvocate: “You do not consider your statement a disloyal 
one?”
Seldon: “No, sir. Scientific truth is beyond loyalty and 
disloyalty.”
A dvocate: “You are sure that your statement represents 
scientific truth?”
Seldon: “I  am.”
A dvocate: “On what basis?”
Seldon: “On the basis o f  the mathematics o f  psychohis
tory.”
A dvocate: “Can you prove that this mathematics is
valid?”
Seldon: “Only to another mathematician.”

Isaac Asimov - The Foundation Trilogy
Input/Output

Apart from the array operations introduced in Chapter 3, implementation of machine 

vision systems requires input and output of images. Figure 4.1 gives an overview of the 

I/O integration implemented in context of this thesis. There are image sources (cameras 

and files) and image sinks (displays and files). Furthermore there are other popular free 

software libraries which were integrated in order to take advantage of the functionality 

offered by them (Fourier transforms) or in order to facilitate projects requiring integration 

of other competing projects (OpenCV, NArray).

Colourspace
decom pression

|  Load Image

A V4L/V4L2 Camera

vA IIDC/DCAM Camera

Play Video

f fAPlayer |
---V Play Video

Load HDR image

© DirectShow Camera

Colourspace
compression

-ALMjte&M Save Image

4 L

NArray
Integration

FF7W
Fourier 

Transforms

ocu
Ruby-OpenCV

Integration

MPIaycr 1 
---& Record Video

X Xorg Display

OpenGL Display

X XVideo Display

[ g f Qt4-XVideo

© GDI Display

Ruby-GNUPIot

Figure 4.1: Input/output integration

This chapter introduces various I/O libraries and how they interoperate with the array 

operations introduced in the previous section.
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•  Section 4.1 explains different colour spaces commonly used by I/O devices

• Section 4.2 presents the interface to the RMagick library for loading and saving 

LDR images

•  Section 4.3 shows the integration of the OpenEXR library for loading and saving 

HDR images

•  Section 4.4 covers the different issues one encounters with encoding and decoding 

video files

•  Section 4.5 points out how Ruby closures can be used to provide a powerful and 

concise API for accessing cameras

•  Section 4.6 shows how Ruby closures can be used to implement a concise API for 

displaying videos

•  The integration of an RGB and depth (RGBD) sensor is presented in Section 4.7

• Section 4.8 is about the integration with the Qt4-QtRuby library for developing 

GUIs

•  Section 4.9 gives a summary of this chapter

4.1 Colour Spaces

4.1.1 sRGB

There are different representations of images (see Table 4.1). In practise images are dis

crete, finite, quantised, grey scale or colour functions. The image is acquired by a captur

ing device with a limited number of photosensitive cells. On the other hand for purposes 

of theoretical signal processing it can be beneficial to represent images as continuous, 

infinite, high dynamic range, colour functions. For example when dealing with convolu

tions (see Section 3.5.10) using a finite domain would require a formal treatment of the 

image boundaries.

There is no upper limit for g(x) which expresses the fact that there is no upper limit 

for luminosity (see Reinhard et a l ,  2006 for a detailed introduction to high dynamic range 

imaging). In practise however, most capture and display devices have a limited and quan

tised codomain (typically it is { 0 ,1 , . . . ,  255} or {0, 1 , . . . ,  255}3).

Humans have trichromatic vision. There are different colour spaces for representing 

trichromatic images. Usually the standard RGB colour space (sRGB) is used with pri

maries defined in terms of the CIE 1391 primaries (Smith and Guild, 1931). These are 

not as generally believed the sensitivity curves of the human photosensitive cones, which 

have maxima at 445 nm, 535 nm, and 570 nm (Droscher, 1975) (furthermore the photo
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Table 4.1: Different types of images

discrete, finite, quantised, grey scale g:!{0,1 ,... ,w -  l}x{0 ,1, 1} —> (0 ,1 ,.. .,  255}
function
discrete, finite, high dynamic range, g : {0, l , . . . , w -  1} x { 0 , -  1} -» R
grey scale function
discrete, infinite, high dynamic g : Z 2 -> R
range, grey scale function
continuous, infinite, high dynamic g : H2 —» R
range, grey scale function

discrete, finite, quantised, colour c : (0 ,1 ,.. .,  w - 1 }x{0,1 ,.. . ,  h - 1} -> {0 ,1 ,..., 255}3
function
discrete, finite, high dynamic range, c: (0 ,1 ,...,  w -  1} x { 0 , 1 — 1} -> R 3
colour function
discrete, infinite, high dynamic c : Z 2 -> R 3
range, colour function
continuous, infinite, high dynamic e : R 2 -> R 3
range, colour function

receptors for black-and-white vision at night have their sensitivity maximum at 507 nm). 

However as long as the sensitivity curves of the three colour channels of the camera are 

more or less accurate linear combinations of the sensitivity curves of the human visual 

cortex, it is possible to accurately reproduce the visual impression perceived by the hu

man visual cortex.

It is worth mentioning that the relation between the radiant intensity (or luminosity) 

and the luma value is non-linear. The sRGB standard closely models the behaviour of 

a cathode ray tube (CRT) monitor with gamma of 2.2 while avoiding a slope of zero at 

the origin for practical reasons. Given sRGB values in [0,1] the corresponding linear 

intensity values can be obtained using Equation 4.1 (where C is one of R, G, or B ) (Stokes 

et al., 1996).

, _ f e  CsRGB < 0.04045
linear ~ \ /r  .nnss\2.4  ̂ -U

(  l oss ) . C sRGB > 0.04045
Ci

Although for performance reasons it is omitted in the work presented here, strictly speak

ing one has to take the sRGB definition into account when processing images. For ex

ample many web browsers (and even image processing programs) implicitly assume a 

gamma of 1.0 when scaling images which can lead to significant errors (Brasseur, 2007).

4.1.2 Y C bC r

Many cameras make use of compressed colour spaces. The YCbCr (or YU V) colour space 

separates luma- and colour-information as shown in Equation 4.2 (R , G, and B represent
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the red, green, and blue channel of an image) (Wilson, 200 ).

Cb =

<Cr> V

0.299 0.587 0.114

-0.168736 -0 .331264 0.500

0.500 -0.418688 -0.081312

\ ' R ' ' 0 '

G + 128

/ A ,128,

(4.2)

The YCbCr colour space actually is the digital version (with values in { 0 ,1 , . . . ,  255}) 

of the YPbPr colour space (see Equation 4.3).

'KrR + (l - K r -  Kb)G  + Kb B
' Y ' 1 B - Y R ,G ,B  e [0,1]

Pb = I

1 <N , where Y e  [0,1 ]

A , 1 R - Y Pbi Pr £ [—0.5, 0.5]

i

1 (N

(4.3)

The values Kr and Kb are the estimated sensitivities of the human photo receptors for 

black-and-white vision to the colours red and blue. Here {i.e. in Equation 4.2) the def

initions Kr -  0.299 and Kb = 0.114 of the Joint Photographic Experts Group (JPEG) 

standard (Hamilton, 1992) are used (e.g. see Figure 4.2).

i m i i i B S i i B s u i m i i m i i i e a i i & a i i i m i
l u i i i H u i R a i i i u n m i i  ■ m H m n n  ■■■■

S i n i i i i
■ ■ ■ I  M U :  I
S u nw in  H i l l  
n m  h i  \iwmi _
F 1 M I B H  1

■ I I I
■ Immm

■H I
III

■III
i n

m i
m immm

m i  n n  ■ in
n mu n n

m m m m m m  m m m *iiilll ■nnu

: HnHHannnnnnnnnnnni mmmmmm ..mm n m  i
■ i H H f i & s n s n u H H i u  i i H i i n n n a s n B a i i i H i n

Figure 4.2: Colour image and corresponding grey scale image according to sensitivities 
of the human eye

Figure 4.3 gives a visual explanation of colour space compression. While the luma (T) 

channel is provided in high resolution, the chroma channels chroma blue (Cb) and chroma 

red (C,) are sampled with a lower resolution. Note that the chroma channels cannot be 

visualised separately. In fact chroma values can represent negative colour offsets.

Y, Cb, and C, are also known as Y, U, and V. In practise there are various ways of 

ordering, sub sampling, and aligning the channels Wilson (2007). Popular pixel formats 

are

•  YV12: The format comprises an n x m  Y plane followed by f x  ?  chroma red (V) 

and chroma blue (U) planes (see Figure 4.4). The lines of each plane are 8-byte 

memory-aligned.
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C hannel Resolution

Y luma high
Cb chroma blue low
Cr chroma red low

Figure 4.3: Colour space conversions (Wilson, 2007)

• 1420: Same as YV12 but the V  plane follows the U plane.

• YUY2: This is a packed pixel format. The V and U component are down sam

pled only in one direction. The component packing order is Y0, C/0, Y\, Vo (see 

Figure 4.5). The lines are 8-byte memory aligned.

• UYVY: Same as UYVY but with different component packing order (see Fig

ure 4.6).

Yo, o Yifi Y/i-2.0 Yn-1.0 Vo.o Yn/2-1,0 U0,o Un/2-1,0Yiu Yl.l Y„-2,1 Y„-U

Yo,m-2 Vlm-2 Yn-2,m-2 Yn-l,m-2 Vbjn/2-1 Vn/2-1,m/2-1 Uo,m/2-l Un/2-1,m/2-1Y0,m-l Yl,m-1 Yn-2,m-\ Yn-\,m-\

Figure 4.4: YV12 colour space (Wilson, 2007)

In order to control colour space conversions in Ruby, compressed frame data is ex

posed in Ruby using parametrised classes as shown in Listing 4.1. The actual conver

sions are performed using the FFmpeg rescaling library (libswscale). One can see that a 

conversion round trip from unsigned byte RGB to Y V 12 and back affects the values. Fig-

Yo, o 67),o n,o V0,o Y2,0 U i,o Yxo Vi ,0
Yo,i U0,i Yi,i Vo,i Yi ,i Cl,i F3,i v u

Figure 4.5: YUY2 colour space (Wilson, 2007)
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Uo,o Fo,o Fo.o >k0 u  1,0 >2,0 v 1>0 >3,0
U0,i >0,1 Vo,i > u tfi.i >2,1 Vi.i >"3,1

Figure 4.6: UYVY colour space (Wilson, 2007)

Listing 4.1: Handling compressed colour spaces
img = MultiArray. loacLubytergb ’t e s t . j p g ’
# MultiArray(UBYTERGB,2):

[ [ RGB(35,38,45), RGB(45,48,55),
[ RGB(46,49,56),  RGB(55,58,65),  
[ RGB(46,51,57), RGB(57,6®,67),  
[ RGB(46,51,57),  RGB(58,61,68),  
[ RGB(47,5Q,59), RGB(58,61,7®),

#
#
#
#
#
# ___
frame = img.to_yvl2
# Frame(YV12,32®,240)(®x®42caf2a) 
frame. to_ubytergb
# MultiArray(UBYTERGB,2):

[ [ RGB(33,38,45), RGB(42,47,54),
[ RGB(44,48,55),  RGB(53,58,65),  
[ RGB(45,49,54),  RGB(54,59,63),  
[ RGB(45,49,54),  RGB(55,6®,65),  
[ RGB(45,49,56),  RGB(55,6®,67),

RGB(46 
RGB(56 
RGB(57 
RGB(58 
RGB(59

,5®,59) 
,59,68) 
,6®,67) 
,61,68) 
,62,69)

RGB(45 
RGB(54 
RGB(54 
RGB(55 
RGB(56

,49,59) 
,59,68) 
,59,66) 
,6®,67) 
,61,68)

RGB(46,5®,59) 
RGB(57,6®,67) 
RGB(58,61,68) 
RGB(58,61,68) 
RGB(59,62,69)

RGB(45,49,59)  
RGB(54,59,68)  
RGB(55,6®,67) 
RGB(55,6®,67) 
RGB(56,61,68)

ure 4.7 shows how Y V 12 colour space compression leads to compression artefacts when 

the edges do not align favourably with the lower resolution of the U and V channels.

original RGB data converted to YV12 and back

Figure 4.7: Artefacts caused by colour space compression

4.2 Image Files

The RM agick1 Ruby-extension allows one to use the powerful ImageM agick/M agick++: 

library in Ruby for loading and saving images. The ImageMagick library supports a large

!http://rmagick.rubyforge.org/
2http://www.imagemagick.org/Magick++/
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number of file formats. Frequently used file formats are

•  Bitmap Image File (BMP) format

•  Graphics Interchange Format (GIF)

•  Portable Network Graphics (PNG) format

•  portable pixmap (PPM) format (with variations portable gray map (PGM) and portable 

bitmap (PBM))

•  Joint Photographic Experts Group (JPEG) format

•  Tagged Image File Format (TIFF)

• Digital Imaging and Communications in Medicine (DICOM)

In general one needs a format for lossy compression (e.g. JPEG) and a format for lossless 

compression (e.g. PNG) when using 8-bit grey scale or 24-bit colour images (e.g. see Fig

ure 4.8). Listing 4.2 shows how the functionality of the RMagick Ruby-extension was in-

Figure 4.8: Low resolution colour image using lossless PNG and (extremely) lossy JPEG 
compression

tegrated. The method “MultiArray. loacLubytergb” uses the RMagick library to load an 

image and convert it to unsigned byte (8 bit) RGB data. The resulting “Malloc” object (see 

Chapter 3.2) is used to construct a uniform array of RGB values. The “#save_ubytergb” 

method provides saving unsigned byte RGB data.

Medical image processing software frequently uses the DICOM format for storing 16- 

bit radiology images and in material science TIFF is a common format for exchanging 16- 

bit electron images. Figure 4.9 shows examples of images in medical science and material 

science. Here they are shown using 8-bit quantisation only since most computer displays 

do not support more than 28 grey levels. To support saving and loading of grey scale 

and colour images of different depth the methods shown in Table 4.2 were implemented 

(using the RMagick library).
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Listing 4.2
img = MultiArray. loacLubytergb
# MultiArray(UBYTERGB, 2):
# [ [ RGB(18,14,13),  RGB(21,15,
# [ RGB(34,2®,14)

[ RGB(33,24,18)
[ RGB(29, 21,16)
[ RGB(17,11,13)
[ RGB(19,12 ,15)
[ RGB(2Q,13,15)
[ RGB(17,12,14)
[ RGB (2 3,13 ,16)
[ RGB(35,25 ,27)

: Loading and saving images 
’ lo s s le s s .p n g’

#
#
#
#
#
#
#
#
# ___
img. save_ubytergb ’lo s s y . jp g ’
# ___

RGB(36,18, 
RGB(37,23, 
RGB(41,27, 
RGB(37,16, 
RGB(48,15, 
RGB(35,15,  
RGB(46,17,  
RGB(64,24,  
RGB (6®, 4(9,

15)
14) 
18) 
18)
17)
18)
15) 
19) 
21) 
35)

RGB(24 
RGB(78 
RGB(69 
RGB(58 
RGB(59 
RGB(57 
RGB(44 
RGB(63 
RGB(71 
RGB(68

,17,14)
,51,34)
,44,23)
,29,18)
,24,18)
,22,19)
,19,17)
,19,2®)
,31,23)
,45,35)

RGB(27 
RGB(88 
RGB(71 
RGB (52 
RGB(43 
RGB(13 
RGB(17 
RGB(7® 
RGB(79 
RGB(83

,19,14),
,63,43),
,48,3®),
,38,19),
,22,17),
, 11 , 12) ,
, 12 , 12) ,
, 2 2 , 22 ) ,
,36,26),
,66,54),

MR scan of knee (source: Sebastien Barre’s TEM image of tungsten tip (courtesy of 
DICOM collection) Sheffield University Nanorobotics Research

Group)

Figure 4.9: Examples of images in medical science and material science

Table 4.2: Methods for loading and saving images

(integer) type loading saving

8 bit monochrome 
16 bit monochrome 
32 bit monochrome

“MultiArray.load ubyte” 
“MultiArray.load u s in t” 
“MultiArray.load u in t”

“Node#save ubyte” 
“Node#save_usint” 
“Node#savemint”

8 bit RGB 
16 bit RGB  
32 bit RGB

“MultiArray. load ubytergb” 
“MultiArray.load usintrgb” 
“MultiArray. load uintrgb”

“Node#save_ubytergb” 
“Node#save us in trgb” 
“Node#save_uintrgb”
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In some cases it might be desirable to let the file format determine the image type 

(bit depth, grey-scale/colour) and vice versa instead of forcing it. For this case methods 

named “MultiArray. load jnagick” and “Node#save jnagick” were implemented which 

make use of dynamic typing available in the Ruby language. In fact this two methods are 

the basis for the other methods for loading and saving images.

Note that dynamic typing has a compelling advantage in the case of loading images. 

C/C++ libraries such as OpenCV and ImageMagick cannot make use of the (static) type 

system of the programming language to handle image types because in general it is not 

desirable having to specify the image type before loading the image.

4.3 HDR Image Files

Theoretically there is no upper limit for the radiant intensity. Therefore in many situation 

the linear quantisation (low dynamic range) does not allow for an optimal trade-off be

tween quantisation noise and measurement range. The human eye uses photo receptors 

with different sensitivities and a non-linear response to address this problem.

It is possible to acquire HDR images using LDR devices with the help of exposure 

bracketing. That is, a series of pictures with different exposures is acquired and fused 

using an algorithm. HDR images are usually represented using arrays of floating point 

numbers. A popular format for HDR images is the OpenEXR" format by Industrial Light 

& Magic (Kainz and Bogard, 2009). The format uses 16 bit (half precision) floating point 

numbers.

Tone mapping is the digital analogy to the traditional technique of dodging and burn

ing. Tone mapping maps a HDR image to an LDR image by locally adapting the lum i

nosity of the image. Figure 4.10 illustrates the complete process of HDR imaging using a 

consumer camera. First a set of images with different exposures is acquired. If the cam 

era has shifted, the images need to be aligned using feature matching (here the panorama 

stitching software Hugin4 was used). The images are fused to an HDR image. For display 

on a low dynamic range device, the image is tone mapped (here the tone mapping soft

ware QtPfsGuL was used). There are different algorithms for tone mapping. Figure 4.10 

shows a result obtained using the algorithm by Fattal et al. (2002).

To support saving and loading of grey scale and colour images and convert them to 

floating point arrays of different depth the methods shown in Table 4.3 were implemented 

(using the OpenEXR library). Listing 4.3 shows how the methods might be used in prac

tise.

Similar as in Chapter 4.2 the methods “MultiArray.load openexr” as well as the 

method “Node#save _openexr” let the file format determine the image type.

3http://www.openexr.com/
4see http://hugin.sourceforge.net/
5see http://qtpfsgui.sourceforge.net/
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Exposure bracketing Alignment (Hugin)

HDR compilation and tone 
mapping (QtPfsGui)

Figure 4.10: Bracketing, alignment, and tone mapping

Table 4.3: Methods for loading and saving images

(floating point) type loading saving

32 bit monochr. “MultiArray. load s f l o a t ” “Node#save_sfloat”
64 bit monochr. “MultiArray.load d f lo a t” “Node#save_dfloat”

32 bit RGB “MultiArray. load s f loa trgb” “Node#save_sfloatrgb”
64 bit RGB “MultiArray. load dfloatrgb” “Node#save_dfloatrgb”

Listing 4.3: Converting an HDR image to an LDR image (no tone mapping)
img = MultiArray. load_dfloatrgb ’hdr.exr’
# . . .
(img * 1000).round /  IQS®
# MultiArray(DFLOATRGB,2):
# [ [ RGB(Q.249,0.283,®.363), RGB(Q.294,®.324,®.422)............... ] ,
# [ RGB(®.293,®.329,®.412), RGB(®.339,®.376,®.478) ............... ] ,
# [ RGB(®.289,®.337,®.429), RGB(®.345,®.389,®.486), ____ ] ,
# [ RGB(®.298,®.336,®.437), RGB(®.357,®.393,®. 5®6), ____ ] ,
# [ RGB(®.3®7,®.331,6.435),  RGB(®.372,®.39 ,6 .513) ..............] ,
# [ RGB(6.317,6.338,6.478),  RGB(6.369,®.397,6.529)...............] ,
# [ RGB(6.324,®.34,6.514),  RGB(®.362,Q.4 , ®.548) ..............] ,
# [ RGB(®.318,6.338,®.458), RGB(0.359,6 .394,6.537) ...............] ,
# [ RGB(6.321,6.339,6.473),  RGB(6.353,0.403,0.554),  ____ ] ,
# [ RGB(0.309,6 .35,6.45) ,  RGB(0.363,6 .412,6.528) .............. ] ,
# ___
peak = img.max
# RGB(71.2764849243164,56.86362947998047,81.38863372802734) 
factor = 255 /  [peak.r, peak.g, peak.b].max
# 3.133115624622988
(img * fac tor ) . save_ubytergb ’ldr.png’
# . . .
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4.4 Video Files

File formats generally use algorithms such as Huffmann coding for lossless compression. 

Image file formats furthermore exploit spatial similarity. For example the JPEG format 

uses a block-wise discrete cosine transform followed by application of a custom quan

tisation matrix. Most video codecs additionally exploit temporal similarity by replacing 

full frames with motion vector fields and motion-compensated difference pictures. The 

occasional full frame is included to reduce the computational cost of randomly accessing 

a frame in the video.

For reading and writing video files the FFmpeg0 library was integrated. Many video 

formats consist of a container format which usually offers a video stream and potentially 

an audio stream. Many container formats support several video and audio codecs. The 

video and audio codec determine the format of the video and audio stream. Popular file 

formats and codecs are

• popular container formats

-  Audio Video Interleave (AVI)

-  Advanced Systems Format (ASF)

-  Flash Video (FLV)

-  Apple Quicktime Movie (MOV)

-  MPEG standard version 4 (MPEG-4)

-  Xiph.Org container format (Ogg)

•  popular video codecs

-  On2 Truemotion VP6 codec (VP6)

-  MPEG-4 AVC standard (H.264)

-  Windows Media Video (WMV)

-  Xiph.Org video codec (Theora)

• popular audio codecs

-  Advanced Audio Coding (AAC)

-  MPEG Audio Layer 3 (MP3)

-  Xiph.Org audio codec (Vorbis)

-  Windows Media Audio (WMA)

6http://www.ffmpeg.org/
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Listing 4.4: Reading a video file
1 input = AVInput.new ’test .avi"
2 input. frame_rate
3 #  (15/1)
4 input.sample_rate
5 # 44100
6 input.pos = 60
7 input.read_video
8 # Frame(YV12,320,240)(0x04abdce6)
9 input.read_audio

10 # MultiArray(SINT,2):
11 # [ [ 0, © ] ,
12 # [ 0, 0 ] ,
13 #  [  0 ,  0 ] ,
14 #  [  0 ,  0 ] ,
15 # [ 0, 0 ] ,
16 #  ____
17 input.video_pos
18 # (184/3)
19 input.audio_pos
20 # (122671/2000)

Figure 4.11 shows the coarse architecture of the FFmpeg decoder. The demuxer of the 

container format decodes the file and generates audio and video packets. The video de

coder accepts video packets and decodes video frames. The audio decoder accepts audio 

packets and returns audio frames. The video frames are usually given as YV12 data (see 

Chapter 4.1.2). Typically the video is given with a frame rate of 25 frames/second. Note 

that video data might have a pixel aspect ratio other than 1 : 1 and it can be interlaced. 

The audio frames are given as 16-bit signed integer arrays (for stereo audio the values 

come in pairs of two). A common sampling rate is 44.1 kHz. The audio and video frames

file

demuxer

v id eo  packets

audio packets

video decoder / M

vid eo  fram es

audio decoder ■y\r~ v/v>
v/X/' *s\A

audio fram es

Figure 4.11: Decoding videos using FFmpeg

are tagged with a presentation time stamp. The time stamps are required to synchronize 

the audio and video frames properly. Another reason for the existence of time stamps are 

video formats with support for variable frame rate.

Listing 4.4 demonstrates the behaviour of the class “AVInput” which was developed 

to make the FFmpeg decoder accessible in Ruby. A video file is opened (line 1) and
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the decoding of the first 60 seconds is skipped (line 6). A video frame (320 x 240 YV12 

data) and an audio frame (1152 16-bit stereo samples) are decoded (lines 7 and 9). At 

the end the time stamps of the previously decoded frames are retrieved (lines 17 and 19). 

One can see that the time stamps of audio and video frames do not necessarily coincide 

(If* = 61.3, '-%$-=61.3355).

The FFmpeg library also supports video and audio encoding. One can see in Fig

ure 4.12 that the encoder’s data flow is symmetric to the decoder’s data flow. Instead of 

video and audio decoders there are video and audio encoders. The demuxer is replaced 

with a muxer.

The class “AVOutput” was implemented to expose the encoding functionality of the 

FFmpeg library in Ruby. Listing 4.5 shows a small program creating an MPEG-4 file 

with a static picture (loaded in line 5) as video and a 400 Hz sine wave (created in lines 

13-15) as audio. The interface is minimalistic and does not give access to the various

/ M

video frames

y v
>/\A

audio frames

video encoder

audio encoder

□ □ □ ; ;  
video packets

audio packets

muxer

file

Figure 4.12: Encoding videos using FFmpeg

parameters of the encoding algorithms. When encoding a video file one has to merely 

specify the following basic properties (see lines 23-25 of Listing 4.5)

•  video bit rate: the approximate number of bits per second for encoding the video 

stream

•  width: the width of each video frame

• height: the height of each video frame

• frame rate: the number of video frames per second

• pixel aspect ratio: the ratio of pixel width to pixel height

• video codec: the video codec to use

• audio bit rate: the approximate number of bits per second for encoding the audio 

stream

•  audio sampling rate: the number of audio samples per second
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Listing 4.5: Writing a video file
VIDEO_BITRATE = 5®®_®9®; AUDIO.BITRATE = 3®_®QQ
DURATION = 3; RATE = 44_1®®
FPS = 25; CHANNELS = 2
ASPECT = 1. quo 1; LEN = 11®
img = MultiArray. loacLubytergb ’tes t .png’
# MultiArray(UBYTERGB,2):
# [ [ RGB(77,77,77), RGB(77,77,77),  RGB(77,77,77), RGB(77,77 ,77 ) ...............] ,
# [ RGB(77,77,77), RGB(77,77,77),  RGB(77,77,77),  RGB(77,77,77),  ____ ] ,
# [ RGB(77,77,77),  RGB(77,77,77),  RGB(77,77,77),  RGB(77,77 ,77) ............... ] ,
# [ RGB(255,255,255), RGB(255,255,255), RGB(255,255,255)..............] ,
# [ RGB(77,77,77), RGB(77,77,77),  RGB(77,77,77),  RGB(77,77 ,77 ) ...............] ,
# ___
wave = lazy(CHANNELS, LEN) do | j , i |

Math.sin(i * 2 * Math::PI /  LEN) * ®x7FFF 
end.to_sint
# MultiArray(SINT,2):
# [ [ ®. ® ] .
#  [ 187®, 187® ] ,
# [ 3735, 3735 ] ,
# [ 5587, 5587 ] ,
# [ 7421, 7421 ] ,
# ___
output = AVOutput.new ’t e s t . mp4’ , VIDEO_BITRATE, img.width, img.height,

FPS, ASPECT, AVOutput: :CODEC_ID_MPEG4, true , 
AUDIO_BITRATE, RATE, CHANNELS, AVOutput: :CODEC_ID_MP3 

(RATE * DURATION /  LEN).times do 
output.write_audio wave 

end
(FPS * DURATION). times do 

output.write_video img 
end
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•  audio channels: the number of audio channels (e.g. two for stereo audio)

• audio codec: the audio codec to use

Note that the program shown in Listing 4.5 encodes all the audio frames (lines 26-28) 

before starting to encode the video frames (lines 29-31). When creating large files this is 

not good practise because the muxer needs to interleave video and audio packets. That is, 

the muxer would be forced to allocate a lot of memory for queueing the audio frames.

4.5 Camera Input

Camera input is a prime example for the benefit of closures. Initialising a camera (e.g. 

Logitech Quickcam Pro 9000 shown in Figure 4.13) requires the calling program to 

choose a video mode (i.e. width, height, and colour space). However the supported

Figure 4.13: Logitech Quickcam Pro 9000 (a USB webcam)

video modes can only be requested after opening the camera device. For this reasons 

most APIs either allow the calling program to handle a camera device which is not fully 

initialised yet, or the calling program has to specify a preferred video mode which might 

not be supported by the camera.

Using closures however it is possible to involve the calling program during initialisa

tion in an elegant way as demonstrated in Listing 4.6. The constructor “V4L2In p u t .new” 

opens the specified device (here “ ’/dev /v ideo® ’”). The supported video modes are re

quested, compiled to a list, and passed to the closure as a parameter. In this example the 

closure prints the list to the terminal and the user is prompted to select one.

Listing 4.7 gives a more minimalistic example. Here it is assumed that the camera 

supports the specified video mode (800 x 600, YUY2 colour space). The closure ignores 

the list of modes and just returns the desired resolution. If the camera does not support 

the desired video mode, the initialisation will fail.
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Listing 4.6: Opening a V4L2 device and negotiating a video mode
camera = V4L2Input.new ’/dev/video®’ do |modes| 

modes. each_with_index { |mode,i| puts "#{i + 1}: #{mode}" } 
modes[STDIN.readline.to_i - 1] 

end
# 1: Frame(YUY2,16®,120)
# 2: Frame(YUY2,176,144)
# 3: Frame(YUY2,32®,24®)
# 4: Frame(YUY2,352 , 288)
# 5: Frame(YUY2,64®,48®)
# 6: Frame(YUY2,8®®,6®®)
# 7: Frame(YUY2,96®,72®)
# 8: Frame(YUY2, 16«®,12®®)
# $ 6
# #<Hornetseye: : V4L2Input:®x993af7c> 
camera.read
# Frame(YUY2,8®®,6®®)(®x®49c3d4®)

Listing 4.7: Opening a V4L2 device and selecting a fixed mode
camera = V4L2Input.new(’/dev/video®’) { Frame(YUY2, 8®Q, 6®®) }
# #<Hornetseye: :V4L2Input:8x8ca9ee8> 
camera.read
# Frame(YUY2,8®®,6®®)(®x®46283d4)

4.6 Image Display

When developing computer vision algorithms it is important to be able to visually inspect 

processed or annotated images on the desktop. Figure 4.14 shows the structure of a stan

dard X Window desktop. The X library allows a program to access multiple displays and 

open multiple windows on each of them. The window manager software draws the title 

bar and the window boundary. The program is only responsible for drawing the content 

of each window. When the program is idle it can query the X Server to get notified when 

an event occurs (e.g. a window close button was pressed, a key was pressed, or an area of 

a window needs repainting).

Functionality for displaying a single image was exposed in Ruby using the “#show” 

method as demonstrated in Listing 4.8. The method opens a window showing the image 

and it returns control to the calling program when the window is closed (or [Esc] or 

[Space] was pressed).

Apart from displaying single images it is also important to be able to display videos. 

The OpenCV computer vision library offers functionality for displaying videos as shown 

in Listing 4.9. The program reads frames from a video file, converts them to grey scale,

Listing 4.8: Loading and displaying an image 
MultiArray. loacLubytergb( ’t e s t .png’) . show
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W i n d o w  1

D i s p l a y

Visual 2

Figure 4.14: Display, windows, and visuals on a standard X Window desktop

Listing 4.9: Displaying a video using Python and OpenCV
import sys
from opencv import cv
from opencv import highgui
highgui. cvNamedWindow(’tes t  video’)
capture = highgui.cvCreateFileCaptureCtest .avi’)
while 1:

frame = highgui. cvQueryFrame(capture)
gray = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1) 
cv.cvCvtColor(frame, gray, cv.CV_BGR2GRAY) 
highgui.cvShowImage(’te s t  video’ , gray) 
i f  highgui. cvWaitKey(5) > ®: 

break

and then displays them in a window.

Listing 4.10 shows an equivalent program implemented using Ruby and the Hornets

eye Ruby extension presented in this thesis. For comparison with Listing 4.9 the complete 

code with loading of libraries and name space handling is given. The Ruby programming 

language has mature support for closures (see Chapter 2.3.8). This makes it possible to 

implement a method such as “X llD isplay.show ” which accepts a closure returning suc

cessive video frames for display. Only the custom part of the display loop needs to be 

specified by the calling program. Thus the calling program is much more concise and the 

overall redundancy is less.

Listing 4.11 is another example emphasizing the importance of closures. It shows a 

minimalistic video player (no sound, assuming pixel aspect ratio of 1 : 1, no handling of 

variable frame rate). Without closures the code for synchronising video display with the
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Listing 4.10: Displaying a video using Ruby and Hornetseye
require ’rubygems’
require ’hornetseye_ffmpeg’
require ’hornetseye_xorg’
include Hornetseye
video = AVInput.new ’t e s t . a v i ’
XllDisplay.show(:tit le  => ’t e s t  video’) do 

video. read. to_ubyte 
end

Listing 4.11: Minimalistic video player 
video = AVInput.new ’t e s t . a v i ’
XllDisplay. show(:frame_rate => video. frame_rate) { video.read }

clock would have to be part of the calling program. The program shown in Listing 4.11 

does not do any signal processing. However it provides the video I/O necessary to imple

ment a machine vision algorithm with visualisation. That is, the code of the minimalistic 

video player represents a lower bound for the most concise implementation of a machine 

vision algorithm. Therefore it is worthwhile to minimise its size.

When visualising real-time machine vision algorithms, the time for displaying the re

sults can exceed the time of the algorithms involved. In order to address this problem 

one can use 2D hardware acceleration. Most graphic cards provide hardware accelerated 

display (the XVideo extension of the X Window System) for a single visual. The accel

eration typically requires the image to be compressed as YV12 data. Listing 4.12 shows 

how Ruby optional parameters are used to expose that functionality in Ruby. Note that 

adding sound I/O to this program results in a video player which compares with profes

sional video player software in terms of performance (see Appendix A.7.2).

4.7 RGBD Sensor

RGBD sensors provide a depth channel in addition to the RGB channels. A recent exam

ple is the Primesense sensor (which is part of the Microsoft Kinect device). The sensor 

uses an Infrared (IR) laser to project a pattern. The IR camera takes a picture of the pattern 

and the device uses correlation techniques to estimate the disparity and the depth (Freed

man et al., 2010). A separate RGB camera is used to acquire optical images. Figure 4.15 

shows a depth image and optical image acquired with the device. The image pair was 

acquired using the program shown in Listing 4.13. The Ruby bindings are based on

Listing 4.12: Hardware accelerated video output
video = AVInput.new ’t e s t . a v i ’
XllDisplay.show(:frame_rate => video. frame_rate,

:output => XVideoOutput) { video.read }
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Figure 4.15: RGB- and depth-image acquired with an RGBD sensor

Listing 4.13: Ruby example for accessing a Kinect sensor
class Numeric 

def clip(range)
[ [ s e l f ,  range.begin].max, range. end].min 

end 
end
colours = Sequence.ubytergb 256 
for i  in 0 . . .  256

hue = 24® - i  * 24®.® /  256.® 
colours[i]  =

RGB( ( (hue - 18®).abs - 6®).clip(® .. .6®) * ®xFF /  6®.®,
(12® - (hue - 12®).abs). clip(® .. .6®) * ®xFF /  6®.®,
(12® - (hue - 24®).abs).cl ip(® .. .6®) * ®xFF /  6®.®)

end
input = Kinectlnput.new
img = MultiArray.ubytergb 128®, 48®
XllDisplay.show do

img[ ® . . .  64®, ® . . .  48®] = input. read_video
img[64® . . .  128®, ® . . .  48®] = (input.read_depth »  2 ) . c l i p . l u t  colours
img 

end
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the libfreenect library7. The 11-bit depth image is shifted right by 2 bits. The resulting 

9-bit depth image is clipped to 8-bit values and converted to a pseudo colour image. Note 

that the depth image and the RGB image are not aligned properly. That is, it is necessary 

to calibrate the sensor and rectify the data if depth- and RGB-images are to be used in 

conjunction. Another problem is that the depth- and RGB-images are always taken at 

different times.

4.8 GUI Integration

When developing a GUI to parametrise and run computer vision algorithms it usually 

requires video display as part of the interface. For the work presented in this thesis the Qt4 

library (Gurtovoy and Abrahams, 2009) was used. The Qt4 library has become the tool of 

choice for developing cross-platform GUIs (Blanchette and Summerfield, 2008). Qt4 is 

a C++ library. However Richard D ale’s qt4-qtruby8 extension facilitates development of 

GUIs in Ruby using the work flow shown in Figure 4.16. For displaying videos in a Qt4

Qt Designer

form.ui

y
form.rb main.qrc

------------ 1n l nnn|

icon3.png
rbrccrbuic4

q rcm ain .rb

ui form.rb

main.rb

Figure 4.16: Work flow for creating Qt4 user interfaces

GUI, a widget for 2D hardware accelerated display (XVideo) was developed. The widget 

makes it possible to display videos with high frame rate as part of a GUI. Figure 4.17 

shows a minimalistic video player window consisting of a XVideo widget and a slider.

7h t t p ://openkinect.org/
8http://rubyforge.org/projects/korundum/
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XVideo v  ̂ x

0

Figure 4.17: XVideo widget embedded in a GUI

4.9 Summary

In this chapter it was shown how various I/O facilities can be integrated into the Ruby 

language in order to acquire and output or store images. In order to get per-pixel access 

to the data, it is necessary to understand and manage colour space transformations. It 

was pointed out that most devices and file formats provide a limited quantisation range. 

However there are specific file formats (and even devices) for handling HDR data.

Ruby closures where used to implement an API which supports negotiation of a cam 

era resolution when opening a camera. Ruby closures also proved to be useful for defining 

a concise API for displaying videos. Furthermore the power of Ruby as a glue language 

comes into play when integrating the different APIs for the GUI, the video I/O, and image 

processing.



Machine Vision

“An older and by now well-accepted idea is that o f  the 
stored-program computer. In such a computer the pro
gram and the data reside in the same memory; that is, the 
program is itse lf data which can be manipulated as any 
other data by the processor. It is this idea which allows 
the implementation o f  such powerful and incestuous soft
ware as program editors, compilers, interpreters, linking 
loaders, debugging system s, etc.
One o f  the great failings o f  m ost high-level languages is 
that they have abandoned this idea. It is extrem ely dif
ficult, for example, for a PL/I (PASCAL, FORTRAN,
COBOL ...) program to manipulate PL/I (PASCAL,
FORTRAN, C O B O L ...) programs.”

Guy Steele and Gerald Sussman (1979)

“I want computers to be m y servants, not m y masters.
Thus, I ’d like to give them orders quickly. A  good servant 
should do a lot o f  work with a short order.”

Yukihiro M atsumoto

This chapter shows how the I/O integration and the array operations introduced in previ

ous chapters facilitate concise implementation of machine vision algorithms.

• Section 5.1 shows how various preprocessing algorithms can be implemented using 

the array operations introduced previously in this thesis

• Section 5.2 illustrates that the array operations are sufficiently generic to create 

concise implementations of various corner and edge detectors

• Section 5.3 shows how feature locations and descriptors can be developed using 

basic array operations such as masks and warps

• Section 5.4 gives a summary of this chapter

5.1 Preprocessing

This section will demonstrate how the array operations presented in previous sections can 

be used to implement basic image processing operations.

5.1.1 Normalisation and Clipping

In general displaying an image with an LDR display can lead to numerical overflow as 

shown in Figure 5.1. This is because graphic cards typically accept 8-bit integers for 

each colour channel. In general it is therefore necessary to either normalise or clip the 

values before displaying them. The definitions for normalisation and clipping of grey
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normalised image original image clipped image

Figure 5.1: Normalisation and clipping of RGB values

scale images are given in Equation 5.1 and Equation 5.2.

Af{g}(f) := (g(f) -  nrin(g(iO)j

I 0 g(x) < 0

C{g}(jt) := |  255 g(f) > 255

I g(x) otherwise

255 - 0

naxv? (g(v)) -  min? (g(v))
(5.1)

(5.2)

The operations can be extended to colour images analogously.

5.1.2 Morphology

5.1.2.1 Erosion and Dilation

General erosion and dilation in grey scale morphology can be defined according to Har- 

alick et al (1987). The definition of grey scale erosion and dilation are shown in Equa

tion 5.3 and Equation 5.4.

( /  © &)(x) := min^ { f ( x -  z) -  k(z)} where /  : F  —» E  and k : K  —» E  (5.3)

( /  ® k){x) := max { f ( x -  z) + &(2)) where /  : F  —> E  and k : K  —» E  (5.4)
ZeK , X -Z eF

Here only the special case of a flat, block-shaped structuring element is considered (see 

Equation 5.5).

The dilation of a ID array can be performed by creating a sum table followed by 

a diagonal injection taking the maximum as shown in Listing 5.1. M ulti-dimensional 

erosion and dilation can be implemented using the same principle (see Figure 5.2 for 

dilation and erosion with a 3 x 3 structuring element applied to a 2D image). Note that 

the implementation of grey scale morphology is almost identical to the implementation of 

convolutions which was shown in Section 3.5.10. Instead of a product table, a sum table 

is used (line 7 of Listing 5 .1). Instead of using the diagonal injection to compute the sum,

3eAT, Z - z e F

R
0

(5.5)
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Listing 5.1: Implementing dilation using diagonal injection
£ = Sequence[®, Q, 1, Q, ®, ®, 1, 1, Q]
# Sequence(UBYTE):
# [ ®, ®, 1 , ®, ®, ®, 1 , 1 , ® ]  
k = Sequence[®, Q, Q]
# Sequence(UBYTE):
# [ ®, ®, ® ]
sum = f . table(k)  { |x ,y |  x + y }
# MultiArray(UBYTE,2):
# [ [ ®, ® ] .
# [ ®, ® 3.
# [ 1, 1, 1 ] ,
# c ®, ® ] ,
# [ ®, ®, ® ] ,
# [ ®, ®, ® ] ,
# [ 1, 1, 1 ] ,
# [ 1, 1, 1 ] .
# [ ®, ®, ® ] 3
sum.diagonal { |x ,y |  x.major y }
# Sequence(UBYTE):
# [ ®, 1, 1, 1, ®, 1, 1, 1, 1 ]

Morphlr  1 oi | >l 11 M orph
input image eroded image dilated image

Figure 5.2: Grey scale erosion and dilation
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Listing 5.2: Implementing a structuring element using convolution and a lookup table
img = MultiArray. load_ubyte(’morph.png’) >= Qx8Q
# MultiArray(BOOL,2):
# [ [ fa lse ,  fa lse ,  fa lse ,  fa lse ,  fa l se ,  fa lse ,  fa lse ,  fa l se ,  . . .  ] ,
# [ fa lse ,  fa lse ,  fa lse ,  fa lse ,  fa lse ,  fa lse ,  fa lse ,  fa l se ,  . . .  ] ,
# ___
f i l t e r  = lazy(3, 3) { | i , j |  1 «  ( i  + j * 3) } . to_usint
# MultiArray(USINT,2):
# C [ 1, 2, 4 ] ,
# [ 8, 16, 32 ] ,
# [ 64, 128, 256 ] ]
cross = MultiArray[[false, true, fa l s e ] ,

[true, true , t ru e ] ,
[ fa lse ,  true, fa lse]  ]

# MultiArray(BOOL,2):
# [ [ fa lse ,  true, fa lse ] ,
# [ true , true , true ] ,
# [ fa lse ,  true, fa lse ] ]
bit_mask = cross . c o n d i t io n a l ( f i l t e r , 0 ) . inject  { |a,b|  a I b }
# 186
lut = finalise(Qx200) { | i |  ( i  & bit_mask).ne Q >
# Sequence(BOOL):
# [ fa lse ,  fa lse ,  true, true, fa lse ,  fa lse ,  true, true, true, tru e  ]
img.to_ubyte.convolve(f i l ter) . lut ( lut) .show

the maximum is computed (line 18).

5.1.2.2 Binary Morphology

Listing 5.2 shows how one can implement binary dilation with a non-trivial structuring 

element using convolution and a lookup table according to Gerritsen and Verbeek (1984). 

The binary image (line 1) is convolved (line 27) with a filter (line 6) so that the bits of each 

pixel of the result are a copy of the local 3 x 3  region of the binary input image. Since there 

are only 23 3 = 512 possible values, one can use a lookup table (line 20) to implement any 

morphological operation. Figure 5.3 shows the result of Listing 5.2 which implements 

binary dilation with a cross-shaped structuring element (line 11 of Listing 5.2).

MorphlMorph
input image dilated image

Figure 5.3: Binary dilation according to Listing 5.2
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Listing 5.3: Otsu thresholding
class Node

def otsu(hist_s ize = 256) 
his t  = histogram his t_s ize  
idx = lazy(h ist_s ize)  { | i |  i  } 
wl = h i s t . integral  
w2 = wl[wl.s ize - 1] - wl 
s i  = (h is t  * id x ) . integral  
s2 = to_int.sum - s i  
ml = wl > G
ul = ml. conditional s l . t o _ s f lo a t  /  wl, G 
m2 = w2 > G
u2 = m2.conditional s2 .to_sf loat  /  w2, G 
between_variance = (ul - u2) ** 2 * wl * w2 
s e l f  > argmax { | i |  between_variance[i] } . f i r s t  

end 
end
i f  ARGV.size != 2

raise "Syntax: otsu.rb <input imago coutput imago" 
end
img = MultiArray. load_ubyte ARGV[G] 
img. otsu . conditional(255, G). show

5.1.3 Otsu Thresholding

Otsu thresholding refers to O tsu’s algorithm for choosing a threshold for binarising an 

image (Otsu, 1979). A general thresholding operation is shown in Equation 5.6.

b{x) =
0 g(f) < t

1 otherwise
(5.6)

Given a threshold t and an image g the binary image b is obtained by element-wise ap

plication of a thresholding operation. Otsu’s method chooses the threshold so that the 

in-class variance of the binarisation is minimal. This is equivalent to maximising the 

between-class variance (Otsu, 1979). Listing 5.3 shows that, using the argmax operation, 

Otsu thresholding can be implemented in 21 lines of code.

5.1.4 Gamma Correction

As explained in Section 4.1.1 the response of an sRGB display is non-linear. Figure 5.4 

shows two grey scale gradients. The top bar has linear values in memory and the bottom

linear g(x) = Xi

gamma corrected g(x) = x\

Figure 5.4: Gamma correction
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Listing 5.4: Generating a gamma corrected gradient 
f inal ise(256 ,  32) { | i , j |  ( i  /  255.0) ** (1.0 /  2.2) * 255.0 }.show

bar has gamma corrected values (y = 2.2). That is, only the bottom bar displays a linear 

slope of intensities on a standard display.

However gamma correction is merely an element-wise binary operation (see Sec

tion 3.5.5). Listing 5.4 shows how the gamma corrected bar of Figure 5.4 generated 

using the element-wise operation

5.1.5 Convolution Filters

Convolution filters (or linear shift-invariant filters) are based on the convolution which 

was introduced in Section 3.5.10.

5.1.5.1 Gaussian Blur

The Gaussian blur filter is an infinite impulse response (HR) filter. That is, in practise the 

filter can only be approximated. Equation 5.7 gives the definition of the one-dimensional 

(ID ) Gauss curve (I'orsyth and Ponce, 2003).

x2
1 _------

f e w  -  - p=.-  (5.7)
V27r|o-|

The ID Gauss filter (for cr = 1) is shown in Figure 5.5. A boundary for the approximation 

error of the convolution integral (or sum) can be determined using the error function. 

That is, given a maximum error e, the minimum filter size 2 5 can be determined using 

Equation 5.8.

( * )  p x + s  p x - s  p oo

0 < (g <g> (f>a)(x) -  I g(x) (f)M - x ) d z =  I g(x) (f)M - x ) d z +  I g(x) (pa(z -  x) dz
J x - S  J-OO J x + S

(*) Ẑ 00

< 2  G I (j)a{z -  x) dz
Jx+s

(*) using V i 6 E  : 0 < g(x) < G

(5.8)

Note that for 0 < g(x) < G the convolution integral over the range [-5 , + 5 ] will always 

underestimate the value of the HR filter. For example applying the Gaussian filter to 

a constant function g(x) = g0 should have no effect but the approximation will be go •
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erf —— ) which is always below g0. Therefore it is better to apply a scaling factor
v V2|o-r

resulting in the unbiased approximation shown in Equation 5.9.

1 r x+s
(g ® 4>o)(x) «      I g(x) (t)a (z -  x ) dz (5.9)

erf (— —) Jx-s \ V2M/

The error boundaries for the approximation are given in Equation 5.10.

1
G i l -

I \  1 r*x-\-s . S \
—   -) < (g 0 0 £r)(x)     I g{x) (f>Az-x) dz < G 11 -  erf ( — — ) I

. <e
(5.10)

Note that the lower boundary in Equation 5.10 is below -e .  However since lim erf(x) = 1,
■It—>oo

the lower boundary can be approximated by e' < e.

The corresponding discrete filter can be generated using the integral of the Gaussian 

as shown in Equation 5.11.

, I+, / 2 e r f t e j 2 ) - « f t e i £ )
M i ) ' - —7---- r f  0<r(z)dz=   U w l (5J1)

e r f ( v f e )  J i- ' /2 2 e r f ( v ^ )

In practise cr and a desired error boundary e are given. Starting with a filter size 5 = 1/2, 

the filter size s is increased by 1 until the approximation has the desired accuracy. For ex

ample if 5 = 5 /2  would be sufficient, the filter would have 5 elements {i 6 {-2, - 1 ,0 ,  1,2}) 

as shown in Figure 5.5.

Gaussian filters for higher dimensions are essentially separable filters where each 

component is equal to the ID Gaussian filter. See Equation 5.12 for the 2D Gauss fil

ter for example (flinderer, 1993).

\Per •

R 2 -> R
)2

X   - e  2 O-2
2 n o -1

l-T (5.12)

The 2D Gauss filter (for cr = 1) is shown in Figure 5.6. Since the 2D filter is separable, 

the required filter size can be chosen by simply requiring a maximum error of e/2  for 

each component so that the overall error boundary is e. Figure 5.7 shows application of a 

Gaussian filter with cr -  3 and e = 1 /256 applied to a colour image.

5.1.5.2 Gaussian Gradient

The Gauss gradient filter is an HR filter as well. It is commonly used to locate steps 

or edges in a signal. Equation 5.13 shows the Gauss gradient filter which is simply the



1D Gaussian blur filter
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Figure 5.5: 1D Gaussian blur filter

2D Gaussian blur filter
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Figure 5.6: 2D Gaussian blur filter
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original blurred

Figure 5.7: Gaussian blur (cr = 3, e = 1 /256) applied to a colour image

derivative of the Gauss filter shown earlier in Equation 5.7.

x2
X

& (* ) = -  r—  e 2o-2 (5.13)
V27T|crp

Figure 5.8 shows the ID Gauss gradient filter for cr = 1. The minimal filter size for a 

given error bound can be determined in a similar fashion as was shown for the Gauss 

filter in Section 5.1.5.1.

Error boundaries for the Gauss gradient filter are estimated in a similar fashion as for 

the Gauss blur filter. However here absolute integrals are used as shown in Equation 5.14 

since the Gauss gradient filter has negative values.

Jf*x+s  I r*x—s /-*oo

g(x) (p'a(z -  x) dz\ < I |g(x) (f)'a(z -  x)| dz + I |g(x) f c i z  -  x)| dz
X—S I J —oo J x + S

(*)
< 2 G I ^ ( z - x ) \ d z

J x + s

= 2 Gfio-is) < e

(*) using Vx e  R  : 0 < g(x) < G

(5.14)

The corresponding discrete filter can be generated using the Gaussian as shown in 

Equation 5.15.

1 p+i/2 0 , ( / + 1 /2 ) - ^ ( i -  1/2)
0  := r  K (z )d z  = ----------------    (5.15)

L J i - 1/2 ^

A  normalisation constant C is used so that the convolution of a linear function / ( / )  = a i+b

with the Gauss gradient filter will result in the constant function / '( / )  = a. That is, C is
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chosen so that 2_j i<f>o-A0 = F Figure 5.8 shows the result for a filter with 5 elements 

(* = 5/2).

1D Gauss gradient
0.3

dgauss(x)

0.2

- 0.1

- 0.2

-0.3
3 2 1 0 1 2 3

x

Figure 5.8: 1D Gauss gradient filter

The Gauss gradient filter for a higher dimension is the derivative of the corresponding 

Gauss filter. For example the Gauss gradient filter for the 2D case is shown in Equa

tion 5.16.
R 2 ->  R 2

W2 (5.16)

2 ncr4
2 cr2

Note that the derivative has two components as shown in Figure 5.9. Figure 5.10 shows

1th component of Gauss gradient 

dgaussx(x,y)

2nd component of Gauss gradient 

dgaussy(x.y)

0.05 
z 0 
-0.05

2 3

Figure 5.9: 2D Gauss gradient filter

application of a Gauss gradient filter with cr = 3 and e -  1 /256 applied to a colour image. 

Note that the images of the gradient components are normalised. It is not possible to 

display negative values.
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original gradient gradient norm of gradient
(1 st component) (2nd component)

Figure 5.10: Gauss gradient filter (cr = 3, e = 1/256) applied to a colour image

5.1.6 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm to compute the values of the discrete 

Fourier transform (DFT) by using the divide-and-conquer principle. While a naive imple

mentation of the DFT is of complexity 0 (n 2) (with n being the number of samples), FFT 

is of complexity 0(n  log(n)). Flere the FFTW version 3 (FFTW3) library was used. The 

FFTW3 library provides an optimiser which selects a combination of different decompo

sition methods to facilitate the recursion (Frigo and Johnson, 2005). The FFTW3 library 

implements Fourier transforms of multidimensional arrays. It also implements Fourier 

transforms of real data exploiting the fact that the Fourier transform of real data is sym

metric complex data. In contrast many FFT implementations only implement the radix-2 

Cooley-Tukey algorithm (("ooley and Tukey, 1965) which requires the array dimensions 

to be a power of two or or they implement the mixed-radix Cooley-Tukey algorithm with 

a worst case complexity of 0 (n 2) (i.e. for n being a prime number).

Equation 5.17 shows the definition of the ID Fourier transform.

r [ f ) ( c j ) : =  I f ( x ) e - 2*™<lx (5.17)
%J —oo

The power spectrum of a signal can be estimated by computing the Fourier transform of 

the autocorrelated signal (see Equation 5.18).

T * { f } T { f )  (5.18)

In practise the signal always is finite. In order to implement a consistent estimator for the 

spectrum of a signal, it is necessary to apply a window function (e.g. a triangular window 

as shown in lines 2-9  of Listing 5.5) and to use zero padding (lines 10-14 of Listing 5.5) 

in order to avoid cyclical convolution. Figure 5.1 1 shows the optical image of a piece of

Nylon fabric and the steps to obtain a spectral estimate of the signal. Since the pattern is

self-similar, it shows pronounced peaks in the spectral estimate.
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Listing 5.5: Estimating the spectrum of a 2D signal
c la ss  Node 

def window
fin a lis e  do | i , j |  

x = ( ( i  + 0.5 - 0.5 * width ) /  (0.5 * width )) .a b s  
y = (Cj + 0.5 - 0.5 * height) /  (0.5 * h eigh t)).ab s  
w = (1 - Math.sqrt(x ** 2 + y ** 2 ) ) .major 0.0  
s e l f [ i , j ]  * w 

end 
end
def zeropad

retval = MultiArray.new(typecode, 2 * width, 2 * h e ig h t ) . f i l l !  
retva l[0  . . .  width, 0 . . .  height] = s e l f  
retval 

end
def spectrum

f f t  = window.zeropad.fft 
(f f t .c o n j  * f f t ) .r e a l  

end 
end
img = MultiArray.load_ubyte ’te s t .p n g ’
(img. spectrum ** 0 .1 ) .normalise(255 . .  0).show

original windowing

zero padding spectral estimate

Figure 5.11: Spectral image of a piece of fabric
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Listing 5.6: Roberts’ Cross edge-detector
class  Node 

def roberts
r l  = MultiArray(SINT,2 )[ [ -1 ,  ®] , [®, 1]] 
r2 = MultiArray(SINT,2 )[ [  ®, -1 ] ,  [1, ®]] 
convolve(r l) . abs + convolve(r2).abs 

end 
end
img = MultiArray. load_ubyte ’te s t .p n g ’ 
img.roberts.normalise(255 . .  ®). show

5.2 Feature Locations

Many algorithms for object recognition and tracking are feature-based in order to make a 

real-time implementation possible. The input image is reduced to a set of feature locations 

and descriptors. The low-level operations presented in Section 3.5 can be used to create 

concise implementations of feature extraction algorithms.

5.2.1 Edge Detectors

5.2.1.1 Roberts’ Cross Edge-Detector

The Roberts’ Cross edge-detector is based on a pair of 2 x 2 filter kernels (Fisher et al., 

2003). The kernels K\ and %2 are shown in Equation 5.19.

-1  0 ' ' 0 - f
and %2 -

, 0  + 1 +1 0 ,

These kernels are designed to respond maximally to edges running at 45° to the pixel 

grid, one kernel for each of the two perpendicular orientations (Fisher et al., 2003). For 

computational efficiency one can use the Manhattan norm in order to estimate the edge 

strength (see Equation 5.20).

|(g®Ki)(j?)l + l(g® K 2)(j?)l (5.20)

Listing 5.6 shows how one can use open classes in Ruby to extend the “Node” class 

with a method for computing Roberts’ Cross edge strength. Figure 5.12 shows the 

Roberts’ Cross edge-detector applied to an example image.
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Figure 5.12: Example image and corresponding Roberts’ Cross edges

Listing 5.7: Sobel edge-detector
class Node 

def sobel
s i  = MultiArray(SINT,2)[[1 , 8, -1 ] ,  [2, 8, -2 ] ,  [ 1, ®, -1]]
s2 = MultiArray(SINT,2 )[ [1 ,  2, 1], [8, 8, 8], [-1, -2, -1]]
Math.sqrt convolve(si) ** 2 + convolve(s2) * *  2

end 
end
img = MultiArray. load_ubyte ’te s t .p n g ’ 
img.sobel.normalise(255 . .  8 ) . show

5.2.1.2 Sobel Edge-Detector

The Sobel edge-detector uses two 3 x 3  filter kernels (Sobel and Feldman, 1968). The 

kernels S i  and S 2 are shown in Equation 5.21.

r- \ 0 r

and So = —z A

-1 - 2  - r

- 2 0 2 0 0  0

- 1 0 K
T

, 1 2  1 >

(5.21)

One can compute the norm of the resulting gradient vector as shown in Equation 5.22.

(5.22))2(x) + (g (8> 5 2)2(x)

The corresponding Ruby code using open classes is shown in Listing 5.7. Figure 5.13 

shows the Sobel edge-detector applied to an example image.

Note that the Prewitt edge detector is based on a similar set of filters. The Prewitt filter 

kernels P\ and P i  are shown in Equation 5.23.

P\ = T

- 1  0  r

and Po = -
3

- 1  - 1  - r

- 1  0  1 0 0 0 (5.23)

- 1  0  i ; .  1 1 x
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Figure 5.13: Example image and corresponding Sobel edges

Listing 5.8: Non-maxima suppression for edges
THRESHOLD = S.®
SIGMA = 1 . 4
PI = Math::PI
input = V4L2Input.new
w, h = input.width, input.height
XllDisplay. show do

img = input.read_ubyte
x, y = img.gauss_gradient(SIGMA, 0) , img.gauss_gradient(SIGMA, 1) 
norm, angle = Math.hypot(x, y ) , Math.atan2(y, x)
orientation = (((2 - 1 . 0 / 8 )  * PI + angle) * (4 /  P I ) ) . to_ubyte % 4

idx, idy = lazy(w, h) { | i , j |  i  }, lazy(w, h) { | i , j |  j }
dx = orien tation .lu t  Sequence[-1, 0, 1, 1]
dy = orien tation .lu t  Sequence[-1, -1, -1, 0]
edges = norm >= norm.warp(idx + dx, idy + dy).

major(norm.warp(idx - dx, idy - dy)).major(THRESHOLD) 
edges. conditional RGB(255, 0, 0), img 

end

5.2.1.3 Non-Maxima Suppression for Edges

Edge points are usually defined as locations where the gradient magnitude reaches a local 

maximum in the direction of the gradient vector (Canny, 1986). That is, the gradient norm 

of each pixel is only to be compared with neighbouring values perpendicular to the edge.

Non-maxima suppression for edges can be implemented using warps as shown in 

Listing 5.8. The gradient norm of each pixel (line 9) is compared with the gradient norm 

of two neighbouring pixel (line 14-15). The locations of the two neighbouring pixel 

depends on the orientation of the gradient as shown in Table 5.1.

The result of applying the algorithm to an image is shown in Figure 5.14.

5.2.2 Corner Detectors

5.2.2.1 Corner Strength by Yang et al.

Yang et al. (1996) shows a corner detector which uses the local distribution of gradients

115



Table 5.1: Non-maxima suppression for edges depending on the orientation

orientation

locations for comparison

Figure 5.14: Non-maxima suppression for edges

to detect corners. An anisotropic measure is defined which is high if the covariance of 

the gradient vectors in the local area £2 around x  is low. The values of the 2 x 2 structure 

tensor S  are shown in Equation 5.24.

S{g}(x) :=
f fn ( ^ ) 2dx ,dx2 X l l ) ^ ,  dx2

J b & & d x ' dx2 f f Q ( ^ f d x >dx2 .

(5.24)

The elements of the structure tensor are used to define an anisotropic measure (for a 

continuous, infinite image g) as shown in Equation 5.25.

Y r n i M f .  ( f L ( B 2 - ( ^ d4 H f L ^ ) ( ^ d4
YBFU{g}(x) : =      -r  (5.25)

( <r2 + / f i ( ^ )  + ( |^ )  d*i<W)

This heuristic function emphasises regions which have large gradient vectors as well as 

high anisotropy.

Listing 5.9 show the corresponding Ruby code. The Gaussian gradient is used to 

estimate the local gradient of the image (lines 6 and 7). Instead of a local area a 

Gaussian blur is used to perform a weighted sum in order to compute the local structure 

tensor S  (lines 8-10). Figure 5.15 shows a result obtained with this technique.

5.2.2.2 Shi-Tomasi Corner Detector

Shi and Tomasi (1994) introduced a corner-detector based on the eigenvalues of the struc-
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Listing 5.9: Yang et al. corner detector
GRAD_SIGMA = 2 . 0  
COV_SIGMA = 1 . 0  
NOISE = 1 . 0  
EXP = 0.5
img = MultiArray. load_ubyte ’te s t .p n g ’ 
x = img.gauss_gradient GRAD_SIGMA, 0 
y = img. gauss_gradient GRAD_SIGMA, 1 
a = (x ** 2 ) . gauss_blur C0V_SIGMA 
b = (y ** 2 ) . gauss_blur COV.SIGMA 
c = (x * y ).gauss_blur C0V_SIGMA
g = ((a - b) ** 2 + (2 * c) ** 2) /  (a + b + NOISE ** 2) ** 2 
result = g.normalise(1.0 . .  0.0) ** EXP * (x ** 2 + y ** 2) 
result.normalise(OxFF . .  0).show

Figure 5.15: Corner detection by Yang et al.
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Listing 5.10: Shi-Tomasi corner detector
GRAD.SIGMA = 1 
C0V_SIGMA = 1
img = MultiArray. loacLubyte ’te s t .p n g ’ 
x = img. gauss_gradient GRAD_SIGMA, 0 
y = img.gauss_gradient GRAD_SIGMA, 1 
a = (x ** 2 ) . gauss_blur C0V_SIGMA 
b = (y ** 2 ) . gauss_blur C0V_SIGMA 
c = (x * y ).gauss_blur C0V_SIGMA 
tr  = a + b 
det = a * b - c * c
# "major" i s  needed to deal with numerical errors, 
dissqrt = Math.sqrt((tr * tr - det * 4 ) .major(Q.Q))
# Take smallest eigenvalue. Eigenvalues are "Q.5 * (tr  +- dissqrt)"  
resu lt = ®.5 * (tr  - dissqrt)
result.normalise(QxFF ..  Q).show

'a , o '
A a  A T A =

' \  o'

>0 a 2i ,0

ture tensor of the gradient vectors in a local region. The heuristic function chosen here is 

simply the smallest eigenvalue of the structure tensor S  (see Equation 5.26).

ST{g}(x) := minC/h,/^) where 3A e R 2x2 : <S{g}(x) = A
[ V  a 2j

(5.26)

This corner-detector was developed with the motivation to find features which are suitable 

for tracking. Tomasi and Kanade ( 1992) demonstrates that the corner-detector indeed is 

suitable to serve as a basis for a stable tracking algorithm. The corner detector also was 

used to estimate stereo disparity (Lucas and Kanade, 1981).

Listing 5.10 shows a implementation of the Shi-Tomasi corner detector in Ruby. The 

result of applying the Shi-Tomasi corner detector to an image is shown in Figure 5.16.

i i  M m m m m

i i i K a m m B a i i i i !  
■ ■ ■ ■ s s s s s a H n a ^ i

Figure 5.16: Shi-Tomasi corner-detector

S.2.2.3 Harris-Stephens Comer- and Edge-Detector

Harris and Stephens, 1988 (also see Derpanis (2004)) have developed a filter which can 

detect comers as well as edges. Similar to the approach by Shi and Tomasi a measure
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based on the covariance of the gradient vectors is used. A heuristic function is chosen 

which has a large positive value where there is a high anisotropy (i.e. a corner). If there 

are large gradient vectors with high covariance the function has a high negative value (i.e. 

an edge). The heuristic measure uses a constant k as shown in Equation 5.27.

HS*{g}(x) := A\A2 ~ k  (dj + A2 )2 where A\ and d2 defined as in Equation 5.26 (5.27)

Figure 5.17 shows how the response function behaves for different values of A\ and 

A2. The implementation of the Harris-Stephens corner and edge detector is given in List-

Corner/Edge Response Function (K=0.2)

0 1 2  3 4
lambda 1

Figure 5.17: Harris-Stephens response function

ing 5.11. Note that the filter was implemented as a method by extending the class “Node”. 

The result of applying the filter (with k = 0.05) to an image is shown in Figure 5.18.

Figure 5.18: Harris-Stephens corner- and edge-detector (negative values (edges) are black 
and positive values (corners) are white)
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Listing 5.11: Harris-Stephens corner and edge detector
c lass  Node

def features(grad_sigma, cov_sigma, k) 
x = gauss_gradient grad_sigma, Q 
y = gauss_gradient grad_sigma, 1 
a = (x ** 2 ) . gauss_blur cov_sigma 
b = (y ** 2 ) . gauss_blur cov_sigma 
c = (x * y ).gauss_blur cov_sigma 
trace = a + b
determinant = a * b - c * c  
determinant - k * trace ** 2 

end 
end
GRAD_SIGMA = 1 
COV_SIGMA = 1 
K = S.Q5
img = MultiArray. load_ubyte ’te s t .p n g ’
img. features(GRAD_SIGMA, COV_SIGMA, K).normalise. show

5.2.2A  Non-Maxima Suppression for Corners

Corner locations are local maxima of the corner image. A local maximum can be de

termined by comparison of the corner image with the grey scale dilation as introduced 

in Section 5.1.2.1. Listing 5.12 shows an implementation of the Harris-Stephens corner- 

and edge-detector followed by non-maxima suppression for corners (i.e. “Node#maxima”). 

The result of applying the algorithm to an image is shown in Figure 5.19.

Figure 5.19: Non-maxima suppression for corners

5.3 Feature Descriptors

5.3.1 Restricting Feature Density

In Section 5.2.2.3 it was shown how to obtain a feature image using the Harris-Stephens 

corner-detector. The individual corners can be extracted using non-maxima suppression 

for corners (as shown in Section 5.2.2.4). Usually a certain threshold is used to ignore
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Listing 5.12: Non-maxima suppression for corners
class Node

def maxima(threshold)
( s e l f  >= threshold * max).and eq(dilate)  

end
def features(sigma, k)

gx, gy = gauss_gradient(sigma, 0), gauss_gradient(sigma, 1) 
cov = [gx * * 2 ,  gy ** 2, gx * gy]
a, b, c = cov .co llec t  { |arr| arr. gauss_blur sigma }
trace = a + b
determinant = a * b - c * * 2  
determinant - k * trace ** 2 

end 
end
THRESHOLD =0 . 0 5  
SIGMA = 1 . 0  
K = 0.1
img = MultiArray. load_ubyte ’te s t .p n g ’ 
features = img.features SIGMA, K 
mask = features.maxima THRESHOLD
mask.dilate( 5 ) .conditional(RGB(255, 0, 0), img).show

weak features. However in order to be able to track motions in every part of the image, 

it is desirable to have a constant feature density. Bouget (also see OpenCV source code) 

computes the distance of each new feature to every already accepted feature. The feature 

is rejected if the minimum distance is below a certain threshold.

Figure 5.20 illustrates a different approach which is based on array operations. A warp

corner features strongest feature for each result
grid square

Figure 5.20: Restricting feature density

is used to transform the feature image into a 3D array of blocks. Afterwards the strongest 

feature in each block can be determined using the “argmax” method as shown below, 

maxima = argmax { | i , j |  lazy { |k| features.warp(*warp)[i, j ,k ]  } }

This enforces an upper limit on the feature density. The complete source code is shown 

in Section A.7.6.
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Listing 5.13: Extracting local texture patches
class  Node

def maxima(threshold)
( s e l f  >= threshold * max).and eq(dilate)  

end
def features(sigma, k)

gx, gy = gauss_gradient(sigma, 0), gauss_gradient(sigma, 1) 
cov = [gx * * 2 ,  gy ** 2, gx * gy]
a, b, c = cov .co llec t  { |arr| arr. gauss_blur sigma }
trace = a + b
determinant = a * b - c * * 2  
determinant - k * trace ** 2 

end
def descriptors(img, r)

x = lazy(*shape) { | i , j |  i  }.mask s e l f
y = lazy(*shape) { | i , j |  j }.mask s e l f
dx = lazy(2 * r + l ,  2 * r + 1) { | i , j |  i - r }
dy = lazy(2 * r + 1, 2 * r + l )  { | i , j |  j - r }
warp_x = lazy { | i , j , k |  x[k] + d x [ i , j ]  } 
warp_y = lazy { | i , j , k |  y[k] + d y [ i , j ]  } 
img.warp warp_x, warp_y 

end 
end
THRESHOLD = 0 . 1 7  
SIGMA = 1 . 0  
K = 0.1 
R = 4
img = MultiArray. load_ubytergb ’te s t .p n g ’ 
features = img. to _ s f lo a t . features SIGMA, K 
mask = features.maxima THRESHOLD 
descriptors = mask.descriptors img, R

5.3.2 Local Texture Patches

Feature matching algorithms usually use descriptors for feature matching. Here the fea

ture descriptors are based on local image patches around each corner feature. The method 

“N ode#descrip to rs” in Listing 5.13 creates a 3D field of 2D warp vectors for extract

ing the descriptors. The components of the vectors are stored in the variables “warp jx ” 

and “warp.y”. By applying the warp to the image one can obtain a stack of local image 

patches (i.e. a 3D array) in an efficient manner. See Figure 5.21 for an illustration.

Figure 5.21: Computing feature locations and descriptors
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Listing 5.14: SVD matching
# . . .

measure = proximity * s im ilarity  
t ,  d, ut = *measure.svd
e = lazy(*d.shape) { | i , j l  i . e q ( j ) . conditional 1 ,  9 } 
s = t .x (e ) .x (u t )
max_col = argmax { | j |  lazy { | i |  s [ j ,  i ]  } } . f i r s t  
max_row = argmax { | j |  lazy { | i |  s [ i ,  j] } } . f i r s t
mask_col = [lazy(s .shape[0]) { | i |  i >, max_row].histogram(*s. shape) > 9 
mask_row = [max_col, lazy(s .shape[1]) { | i |  i  } ] .histogram(*s.shape) > 9 
q = mask_col. and(mask_row). and measure >= CUTOFF
# . . .

5.3.3 SVD Matching

Pilu (1997) presents a simple algorithm for feature matching based on the singular value 

decomposition (SVD). A combined measure of the feature proximity and similarity id 

computed for every possible pair of features (/,-, Ij) with descriptors A and B (see Equa

tion 5.28).

J U f *  . 4  u ,
g u  := e 1'r ■ e2"’ where c/, : = -----=— —  and r , , := \L -  / ;

(5.28)

Equation 5.29 shows the SVD of the resulting matrix Q (Pilu, 1997).

Q \= T P ) V  where V  = diag(du d2t . . . )  (5.29)

Equation 5.30 shows how the resulting matrices T  and <U are multiplied with the rectan

gular identity matrix 8  (Pilu, 1997).

P  : = T 8 rU  (5.30)

A pair of features (Ij, /,) is regarded a match if and only if p jyi is both the greatest element 

in its row and the greatest element in its column (Pilu, 1997).

Listing 5.14 shows the corresponding implementation. The “argmax” function is 

used to locate the maximum in each row and column of the correspondence matrix. The 

histogram operation is used to create two masks. The two masks are combined to detect 

elements in the matrix which are the greatest element in its row as well as in its column. 

Additionally a threshold is introduced in order to discard matches with low correspon

dence (see Section A.7.7 for complete code listing). Figure 5.22 shows an example of the

algorithm in action.
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Figure 5.22: SVD tracking

5.4 Summary

This chapter has shown how many preprocessing operations commonly found in the area 

of machine vision can be implemented using the library introduced in Chapter 3. The con

cise code also made the similarities of different popular corner detectors visible. Finally 

it was shown how warps can be used to extract feature descriptors from selected regions 

of the input image.



Evaluation

“Robert and I both knew Lisp well, and we couldn ’t see 
any reason not to trust our instincts and go with Lisp. 
We knew that everyone else was writing their software 
in C ++ or Perl. But we also knew that that didn't mean 
anything. I f  you chose technology that way, y o u ’d be run
ning Windows. When you choose technology, you have 
to ignore what other people are doing, and consider only 
what will work the best.”

Paul Graham

“We haven’t found intelligent life so far. Some people 
believe it has ye t to occur on earth.”

Stephen Hawking

“I f  y o u ’re using early-binding languages as m ost people  
do, rather than late-binding languages, then you really 
start getting locked in to stuff that y o u ’ve already done.”

Alan Kay

This chapter shows how the concepts introduced in previous chapters can be used to create 

concise implementations of real-time machine vision systems.

•  Section 6.1 describes the FOSS packages developed as part of this thesis

•  Section 6.2 presents concise implementations of several computer vision applica

tions

•  Section 6.3 provides a performance analysis and a comparison with equivalent C 

implementations

• Section 6.5 gives a summary of this chapter

6.1 Software Modules

The software developed as part of this thesis was made available as free software and 

released on G ithub1 and on Ruby gems2. It is packaged as follows.

• The package malloc defines the “M alloc” class (also see Section 3.2). “M alloc” 

objects are used to introduce pointer operations to the Ruby language. Pointer 

objects are the simplest possible interface for exchanging image- and video-data. 

Instead of requiring the different I/O-packages to use certain static types for ex

changing information, each I/O-package comes with dynamic types providing the 

meta-information.

•http://github.com/
2http://rubygems.org/
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•  The multiarray extension provides the image processing operations presented in 

Chapter 3. The package uses GNU Compiler Collection (GCC) as a JIT compiler 

in order to achieve high performance.

•  Conversion of compressed video frames is handled by the hornetseye-frame Ruby 

extension. The Ruby extension makes use of the FFmpeg rescaling library.

• The following packages implement various I/O-interfaces.

-  The hornetseye-xorg package can be used to display images and videos using 

the X Window System.

-  hornetseye-rmagick provides saving and loading of image files using the RMag- 

ick library.

-  hornetseye-ffmpeg provides saving and loading of video files using the FFm

peg library.

-  hornetseye-alsa provides capture and playback of audio using ALSA.

-  hornetseye-fftw3 provides Fast Fourier Transforms using the FFTW3 library.

-  hornetseye-v412 provides live camera images using V4L2.

-  hornetseye-dc 1394 provides live camera images using DC 1394-compatible 

Firewire cameras.

-  hornetseye-kinect provides capture of depth images using the M icrosoft Kinect.

-  hornetseye-openexr provides loading and saving of HDR images with the 

OpenEXR library.

• The following packages provide integration with other libraries.

-  hornetseye-opencv provides integration with the Ruby bindings of the OpenCV 

computer vision library.

-  hornetseye-narray provides conversions between “NArray” objects and the ar

rays of the Hornetseye library.

-  hornetseye-linalg provides conversions between the “DMatrix” objects of the 

linalg library (LAPACK bindings for Ruby) and the arrays of the Hornetseye 

library.

-  hornetseye-qt4 provides a Qt4 widget for hardware accelerated video output 

in a Qt4 GUI.
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6.2 Assessment of Functionality

6.2.1 Fast Normalised Cross-Correlation

One can use correlation methods in order to detect a 2D template in an image if only 

translations are involved (i.e. no scale or rotation). Lewis (1995) shows how to compute 

the correlation coefficients y  shown in Equation 6.1 for every possible shift u.

I ^ r < ®  [?(-?> - 1 ( 3 ) ]  « ) “ (]
y(3) = ------  _ . =  (6.1)

[ / ( •* )  / ( ? ) ]  Y j te T ( i t )  [ K x  ~  $  f l

Here g is the input image, g is the average of a template-sized area of the input image, t is 

the template, and t is the average value of the template. The integration area T(u) ensures 

that t ( x -  u) is defined for every x  e T(u).

Using t'(x) t(x) -  t one can simplify the numerator of the correlation coefficient as 

shown in Equation 6.2

nym(« )=  ^  g(x) t'(x -  u) -  g(u) ^  t ' ( x - i t )  (6.2)
5teT(il) iteT (it)

s ^------- "
=0

The numerator requires correlation of the input image with the template which (for larger 

template sizes) is most efficiently done in the Fourier domain.

The second part of the denominator (see Equation 6.3) simply is the variance of the

template. The first part of the denominator can be computed using integral images (Lewis,

1995) (also see Section 3.5.11).

den
y 2(u) = ^  [ / 2( t)  -  Z2® ]  ^  [t(2) - 1\2 (6.3)

jfer(£f j te T iit

The implementation of the normalised cross-correlation is given in Appendix A.7.3.

Figure 6.1 shows how the normalised cross-correlation can be used to successfully 

locate a template in a test image.

6.2.2 Lucas-Kanade Tracker

The warps introduced in Section 3.5.6.2 can be used to create a concise implementation of 

a Lucas-Kanade tracker (Baker and Matthew, 2004; Wedekind et al., b; Wedekind, 2008). 

The (inverse compositional) Lucas-Kanade tracker works by comparing the warped input 

image with a template. Equation 6.4 shows the warp formula for a 2D isometry with
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Template

Input image Result

Figure 6.1: Normalised cross-correlation example

translation parameters p\ and p 2 and rotation parameter p 3.

Wp(jt) =
X  cos(p3) -  3; sin(p3) + Pi 

x sin(p3) + y  cos(p3) + p 2
(6.4)

The vector p  with the transformation parameters of the warp is updated iteratively by 

adding an optimal offset Ap  in order to minimise the difference between the template and 

the warped image (see Equation 6.5 and Figure 6.2).

Ap  = argmin ^  [t(x) -  g(W (6.5)

The inverse compositional algorithm makes use of the fact that the warp for the changed

Figure 6.2: Comparison of template and warped image

vector of parameters p  + Ap  can be approximated by concatenation as shown in Equa

tion 6 .6 .

W ^ p iX )  X WpiW^OD) (6 .6 )
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The difference between the template and the warped image in Equation 6.5 can be sim

plified using Equation 6 . 6  and by substituting x  = WAp(x') (see Equation 6.7).

Near p  = 0 the warped template t(WAp(x)) can be approximated with a first order Taylor 

expansion as shown in Equation 6 .8 .

/6 t  \ T / S W p  \ 
t(WAp(jt)) «  t{5t) + [ - ( f ) ]  ^ ( f ) j  Ap (6.8)

Using Equation 6.7 and the approximation of Equation 6 . 8  one can reformulate Equa

tion 6.5 as a linear least squares problem (see Equation 6.9).

A p  «  argmin(||77 Ap  + S\\) = (77T <Hyl <HT b
A p

where 77 =

h\,i h\2

hi,\ hi,i

( j \b\

and b = (6.9)

with h, j  = ( £ « ) )  • [jp;(.%)) and b, = f(^ ) -

In practise it is usually necessary to update p  a couple of times since Equation 6.9 merely 

gives an approximation for A p.

Listing 6 .1 shows a Ruby implementation of the (inverse compositional) Lucas-Kanade 

tracker (using a Gauss gradient with cr = 2.5 and using two iterations for each video 

frame). The tracking template is captured (line 30) from the first frame (line 26) of the 

input video (line 13) using the initial vector of transformation parameters (line 14). Note 

that the Gauss gradient of the template is computed from a bigger area of the input image 

in order to avoid boundary effects (see Figure 6.3). Another noteworthy implementation

template boundary effects no boundary effects

Figure 6.3: Gradient boundaries of template

detail is the interpolated warp (see Figure 6.4). It is mandatory to implement interpolation 

since the Lucas-Kanade tracker might not converge on a stable solution otherwise.

Figure 6.5 shows every 10th frame of a test video. The Lucas-Kanade tracks the 

polygon, which undergoes shifts and rotations, successfully.
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Listing 6.1: Lucas-Kanade tracker
class  Node

def warp_clipped_interpolate(x, y)
x®, y® = x . f lo o r .to _ in t ,  y . f lo o r .to _ in t  
x l ,  yl = x® + 1, y® + 1 
fx l ,  fy l  = x - x®, y - y® 
fx®, fy® = xl - x, yl - y
return warp(x®, yQ) * fx® * fy® + warp(xl, yQ) * fx l * fy® + 

warp(x®, y l)  * fx® * fy l + warpCxl, y l)  * fx l * fy l
end

end
SIGMA, N = 2.5,  2 
W, H = 94, 65
input = AVInput.new ’t e s t . a v i ’ 
p = Vector[8Q.Q, 35.®, ®.Q] 
def model(p, x, y)

cw, sw = Math::c o s (p [2 ]) , Math::s in(p[2])
Vector[x * cw - y * sw + p[®], x * sw + y * cw + p[1]] 

end
def derivative(x, y)

Matrix[[1, ®], [Q, 1], [-y, x]] 
end
def compose(p, d)

cw, sw = Math::co s (p [2 ]) , Math::sin(p[2]) 
p + Matrix[[cw, -sw, Q], [sw, cw, ®], [®, ®, 1]] * d 

end
img = input. read_ubyte
b = (Array.gauss_gradient_filter(SIGMA).size - 1) /  2
x = lazy(W + 2 * b ,  H + 2 * b ) {  | i , j |  i - b }
y = lazy(W + 2 * b, H + 2 * b ) { | i , j | j - b }
tpl = img.warp_clipped_interpolate *model(p, x, y)
gx = t p l . gauss_gradient SIGMA, ®
gy = t p l . gauss_gradient SIGMA, 1
tp l,  gx, gy, x, y = * [tp l,  gx, gy, x, y ] .

co l lec t  { |arr| a rr [b . . . (W+b), b...(H+b)] >
c = derivative(x, y) * Vector[gx, gy] 
hs = (c * c .co v ec to r ) .co llec t  { |e | e.sum } 
hsinv = hs.inverse  
XllDisplay. show do

img = input.read_ubyte 
for i  in 9 . . . N

d i f f  = tpl - img.warp_clipped_interpolate(*model(p, x, y)) 
s = c .c o l le c t  { |eI (e * diff).sum } 
p = compose(p, hsinv * s) 

end
gc = Magick::Draw.new
g c .f i l l_ o p a c ity  9
gc .stroke(’red’) . stroke_width 1
gc .l in e  *(model(p, ®, ®).to_a + model(p, W, Q).to_a)
gc .l in e  *(model(p, Q, H).to_a + model(p, W, H).to_a)
g c .l in e  *(model(p, ®, Q).to_a + model(p, 9, H).to_a)
gc .l in e  *(model(p, W, ®).to_a + model(p, W, H).to_a)
g c .c irc le  *(model(p, ®, ®).to_a + model(p, 3, Q).to_a) 
resu lt = img.to_ubytergb.to_magick 
gc.draw result  
r e s u l t . to_ubytergb 

end
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without interpolation with interpolation 

Figure 6.4: Warp without and with interpolation
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Figure 6.5: Example of Lucas-Kanade tracker in action
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Listing 6.2: Hough transform to locate lines
A_RANGE = Q . .  179 
THRESHOLD = Qx7F
img = MultiArray. load_ubyte ’te s t .p n g ’ 
diag = Math.sqrt(img.width ** 2 + img.height ** 2) 
d_range = -d iag . t o _ i . succ. div(2) . . .  diag. t o _ i . succ. div(2) 
binary = img <= THRESHOLD
x = lazy(*img.shape) { | i , j |  i  - img.width /  2 }.mask binary
y = lazy(*img.shape) { | i , j |  j - img.height /  2 }.mask binary
angle = lazy(A_RANGE.end + 1) { | i |  Math::PI * i  /  A_RANGE.end }
d ist  = lazy(d_range.end + 1 - d.range.begin) { | i |  i  + d_range.begin }
cos, sin = lazy { | i |  Math.cos(angle[i]) }, lazy { | i |  Math.sin(angle[i]) }
a = lazy(angle. s i z e , x .s iz e )  { | i , j |  i  >
d = lazy { I i , j |  (x[j]  * cos[ i]  + y [j]  * s in [ i]  - d_range.begin). to_int }
histogram = [a, d ] .histogram A_RANGE.end + 1, d_range.end + 1 - d_range.begin 
(histogram ** 0 .5 ) .normalise(255 . .  Q).show

6.2.3 Hough Transform

The Hough transform (Duda and Hart, 1972) can be used to efficiently detect shapes in 

images if the parameter space has two dimensions or less (e.g. lines or circles with a fixed 

radius). If the parameter space has more than two dimensions (e.g. circles with unknown 

radius), the Hough transform is usually complemented with other algorithms in order to 

keep the computational cost manageable (e.g. using the gradient direction to reduce the 

number of votes (Borovicka, 2003)).

The lazy operations introduced in Section 3.4 facilitate concise and flexible imple

mentations of the Hough transform. Listing 6.2 shows the implementation of a Hough 

transform to locate lines. The application of the Hough transform is shown in Figure 6 .6 .

input image detected lines
Hough space

Figure 6 .6 : Line detection with the Hough transform

For every point in the input image, the Hough transform accumulates votes for the pa

rameters of all possible lines passing through that point (Duda and Hart, 1972). The peaks 

in the Hough transform correspond to detected lines in the input image (see detected lines 

in Figure 6 .6 ). The peaks can be located using thresholding followed by non-maxima sup-
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pression. Note that the Hough transform in Listing 6.2 is implemented using a histogram 

operation (line 14). The votes for different combinations of distance (“d”) and angle (“a”) 

are generated using lazy tensor expressions (lines 13 and 12). A formal representation of 

the Hough transform is given in Equation 6 .10.

h(a, d) = ^  6{a -  Qj)6{d -  |_x,,i cos(Oj) + xu2 sin(0/)J) (6 . 10)

The implementation shown in Listing 6.2 is not optimal though. It uses a masking 

operation to create the intermediate arrays “x” and “y” with the coordinates of all black 

points of the input image.

6.2.4 Microscopy Software

Using the GUI integration shown in Section 4.8 one can develop sophisticated Qt4 GUIs 

involving video I/O. Figure 6.7 shows a dialog for configuring different object recognition 

and tracking algorithms. The figure shows the software being tested on an artificial test

|  \ p o l y g o n

C on figu ra tion

File V ideo S ettin gs

©  5

triangle

M odels Algorithm

trianglepolygon N am e
triangle

R eco g n itio n  Tracking Coordinate S ystem

L u cas K anade

ITT1

d e g r e e s  of freedom ^ t r a n s la t io n  & rotation 

; q *  translation
sigm a

iterations

threshold 32.00

fringe

C enter o f Gravity

D elete  Tracking Algorithm
D eleteAdd

OK C an cel

video.

Figure 6.7: Configuration GUI
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Configuration Closed-loop control

Figure 6 .8 : Closed-loop control of a nano manipulator in a TEM

The software was used to demonstrate closed-loop control of a nano manipulator in a 

transmission electron microscopy (TEM) as shown in Figure 6 . 8  (Lockwood et al., 2010). 

The software was also used to measure the hysteresis of Piezo drives.

6.2.5 Depth from Focus

Depth from focus is a computational method to estimate a 3D profile using a focus stack 

of images (Wedekind, 200 ). A local sharpness measure is defined to estimate which 

image is nearer to the focal plane. A possible sharpness measure is the (square of the) 

Sobel gradient norm shown in Equation 6 .11

sz(2) = (& ® Si)2(f) + (g, ® 5 2)2(f) (6.11)

The depth map or 3D profile of the object is obtained by determining the depth at which 

the local sharpness reaches its maximum.

dm(x) = argmax sz (x) (6 . 1 2 )
z

dv(2) = gdm{Z){x) (6.13)

Listing 6.3 shows an implementation of Depth from Focus. The Sobel gradient m ag

nitude of the focus stack is used as a sharpness measure (lines 29-30). An image with 

extended depth of field is created (line 26 and 33). Furthermore a height field is gener

ated (line 25 and 32). The implementation makes use of the “trollop” library to provide a 

command line interface (lines 1- 2 0 ).

Figure 6.9 shows every 10th image of a focus stack. The series of images was taken

using an optical microscope and it shows small glass fibres3. Figure 6 .10 shows the result

3glass fibres courtesy o f  BM RC, Sheffield Hallam University
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Listing 6.3: Implementation of Depth from Focus
opts = T rollop::options do 

banner «E0S
Generate height f ie ld  and deep view from focus stack.
Usage:

./depthfromfocus.rb [options] < f i le  names>+

where [options] are:
EOS

opt :sigma, ’Sigma for Gaussian blur (1 /p ix e ls iz e ) ’ , :default = > 2 . 5  
opt :f ie ld , ’Output PGM f i l e  name for height f i e l d ’ , :type => String 
opt :view, ’Output PPM f i l e  name for deep view’ , :type => String 

end
sigma = opts[ :sigma ]
T rollop::die :sigma, ’must be greater than zero’ unless sigma > 0 
f ie ld _ f i le  = opts[ :f ie ld  ]
T rollop::die :f ie ld ,  ’i s  required’ unless f ie ld _ f i le  
view _file  = opts[ :view ]
T rollop::die :view, ’i s  required’ unless v iew _file  
sta ck _ file  = ARGV
T rollop::die ’Cannot handle more than 255 f i l e s ’ i f  s ta c k _ f ile .s iz e  > 255 
f ie ld ,  view, max_sharpness = n i l ,  n i l ,  n i l  
s ta c k _ f ile . each_with_index do |f_name, i |  

img = MultiArray.load_ubytergb f_name 
unless f ie ld

f ie ld  = MultiArray.ubyte( *img.shape ) . f i l l ! 
view = MultiArray.ubytergb( *img.shape ) . f i l l !  
max_sharpness = MultiArray.dfloatC *img.shape ) . f i l l !  

end
sharpness = ( im g.sobel( 0 ) ** 2 + im g.sobel( 1 ) ** 2 ) .

to_dfloat.gauss_blur sigma 
mask = sharpness > max_sharpness 
f ie ld  = mask.conditional i ,  f ie ld  
view = mask. conditional img, view
max_sharpness = mask.conditional sharpness, max_sharpness 

end
field .save_ubyte f ie ld _ f i le  
view.save_ubytergb view _file
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Figure 6.9: Part of focus stack showing glass fibres

obtained with the Depth from Focus method.

depth map extended depth of field

Figure 6.10: Results of Depth from Focus

6.2.6 Gesture-based Mouse Control

Wilson (2006) shows how one can use basic image processing operations to implement 

a computer vision system to control a mouse cursor with gestures. The algorithm can 

detect pinching gestures where touching of the thumb and forefinger creates a disjoint 

region where the background is visible. The concept is illustrated in Figure 6 .11.
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1 . acquire image

2 . subtract background reference

3. apply a threshold

4. label connected components

5. suppress components which are too small or too large

6 . suppress components connected to image borders

7. determine centre of gravity if exactly one component remains

1
\

background reference difference image thresholded image

connected components components filtered for size components not touching
image borders

component fulfilling both centre of gravity
conditions

Figure 6.11: Human computer interface for controlling a mouse cursor

The Ruby source code of this algorithm is shown in Listing 6.4. The size of each 

component is computed by taking a histogram of the label image (line 13). Compo

nents touching the image borders are found out by taking a weighted histogram (line 

15) where the image border pixels have non-zero weights (lines 6-7). “mask a re a ” and
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Listing 6.4: Human computer interface for controlling the mouse cursor
THRESHOLD = 15
RANGE = 0.001 ..  0.25
input = V4L2Input.new
background = input.read_sint
shape = background. shape
border = MultiArray. int(*shape). f i l l ! 1
border[l . . .  shape[0] - 1, 1 . . .  shape[l] - 1] = 0
XllDisplay. show do

img = input.read_ubyte
binary = img - background <= THRESHOLD
components = binary. components
n = components.max + 1
area = components.histogram n
mask_area = area.between? RANGE.min * img.size, RANGE.max * img.size  
mask_border = components.histogram(n, :weight => border).eq 0 
mask = mask_area.and(mask_border). to_ubyte 
target = components. lut(mask.integral * mask) 
i f  target.max == 1

sum = ta rg e t . sum.to_f
x = lazy(*shape) { | i , j |  i  } .mask(target. to_bool). sum /  sum 
y = lazy(*shape) { | i , j |  j } .mask(target. to_bool). sum /  sum 
puts "#{x} #{y}" 

end 
img 

end

“mask b o rd er” are 1D arrays with boolean values indicating for each component whether 

it is to be suppressed or not. “mask” is a ID array of integers where “ 1” indicates a 

component which is fulfilling all conditions (line 16). The components are re-labelled 

by using “m a sk .in te g ra l * mask” as a lookup table (line 17). For example Listing 6.5 

shows a case where “mask” has 3 non-zero values. By multiplying the integral array with 

the array, one can obtain a “ ID” lookup table which assigns a running index to accepted 

components. All rejected components get mapped to zero.

The coordinates obtained with Listing 6.4 can be used to create mouse-motion and

Listing 6.5: Lookup table for re-labelling
mask
# Sequence(UBYTE):
# [ 8 , 8 , 1 , 8 , 0 , 8 , 1 , 1 , 8 ]
mask.integral
# Sequence(UBYTE):
# [ 8, 8, 1, 1, 1, 1, 2, 5, 3 ]
lut = mask.integral * mask
# Sequence(UBYTE):
# [ 8, 8, 1, 8, 8, 8, 2, 3, 8 ]
MultiArray[[8, 8, 2, 8, 8], [3, 8, 8, 8, 6 ] ] . lu t lut
# MultiArray(UBYTE, 2):
# [ [ 8, 8, 1, 8, 8 ] ,
# [ 8 , 8 , 8 , 8 , 2 ] ]
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mouse-button events (Wilson, 2006). It is also possible to extend the concept so that two 

hands can be used to create mouse-scroll events. Listing 6.4 demonstrates that using the 

Ruby-extension presented in this thesis it requires only a short amount of time to put an 

idea into practise.

6.2.7 Slide Presenter

Figure 6 .12 illustrates the idea for a software for changing slides. After a certain time

Figure 6.12: Software for vision-based changing of slides

a reference image is acquired. If the user’s hand reaches into the centre of the image, 

the blurred difference image is thresholded and the centre of gravity of the resulting bi

nary image is used as a ID sensor for controlling the presentation of slides. Listing 6 . 6  

implements the basic concept.

The 1D sensor input is used as follows. A quick downward or upward motion is used 

to display the next or previous slide (see Figure 6.13). A slow gesture is used to display 

a menu and select a particular slide (see Figure 6.14). The system was used to give a 

presentation at a conference (Wedekind, 2009)4. Note that the sensor value might change 

significantly when the hand is removed. To make recognition more robust, the system 

picks the slide which was selected for the longest period of time in such cases. This can 

be achieved using weighted histograms.

4See http://www.wedesoft.demon.co.uk/rubyconfQ9video.html for a video of the talk
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Listing 6 .6 : Vision-based changing of slides 
input = DC1394Input.new
w, h, o = 20, input.height, input.width /  2 - 10 
box = [ o  . . .  o + w ,  0 . . .  h ]  
bg = input.read_ubyte[*box] 
t  = Time.new.to_f 
XllDisplay. show do

img = input.read_ubytergb 
i f  Time.new.to_f > t  + 10 

bg = img[*box].to_ubyte 
t  = Time.new.to_f 

end
s l ic e  = (img[*box]. to_sint - bg). gauss_blur(2). abs >= 12 
n = slice.to_ubyte.sum  
i f  n > 20

y = lazy(w, h) { | i , j |  j } .m ask(slice). sum /  n 
puts y 

e lse
t  = Time.new.to_f
puts ’ ----- ’

end
img[*box].r = s l i c e . to_ubyte * 255 
img[*box].g = s lice .not.to_ubyte  * 255 
img 

end

Applications of Com puter Vision
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Figure 6.13: Quick gesture for displaying the next slide
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Background

EPSRC

Figure 6.14: Slow gesture for choosing a slide from a menu

As one can see in Listing 6 .6 , the input class “DC1394Input” was used instead of 

“V4L2Input”. This input class is for accessing DC 1394-compatible Firewire cameras 

(see Figure 6.15). The camera has the advantage that it supports a fixed exposure setting

4 * I »

4 * t I »

M

Figure 6.15: Unibrain Fire-I (a DC 1394-compatible Firewire camera)

which is important when using difference images.

6.2.8 Camera Calibration

Camera calibration usually is done by taking images of a chequer board of known size. 

A corner detector then detects the coordinates of the projected corners. The corners are 

labelled so that for each corner of the chequer board the corresponding corner in the 

image is known. Using a pinhole camera model (see Appendix A.3), camera calibration 

then becomes an optimisation problem (Ballard and Brown, 1982; Zhang, 2000; Faucher, 

2006). Camera calibration is a requirement for 3D reconstruction with lasers (Lim, 2009)
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and real-time visual SLAM (Davison et al., 2007; Pupilli, 2006) for example. In general 

some means of initial calibration or self-calibration (Mendon9 a and Cipolla, 1999) is 

required in order to solve non-trivial 3D machine vision problems.

6.2.8.1 Corners of Calibration Grid

Many algorithms for detecting the corners of a calibration grid are not fully automated. 

For example to most popular calibration toolbox requires the user to manually select the 

four outer corners of the calibration grid (Bouguet, 2010). Other calibration software 

such as the implementation of the OpenCV library uses a sophisticated custom algorithm 

which makes use of basic operations such as thresholding, connected components, convex 

hull, and nearest neighbours (see OpenCV source code"1).

Here an elegant algorithm is presented which is based on standard image process

ing operations. A planar homography is used to establish the order of the corners. The 

algorithm is illustrated in Figure 6.16 and Figure 6.17.

Listing 6.7 shows the implementation of the algorithm including visualisation. The 

implementation makes use of other algorithms presented earlier in this thesis. The im ple

mentation makes use of the Ruby matrix library and the LAPACK bindings for Ruby6 (the 

code for integrating Ruby matrices and LAPACK matrices is not shown). The algorithm 

consists of the following steps:

1. Apply Otsu Thresholding to input image (line 8 ).

2. Take difference of dilated and eroded image to get edge regions (line 9).

3. Label connected components (line 10).

4. Compute corners of input image (e.g. Harris-Stephens corners as shown in Sec

tion 5.2.2.3) and use non-maxima suppression (lines 7 and 8 ).

5. Count comers in each component (line 11, implementation of “have” is not shown)

6 . Look for a component which contains exactly 40 corners (line 11, implementation 

of “have” is not shown).

7. Get largest component of inverse of grid (i.e. the surroundings) (line 15, implemen

tation of “la r g e s t” is not shown).

8 . Grow that component and find all corners on it (i.e. corners on the boundary of the 

grid) (lines 15-16).

9. Find centre of gravity of all corners and compute vectors from centre to each bound

ary corner (lines 14 and 17).

5https://sourceforge.net/proj ects/opencvlibrary/
6http://rubyforge.org/proj ects/linalg/
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input image grey scale image corner strength

i i
comers Otsu thresholding edges

connected components component with 40 corners boundary region

boundary corners vectors vectors longer than
neighbours

homography x-coordinate homography y-coordinate numbered corners 

Figure 6.16: Custom algorithm for labelling the corners of a calibration grid
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Listing 6.7: Custom algorithm for labelling the corners of a calibration grid
CORNERS = 0.3; W, H = 8, 5; N = W * H; GRID, BOUNDARY = 7, 19 
input = V4L2Input.new
coords = finalise(input.w idth , input.height) { | i , j |  i  + Complex::I * j } 
pattern = Sequence[*(([1] + [0] * (W - 2) + [1] + [0] * (H - 2)) * 2)]
XIIDisplay. show do

img = input.read_ubytergb; grey = img.to_ubyte
corner_image = grey.corners; abs = corner_image. abs
corners = abs.nms CORNERS * abs.max; otsu = grey.otsu
edges = otsu.dilate(GRID).and otsu.not.dilate(GRID) 
components = edges. components 
grid = components.have N, corners 
resu lt = img 
i f  grid

centre = coords.mask(grid.and(corners)). sum /  N.to_f 
boundary = grid.not.components.largest.dilate BOUNDARY 
outer = grid.and(boundary).and corners
vectors = (coords.mask(outer) - cen tre) . to_a. sort_by { |c | c.arg } 
i f  vectors .s ize  == pattern .size  

mask = Sequence[*(vectors * 2 ) ] . s h if t (v e c to r s . size  /  2 ) .abs.nms(®.®) 
mask[®] = mask[mask.size-1] = fa lse  
conv = lazy(mask.size) { | i |  i  }.

mask(mask. to_ubyte. convolve(pattern. f  1 ip (®) ) . eq(4) ) 
i f  conv.size > ®

o ffse t  = conv[®] - (pattern .size - 1) /  2 
r = Sequence[*vectors]. sh if t ( -o f fse t ) [®  . . .  vectors . s i z e ] .

mask(pattern) + centre 
m = Sequence[Complex(-®.5 * W,-®.5 * H), Complex(®.5 * W, -Q.5 * H) ,

Complex(®.5 * W, ®.5 * H), Complex(-Q.5 * W, ®.5 * H)]
constraints = [] 
for i  in ® . . .  4 do

constraints.push [m [i] .rea l,  m[i].imag, 1.®, ®.Q, S.®, Q.®, 
- r [ i ] . r e a l  * m [i] .rea l,  - r [ i ] . r e a l  * m[i].imag, - r [ i ] . r e a l ]  

constraints.push [®.Q, ®.®, ®.®, m [i] .rea l ,  m[i].imag, l .Q,  
-r[i] .im ag * m [i] .rea l,  -r[i] .im ag * m[i].imag, -r[i] .im ag]

end
h = Matrix ̂ constraints] .svd [2] ,row(8) .reshape (3, 3).inv
v = h.inv * Vector[coords.real, coords.imag, l .S]
points = coords.mask grid.and(corners) +

Complex(input.width/2, input.height/2)
sorted = (Q __  N).

zip((v[®] /  v [ 2 ] ) .warp(points.real, points.imag).to_a,
(v [ l]  /  v [ 2 ] ) .warp(points.real, points .im ag).to_a). 

sort_by { | a, b, c |  [(c - H2).round, (b - W2).round] }.
co l lec t  { | a ,b , c|  a } 

resu lt  = (v[Q] /  v[2]).between?(-Q.5 * W, ®.5 * W).and((v[l] /  v[2] ) .
between?(-®.5 * H, 0.5 * H )). conditional img * RGB(®, 1, ®), img

gc = Magick::Draw.new
g c .f i l l_ o p a c ity (® ) . stroke(’red’) . stroke_width 1 
sorted. each_with_index do I j , iI

g c .c irc le  p o in t s [ j ] .r e a l , p o in t s [ j ] . imag,
p o in ts [ j] .r ea l  + 2, po in ts[j ] . imag 

gc .text p o in t s [ j ] . r e a l , p o in t s [ j ] . imag, "#{i+l}" 
end
resu lt = r e s u l t . to_magick; gc.draw result; result = r e s u l t . to_ubytergb 

end 
end 

end
result

end

145



10. Sort boundary corners by angle of those vectors (line 17).

11. Use non-maxima suppression on list of length of vectors to get the 4 “corner cor

ners” (convexity) (lines 19-26).

12. Use the locations of the 4 “corner corners” to compute a planar homography (see 

Appendix A.4) mapping the image coordinates of the 8  times 5 grid to the ranges

0..7 and 0..4 respectively (lines 27-36).

13. Use the homography to transform the 40 corners and round the coordinates (lines 

37-42).

14. Order the points using the rounded coordinates (line 43).

Once the corners of the calibration grid shown in a camera image have been identi

fied, the correspondences can be used to establish a more accurate 2D homography (see 

Appendix A.4).

6.2.8.2 Camera Intrinsic Matrix

Zhang (2000) describes a method for determining the parameters of a linear camera model 

for calibration which includes displacement of the chip (principal point), skewness, and 

non-square pixel size. Furthermore a non-linear method for determining radial distortion 

is discussed. The method requires at least four pictures of the calibration grid being in 

different positions.

However in many cases one can assume that there is no radial distortion, skewness, 

displacement of the chip and that the pixel are square-shaped. In that case it is only 

necessary to determine the ratio of focal length to pixel size f / A s .

Let ‘K  be the planar homography (multiplied with an unknown factor) which was 

determined according to Appendix A.4. Let be the intrinsic and K  the extrinsic camera 

matrix (see Equation 6.14 and Equation A .l 1).

•H = A W R ’ <=> A K  = W ' - H  (6.14)

The rotational part of R! is an isometry as shown in Equation 6.15.

R fTR'  =

f \ 0 * ’ 

0  1 * (6.15)

Using Equation 6.14 and Equation 6.15 and by decomposing *H as shown in Equa-
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tion 6.16, one obtains Equation 6.17 (Zhang, 2000).

(h\ h2 h2) '■= 77 where ht =
h\,^

h 2 ,i

V̂ 3,i7

h J t f r T J7T1 /i2 = 0  and ti\ 3 T T ^  h { = h \  h2T rn \ - T  rn~ 1

(6.16)

(6.17)

If f / A s  is the only intrinsic camera parameter, the camera intrinsic matrix is a diagonal 

matrix as shown in Equation 6.18.

f / A s  0 0

0 f / A s  0 

0  0  1

(6.18)

In this case Equation 6.17 can be reformulated as shown in Equation 6.19.

(hhi h\ 2 + h2,\ h2 2)(As / / ) 2 + /z3)i hX2 = 0 and

(^i,i + h l , \  ~  h \,2 ~  h b )(A^ / / ) 2 + h l \  ~  h \ 2  = 0
(6.19)

This is a overdetermined equation system which does not have a solution in general. 

Therefore the least squares algorithm (see Appendix A.2) is used in order to find a value 

for (As / f ) 2 which minimises the left-hand terms shown in Equation 6.19. Furthermore 

the least squares estimation is performed for a set of frames in order to get a more robust 

estimate for f / A s .

The horizontal camera resolution w (e.g. 640 pixel) together with the ratio f / A s  can 

be used to determine the camera’s horizontal angle of view a.

a  = arctan (6 .20)

The complete source code of the camera calibration is shown in Section A.7.4.

6.2.8.3 3D Pose of Calibration Grid

If the camera intrinsic matrix J \  is known, it is possible to derive the 3D pose of the 

calibration grid from the planar homography 77. Using Equation 6.14 one can determine 

the camera extrinsic matrix K  up to a scale factor. However since H is an isometry, 

|^i | = 1 and |r2| = 1 must hold. That is, one can estimate the scaling factor A according to 

Equation 6.21.

h
A =

2 N
( |n | + |r2|) (6 .21 )
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When the calibration grid is detected, it must be in front of the camera. The factor / /  |f3| 

ensures that d r 3 > 0

Equation A. 11 shows that K  is composed out of two rotational vectors (r) and r2) and 

a translational vector t. The composition is shown in Equation 6.22.

(n  r2 t) := W  where rx =

/ \ 
r u

/ \ 
n,2 V

r2,l

II r2,2 , and t = h

73.1 > 73,2  > J3j

(6 .22)

The third vector r3 of the 3D rotation matrix must be orthogonal to r\ and r2 and can be 

determined using the vector cross-product as shown in Equation 6.23.

r3 = x  r2 (6.23)

Due to noise the resulting matrix <3 = (rj r2 r3) usually will not be an isometry. How

ever Zhang (2000) shows that the nearest isometry (nearest in terms of Frobenius norm) 

can be determined using the SVD of Q (see Equation 6.24).

K = 'U ^VTwhere L /Z V T = Q is SVD of <2 = f>2 ?3) (6.24)

An example sequence is shown in Figure 6.18 (the visualisations were created using the 

POV-Ray ray tracer (POVRay, 2005)). Note that sometimes the colours of the chequer 

board do not match because the detection of the calibration grid is based on corners and 

there is a 180° rotational ambiguity. Otherwise the alignment of the model and the camera 

image is good. This means that the perfect pinhole camera model is sufficiently accurate 

for the camera in use (Feiya Technology built-in camera sensor).

6.2.9 Augmented Reality

Kato and Billinghurst (1999) first published the ARToolKit7 augmented reality tool kit. 

Inspection of the source code reveals that the markers are located by an algorithm which 

locates rectangular markers by tracking contours and recording contours which have 4 

abrupt orientation changes (i.e. 4 corners).

Figure 6.19 illustrates a different custom algorithm for recognising a rectangular mar

ker. The algorithm can be implemented using the basic image processing operations pre

sented in this thesis. The algorithm works as follows:

1 . acquire image

2 . apply threshold

3. do connected component labelling

7also see http: //www. hitl. Washington. e d u / a r t o o l k i t /
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Figure 6.18: Estimating the pose of the calibration grid
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input image threshold image label connected components

impose size constraint extract edge of component compute gradients

group dominant orientations estimate centre of each line estimate angle of each line

compute intersections of estimate 3D pose of marker 
lines

Figure 6.19: Custom algorithm for estimating the 3D pose of a marker
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4. suppress components which are too small or too large

5. for each remaining component:

(a) extract edge of component

(b) compute gradients

(c) group dominant orientations

(d) if there are four dominant orientations:

i. estimate centre of each line

ii. estimate angle of each line

iii. compute intersections of lines

iv. estimate 3D pose of marker

Appendix A.7.5 shows that it only requires 44 lines of code to locate the four corners of 

the marker. The homography then can be estimated as shown in Section 6.2.8.

Figure 6.20 shows the augmented reality demonstration based on the approach pre

sented in this section. Note that there are 4 possible solutions for the 3D pose of the 

rectangular marker since the marker is self-similar. A small dot is used to resolve this 

ambiguity. The correct 3D pose is chosen by determining the brightness of the image in 

each of the 4 possible locations and choosing the pose with the lowest one.

6.3 Performance

6.3.1 Comparison with NArray and C++

Figure 6.21 shows different operations and the time required for performing them 1000 

times with Hornetseye (Ruby 1.9.2 and GCC 4.4.3), NArray (Ruby 1.9.2 and GCC 4.1.3),
TM

and a naive C++ implementation (G ++ 4.4.3). The tests were performed on an Intel
TM

Celeron 2.20GHz processor. The arrays “m” and “n” are single-precision floating point 

arrays with 500 x 500 and 100 x 100 elements.

The results show that Hornetseye takes about four times as much processing time 

as the pure C++ implementation. The fact that NArray is almost as fast as the C++ 

implementation shows that the overhead incurred by the Ruby VM can be negligible.

Figure 6.22 shows the time required for running the operation “m + 1 ” for arrays of 

different size. One can see that there are steps in the processing time at 4 MByte and 

8  MByte. This is probably because of the mark-and-sweep garbage collector running 

more often when larger return values need to be allocated (the steps disappear if the state

ment “GC. s t a r t ” is used to force a run of the garbage collector after each array operation).

Another problem is that the processing time for the current implementation of lazy 

expressions does not scale linearly with the size of the expression (see Figure 6.23). The
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Figure 6.20: Augmented reality demonstration
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r[i] = m[i,j]

Figure 6.21: Performance comparison of different array operations
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Figure 6.22: Processing time of running “m + 1 ” one-hundred times for different array 
sizes
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Figure 6.23: Processing time increasing with length of expression

reason is that the tree is traversed multiple times when an expression is composed. That 

is, the complexity is 0{n2) where n is the length of the expression.

6.3.2 Breakdown of Processing Time

Table 6 .1 shows time measurements of the processing time for performing element-wise 

negation for an array with one million elements a thousand times. The measurements 

where obtained by manually optimising the generated code and in other cases by re

moving parts of the program. The values obtained can be used to get a more detailed 

understanding of where the processing time is spent.

Figure 6.24 shows a breakdown of the processing time for the element-wise negation. 

The processing time is broken down into the following parts
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Table 6.1: Processing times measured for tasks related to computing “- s ” for an array

program processing time

current implementation 2.581641 s
manually optimised Ruby code 1.937845 s
manually optimised Ruby and C code 1.913475 s
Ruby memory allocation only 0.708125 s

C only 1.065510 s
C allocation only 0.000184 s

C code

41%

-4 % J suboptimal C code 
6% /
" W  Ruby VM

27%

dynamic memory layout
25%

suboptimal Ruby code

Figure 6.24: Breakdown of processing time for computing “- s ” where “s” is an array 
with one million elements

• C code: time for doing the actual array operation in C

• dynamic memory layout: cost of using a dynamic memory layout instead of a 

static memory layout

•  suboptimal Ruby code: optimisation potential in the calling Ruby program

•  Ruby VM: estimated lower bound for overhead of Ruby program

•  suboptimal C code: optimisation potential in the generated C code

One can see that most of the optimisation potential is in using a static memory layout 

(such as commonly done in Fortran and C implementations). For example Tanaka (201 I) 

provides method calls for specifying in-place operations. However this requires manual 

optimisation by the developer.

Finally computing the method name and extracting the parameters as shown in Sec

tion 3.6.2 incurs a large overhead as well. Unfortunately meta-programming in Ruby 

is not sufficiently powerful to replace the operation with a method call to the compiled
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Listing 6 .8 : Webcam viewer implemented using Python and OpenCV 
import sys
from opencv import cv
from opencv import highgui
highgui. cvNamedWindow(’Camera’)
capture = highgui. cvCreateCameraCapture(-l)
while 1:

frame = highgui. cvQueryFrame(capture)
gray = cv.cvCreatelmageCcv.cvSize(frame.width, frame.height), 8, 1) 
cv.cvCvtColor(frame, gray, cv . CV_BGR2GRAY) 
highgui. cvShowImage( ’Camera’ , gray) 
i f  highgui. cvWaitKey(5) > 0: 

break

Listing 6.9: Webcam viewer implemented using Ruby and Hornetseye
require ’hornetseye_v412’ 
require ’hornetseye_xorg’ 
include Hornetseye 
capture = V4L2Input.new
X llD isplay.show (:title  => ’Camera’) { capture.read.to_ubyte }

code. A workaround would be to use compact representations for arrays and to use meta

programming in order to generate efficient Ruby code for calling the compiled C methods. 

However this requires sophisticated meta-programming and it would make maintaining 

the code more difficult.

6.4 Code Size

6.4.1 Code Size of Programs

Listing 6 . 8  shows the implementation of a webcam viewer using Python and OpenCV. 

The equivalent implementation using Ruby and Hornetseye is shown in Listing 6.9. One 

can see that the Ruby implementation is much shorter. One can also see that the semantics 

of the Ruby implementation is simpler. The OpenCV implementation requires the devel

oper to write code for allocating memory for the result of the conversion to grey scale. 

Also the code for displaying images in a loop is more verbose because Python does not 

have support for closures.

A more sophisticated example is the Sobel gradient viewer. Listing 6.10 shows the 

Python/OpenCV implementation and Listing 6 .11 shows the corresponding implemen

tation using Ruby/Hornetseye. One can see that the OpenCV code is much more 

verbose. The readability of the code suffers because the code is cluttered with instruc

tions for allocating memory for the return values (note that the static memory layout leads 

to performance improvements though (see Section 6.3.2)).
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Listing 6.10: Sobel gradient viewer implemented using Python and OpenCV 
import sys
from opencv import cv
from opencv import highgui
highgui. cvNamedWindowC’Sobel Gradient’)
capture = highgui. cvCreateCameraCapture(-l)
while 1:

frame = highgui. cvQueryFrame(capture)
gray = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1) 
cv.cvCvtColor(frame, gray, cv.CV_BGR2GRAY) 
sobel_x = cv.cvCreateMat(gray.height, gray.width, cv.CV_16S) 
cv.cvSobel(gray, sobel_x, 1, 0)
sobel_y = cv.cvCreateMat(gray.height, gray.width, cv.CV_16S) 
cv.cvSobel(gray, sobel_y, 0, 1)
square = cv.cvCreateMat(gray.height, gray.width, cv.CV_32F) 
cv.cvConvert(sobel_x * sobel_x + sobel_y * sobel_y, square) 
magnitude = cv.cvCreateMat(gray.height, gray.width, cv.CV_32F) 
cv.cvPow(square, magnitude, 0.5)
dest = cv.cvCreateImage(cv.cvSize(frame.width, frame.height), 8, 1) 
cv.cvNormalize(magnitude, dest, 0, 255, cv.CV_MINMAX); 
highgui. cvShowImage(’Sobel Gradient’ , dest) 
i f  highgui. cvWaitKey(5) > 0: 

break

Listing 6.11: Sobel gradient viewer implemented using Ruby and Hornetseye
require ’hornetseye_v412’ 
require ’hornetseye_xorg’ 
include Hornetseye 
capture = V4L2Input.new
XllDisplay. show :t i t l e  => ’Sobel Gradient’ do 

img = capture.read.to_ubyte
sobel_x, sobel_y = img. sobel( 0 ) . to _ in t , img. sobel( 1 ) . to_int  
Math.sqrt(sobel_x * sobel_x + sobel_y * sobel_y).normalise 0 . .  255 

end
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Table 6.2: Size of OpenCV code for filtering images

lines words characters

cvcorner.cpp 664 2438 22743
cvderiv.cpp 831 3424 34024
cvfilter.cpp 2666 11235 100672
cvsmooth.cpp 1099 3917 34098
total 5260 21014 191537

Table 6.3: Size of Hornetseye code for all array operations

lines words characters

total 5747 14721 132979

6.4.2 Code Size of Library

Implementing image processing operations is not well supported by the C/C++ language 

as shown in Section 2.2.1. This makes implementation of basic machine vision function

ality more labour-intensive; a fact which is also reflected in the size of the library code. 

Table 6.2 shows that the OpenCV-1.0.0 library contains about 5400 lines of code and (ex

cluding headers and comments) for implementing 2D filter operations for various integer 

and floating-point element types.

Table 6.3 shows the code size of all array operations of the Hornetseye library. This 

includes the source code for all type definitions and array operations presented in this 

thesis as well as the JIT-compiler. Also the operations are not limited to two or three 

dimensions. That is, implementing, maintaining, and extending a machine vision library 

is much less time-consuming when using a dynamically typed language.

6.5 Summary

In this chapter it was shown how the Ruby library developed in this thesis can be used 

to develop concise implementations of machine vision systems. For example the code 

for the Lucas-Kanade tracker (see Listing 6.1) is of similar size as the corresponding 

mathematical formalism. It is also worth noting that the lazy operations of the Ruby 

library facilitate a generic API for the Hough transform (e.g. see Listing 6.2).

The performance of the library was compared with the NArray Ruby extension and it 

was compared with an equivalent C++ implementation. It was shown that the Hornetseye 

library is about 4 times slower than an equivalent static C ++ implementation. It was 

also shown that most of the performance loss is caused by the dynamic memory layout.
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Further optimisation potential is in the code for calling compiled methods.

A webcam viewer and a Sobel gradient viewer each were implemented first using 

Python and OpenCV and then using Ruby and Hornetseye. In each case the implementa

tion using Ruby+Hometseye requires half as many lines of code as the Python+OpenCV 

implementation. Also the semantics of the Ruby implementation is much more con

cise. Furthermore the implementations of the libraries themselves were compared. It 

was clearly demonstrated that the library developed in this thesis allows for much higher 

productivity.



“I figure that since proprietary software developers use 
copyright to stop us from sharing, we cooperators can use 
copyright to give other cooperators an advantage o f  their 
own: they can use our code.”

Richard Stallman

“Programs are not models o f  a part o f  reality. They are, 
when executed, a part o f  reality.”

Klaus Ostermann 

“Talk is cheap. Show m e the code.”

Linus Torvalds

Conclusions & Future Work

In this final chapter the results of the research in efficient implementation of machine 

vision algorithms are discussed. At the end of the thesis, future work is suggested.

7.1 Conclusions

performance

productivity generality

Figure 7.1: The main requirements when designing a programming language or system
(Wolczko, 2011)

As Figure 7.1 illustrates, the fundamental problem of designing a programming lan

guage or system is to bring together performance, productivity, and generality. The work 

presented in this thesis is in that spirit. That is, it is about bringing together performance 

and productivity in an unprecedented way. Although this thesis is about machine vision, 

the results could be applied to numerical processing in general.

Existing free and open source software (FOSS) for machine vision is predominantly 

implemented in C/C++. Albeit the performance of machine code generated by C /C++ 

compilers is high, the static type system of the C ++ language makes it exceedingly dif

ficult to provide a complete and coherent basis for developing machine vision software.
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It is hard to support all possible combinations of operations and native data types in a 

statically typed language. Therefore most libraries implemented in such a programming 

language either only support some combinations (e.g. OpenCV and NArray) or they al

ways default back to a few selected native types (e.g. Lush and NumPy). In contrast Ruby 

already comes with a set of numeric data types which can be combined seamlessly.

The contribution of this thesis is a machine vision system which brings together per

formance and productivity in an unprecedented way. To achieve this, 16 Ruby extensions 

where implemented. In terms of generality the Ruby extensions provide

• extensive I/O integration for image- and video-data

• generic array operations for uniform multi-dimensional arrays

-  a set of objects to represent arrays, array views, and lazy evaluations in a 

modular fashion

-  optimal type coercions for all combinations of operations and data types

To address the performance, it was shown how the evaluation of expressions in Ruby 

can be changed so that it takes advantage of a JIT compiler . Since Ruby programs are 

not readily available as data the way they are in Lisp or Racket, it was necessary to use 

Ruby objects to represent various operations. The implementation presented in this thesis 

is about 4 times slower than the compiled code of an equivalent C implementation. That 

is, the system can be used for prototyping of real-time systems in industrial automation 

and in some cases the performance is sufficient to implement the actual system. It was 

shown that the main bottlenecks are the dynamic memory layout (i.e. less utilisation of 

the CPU cache) and the overhead of the calling Ruby code.

The programming language facilitates concise and flexible implementations which 

means that developers can achieve high productivity. It was demonstrated how the li

brary introduced in this thesis can be used to implement machine vision algorithms. Con

cise implementations of various computer vision algorithms were presented in order to 

demonstrate the productivity of the system. Note that the concise implementations make 

several formal identities visible:

• Section 5.2.2 demonstrates the commonalities of different corner detectors

•  In Section 6.2.3 it was shown how the Hough transform can be implemented using 

lazy operations and a histogram operation

• Sum, product, minimum, and maximum all can be defined using injections (intro

duced in Section 3.5.7)

• Section 3.5.6 shows that warps and lookup-tables are formally identical

•  The convolutions in Section 3.5.10 and the morphological operations shown in Sec

tion 5.1.2.1 are both implemented using diagonal injections (also see Figure 3.16)
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It was shown beyond proof-of-concept that a dynamically typed language can be used 

to overcome the limitations of current machine vision systems.

7.2 Future Work

Although the Ruby programming language was used, the field of machine vision could 

greatly benefit from any programming language which has equal or stronger support 

for meta-programming (e.g. Racket (former PLT Scheme)). Computer programs imple

mented in a language such as LISP, Racket, or Clojure are specified using s-expressions. 

That is, the program is itself data which can be manipulated by another part of the pro

gram. This facilitates implementation of optimisation algorithms which would be hard to 

do in currently popular programming languages. For example generating optimal code for 

a convolution with a certain filter and a certain number of dimensions. Another example 

would be to implement a garbage collector which could imitate the static memory layout 

for better performance of the resulting program.

Recently GPGPUs have become popular for doing parallel computing. Using meta

programming it is possible to avoid implementing large amounts of hardware-dependent 

code to access APIs such as OpenCL1 in order to utilise GPGPUs. Future work could 

be to transparently integrate GPGPU computation the same way a JIT compiler can be 

integrated as shown in this thesis. The difference would be that the JIT compiler would 

generate calls to the OpenCL API instead of generating C code. Note that data transfers 

rates from main memory to the GPU and back are low on current architectures. That is, 

it is important to compile large expressions and avoid round-trips to the main memory. 

Lazy operations as implemented in this thesis could be used to address this problem.

The thesis was mostly focused on a more rigorous formal understanding of basic im

age processing operations and feature extraction. Future should address the problem of 

implementing more complex algorithms such as FFT or RANSAC in a similar fashion 

in order to build complex machine vision systems for tasks such as panorama stitching 

or SLAM. Developing a more rigorous formal understanding of existing machine vision 

algorithms might help to discover more commonalities. By understanding how different 

algorithms are related, one can avoid redundant work when developing machine vision 

systems. Furthermore by aligning formal descriptions and actual implementation with 

each other, the work flow becomes more efficient. That is, there should be no need to first 

specify a prototype system in an abstract language, and then have it specified again in the 

programming language used to implement the actual system.

Figure 7.2 explains why a popular programming language can remain popular for a 

long time even if it is obviously deficient. Developers tend to choose a programming 

languages with a familiar syntax. That means their choice is biased toward one of the 

popular programming languages or a language which looks similar. But if many deve-

Jhttp://www.khronos.org/opencl/
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familiar syntax

more users more users

more libraries

Figure 7.2: Vicious cycle leading to programming languages becoming entrenched

lopers choose a particular programming language, they will write many programming 

libraries for it which in turn attracts more users. That is, the individual choice of pro

gramming language is forced by the availability of libraries available for that language.

It is important to be aware of the factors influencing once’s choice when selecting 

a programming language for developing a machine vision system. A programming lan

guage offering superior abstractions makes it possible to develop a more rigorous under

standing of existing machine vision algorithms and capture it for future work. Not only 

will it make the library more generic and powerful but it will also make it easier for users 

of future programming languages to reuse the code.

S-expression syntax is more verbose than Ruby syntax for small programs. For exam

ple the Racket equivalent to the Ruby term “2 + 3” is “(+ 2 3 )”. Ruby could be seen as 

a programming language which offers less meta-programming than Racket but provides a 

more readable syntax. Future research could be into developing programming languages 

which have a regular structure and are open to modification like Racket and are readable 

like Ruby. This work could take inspiration from the way the numerical libraries of Ruby 

are implemented.
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Appendix

A.1 Connascence

“Connascence” is a term introduced by Weirich (2005, 2009). It is defined as follows

C onnascence occurs betw een tw o softw are com ponents w hen ...

•  It is possible to postulate that som e change in one com ponent requires a change 

in the other com ponent to preserve overall correctness.

•  It is possible to postulate som e change that require both com ponents to change 

together to preserve overall correctness.

Weirich ( 005) gives examples of different types of connascence ordered by increas

ing degree of connascence

• Connascence of Name (static)

•  Connascence of Type (static)

• Connascence of Meaning (static)

• Connascence of Algorithm (static)

• Connascence of Position (static)

• Connascence of Execution (dynamic)

• Connascence of Timing (dynamic)

• Connascence of Value (dynamic)

• Connascence of Identity (dynamic)
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As a general rule it is desirable to reduce the degree of connascence in a system. 

Weirich (2009) uses several examples to illustrate how a connascence of high degree can 

be converted to a connascence of lower degree.

A.2 Linear Least Squares

The Gauss-Markov theorem states that given a regression model with uncorrelated zero-

mean errors of equal variance, the linear least squares method is the best linear unbiased

estimator. Any linear least squares problem can be formulated using a design matrix

and an observation vector b as shown in Equation A. 1.

9<x = £ + ? (A .l)

The popular LAPACK library provides single- and double-precision solvers for linear

systems. The LAPACK methods sgels1 and dgels2 are solvers for overdetermined as well

as under determined linear systems. Here only the case where the equation system is

overdetermined is discussed. In the overdetermined case a solution with minimal |e| is

desired. That is, the term shown in Equation A.2 is to be minimised.

J(x) = |e |2 = 6 t  e = (TYx -  b)1 CH x - b ) (A.2)

The minimum can be determined using the necessarv condition ^J(x) = 0  as
Sx 5

shown in Equation A.3.

SJ(x) Si^x1 <K T x -  2  x 1 fH T b + bT b) = 2  J-(T ‘H ?  -  2  9bT b (A.3)
Sx f  Sx 1

The linear least square estimate is obtained by solving for x.

x  — on Tv y XfH Tb (A.4)

A.3 Pinhole Camera Model

Figure A.l shows the pinhole camera model (Forsyth and Ponce, 2003). The object at

position x  = (xj X2 X3)T is projected onto the screen of the pinhole camera where it appears

at the position x'. The projection is a simple linear relation as shown in Equation A.5 and

lhttp://ww w.netlib.org/lapack/single/sgels.f
2http://www.netlib.org/lapack/double/dgels.f
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( —  known from camera calibration) 
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Figure A. 1: Pinhole camera model

Equation A.6 .

A x\

~T
Ax'2

~T

£ l
*3

£ 2

*3

(A .5) 

(A .6 )

As is the size of a camera pixel and f  is the focal length of the camera. That is, calibration 

of an ideal pinhole camera merely requires determining the ratio f /A s .

A.4 Planar Homography

Equation A.5 and Equation A .6  can be represented using 2D homogeneous coordinates 

by introducing the unknown variable A and an additional constraint for it as shown in 

Equation A .l  (Zhang, 2000).

, /
X 3 X.  =  —  X,

, iXt. X-, =   X2
2 As

Ax\ -  X\

« 3 ^ s R / { 0 } :
As

A = JC3
(A.7)

A € R/{0} : A X'2 =

V

f / A s  

0 

0

0  0

f / A s  0 

0

\ /  \  
Xi

x 2

/ UsJ

intrinsic parameters

The parameters characterising the camera are also known as the intrinsic parameters
(Zhang, 2000).
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With homogeneous coordinates introducing an additional rotation and translation is 

straightforward. Equation A .8  shows the modified homogeneous equation.

- .K

< / 34
33 e R/{0} : A 4 -

J , V

< / ^ /
4

<=>33 6  R/{0) : 3 4 =

4 ,

f / A s  

0  
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f  /A s  
0  

0

0  0  

f / A s  0 

0  1
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f / A s  0  

0  1

t*i i rn  r 13
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7*31 7*32 7*33

\ (  \  
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N ^ 1 1  ^ 2  rl3 t ix

7*21 ^ 2 2  ^*23 ^2

1,7*31 r32 r33 t3

( \ 
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x 2

*3

v l /

(A.8 )

extrinsic parameters

Equation A .8  also shows how the rotation and translation can be represented with a single 

matrix if 3D homogeneous coordinates are used (Zhang, 2000). Rotation and translation 

of the camera can be different for each picture and the parameters are called extrinsic 

parameters (Zhang, 2000).

The planar calibration grid gives n correspondences of picture coordinates and 3D 

scene coordinates located on a plane in 3D space. That is, instead of a single pair (x, x' 

there are n pairs of points as shown in Equation A.9

/  ,  \ (  ,  \ ( ,  \ /  , \
/ \  
X]

/ \  
7771 1

( \ 
77721

( \ 
777,,1

x \ is
m u m 21

, . . • ,
m n  1 and x 2 is 77712 9 77722 ? • • • y 777, ,2

A> , m 'i2 , , m 2 2 , < < 2 j
<x3> , o , , o , ,  o ,

(A.9)

Each point pair shown in Equation A.9 is inserted into Equation A.8 . Equation A .8  

also is modified to take into account that in reality the coordinates of the projection will 

be distorted by noise (e,; ). The result is shown in Equation A. 10 where i e { 1 ,2 ,.. .  ,n )

(Zhang, 2000).

33/ e R/{0} : A,

/ / , \ 
m i\

/  N
f/1

\ /

m'2 + f/2 =

VI 1 J > V

f / A s  0 0

0 f / A s  0 

0 0 1

7*11 7*12 7*13 t j

7*21 7*22 7*23 t2

7*31 7*3 2 7*33  t3)

( \ mn

777/2

0

1

(A. 10)

=:??'

<=>3/1/ € R/{0} : 3/

/ ( \ 
€i 1

\ /

m ’a + 5*2 =

V 1 J , o , / V

f / A s  0 0

0 f / A s  0 

0  0  1

\ (
7*11 7*12 *r /  \  

777/1

7*21 7*22 ^2 777/2

/ v  31 7*32 ?3 , i J
(A .l 1)

= : rH

The planar homography 93 is the product of the unknown camera intrinsic matrix and 

the unknown extrinsic camera matrix R ' as shown in Equation A. 11. The equation is
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reformulated as shown in Equation A. 12.

(A. 10) <=>34,-e R/{0} :

<=> (h31 m,i + h32 mi2 + ^33)

/ (  ,  \  
m .  1 ( \ 

t i l
\

rh u h u h X3 (  \ 
m n

m 'i2 + til = hi\ h n ^ 3 3 m i

V{  1 J / h32 h33> , 1 ,

/ ( , \  m . 1
+

( \  
tn

\

V,m \i> j V

h\\ h \2 h X3
\ / \ 

m i

m 2
/

. 1 ,

(A. 12)

It is not possible to isolate the error 6(y- in Equation A. 12. However assuming that Ax «  

d2 ~ . . .  ~ one can in tro d u c e ^  as shown in Equation A. 13 in order to isolate the error 

term (Zhang, 2000).

(h3 1 mn + h32 mi2 + h33)
( , \ (~ \
1711 tn11 + —

t i2} V

(— \ /
51

\ e i2 ;

h\\ h \2 h \3 
h2\ h2 2 h33

\
/ \ 
mn
mi2

/
K 1 >

h\\ h \2 h \3 
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\ m iiJ

(A. 13)

The errors 'eiJ are assumed to be uncorrelated, have zero mean, and have equal variance. 

That is, the least square estimator is the best linear unbiased estimator for the camera 

matrix 7Z (Gauss-Markov theorem).

The complete linear least squares problem can be formulated by collecting the equa

tions in a large matrix as shown in Equation A. 14 and by stacking the coefficients of the 

matrix 7Z in the vector h.
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< 0 0 0 mn 1 m i 1 -m ' 2 mnX ~ K i  m"2 - < 2  >
=:h

< t)il;

(A. 14)

= : M

Additionally the constraint \\h\\ -  / x ^  0 is introduced in order to avoid the trivial solution. 

That is, the problem now is to find h e Ry so that \\Mh\\ is minimal and \\h\\ = fi.

The solution is to perform a SVD on M  as shown in Equation A. 15.

M  = V  Z V * (A. 15)
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The linear least squares solution is h -  n  vg where V9 is the right-handed singular vector 

with the smallest singular value erg (here /j. is an arbitrary scale factor). The final solution 

for the planar homography is shown in Equation A. 16.

K = i i

( \ 
V 9 1  V 9 2  V 9 3

V 9 4  V 9 5  V 9 6

V 9 7  V 9 8  V 9 9

(A. 16)

The planar homography "H is sufficient to correctly map points from the plane of the 

calibration grid to the screen.

A.5 “malloc” gem

The source code of the “malloc” Ruby extension is provided as PDF attachment.

• malloc-1.4.0.tgz

A.6 “multiarray” gem

The source code of the “multiarray” Ruby extension is provided as PDF attachment. 

• m ultiarray-1 .0 .1 .tgz

A.7 Miscellaneous Sources

A.7.1 JIT Example

require ’rubygems’ 
require ’multiarray’ 
include Hornetseye 
a = INT 5
b = Elementwise(proc { |x| -x }, :-@).new a 
r = Pointer(INT).new 
term = Store.new r , b
variables, values, skeleton = term.strip 
types = variables.collect { |var| var.meta }
labels = Hash[*variables.zip((® ... variables.size).to_a).flatten] 
descriptor = skeleton.descriptor labels
method_name = (’_ ’ + descriptor) . tr( ’ () ,+\-*/%-@?~&r<=>’,

’®123\456789ABCDEFGH’)
c = GCCContext.new ’extension’ 
f = GCCFunction.new c, method_name, *types 
subst = Hash[*variables.zip(f.params).flatten] 
skeleton.subst(subst).demand 
f.compile
args = values.collect { |arg| arg.values }.flatten 
GCCCache.send method_name, *args 
r
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A.7.2 Video Player

require ’rubygems’
require ’hornetseye_ffmpeg’
require ’hornetseye_xorg’
require ’hornetseye_alsa’
include Hornetseye
input = AVInput.new ARGV[8 ]
alsa = AlsaOutput.new ’default’, input.sample_rate, input.channels 
audio_frame = input.read_audio
XllDisplay.show((input.width * input.aspect_ratio).to_i, input.height,

:title => ARGV.first, :output => XVideoOutput) do |display| 
video_frame = input.read_video 
n = alsa.avail
while alsa.avail >= audio_frame.shape[1 ] 

alsa.write audio_frame 
audio_frame = input.read_audio 

end
t = input.audio_pos - (alsa.delay + audio_frame.shape[l]).quo(alsa.rate) 
delay = [input.video_pos - t, 8 ].max 
display.event_loop delay 
video_frame 

end

A.7.3 Normalised Cross-Correlation

class Node 
def avg

sum / size 
end
def sqr

self * self 
end
def corr(other)

(rfft * other.rfft.conj).irfft 
end
def zcorr(other)

zother = MultiArray.dfloat(*shape).fill!
zother[® ... other.shape[®] , ® ... other.shape[1 ]] = other 
corr zother 

end
def ma(*box)

iself = MultiArray.dfloat(*shape).fill!
iself[l ... shape[8 ], 1 ... shape[l]] = self[® ... shape[8 ] - 1 ,

® ... shape[1 ] - 1 ]
int = iself.integral
int[® ... shape[®] - box[8 ], 8 ... shape[1 ] - box[l]] + 

int[box[8 ] ... shape[Q], box[l] ... shape[l]] - 
int[® ... shape[8 ] - box[8 ], box[l] ... shape[l]] - 
int[box[8 ] ... shape[8 ], ® ... shape[l] - box[l]]

end
def ncc(other, noise) 
box = other.shape
zcorr(other - other.avg)[® ... shape[®] - box[8 ] ,

8 ... shape[l] - box[l]] /
Math.sqrt((sqr.ma(*other,shape) -

ma(*other.shape).sqr / other.size) *
(other - other.avg).sqr.sum + noise)
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end
end
image = MultiArray.load_ubyte ’scene.jpg’ 
template = MultiArray.load_ubyte ’template.png’ 
ncc = image.to_dfloat.ncc template.to_dfloat, 8 . 1  

shiftx, shifty = argmax { |i,j| ncc[i,j] } 
result1 = image / 2

result2 = MultiArray.ubyte(*image.shape).fill! 
result2 [shiftx ... shiftx + template.shape[8 ],

shifty ... shifty + template.shape[1 ]] = template / 2  

(resultl + result2 ).show

A.7.4 Camera Calibration

require ’rubygems’ 
require ’matrix’ 
require ’linalg’ 
require ’hornetseye_rmagick’ 
require ’hornetseye_ffmpeg’ 
require ’hornetseye_xorg’ 
require ’hornetseye_v412’ 
include Linalg 
include Hornetseye 
class Matrix 

def to_dmatrix 
DMatrix[ *to_a ] 

end
def svd

to_dmatrix.svd.collect { |m| m.to_matrix } 
end 

end
class Vector 

def norm
Math.sqrt inner_product(self) 

end
def normalise

self * (1 .® / norm) 
end
def reshape( *shape )

Matrix[*MultiArray[*self].reshape(*shape).to_a] 
end
def x( other )

Vector[self[1] * other[2] - self[2] * other[1],
self[2 ] * other[8 ] - self[8 ] * other[2 ],
self[8 ] * other[l] - self[l] * other[®]]

(2 .® / (norm + other.norm))
end

end
class DMatrix 

def to_matrix 
Matrix[ *to_a ] 

end 
end
class Node

def runs (threshold)
self >= dilate.major(threshold) 

end
def have(n, corners)
hist = mask(corners).histogram max + 1
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msk = hist.eq n 
if msk.inject :or

id = lazy(msk.size) { |i| i }.mask(msk)[8 ] 
eq id 

else 
nil 

end 
end
def abs2

real * real + imag * imag 
end
def largest

hist = histogram max + 1 

msk = hist.eq hist.max
id = lazy(msk.size) { |i| i }.mask(msk)[8 ] 
eq id 

end
def otsu(hist_size = 256) 

hist = histogram hist_size 
idx = lazy(hist_size) { |i| i } 
wl = hist.integral 
w2 = wl[wl.size - 1 ] - wl 
si = (hist * idx).integral 
s2 = to_int.sum - si
ul = (wl > 8 ).conditional sl.to_sfloat / wl, 8  

u2 = (w2 > 8 ).conditional s2 .to_sfloat / w2 , 8  

between_variance = (ul - u2 ) ** 2 * wl * w2 

max_between_variance = between_variance.max 
self > idx.mask(between_variance >= max_between_variance)[8 ] 

end 
end
def homography(m, ms) 

constraints = []
m.to_a.flatten.zip(ms.to_a.flatten).each do |p,ps| 

constraints.push [p.real, p.imag, 1 .8 , 8 .8 , 8 .8 , 8 .8 ,
-ps.real * p.real, -ps.real * p.imag, -ps.real] 

constraints.push [8 .8 , 8 .8 , 8 .8 , p.real, p.imag, 1 .8 ,
-ps.imag * p.real, -ps.imag * p.imag, -ps.imag]

end
Matrix^constraints].svd[2].row(8 ).reshape 3, 3 

end

CORNERS =8.3
W, H = ARGV[1].to_i, ARGV[2].to_i 
W2, H2 = 8.5 * (W - 1), 8.5 * (H - 1)
N = W * H 
SIZE = 21 
GRID = 7 
BOUNDARY = 19 
SIZE2 = SIZE.div 2 
fl, f2 = * ( 8  ... 2 ).collect do |k| 

finalise(SIZE,SIZE) do |i,j|
a = Math::PI / 4.® * k
x = Math.cos(a) * (i - SIZE2) - Math.sin(a) * (j - SIZE2)
y = Math.sin(a) * (i - SIZE2) + Math.cos(a) * (j - SIZE2)
x * y * Math.exp( -(x**2+y**2) / 5.® ** 2) 

end.normalise -1.® / SIZE ** 2 .. 1.8 / SIZE ** 2 
end
input = AVInput.new ARGV.first
width, height = input.width, input.height
coords = finalise(width, height) { |i,j| i - width / 2 + Complex::I * (j 
pattern = Sequence[*(([1] + [8 ] * (W - 2) + [1] + [8 ] * (H - 2)) * 2)]
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o = Vector[] 
d = Matrix[]
XllDisplay.show do

img = input.read_ubytergb 
grey = img.to_ubyte
corner_image = grey.convolve fl + f2 * Complex::I
abs2 = corner_image.abs2

corners = abs2.nms CORNERS * abs2.max
otsu = grey.otsu
edges = otsu.dilate(GRID).and otsu.not.dilate(GRID)
components = edges.components
grid = components.have N, corners
result = img
if grid

centre = coords.mask(grid.and(corners)).sum / N.to_f 
boundary = grid.not.components.largest.dilate BOUNDARY 
outer = grid.and(boundary).and corners
vectors = (coords.mask(outer) - centre).to_a.sort_by { |c| c.arg } 
if vectors.size == pattern.size
mask = Sequence[‘(vectors * 2)].shift(vectors.size / 2).abs.nms(8 .8 ) 
mask[8 ] = mask[mask.size-1 ] = false
conv = lazy(mask.size) { |i| i }.mask(mask.to_ubyte.convolve(pattern.flip(®)) .eq(4)) 
if conv.size > ®

offset = conv[®] - (pattern.size - 1 ) / 2 

m = Sequence[Complex(-W2, -H2), Complex(W2, -H2),
Complex(W2, H2), Complex(-W2, H2)] 

rect = Sequence[‘vectors].shift(-offset)[® ... vectors.size].mask(pattern) + centre 
h = homography m, rect
v = h.inv * Vector[coords.real, coords.imag, 1.8]
points = coords.mask(grid.and(corners)) + Complex(width/2, height/2) 
sorted = (® ... N).zip((v[8 ] / v[2]).warp(points.real, points.imag).to_a,

(v[l] / v[2 ]).warp(points.real, points.imag).to_a). 
sort_by { |a,b,c| [(c - H2).round,(b - W2).round] }.collect { |a,b,c| a } 

m = finalise(W, H) { |i,j| i - W2 + (j - H2) * Complex::I }
h = homography(m, sorted.collect { |j| points[j] - Complex(width/2, height/2)}) 
o = Vector[‘(o.to_a + [-h[2, ®] * h[2, 1], h[2, 1] “  2 - h[2, ®] “  2])]
d = Matrix[*(d.to_a + [[h[®, ®] * h[®, 1] + h[l, ®] * h[l, 1]],

[h[®, ®] “  2 + h[l, ®] “  2 - h[®, 1] “  2 - h[l, 1 ] “  2 ]])]
fs = 1 .® / ((d.transpose * d).inv * d.transpose * o)[8 ]
if fs > ®

f = Math.sqrt fs
a = Matrix[[f, 8 .8 , 8 .8 ], [8 .8 , f, 8 .8 ], [8 .8 , 8 .8 , 1.8]]
rl, r2 , t = ‘proc { |r| ( 8  .. 2 ).collect { |i| r.column i } }.call(a.inv * h)
s = (t[2 ] >= 8 ? 2 . 8  : -2 .8 ) / (rl.norm + r2 .norm)
q = Matrix[(rl * s).to_a, (r2 * s).to_a, (rl * s).x(r2 * s).to_a].t
r = proc { |u,l,vt| u * vt }.call ‘q.svd 
v = h.inv * Vector[coords.real, coords.imag, 1.8]
result = (v[8 ] / v[2]).between?(-W2, W2).and((v[l] / v[2]).between?(-H2, H2)).

conditional img * RGB(8 , 1, 8 ), img 
gc = Magick::Draw.new
gc.fill_opacity(8 ).stroke(’red’).stroke_width 1 

for i in 8  ... N 
j = sorted[i]
gc.circle points[j].real, points[j].imag, points[j].real + 2 , points[j].imag 
gc.text points[j].real, points[j].imag, ”#{i+l}" 

end
gc.stroke 'black'
gc.text 3®, 3®, "f/ds = #{f}"
result = result.to_ubytergb.to_magick
gc.draw result
result = result.to_ubytergb
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end
end

end
end
result

end

A.7.5 Recognition of a rectangular marker

W, H = 328, 24®
THRESHOLD = 8 ®
SIGMA =1.5
ANGLE.BINS = 36
ORIENTATION_NOISE = 3
RANGE =18® .. 1888®
img = MultiArray.load_ubyte ’test.png’
grad_x, grad_y = img.gauss_gradient(SIGMA, 8 ), img.gauss_gradient(SIGMA, 1) 
arg = ((Math.atan2(grad_y, grad_x) /

Math::PI + 1) * ANGLE_BINS / 2).to_int % ANGLE_BINS 
norm = Math.hypot grad_x, grad_y 
components = (img <= THRESHOLD).components 
n = components.max + 1 

hist = components.histogram n 
mask = hist.between? RANGE.min, RANGE.max 
lazy(n) { |i| i }.mask(mask).to_a.each do |c| 

component = components.eq c
edge = component.dilate.and component.erode.not 
orientations = arg.mask edge
distribution = orientations.histogram ANGLEJBINS, :weight => norm.mask(edge) 
msk = distribution >= distribution.sum / (4 * ORIENTATION_NOISE) 
segments = msk.components 
if msk[8 ] and msk[msk.size - 1 ]

segments = segments.eq(segments.max).conditional 1 , segments 
end
if segments.max == 4

partitions = orientations.lut segments 
weights = partitions.histogram(5).major 1 
x = lazy(W, H) { |i,j| i + Complex::I * j }.mask edge 
centre = partitions.histogram(5, :weight => x) / weights 
diff = x - partitions.lut(centre)
slope = Math.sqrt partitions.histogram(5, :weight => diff ** 2) 
corner = Sequence[ * ( 8  .. 3).collect do |i| 

il, i2 = i + 1, (i + 1) % 4 + 1
1 1 , al, 1 2 , a2 = centre[il], slope[il], centre[i2 ], slope[i2 ]
( 1 1  * al.conj * a2 - 1 2  * al * a2 .conj -
ll.conj * al * a2 + 1 2 .conj * al * a2 ) /
( al.conj * a2 - al * a2 .conj )

end]
# Sequence(DCOMPLEX):
# [ Complex(262.8, 117.7), Complex(284.2, 152.4), ... ]
# . . .  

end
end

The dominant gradient orientations are estimated by creating a gradient orientation his

togram with 36 bins (“d i s t r ib u t io n ”) and thresholding it (“msk”). The components of 

the resulting ID binary array are labelled (“segm ents”). The variable “p a r t i t i o n s ” is a
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ID array with the label of each edge pixel. The coordinates of each edge pixel are rep

resented as complex numbers (“x”). The centre of each edge is determined by taking a 

histogram of the labels and using the pixel coordinates as weights (“c e n tre ”).

The orientation of each edge is determined by computing a complex number repre

senting the vector to the centre of the edge for each edge pixel (“d i f f ” ), squaring that 

number, accumulating the numbers for each edge, and taking the square root of the result 

for each edge (“s lo p e”). Using squares of complex numbers takes care of the ambiguous 

representation of the edge’s orientation (i.e. vectors with angle a  and a  + n  can be used 

to represent the same edge orientation). This ensures that the vectors of an edge, which 

point in opposing directions, accumulate instead of cancelling each other out (the method 

was inspired by Biilow (1999) where a similar method is used to deal with the ambiguity 

of structure tensors).

The intersections of the four edges are the corners of the rectangle (“c o rn e r”). The 

corners can be used to determine a planar homography (see Appendix A.4). If the ratio 

of focal length to pixel size is known from camera calibration (see Section 6.2.8 .2), it is 

also possible to estimate the 3D pose of the marker (i.e. separate the camera intrinsic and 

extrinsic parameters).

A.7.6 Constraining Feature Density

require ’rubygems’ 
require "hornetseye_v412’ 
require ’hornetseye_xorg’ 
include Hornetseye 
class Node

def features(grad_sigma = 1.8, cov_sigma = 2.8, k = 8.85)
gx, gy = gauss_gradient(grad_sigma, 8 ), gauss_gradient(grad_sigma, 1 ) 
cov = [gx ** 2 , gy ** 2 , gx * gy]
a, b, c = cov.collect { |arr| arr.gauss_blur cov_sigma } 
trace = a + b
determinant = a * b - c * * 2  

determinant - k * trace ** 2 

end
def maxima(threshold)

(self >= max * threshold).and eq(dilate) 
end 

end
BLOCK = 2 ®
THRESHOLD = 8.881
input = V4L2Input.new(’/dev/video®’) { [YUY2, 32®, 248] } 
w, h = input.width, input.height
m, n = w / BLOCK, h / BLOCK
x®, y® = (w - m * BLOCK) / 2, (h - n * BLOCK) / 2
warp = [lazy(BLOCK, BLOCK, m * n) { |i,j,k| i + x® + (k % m) * BLOCK },

lazy(BLOCK, BLOCK, m * n) { |i,j,k| j + y® + (k / m) * BLOCK }]
XIIDisplay.show do

img = input.read_ubytergb 
features = img.to_ubyte.features 
warped = features.warp *warp
maxima = argmax { |i,j| lazy { |k| warped[i,j,k] } } 
xp = lazy { |±| x® + maxima[8 ][i] + (i % m) * BLOCK }
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yp = lazy { |i| y® + maxima[l][i] + (i / m) * BLOCK } 
mask = features.maxima(THRESHOLD).warp xp, yp 
x, y = xp.mask(mask), yp.mask(mask)
[x, y].histogram(w, h).to_bool.dilate.conditional RGB(255, ®, ®), img 

end

A.7.7 SVD Matching

require ’rubygems’ 
require ’hornetseye_v412’ 
require ’hornetseye_ffmpeg’ 
require ’hornetseye_linalg’ 
require ’hornetseye_xorg’ 
require ’hornetseye_rmagick’ 
require ’matrix’ 
include Linalg 
include Hornetseye 
class Node

def features(grad_sigma = 1.8, cov_sigma = 2.8, k = 8.85)
gx, gy = gauss_gradient(grad_sigma, 8 ), gauss_gradient(grad_sigma, 1 ) 
cov = [gx * * 2 , gy ** 2 , gx * gy]
a, b, c = cov.collect { |arr| arr.gauss_blur cov_sigma }
trace = a + b
determinant = a * b - c * * 2  

determinant - k * trace ** 2  

end
def maxima(threshold)

(self >= max * threshold).and eq(dilate) 
end
def svd

to_dmatrix.svd.collect { |m| m.to_multiarray } 
end
def x(other)

(to_dmatrix * other.to_dmatrix).to_multiarray 
end 

end
SIGMA =48.®
GAMMA =8.4 
BLOCK = 2®
PATCH = 5 
CUTOFF = 8 . 8  

THRESHOLD =8.81
input = V4L2Input.new(’/dev/video®’) { [YUY2, 32®, 248] } 
w, h = input.width, input.height
m,  n = w / BLOCK, h / BLOCK
x®,  y® = (w - m * BLOCK) / 2, (h - n * BLOCK) / 2
warp = [lazy(BLOCK, BLOCK, m * n) { |i,j,k| i + x®  + (k % m) * BLOCK },

lazy(BLOCK, BLOCK, m * n )  { |i,j,k| j + y ® +  ( k / m )  * BLOCK }]
patch = [lazy(PATCH, PATCH) { |i,j| i - PATCH / 2 },

lazy(PATCH, PATCH) { |i,j| j - PATCH / 2 }]
x_old, y_old, descriptor_old, variance_old = nil, nil, nil, nil 
XllDisplay.show do

img = input.read_ubytergb 
features = img.to_ubyte.features 
warped = features.warp *warp
maxima = argmax { |i,j| lazy { |k| features.warp(*warp)[i,j,k] } } 
xp = lazy { |x| x® + maxima[8 ][i] + (i % m) * BLOCK }
yp = lazy { |i| y® + maxima[l][i] + (i / m) * BLOCK }
mask = features.maxima(THRESHOLD).warp xp, yp
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x, y = xp.mask(mask), yp.mask(mask)
descriptor = img.to_ubyte.warp lazy { |i,j,k| x[k] + patch[8][i, j] },

lazy { Ii,j ,k| y[k] + patch[l][i, j] }
descriptor -= lazy { |k| descriptor[k].sum } / PATCH “  2.®
variance = finalise { |i| Math.sqrt (descriptor[i] “  2).sum } 
result = [x, y].histogram(w, h).to_bool.dilate.conditional RGB(8, 8, 255), img 
if x_old and y_old and descriptor_old

covariance = finalise { |i,j| (descriptor[i] * descriptor_old[j]).sum } / 
lazy { |i, j| variance[i] * variance_old[j] } 

proximity = finalise do |i,j|
Math.exp -((x[i] - x_old[j]) “  2 + (y[i] - y_old[j]) “  2) / (2 * SIGMA “  2.8) 

end
similarity = finalise do |i,j|
Math.exp -(covariance[i,j] - 1) “  2.® / (2 * GAMMA “  2.8) 

end
measure = proximity ‘ similarity 
t, d, ut = ‘measure.svd
e = lazy(*d.shape) { |i,j| i.eq(j).conditional 1, 8 } 
s = t.x(e).x(ut)
max_col = argmax { |j| lazy { |i| s[j, i] } }.first 
max_row = argmax { |j| lazy { |i| s[i, j] } }.first
mask_col = [lazy(s.shape[8]) { |i| i }, max_row].histogram(*s.shape) > 8 
mask_row = [max_col, lazy(s.shape[1]) { |i| i }],histogram(*s.shape) > 8 
q = mask_col.and(mask_row).and measure >= CUTOFF 
gc = Magick::Draw.new 
gc.stroke ’red’ 
gc.stroke_width 1
a, b = lazy(*d.shape) { |i,j| i }.mask(q), lazy(*d.shape) { |i,j| j }.mask(q) 
a.to_a.zip(b.to_a).each do |i,j|

gc.line x[i], y[i], x_old[j], y_old[j] 
end
img = result.to_ubytergb.to_magick 
gc.draw img
result = img.to_ubytergb 

end
x_old, y_old, descriptor_old, variance_old = x, y, descriptor, variance 
result 

end
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