
Evolving text classification rules with genetic
programming

HIRSCH, Laurence <http://orcid.org/0000-0002-3589-9816>, SAEEDI,
Masoud and HIRSCH, Robin

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/6620/

This document is the Accepted Version [AM]

Citation:

HIRSCH, Laurence, SAEEDI, Masoud and HIRSCH, Robin (2005). Evolving text
classification rules with genetic programming. Applied Artificial Intelligence: An
International Journal, 19 (7), 659-676. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

 1

Article Title: Evolving Text Classification Rules with Genetic Programming

Authors:

1. Laurence Hirsch,

School of Management

Royal Holloway University of London

Egham

Surrey

TW20 OEX

Email: Laurence.Hirsch@rhul.ac.uk

2. Masoud Saeedi

School of Management

Royal Holloway University of London

Egham

Surrey

TW20 OEX

3. Robin Hirsch

Department of Computer Science

University College London

Gower Street

London WC1E 6BT

Abbreviated Title: Evolving Text Classification Rules with GP

 2

Evolving Text Classification Rules with Genetic

Programming

Abstract.

We describe a novel method for using Genetic Programming to create compact

classification rules using combinations of N-Grams (character strings). Genetic

programs acquire fitness by producing rules that are effective classifiers in terms of

precision and recall when evaluated against a set of training documents. We describe

a set of functions and terminals and provide results from a classification task using

the Reuters 21578 dataset. We also suggest that the rules may have a number of

other uses beyond classification and provide a basis for text mining applications.

Key Words: text classification, Genetic Programming, N-Gram.

1 Introduction

Automatic text classification is the activity of assigning pre-defined category labels to

natural language texts based on information found in a training set of labelled

documents. In recent years it has been recognised as an increasingly important tool

for handling the exponential growth in available online texts and we have seen the

development of many techniques aimed at the extraction of features from a set of

training documents, which may then be used for categorisation purposes.

In the 1980’s a common approach to text classification involved humans in the

construction of a classifier, which could be used to define a particular text category.

Such an expert system would typically consist of a set of manually defined logical

rules, one per category, of type

 3

if {DNF formula} then {category}

A DNF (“disjunctive normal form”) formula is a disjunction of conjunctive clauses;

the document is classified under a category if it satisfies the formula i.e. if it satisfies

at least one of the clauses. An often quoted example of this approach is the

CONSTRUE system (Hayes et al. 1990), built by Carnegie Group for the Reuters

news agency. A sample rule of the type used in CONSTRUE to classify documents in

the ‘wheat’ category of the Reuters dataset is illustrated below.

if ((wheat & farm) or

(wheat & commodity) or

(bushels & export) or

(wheat & tonnes) or

(wheat & winter & ¬ soft))

then

WHEAT else ¬ WHEAT

Such a method, sometimes referred to as ‘knowledge engineering’, provides accurate

rules and has the additional benefit of being human understandable. That is, the

definition of the category is meaningful to a human, thus producing additional uses of

the rule including verification of the category. However the disadvantage is that the

construction of such rules requires significant human input and the human needs some

knowledge concerning the details of rule construction as well as domain knowledge

(Apt´e et al. 1994).

Since the 1990’s the machine learning approach to text categorisation has become the

dominant one. In this case the system requires a set of pre-classified training

documents and automatically produces a classifier from the documents. The domain

expert is needed only to classify a set of existing documents. Such classifiers, usually

built on the frequency of particular words in a document (sometimes called ‘bag of

words’), are based on two empirical observations regarding text:

 4

1. the more times a word occurs in a document, the more relevant it is to the topic

of the document.

2. the more times the word occurs throughout the documents in the collection the

more poorly it discriminates between documents.

A well known approach for computing word weights is the term frequency inverse

document frequency (tf-idf) weighting (Salton and McGill 1983) which assigns the

weight to a word in a document in proportion to the number of occurrences of the

word in the document and in inverse proportion to the number of documents in the

collection for which the word occurs at least once, i.e.













i

ikik
n

N
fa log

where aik is the weight of word i in document k, fik is the frequency of word i in

document k, N the number of documents in the collection and ni equal to the number

of documents in which ai occurs at least once. A classifier can be constructed by

mapping a document to a high dimensional feature vector, where each entry of the

vector represents the presence or absence of a feature (Salton et al. 1996; Joachims,

1998). In this approach, text classification can be viewed as a special case of the

more general problem of identifying a category in a space of high dimensions so as to

define a given set of points in that space. This is usually accompanied by some form

of feature reduction such as the removal of non-informative words (stop words) and

by the replacing of words by their stems, so losing inflection information. Such

sparse vectors can then be used in conjunction with many learning algorithms for

computing the closeness of two documents and quite sophisticated geometric systems

have been devised (Bennet et al. 2000; Anthony 2003).

Although this method has produced accurate classifiers there are a number of

drawbacks from the machine learning approach as compared to a rule based one.

1. All the word order information is lost; only the frequency of the terms in the

document is stored.

 5

2. The approach cannot normally identify word combinations, phrases or multi-

word units e.g. ‘information processing’ (Pickens and Croft 2000).

3. If word stemming is used inflection information is also lost.

4. The classifier (the vector of weights) is not human understandable.

In this paper we describe a method to evolve compact human understandable rules

using only a set of training documents. The system uses genetic programming

(GP)(Koza 1992) to produce a synthesis of machine learning and knowledge

engineering with the intention of incorporating advantageous attributes from both.

The rules produced by the GPs are based on N-Grams (sequences of N letters) and are

able to use a wide variety of features including word combinations and negative

information for discrimination purposes. In the next section, we introduce GP and

review previous classification work with N-Grams and with phrases. We then

provide information concerning the implementation of our application and the initial

results we have obtained on a text classification task.

1.1 GP Background

GP is a widely used method for automatically producing computer programs based on

a high level specification of a particular problem known as the fitness test. Like the

Genetic Algorithm (GA) GP is based on the principle of natural selection namely

variation in reproductive success correlated with variation in a trait. Unlike GAs the

individuals in a GP population are in the form of executable computer programs. GP

works by iteratively applying genetic transformations, such as crossover and

mutation, to a population of individual programs with the intention of creating better

performing individuals as measured by the fitness test in subsequent generations.

Although GP has been used in a textual environment (Clack et al. 1997; Bergström et

al. 2000) it has not previously been used to evolve classifiers based on evolving N-

Gram patterns.

 6

1.2 N-Grams

A character N-Gram is an N-character slice of a longer string. For example the word

INFORM produces the 5-grams _INFO, INFOR, NFORM, FORM_ where the

underscore represents a blank. The key benefit of N-Gram-based matching derives

from its very nature: since every string is decomposed into small parts any errors that

are present tend to affect only a limited number of those parts leaving the remainder

intact. The N-Grams for related forms of a word (e.g., ‘information’, ‘informative’,

‘informing’, etc.) automatically have a lot in common. If we count N-Grams that are

common to two strings, we get a measure of their similarity that is resistant to a wide

variety of grammatical and typographical errors (Cavnar and Trenkle 1994;

Damashek 1995). The N-Gram representation has proven a robust alternative to word

stemming, having the further advantage of requiring no linguistic preparations (Biskri

and Delisle 2002). Since N-Grams are simply defined as sequences of characters they

constitute a valuable basis for a language-independent text classifier.

A further useful property of N-Grams is that the lexicon obtained from the analysis of

a text in terms of N-Grams of characters cannot grow larger than the size of the

alphabet to the power of N. Furthermore, because most of the possible sequences of

N characters rarely or never occur in practice for N>2, a table of the N-Grams

occurring in a given text tends to be sparse, with the majority of possible N-Grams

having a frequency of zero even for very large amounts of texts. For example, (Ebert

et al. 1997) found that 40 MB of text from the Wall Street Journal contained only

2.7*10
5
 different 5-grams out of a possible 7.5*10

18,
 based on an alphabet of 27

characters. Tauritz (2000) and later Langdon (2000) used this property to build an:

adaptive information filtering system based on weighted trigram (N=3) analysis in

which genetic algorithms were used to determine weight vectors. An interesting

modification of N-Grams is to generalise N-Grams to substrings which need not be

contiguous. Lodhi et al. (2002) define a learning algorithm that uses non-contiguous

substrings of N characters, but with a penalty for any gaps occurring between the N

characters.

 7

1.3 Phrases

The notion of N-Grams of words i.e. sequences or occurrences of N contiguous and

non-contiguous words (with N typically equals to 2, 3, 4 or 5) has produced good

results both in language identification, speech analysis and in several areas of

knowledge extraction from text (Feldman et al. 1998; Ahonen­Myka 1999; Karanikas

et al. 2000; Merkel and Andersson 2000; Tan et al. 2002). Pickens and Croft (2000)

make the distinction between ‘adjacent phrases’ where the phrase words must be

adjacent and Boolean phrases where the phrase words are present anywhere in the

document. They found that adjacent phrases tended to be better than Boolean phrases

in terms or retrieval relevance but not in all cases. Restricting a search to only

adjacent phrases means that some retrieval information is lost. The implementation

described below is able to make use of both adjacent and Boolean phrases if they are

found to aid discrimination between documents.

2 Implementation

When building text classifiers there are usually a variety of options regarding pre-

processing of documents and particular parameters values. Examples include whether

to remove stop words, to stem words to a common form, to use words or N-Grams as

terms and whether to search for single terms, phrases or particular sequences of terms.

Where N-Grams or phrases are used the length of the phrase or N-Gram must also be

determined. Although many of these options have been researched (Berleant and Gu

2000) it is often the case that effects on the performance of the classifier will depend

on the particular classifier and the particular text environment (Sebastini 2002). We

have developed a GP system where many of these decisions are either made

redundant or are taken by the individual GPs.

We summarise the key features below:

 The basic unit (or phrase unit) we use is an N-Gram (sequence of N

characters).

 N-Gram based rules are produced by GPs and evaluate to true or false for a

particular document.

 8

 Boolean functions such as EXISTS, AND, OR and NOT are included in the

GP function set.

 Each GP produces a rule, which evaluates to true or false for any document (or

text unit).

 A classification rule must be evolved for each category c. Fitness is then

accrued for GPs producing classification rules which are true for training

documents in c but are not true for documents outside c. Thus the documents

in the training set represent the fitness cases.

2.1 Data Set

The task involved categorising documents selected from the Reuters-21578 test

collection which has been a standard benchmark for the text categorisation tasks

throughout the last ten years (Sebastiani 2002). Reuters-21578 is a set of 21,578 news

stories which appeared in the Reuters newswire in 1987, classified according to 135

thematic categories, mostly concerning business and economy. Generally researchers

have split the documents in the collection into a training set used to build a classifier

and a test set used to evaluate the effectiveness of that classifier. With reference to

this collection we should note that:

 The distribution of the documents across the categories is highly skewed, in

the sense that some categories have very few documents classified under them

while others have thousands.

 There are several semantic relations among the categories (e.g. there is a

category WHEAT and a category GRAIN), but there is no explicit hierarchy

defined on the categories.

 The collection is also fairly challenging for text categorisation systems since

several categories have (under any possible split between training and test

documents) very few training examples, making the inductive construction of

a classifier a hard task.

 9

Unfortunately, the benefits to text classification research that Reuters-21578 has

brought about have been limited by the fact that different researchers have used

different sub-collections and tested their systems on one of these sub-collections only.

The most common direction for extracting a sub-collection out of Reuters-21578 has

been that of restricting the attention to a subset of categories only. The subsets that

have been most frequently used in text categorisation experimentation are:

 The set of the 10 categories with the highest number of positive training

examples (often referred to as the ‘Reuters top 10’).

 The set of the 90 categories with at least one positive training example and one

positive test example.

 The set of the 115 categories with at least one training example.

Systems that have been tested on these different Reuters-21578 subsets or with

different test/train splits are thus not readily comparable (Yang and Liu 1999). In our

experiments we use the “ModApt´e split”, a partition of the collection into a training

set and a test set that has been widely adopted by text categorisation experimenters.

The top 10 categories are also widely used (for example (Lodhi et al. 2002)) and these

are the categories we adopt here. As an illustration of the problems of using different

subsets we found that the ‘wheat rule’ shown above is not an effective classifier for

the wheat category when used on the top 10 subset although it was reported as a

highly accurate classifier for the particular subset used by the CONSTRUE system.

2.2 Pre-Processing

Before we start the evolution of classification rules a number of pre-processing steps

are made.

1. All the text in the document collection is placed in lower case.

2. Numbers are replaced by a special character and non-alphanumeric characters

are replaced by a second special character.

 10

3. All the documents in the collection are searched for N-Grams which are then

stored in sets for size of N=2 to N=max_size. The size of these sets is reduced

by requiring that an N-Gram occur at least 4 times before being included in a

set.

The use of N-Grams as features makes word stemming unnecessary and the natural

screening process provided by the fitness test means that a stop list is not required.

Note that only step 3 is actually essential for the GP system to run. Including upper

case letters and numbers would significantly increase the search space of the GP

system but could provide useful features for discriminating between documents in

particular domains. Note also that it may be useful to separate training documents in

the category of the evolving classifier from all other documents in step 3. We can

then specify N-Grams to be used for positive information from those to be used for

negative information i.e. in conjunction with a NOT function (see below).

2.3 Fitness

GPs are set the task of assembling single letters into N-Gram strings and then

combining N-Grams with Boolean functions to form a rule. The rule is then

evaluated against the documents in the training set. Each rule can be tested against

any document and will return a Boolean value indicating whether the rule is true for

that document. An example of a rule produced by a GP evolving a classifier for the

crude category of the Reuters 21578 is

(AND (EXISTS crude) (EXISTS (OR nerg barr)))

For this rule to be true for a document the string ‘crude’ AND either the string ‘nerg’

OR ‘barr’ must be substrings of that document. Note that the last two N-Grams are

substrings of the words ‘energy’ and ‘barrel’.

A classification rule must be evolved for each category c. Each rule is actually a

binary classifier, that is it will classify documents as either in the category or outside

 11

the category. When evolving a rule for a particular category c the fitness depends on

the number of documents in the category where the rule is true and the number of

documents outside the category where the rule is true.

In information retrieval and text categorisation the F1 measure is commonly used for

determining classification effectiveness and has the advantage of giving equal weight

to precision and recall (Van Rijsbergen 1979). F1 is given by









),(2
),(1F

where:

Recall ()= the number of relevant documents returned/the total number of

relevant documents in the collection

Precision ()= the number of relevant documents returned /the number of

documents returned.

F1 also gives a natural fitness measure for an evolving classifier. The fitness of an

individual GP is therefore assigned in the following way:

1. evaluate the rule produced by the GP against all documents in the training set.

2. calculate precision, recall and F1 by counting the documents where the rule is

true in the category and outside the category for which the classifier is being

evolved.

3. compute standardised fitness as 1 – F1 so that 0 is given to the most fit

individual (a perfect classifier for that category).

 12

2.4 GP Types

We use a strongly typed tree based GP (Montana 1995) system with types shown in

Table 1:

A critical prerequisite of a GP system is that every program in the population is

executable i.e. will not crash. In most GP systems type mismatch errors are avoided

by requiring that all functions and terminals are of the same type (only one type is

allowed in any GP). In strongly typed GP a set of types can be allowed but when a

GP is created or perturbed it is necessary for the system to ensure that any function is

passed values of a legal type as arguments. In our system each GP will output a rule

returning a Boolean value when evaluated against a document but will include string

values as part of the rule.

2.5 GP terminals

Terminals in GP are the leaf nodes of a program tree and can be thought of as

functions of arity 0. For example in the program:

(OR (EXISTS aize) (EXISTS corn))

the values ‘aize’ and ‘corn’ are the GP terminals and OR and EXISTS are the

functions. EXISTS takes a String argument and returns a Boolean value whilst OR

takes two Boolean values and returns a Boolean value. Terminals are most commonly

numeric in GP, however in our system we use the following character literals stored

as string values.

26 lower case alphabetic characters (a-z).

“~” meaning the space character

“#” meaning any number.

 13

“^” meaning any non-alphanumeric character.

Note that for particular domains it may be useful to include numbers (still stored as

strings), upper case characters and other special characters although this will increase

the search space of the GP system.

2.6 GP Functions

The GPs are provided with protected string handling functions for combining

characters into N-Gram strings and concatenating N-Grams into a longer N-Gram.

Most combinations of letters above an N-Gram size of 2 are unlikely to occur in any

text, for example where N-Gram size =6 only 0.001% of possible N-Grams are found

in the Reuters 21578 (see Figure 1.).

We therefore guide the GPs through the vast search space of possible N-Gram

patterns by the provision of protected ‘EXPAND’ function. The function initially

forms a new N-Gram by combining two N-Grams (N-Gram1 and N-Gram2). A new

N-Gram NewN-Gram is formed by appending N-Gram2 to N-Gram1. If the NewN-

Gram is of length l the EXPAND function checks if the NewN-Gram is in the set of

N-Grams of size l originally extracted from all the text in the all the training

documents used. If it is found in this set NewN-Gram is returned. If it is not found,

i.e. the N-Gram did not occur in the documents of the training set, the next N-Gram in

the set (in alphabetical order) is returned. If the set is empty the original N-Gram N-

Gram1 is returned. Note that the ‘EXPAND’ function will not return an N-Gram

consisting of a sequence of characters which never occurs in the training data. The

function is summarised by the pseudo code below

 14

SetOfL-Grams = the set of N-Grams of length L found in

documents from the training set

EXPAND (N-Gram1, N-Gram2)

 NewN-Gram = (concatenate N-Gram1, N-Gram2)

 L = (sizeOf NewN-Gram)

 IF (IsEmpty SetOfL-Grams)

 RETURN N-Gram1

 ELSE IF (IsMember NewN-Gram SetOfL-Grams)

 RETURN NewN-Gram

 ELSE

 RETURN Next N-Gram in SetOfL-Grams

We found that using an unprotected concatenation function it was quite rare for N-

Grams of size greater than 2 to be evolved. However using the EXPAND function

long N-Grams and words are easily and commonly evolved by combining shorter

strings. For example the string ‘wheat’ could be evolved in the following way

(EXPAND w (EXPAND (EXPAND h e) (EXPAND a b)))

The function initially creates the string ‘wheab’. This string is not found in the set of

N-Grams of size 5 originally extracted from the collection. The next N-Gram in the

set of 5-Grams is therefore returned (‘wheat’). The size of the N-Gram sets can be

reduced by extracting them only from the text of documents belonging to the category

for which the library is being evolved. This will greatly reduce the search space of

the GP system but some discriminating ability will be lost where a Boolean NOT

function is used in a GP produced rule.

Table 2 shows a basic set of GP functions for evolving classification rules. Note that

some Boolean functions take Boolean arguments whilst others take string arguments.

 15

Although the functions ANDSTR, ORSTR, and NOTSTR are not essential as they are

definable by the other operators, we include them as a way reducing tree sizes.

2.7 GP Parameters

The GP parameters used in our experiments are summarised in Table 3. All of these

are fairly standard in tree based GP systems. For those not familiar with these it is

worth noting the following points:

 An individual GP is selected according to fitness and can be simply copied

into the then next generation (reproduction) or part of the program may be

randomly changed (mutation) or most commonly parts of the program are

exchanged with another selected program to create two new individuals

(crossover). The probabilities of these 3 possibilities are determined by the

parameters in Table 3.

 Maximum tree depth parameters are usually critical in GP systems. Without

these evolution will tend to produce very large programs which will use

increasing amounts of machine resources and slow the entire system.

 Elitism is sometimes used in GP and GA and ensures that the best program or

programs are always copied into the next generation.

 Automatically Defined Functions (ADFs) provide a method for subroutine use

in a GP (Koza 1999).

3 Experiments

3.1 Objectives

The objective of our experiments were two fold:

1. To evolve effective classifiers against the text dataset (Reuters 21578

top 10).

 16

2. To automatically produce compact human understandable rules with

minimal features.

An alternative method using a library of rules tested on the 20 Newsgroup dataset is

described in (Hirsch et al. 2004).

3.2 Evolution

In generation 0 of any GP run we have a set of (800) randomly created rules and these

are all measured for fitness by testing them against the documents in the training set.

Although we are unlikely to see a useful rule produced at this stage there will be some

differentiation in performance between individuals in the population. These

differences are exploited so that better programs are more likely to participate in the

creation of the next generation. Figure 2 shows a fairly typical pattern of evolution

and in this case we see the emergence of a useful rule after approximately 20

generations. Precision is very high during the early evolution but is reduced as recall

improves. In other cases we see recall starting very high and reducing as precision

improves. In general we will see an improvement in F1 as measured against the

training set and a corresponding but lower F1 as measured against the test set.

3.3 Example of Rule Induction: Reuters 21578 Category Crude

In this section we included an example of the evolution of a rule for the Reuters

21578 category “crude”. Some good results can be evolved quite easily on this

category e.g. the individual

(EXISTS barre)

often appears in generation 0 and achieves an F1 measure of 0.65 against the test data.

The individual representing the rule

 17

(ORSTR cru barre)

has been evolved in generation 4 and achieves an F1 measure of 0.729 when

measured against the test data. The highly compressed rule using only 6 characters

(disjunction of 2 tri-grams) appeared after 15 generations and was able to achieve and

F1 measure of 0.802

(ORSTR rgy rud)

Note that ‘rgy’ is a substring of ‘energy’ and ‘rud’ is a substing of ‘crude’. The best

performing rule we have evolved in our experiments achieves a fitness (F1 measure)

of 0.826 is shown below.

(OR (OR (OR (ORSTR arrels~ rude~) (EXISTS opec~) (EXISTS energy) (EXISTS

oleum))))

3.4 Results

A classification rule was evolved for each category by using 4 GP runs and selecting

the best rule to emerge from the 4 runs. GP contains a number of random elements

and the use of multiple runs is commonly applied to improve the chances of finding a

useful solution. The rule produced by the best individual for each category is shown

in Table 4 together with the F1 measure (against the test set). Functions are shown in

upper case and N-Grams are shown in lower case. The blank character is indicated by

‘~’.

The global macro-average F1 is 0.717 which compares favourably with other

classifiers such as (Tan et al. 2002) although we should note that this is not a strictly

controlled comparison. Indeed our intention at this point is not to produce the best

classifier in terms of accuracy but to produce a good classifier which is based on a

small number of features in a human understandable form. As can be seen some rules

 18

are much easier to understand than others. However we argue that in contrast to other

methods of automatic classification such as Support Vector Machines even the more

complex rules are somewhat comprehensible to a human analyst.

GP’s have a tendency to ‘bloat’ and to produce long forms of equivalent shorter

programs by including redundant sections. For example the rule

(OR (ORSTR ~mone dollar~)(ORSTR ~mone dollar~))

is equivalent to the rule

(ORSTR ~mone dollar~)

One of the key objectives of our system was comprehensibility. We therefore applied

a simple form of parsimony pressure such that where the F1 fitness of two programs

was found to be equal the shorter program was assigned a better fitness value. With

this method we were able to evolve the rules shown in Table 4 although they are still

not necessarily in the most compact form. Comprehensibility may be improved by

using other forms of parsimony pressure on the GP evolution and by favouring longer

N-Grams or words.

Performance is also an important issue. In the experiments we described here to

evolve a classifier for a single category requires that 800 rules be evaluated against all

documents in the training set for each generation of every run. For our experiments

we were using fairly modest machine resources (processor speed of 800Mhz and

memory of 128MB) and we found that the average time to complete a run for one

category was just under 20 minutes.

4 Discussion

Previous text classification systems have used various sets of features including

words, word combinations and N-Grams. The system described here is capable of

including any or all of these where they are found to be useful for classification

 19

purposes. In addition the system can easily make use of negative information via the

inclusion of Boolean NOT functions in the rule. The rule produced is in a form which

can be easily manipulated so that it can be fed directly into a search engine such as a

database or Internet search to retrieve similar texts. The rule is produced

automatically but is somewhat similar to rules produced by knowledge engineering

systems using human experts. For example the following rule was evolved for the

Reuters Trade category happened to be in DNF form although it was not the most

effective classifier (F1 0.692).

(OR (OR (OR (ANDSTR llion export) (OR (ANDSTR

llion surpl) (ANDSTR ~trad mport) (ANDSTR ~trad

vis) (ANDSTR ~trad yeutt)))

The rule created may also be used for purposes beyond classification such as text

mining. For example, the regular occurrence of synonyms (different words with the

same meaning) and homonyms (words with the same spelling but with distinct

meanings) are key problems in the analysis of text data: in the language of relational

databases this is a classic many-to-many relationship. There is some evidence that the

rules evolved in our current system are using synonyms to improve the effectiveness

of a rule, e.g.:

(ORSTR aize~ corn~)

Furthermore we suggest that homonyms are best discriminated by the use of

contextual evidence, i.e. by an analysis of nearby strings in the text. We believe that

much of this contextual evidence can be detected simply by the use of the Boolean

operators AND, OR and NOT, though it may be that additional operators that impose

constraints on the relative positions of two N-Grams in the text will allow an

improved discrimination.

5 Future Work

We are investigating the usefulness of new GP functions:

 20

 Special functions for identifying word order. For example FOLLOWS X Y

(Bergström 2000) indicates that the word matched by N-Grams Y must follow

the word matched by N-Gram X in the text of a document.

 Kleene's star (*) could be included as a marker for an arbitrary sequence of

characters, e.g. a*t matches any of "at", "ant" or "agony aunt" within an N-

Gram. We will also investigate the use of full regular expressions for the rules

evolved by the GPs.

 Functions for identifying words that are ADJACENT in the text or NEAR one

another.

 New functions together with numeric terminals for identifying frequency

information may be introduced. Functions such as ‘>’ return a Boolean value

based on the frequency of a particular N-Gram in comparison to an integer

terminal. This frequency could be a simple count of the occurrence of an N-

Gram in a document or a more sophisticated measure such as the term

frequency inverse document frequency (tf-idf) described above.

We believe that the system described here may be of particularly value when used in

conjunction with other classification systems in a classification committee (Sebastiani

2002) because the method of producing the classifier is quite different to other

automatic classifiers based on vectors of weights.

6 Conclusion

We have produced a system capable of discovering rules based on a rich and varied

set of features which are useful to the task of discriminating between text documents.

We suggest that there may a number of areas within automatic text analysis where the

basic technology described here may be of use.

 21

References

Ahonen­Myka, H. 1999. Finding All Maximal Frequent Sequences in Text. In

Proceedings of the 16
th

 International Conference in Machine Learning ICML

Bled, Slovenia,

Apt´e, C., F. J. Damerau, and S. M. Weiss. 1994. Automated learning of decision

rules for text categorization. ACM Trans. on Inform. Syst. 12, 3, 233–

251.ATTARDI

Anthony N. 2003. Generalization error bounds for threshold decision lists. Technical

report, LSE CDAM-LSE-2003-09.

Bennet K., J. Shawe-Taylor , D. Wu. 2000. Enlarging the margins in perceptron

decision trees. Machine Learning 41, pp 295-313

Bergström, A., P. Jaksetic, P. Nordin. 2000. Enhancing Information Retrieval by

Automatic Acquisition of Textual Relations Using Genetic Programming. In

Proceedings of the 2000 International Conference on Intelligent User

Interfaces (IUI-00), pp. 29-32, ACM Press.

Berleant, D., Z. Gu. 2000. Hash table sizes for storing n-grams for text processing,

Technical Report 10-00a, Software Research Lab, 3215 Coover Hall, Dept. of

Electrical and Computer Engineering, Iowa State University.

Biskri I., S. Delisle. 2002. Text Classification and Multilinguism: Getting at Words

via N-grams of Characters. In Proceedings of the 6th World Multiconference

on Systemics, Cybernetics and Informatics (SCI-2002), Orlando (Florida,

USA), Volume V, 110-115.

Cavnar, W., J. Trenkle. 1994. N-Gram-Based Text Categorization In Proceedings of

SDAIR-94, 3rd Annual Symposium on Document Analysis and Information

Retrieval

Clack, C., J. Farrington., P. Lidwell. and T. Yu. 1997. Autonomous Document

Classification for Business, in Proceedings of The ACM Agents Conference.

 22

Damashek, M. 1995. Gauging similarity with n-grams: Language-independent

categorization of text, Science, 267 pp. 843 . 848.

Ebert D., D. Shaw , A. Zwa , E. Miller, D. Roberts. 1997. Interactive Volumetric

Information Visualization for Document Corpus Management, Proceedings of

Graphics Interface .97, Kelowna, B.C.,121-128.

Feldman R., M. Fresko, Y. Kinar, O. Lindell,. M. Liphstat, Y. Rajman, O. Schler, O.

Zamir. 1998. Text mining at the term level. In Proceedings of the Second

European Symposium on Principles of Data Mining and Knowledge

Discovery, pages 65--73, Nantes, France.

Hayes, P. J., P. M. Andersen, I. B. Nirenburg, and L.M. Schmandt. 1990. Tcs: a shell

for content-based text categorization. In Proceedings of CAIA-90, 6th IEEE

Conference on Artificial Intelligence Applications (Santa Barbara,CA, 1990),

320–326.

Hirsch, L., M. Saeedi, R. Hirsch 2004. Evolving Text Classifiers with Genetic

Programming, In Proceedings of the Euro-GP conference 2004, Portugal,

Springer.

Joachims, T. 1998. Text categorization with support vector machines: learning with

many relevant features. In Proceedings of the l0th European Conference on

Machine Learning (ECML98) , pp 137-142.

Karanikas, H., C. Tjortjis, B. Theodoulidis. 2000 An Approach to Text Mining using

Information Extraction PKDD 2000 Conference: Papers and Presentations,

Springer-Verlag Publisher

Koza, J.R. 1992. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. The MIT Press, Cambridge MA

Koza, J.R., Bennet F, Andre D, Kean M, 1999 Genetic Programming III Darwinian

Invention and Problem Solving, Morgan Kaufman Publishers

Langdon,W.B., 2000. Natural Language Text Classification and Filtering with

Trigrams and Evolutionary Classifiers, Late Breaking Papers at the 2000

 23

Genetic and Evolutionary Computation Conference, Las Vegas, Nevada,

USA, editor Darrell Whitley, pages 210—217.

Lodhi H., J. Shawe-Taylor, N. Cristianini, C. Watkins 2001. Text classification using

string kernels. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances

in Neural Information Processing Systems 13, pages 563--569. MIT Press

Merkel, M., M. Andersson. 2000. Knowledge-lite extraction of multi-word units with

language filters and entropy thresholds. In Proceedings of the 2000 Conf.

User-Oriented Content-Based Text and Image Handling (RIAO'00), pages

737--746, Paris, France.

Montana, D. 1995. Strongly Typed Genetic Programming. In Evolutionary

Computation. 3:2, 199--230. The MIT Press, Cambridge MA.

Pickens, J., W.B. Croft. 2000. An Exploratory Analysis of Phrases in Text Retrieval.

In Proceedings of RIAO 2000 Conference, Paris, France.

Salton, G., M.J. McGill M.J.1983. An Introduction to Modern Information Retrieval,

McGraw-Hill.

Salton,G., S. Singhal., C. Buckley, M. Mitra 1996. Automatic Text Decomposition

Using Text Segments and Text Themes. In Proceedings of the hypertext ’96

Conference, Washington D.C. USA.

Sebastiani, F. 2002. Machine learning in automated text categorization, ACM

Computing Surveys, 34(1), pp. 1-47.

Tan, C.M., Y. F. Wang and C. D. Lee. 2002. The use of bigrams to enhance text

categorization In Information Processing and Management: an International

Journal, Vol 38, Number 4 Pages 529-546

Tauritz D.R., J.N. Kok, I.G. Sprinkhuizen-Kuyper. 2000. Adaptive information

filtering using evolutionary computation, Information Sciences, vol.122/2-4,

pp.121-140.

Van Rijsbergen, C.J. 1979. Information Retrieval, 2nd edition, Department of

Computer Science, University of Glasgow

 24

Yang, Y. and X. Liu. 1999. A re-examination of text categorization methods. In

Proceedings of the 22nd Annual ACM SIGIR Conference on Research and

Development in Information Retrieval, 42-49.

 25

Table 1: GP Types

GP Type Description

String A sequence of one or more characters.

Boolean True/False: the return type of all GPs

Table 2: GP Functions

Function

Name

Number of

Arguments

Type of

Arguments

Return

Type

Description

EXPAND 2 String String Concatenate 2 N-Grams and return

the nearest N-Gram of the same

length extracted from the training

data. If found in the set of N-Grams

extracted from the training data

return that N-Gram else return the

next N-Gram in the set.

EXISTS 1 String Boolean IF the N-Gram is found in a

document return TRUE ELSE return

FALSE

AND 2 Boolean Boolean Return arg1 AND arg2

OR 2 Boolean Boolean Return arg1 OR arg2

NOT 1 Boolean Boolean Return NOT arg1

ANDSTR 2 String Boolean IF arg1 AND arg2 are found in the

document return TRUE ELSE return

FALSE

ORSTR 2 String Boolean IF arg1 OR arg2 are found in the

document return TRUE ELSE return

FALSE

NOTSTR 1 String Boolean IF arg1 is NOT found in the

document return TRUE ELSE return

FALSE.

 26

Table 3: GP Parameters

Parameter Value

Population 800

Generations 50

Typing Strongly typed

Creation Method Ramped half and half

GP format Tree Based

Selection type Tournament

Tournament size 7

Mutation probability 0.1

Reproduction probability 0.1

Crossover probability 0.8

Elitism No

ADF No

Maximum tree depth at creation 9

Maximum tree depth 17

Maximum tree depth for mutation 4

 27

Table 4: Rules evolved for Reuters top 10 categories

Name F1 The Rule

Crude 0.826 (OR (OR (OR (ORSTR arrels~ rude~)

(EXISTS opec~) (EXISTS energy) (EXISTS oleum))))

Corn 0.835 (ORSTR aize~ corn~)

Earn 0.857 (OR (ORSTR shr~ qt) (EXISTS ividend))

Grain 0.550 (OR (ORSTR ulture~ crop~) (EXISTS nnes~))

Interest 0.569 (OR (OR (AND (ORSTR engla deposit)

(OR (NOTSTR vity) (EXISTS ny)

(OR (AND (ORSTR lending epurcha)

(ORSTR ~fut cut) (AND (OR

(ANDSTR g-t ~l) (ORSTR ederal~ ~money~)

(EXISTS further) (OR (AND

(ORSTR epurc sbank) (NOT (EXISTS ny)

(AND (OR (ANDSTR g-t bl) (ORSTR ngland~

~money~) (NOT (EXISTS ny))))

money-fx 0.612 (ORSTR ~mone dollar~)

Ship 0.745 (OR (OR (ORSTR trike hips~) (ORSTR vesse river)

EXISTS ipping~)))

Trade 0.761 (AND (ORSTR kore rade~) (OR (OR (AND (ORSTR

~yeu rade~) (ORSTR oods ficit) (ORSTR ~yeu domes)

(ORSTR ~bil rplus)))

Wheat 0.663 (AND (NOTSTR prio)

(AND (NOTSTR opme) EXISTS wheat))

Acq 0.755 (ORSTR cqui hares)

 28

Count of unique N-grams by size (Reuters 21578 data)

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N-Gram Size

C
o

u
n

t

N-Gram Count

Figure 1. Count of unique N-Grams by size.

Category crude: Reuters 21578 data

0

0.2

0.4

0.6

0.8

1

Generation 9 19 29

 Best Fitness

 Precision

 Recall

 F1

Figure 2: Evolution of a rule for the Reuters 21578 Crude category

