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Evolving Text Classification Rules with Genetic 

Programming 

 

 

 

 

Abstract.  

We describe a novel method for using Genetic Programming to create compact 

classification rules using combinations of N-Grams (character strings).  Genetic 

programs acquire fitness by producing rules that are effective classifiers in terms of 

precision and recall when evaluated against a set of training documents.  We describe 

a set of functions and terminals and provide results from a classification task using 

the Reuters 21578 dataset.  We also suggest that the rules may have a number of 

other uses beyond classification and provide a basis for text mining applications. 

 

 

Key Words: text classification, Genetic Programming, N-Gram. 

 

 

1 Introduction 

Automatic text classification is the activity of assigning pre-defined category labels to 

natural language texts based on information found in a training set of labelled 

documents.  In recent years it has been recognised as an increasingly important tool 

for handling the exponential growth in available online texts and we have seen the 

development of many techniques aimed at the extraction of features from a set of 

training documents, which may then be used for categorisation purposes.   

 

In the 1980’s a common approach to text classification involved humans in the 

construction of a classifier, which could be used to define a particular text category.  

Such an expert system would typically consist of a set of manually defined logical 

rules, one per category, of type  
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if {DNF formula} then {category} 

 

 

A DNF (“disjunctive normal form”) formula is a disjunction of conjunctive clauses; 

the document is classified under a category if it satisfies the formula i.e. if it satisfies 

at least one of the clauses.  An often quoted example of this approach is the 

CONSTRUE system (Hayes et al. 1990), built by Carnegie Group for the Reuters 

news agency.  A sample rule of the type used in CONSTRUE to classify documents in 

the ‘wheat’ category of the Reuters dataset is illustrated below. 

 

 

if ((wheat & farm) or   

(wheat & commodity) or   

(bushels & export) or   

(wheat & tonnes) or   

(wheat & winter & ¬ soft))   

then  

WHEAT  else  ¬ WHEAT   

 

 

Such a method, sometimes referred to as ‘knowledge engineering’, provides accurate 

rules and has the additional benefit of being human understandable.  That is, the 

definition of the category is meaningful to a human, thus producing additional uses of 

the rule including verification of the category.  However the disadvantage is that the 

construction of such rules requires significant human input and the human needs some 

knowledge concerning the details of rule construction as well as domain knowledge 

(Apt´e et al. 1994).   

 

Since the 1990’s the machine learning approach to text categorisation has become the 

dominant one.  In this case the system requires a set of pre-classified training 

documents and automatically produces a classifier from the documents.  The domain 

expert is needed only to classify a set of existing documents.  Such classifiers, usually 

built on the frequency of particular words in a document (sometimes called ‘bag of 

words’), are based on two empirical observations regarding text: 
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1. the more times a word occurs in a document, the more relevant it is to the topic 

of the document. 

2. the more times the word occurs throughout the documents in the collection the 

more poorly it discriminates between documents. 

 

A well known approach for computing word weights is the term frequency inverse 

document frequency (tf-idf) weighting (Salton and McGill 1983) which assigns the 

weight to a word in a document in proportion to the number of occurrences of the 

word in the document and in inverse proportion to the number of documents in the 

collection for which the word occurs at least once, i.e. 













i

ikik
n

N
fa log  

 

where aik is the weight of word i in document k, fik is the frequency of word i in 

document k, N the number of documents in the collection and ni  equal to the number 

of documents in which ai occurs at least once.  A classifier can be constructed by 

mapping a document to a high dimensional feature vector, where each entry of the 

vector represents the presence or absence of a feature (Salton et al. 1996; Joachims, 

1998).  In this approach, text classification can be viewed as a special case of the 

more general problem of identifying a category in a space of high dimensions so as to 

define a given set of points in that space.  This is usually accompanied by some form 

of feature reduction such as the removal of non-informative words (stop words) and 

by the replacing of words by their stems, so losing inflection information.  Such 

sparse vectors can then be used in conjunction with many learning algorithms for 

computing the closeness of two documents and quite sophisticated geometric systems 

have been devised (Bennet et al. 2000; Anthony 2003).   

 

Although this method has produced accurate classifiers there are a number of 

drawbacks from the machine learning approach as compared to a rule based one. 

 

1. All the word order information is lost; only the frequency of the terms in the 

document is stored.   



 5 

2. The approach cannot normally identify word combinations, phrases or multi-

word units e.g. ‘information processing’ (Pickens and Croft 2000). 

3. If word stemming is used inflection information is also lost. 

4. The classifier (the vector of weights) is not human understandable. 

 

In this paper we describe a method to evolve compact human understandable rules 

using only a set of training documents.  The system uses genetic programming 

(GP)(Koza 1992) to produce a synthesis of machine learning and knowledge 

engineering with the intention of incorporating advantageous attributes from both.  

The rules produced by the GPs are based on N-Grams (sequences of N letters) and are 

able to use a wide variety of features including word combinations and negative 

information for discrimination purposes.  In the next section, we introduce GP and 

review previous classification work with N-Grams and with phrases.  We then 

provide information concerning the implementation of our application and the initial 

results we have obtained on a text classification task. 

 

 

1.1 GP Background 

GP is a widely used method for automatically producing computer programs based on 

a high level specification of a particular problem known as the fitness test.  Like the 

Genetic Algorithm (GA) GP is based on the principle of natural selection namely 

variation in reproductive success correlated with variation in a trait.  Unlike GAs the 

individuals in a GP population are in the form of executable computer programs.  GP 

works by iteratively applying genetic transformations, such as crossover and 

mutation, to a population of individual programs with the intention of creating better 

performing individuals as measured by the fitness test in subsequent generations.  

Although GP has been used in a textual environment (Clack et al. 1997; Bergström et 

al. 2000) it has not previously been used to evolve classifiers based on evolving N-

Gram patterns. 
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1.2 N-Grams 

A character N-Gram is an N-character slice of a longer string.  For example the word 

INFORM produces the 5-grams _INFO, INFOR, NFORM, FORM_ where the 

underscore represents a blank.  The key benefit of N-Gram-based matching derives 

from its very nature: since every string is decomposed into small parts any errors that 

are present tend to affect only a limited number of those parts leaving the remainder 

intact.  The N-Grams for related forms of a word (e.g., ‘information’, ‘informative’, 

‘informing’, etc.) automatically have a lot in common.  If we count N-Grams that are 

common to two strings, we get a measure of their similarity that is resistant to a wide 

variety of grammatical and typographical errors (Cavnar and Trenkle 1994; 

Damashek 1995).  The N-Gram representation has proven a robust alternative to word 

stemming, having the further advantage of requiring no linguistic preparations (Biskri 

and Delisle 2002).  Since N-Grams are simply defined as sequences of characters they 

constitute a valuable basis for a language-independent text classifier.  

 

A further useful property of N-Grams is that the lexicon obtained from the analysis of 

a text in terms of N-Grams of characters cannot grow larger than the size of the 

alphabet to the power of N.  Furthermore, because most of the possible sequences of 

N characters rarely or never occur in practice for N>2, a table of the N-Grams 

occurring in a given text tends to be sparse, with the majority of possible N-Grams 

having a frequency of zero even for very large amounts of texts.  For example, (Ebert 

et al. 1997) found that 40 MB of text from the Wall Street Journal contained only 

2.7*10
5
 different 5-grams out of a possible 7.5*10

18,
 based on an alphabet of 27 

characters.  Tauritz (2000) and later Langdon (2000) used this property to build an: 

adaptive information filtering system based on weighted trigram (N=3) analysis in 

which genetic algorithms were used to determine weight vectors.  An interesting 

modification of N-Grams is to generalise N-Grams to substrings which need not be 

contiguous.  Lodhi et al. (2002) define a learning algorithm that uses non-contiguous 

substrings of N characters, but with a penalty for any gaps occurring between the N 

characters.   
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1.3 Phrases 

The notion of N-Grams of words i.e. sequences or occurrences of N contiguous and 

non-contiguous words (with N typically equals to 2, 3, 4 or 5) has produced good 

results both in language identification, speech analysis and in several areas of 

knowledge extraction from text (Feldman et al. 1998; Ahonen­Myka 1999; Karanikas 

et al. 2000; Merkel and Andersson 2000; Tan et al. 2002).  Pickens and Croft (2000) 

make the distinction between ‘adjacent phrases’ where the phrase words must be 

adjacent and Boolean phrases where the phrase words are present anywhere in the 

document.  They found that adjacent phrases tended to be better than Boolean phrases 

in terms or retrieval relevance but not in all cases.  Restricting a search to only 

adjacent phrases means that some retrieval information is lost.  The implementation 

described below is able to make use of both adjacent and Boolean phrases if they are 

found to aid discrimination between documents. 

 

 

2 Implementation 

When building text classifiers there are usually a variety of options regarding pre-

processing of documents and particular parameters values.  Examples include whether 

to remove stop words, to stem words to a common form, to use words or N-Grams as 

terms and whether to search for single terms, phrases or particular sequences of terms.  

Where N-Grams or phrases are used the length of the phrase or N-Gram must also be 

determined.  Although many of these options have been researched (Berleant and Gu 

2000) it is often the case that effects on the performance of the classifier will depend 

on the particular classifier and the particular text environment (Sebastini 2002).  We 

have developed a GP system where many of these decisions are either made 

redundant or are taken by the individual GPs. 

 

We summarise the key features below: 

 The basic unit (or phrase unit) we use is an N-Gram (sequence of N 

characters). 

 N-Gram based rules are produced by GPs and evaluate to true or false for a 

particular document.  
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 Boolean functions such as EXISTS, AND, OR and NOT are included in the 

GP function set. 

 Each GP produces a rule, which evaluates to true or false for any document (or 

text unit). 

 A classification rule must be evolved for each category c.  Fitness is then 

accrued for GPs producing classification rules which are true for training 

documents in c but are not true for documents outside c.  Thus the documents 

in the training set represent the fitness cases. 

 

2.1 Data Set 

The task involved categorising documents selected from the Reuters-21578 test 

collection which has been a standard benchmark for the text categorisation tasks 

throughout the last ten years (Sebastiani 2002).  Reuters-21578 is a set of 21,578 news 

stories which appeared in the Reuters newswire in 1987, classified according to 135 

thematic categories, mostly concerning business and economy.  Generally researchers 

have split the documents in the collection into a training set used to build a classifier 

and a test set used to evaluate the effectiveness of that classifier.  With reference to 

this collection we should note that:  

 

 The distribution of the documents across the categories is highly skewed, in 

the sense that some categories have very few documents classified under them 

while others have thousands. 

 There are several semantic relations among the categories (e.g. there is a 

category WHEAT and a category GRAIN), but there is no explicit hierarchy 

defined on the categories. 

 The collection is also fairly challenging for text categorisation systems since 

several categories have (under any possible split between training and test 

documents) very few training examples, making the inductive construction of 

a classifier a hard task. 
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Unfortunately, the benefits to text classification research that Reuters-21578 has 

brought about have been limited by the fact that different researchers have used 

different sub-collections and tested their systems on one of these sub-collections only.  

The most common direction for extracting a sub-collection out of Reuters-21578 has 

been that of restricting the attention to a subset of categories only.  The subsets that 

have been most frequently used in text categorisation experimentation are: 

 

 The set of the 10 categories with the highest number of positive training 

examples (often referred to as the ‘Reuters top 10’).  

 The set of the 90 categories with at least one positive training example and one 

positive test example.  

 The set of the 115 categories with at least one training example. 

 

Systems that have been tested on these different Reuters-21578 subsets or with 

different test/train splits are thus not readily comparable (Yang and Liu 1999).  In our 

experiments we use the “ModApt´e split”, a partition of the collection into a training 

set and a test set that has been widely adopted by text categorisation experimenters.  

The top 10 categories are also widely used (for example (Lodhi et al. 2002)) and these  

are the categories we adopt here.  As an illustration of the problems of using different 

subsets we found that the ‘wheat rule’ shown above is not an effective classifier for 

the wheat category when used on the top 10 subset although it was reported as a 

highly accurate classifier for the particular subset used by the CONSTRUE system. 

 

 

2.2 Pre-Processing 

Before we start the evolution of classification rules a number of pre-processing steps 

are made. 

 

1. All the text in the document collection is placed in lower case.   

2. Numbers are replaced by a special character and non-alphanumeric characters 

are replaced by a second special character.   
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3. All the documents in the collection are searched for N-Grams which are then 

stored in sets for size of N=2 to N=max_size.  The size of these sets is reduced 

by requiring that an N-Gram occur at least 4 times before being included in a 

set. 

 

The use of N-Grams as features makes word stemming unnecessary and the natural 

screening process provided by the fitness test means that a stop list is not required.  

Note that only step 3 is actually essential for the GP system to run.  Including upper 

case letters and numbers would significantly increase the search space of the GP 

system but could provide useful features for discriminating between documents in 

particular domains.  Note also that it may be useful to separate training documents in 

the category of the evolving classifier from all other documents in step 3.  We can 

then specify N-Grams to be used for positive information from those to be used for 

negative information i.e. in conjunction with a NOT function (see below). 

 

 

2.3 Fitness 

GPs are set the task of assembling single letters into N-Gram strings and then 

combining N-Grams with Boolean functions to form a rule.  The rule is then 

evaluated against the documents in the training set.  Each rule can be tested against 

any document and will return a Boolean value indicating whether the rule is true for 

that document.  An example of a rule produced by a GP evolving a classifier for the 

crude category of the Reuters 21578 is 

 

(AND (EXISTS crude) (EXISTS (OR nerg barr))) 

 

For this rule to be true for a document the string ‘crude’ AND either the string ‘nerg’ 

OR ‘barr’ must be substrings of that document.  Note that the last two N-Grams are 

substrings of the words ‘energy’ and ‘barrel’.  

 

A classification rule must be evolved for each category c.   Each rule is actually a 

binary classifier, that is it will classify documents as either in the category or outside 
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the category.  When evolving a rule for a particular category c the fitness depends on 

the number of documents in the category where the rule is true and the number of 

documents outside the category where the rule is true.   

 

In information retrieval and text categorisation the F1 measure is commonly used for 

determining classification effectiveness and has the advantage of giving equal weight 

to precision and recall (Van Rijsbergen 1979).  F1 is given by 

 

 









),(2
),(1F  

 

where:  

 

Recall ( )= the number of relevant documents returned/the total number of 

relevant documents in the collection 

 

Precision (  )= the number of relevant documents returned /the number of 

documents returned. 

 

 

F1 also gives a natural fitness measure for an evolving classifier.  The fitness of an 

individual GP is therefore assigned in the following way: 

 

1. evaluate the rule produced by the GP against all documents in the training set. 

2. calculate precision, recall and F1 by counting the documents where the rule is 

true in the category and outside the category for which the classifier is being 

evolved. 

3. compute standardised fitness as 1 – F1 so that 0 is given to the most fit 

individual (a perfect classifier for that category).   
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2.4 GP Types 

We use a strongly typed tree based GP (Montana 1995) system with types shown in  

Table 1: 

 

A critical prerequisite of a GP system is that every program in the population is 

executable i.e. will not crash.  In most GP systems type mismatch errors are avoided 

by requiring that all functions and terminals are of the same type (only one type is 

allowed in any GP).  In strongly typed GP a set of types can be allowed but when a 

GP is created or perturbed it is necessary for the system to ensure that any function is 

passed values of a legal type as arguments.  In our system each GP will output a rule 

returning a Boolean value when evaluated against a document but will include string 

values as part of the rule.  

 

 

2.5 GP terminals 

Terminals in GP are the leaf nodes of a program tree and can be thought of as 

functions of arity 0.  For example in the program: 

 

(OR (EXISTS aize) (EXISTS corn)) 

 

the values ‘aize’ and ‘corn’ are the GP terminals and OR and EXISTS are the 

functions.  EXISTS takes a String argument and returns a Boolean value whilst OR 

takes two Boolean values and returns a Boolean value.  Terminals are most commonly 

numeric in GP, however in our system we use the following character literals stored 

as string values. 

 

 

26 lower case alphabetic characters (a-z). 

“~” meaning the space character 

“#” meaning any number.   
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“^” meaning any non-alphanumeric character. 

 

Note that for particular domains it may be useful to include numbers (still stored as 

strings), upper case characters and other special characters although this will increase 

the search space of the GP system. 

 

 

2.6 GP Functions 

The GPs are provided with protected string handling functions for combining 

characters into N-Gram strings and concatenating N-Grams into a longer N-Gram.  

Most combinations of letters above an N-Gram size of 2 are unlikely to occur in any 

text, for example where N-Gram size =6 only 0.001% of possible N-Grams are found 

in the Reuters 21578 (see Figure 1.).   

 

We therefore guide the GPs through the vast search space of possible N-Gram 

patterns by the provision of protected ‘EXPAND’ function.  The function initially 

forms a new N-Gram by combining two N-Grams (N-Gram1 and N-Gram2).  A new 

N-Gram NewN-Gram is formed by appending N-Gram2 to N-Gram1.  If the NewN-

Gram is of length l the EXPAND function checks if the NewN-Gram is in the set of 

N-Grams of size l originally extracted from all the text in the all the training 

documents used.  If it is found in this set NewN-Gram is returned.  If it is not found, 

i.e. the N-Gram did not occur in the documents of the training set, the next N-Gram in 

the set (in alphabetical order) is returned.  If the set is empty the original N-Gram N-

Gram1 is returned.  Note that the ‘EXPAND’ function will not return an N-Gram 

consisting of a sequence of characters which never occurs in the training data.  The 

function is summarised by the pseudo code below  
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SetOfL-Grams = the set of N-Grams of length L found in 

documents from the training set  

 

EXPAND (N-Gram1, N-Gram2) 

  NewN-Gram = (concatenate N-Gram1, N-Gram2) 

  L = (sizeOf NewN-Gram) 

   

  IF (IsEmpty SetOfL-Grams) 

    RETURN N-Gram1 

  ELSE IF (IsMember NewN-Gram SetOfL-Grams)  

    RETURN NewN-Gram 

    ELSE  

      RETURN Next N-Gram in SetOfL-Grams 

 

 

We found that using an unprotected concatenation function it was quite rare for N-

Grams of size greater than 2 to be evolved.  However using the EXPAND function 

long N-Grams and words are easily and commonly evolved by combining shorter 

strings.  For example the string ‘wheat’ could be evolved in the following way 

 

(EXPAND w (EXPAND (EXPAND h e) (EXPAND a b))) 

 

The function initially creates the string ‘wheab’.  This string is not found in the set of 

N-Grams of size 5 originally extracted from the collection.  The next N-Gram in the 

set of 5-Grams is therefore returned (‘wheat’).  The size of the N-Gram sets can be 

reduced by extracting them only from the text of documents belonging to the category 

for which the library is being evolved.  This will greatly reduce the search space of 

the GP system but some discriminating ability will be lost where a Boolean NOT 

function is used in a GP produced rule.   

 

Table 2 shows a basic set of GP functions for evolving classification rules.  Note that 

some Boolean functions take Boolean arguments whilst others take string arguments.  
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Although the functions ANDSTR, ORSTR, and NOTSTR are not essential as they are 

definable by the other operators, we include them as a way reducing tree sizes.  

 

 

2.7 GP Parameters 

The GP parameters used in our experiments are summarised in Table 3.  All of these 

are fairly standard in tree based GP systems.  For those not familiar with these it is 

worth noting the following points:  

 An individual GP is selected according to fitness and can be simply copied 

into the then next generation (reproduction) or part of the program may be 

randomly changed (mutation) or most commonly parts of the program are 

exchanged with another selected program to create two new individuals 

(crossover).  The probabilities of these 3 possibilities are determined by the 

parameters in Table 3. 

 Maximum tree depth parameters are usually critical in GP systems.  Without 

these evolution will tend to produce very large programs which will use 

increasing amounts of machine resources and slow the entire system. 

 Elitism is sometimes used in GP and GA and ensures that the best program or 

programs are always copied into the next generation. 

 Automatically Defined Functions (ADFs) provide a method for subroutine use 

in a GP (Koza 1999). 

 

 

3 Experiments 

3.1 Objectives 

The objective of our experiments were two fold: 

 

1. To evolve effective classifiers against the text dataset (Reuters 21578 

top 10). 
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2. To automatically produce compact human understandable rules with 

minimal features. 

 

An alternative method using a library of rules tested on the 20 Newsgroup dataset is 

described in (Hirsch et al. 2004). 

 

 

3.2 Evolution 

In generation 0 of any GP run we have a set of (800) randomly created rules and these 

are all measured for fitness by testing them against the documents in the training set.  

Although we are unlikely to see a useful rule produced at this stage there will be some 

differentiation in performance between individuals in the population.  These 

differences are exploited so that better programs are more likely to participate in the 

creation of the next generation.  Figure 2 shows a fairly typical pattern of evolution 

and in this case we see the emergence of a useful rule after approximately 20 

generations.  Precision is very high during the early evolution but is reduced as recall 

improves.  In other cases we see recall starting very high and reducing as precision 

improves.  In general we will see an improvement in F1 as measured against the 

training set and a corresponding but lower F1 as measured against the test set. 

 

 

3.3 Example of Rule Induction: Reuters 21578 Category Crude 

In this section we included an example of the evolution of a rule for the Reuters 

21578 category “crude”.  Some good results can be evolved quite easily on this 

category e.g. the individual 

 

(EXISTS barre) 

 

often appears in generation 0 and achieves an F1 measure of 0.65 against the test data.  

The individual representing the rule 
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(ORSTR cru barre) 

 

has been evolved in generation 4 and achieves an F1 measure of 0.729 when 

measured against the test data.  The highly compressed rule using only 6 characters 

(disjunction of 2 tri-grams) appeared after 15 generations and was able to achieve and 

F1 measure of 0.802 

 

(ORSTR rgy rud) 

 

Note that ‘rgy’ is a substring of ‘energy’ and ‘rud’ is a substing of ‘crude’.  The best 

performing rule we have evolved in our experiments achieves a fitness (F1 measure) 

of 0.826 is shown below. 

 

(OR  (OR  (OR  (ORSTR arrels~ rude~)  (EXISTS opec~)  (EXISTS energy)  (EXISTS 

oleum))))    

 

 

3.4 Results 

A classification rule was evolved for each category by using 4 GP runs and selecting 

the best rule to emerge from the 4 runs.  GP contains a number of random elements 

and the use of multiple runs is commonly applied to improve the chances of finding a 

useful solution.  The rule produced by the best individual for each category is shown 

in Table 4 together with the F1 measure (against the test set).  Functions are shown in 

upper case and N-Grams are shown in lower case.  The blank character is indicated by 

‘~’. 

 

The global macro-average F1 is 0.717 which compares favourably with other 

classifiers such as (Tan et al. 2002) although we should note that this is not a strictly 

controlled comparison.  Indeed our intention at this point is not to produce the best 

classifier in terms of accuracy but to produce a good classifier which is based on a 

small number of features in a human understandable form.  As can be seen some rules 
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are much easier to understand than others.  However we argue that in contrast to other 

methods of automatic classification such as Support Vector Machines even the more 

complex rules are somewhat comprehensible to a human analyst. 

 

GP’s have a tendency to ‘bloat’ and to produce long forms of equivalent shorter 

programs by including redundant sections.  For example the rule 

 

(OR (ORSTR ~mone dollar~)(ORSTR ~mone dollar~)) 

 

is equivalent to the rule 

 

(ORSTR ~mone dollar~) 

 

One of the key objectives of our system was comprehensibility.  We therefore applied 

a simple form of parsimony pressure such that where the F1 fitness of two programs 

was found to be equal the shorter program was assigned a better fitness value.  With 

this method we were able to evolve the rules shown in Table 4 although they are still 

not necessarily in the most compact form.  Comprehensibility may be improved by 

using other forms of parsimony pressure on the GP evolution and by favouring longer 

N-Grams or words.   

 

Performance is also an important issue.  In the experiments we described here to 

evolve a classifier for a single category requires that 800 rules be evaluated against all 

documents in the training set for each generation of every run.  For our experiments 

we were using fairly modest machine resources (processor speed of 800Mhz and 

memory of 128MB) and we found that the average time to complete a run for one 

category was just under 20 minutes. 

 

 

4 Discussion 

Previous text classification systems have used various sets of features including 

words, word combinations and N-Grams.  The system described here is capable of 

including any or all of these where they are found to be useful for classification 
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purposes.  In addition the system can easily make use of negative information via the 

inclusion of Boolean NOT functions in the rule.  The rule produced is in a form which 

can be easily manipulated so that it can be fed directly into a search engine such as a 

database or Internet search to retrieve similar texts.  The rule is produced 

automatically but is somewhat similar to rules produced by knowledge engineering 

systems using human experts.  For example the following rule was evolved for the 

Reuters Trade category happened to be in DNF form although it was not the most 

effective classifier (F1 0.692). 

 

(OR  (OR  (OR  (ANDSTR llion export)  (OR  (ANDSTR 

llion surpl)  (ANDSTR ~trad mport)  (ANDSTR ~trad 

vis)  (ANDSTR ~trad yeutt))) 

 

The rule created may also be used for purposes beyond classification such as text 

mining.  For example, the regular occurrence of synonyms (different words with the 

same meaning) and homonyms (words with the same spelling but with distinct 

meanings) are key problems in the analysis of text data: in the language of relational 

databases this is a classic many-to-many relationship.  There is some evidence that the 

rules evolved in our current system are using synonyms to improve the effectiveness 

of a rule, e.g.: 

 

(ORSTR aize~ corn~) 

 

Furthermore we suggest that homonyms are best discriminated by the use of 

contextual evidence, i.e. by an analysis of nearby strings in the text.  We believe that 

much of this contextual evidence can be detected simply by the use of the Boolean 

operators AND, OR and NOT, though it may be that additional operators that impose 

constraints on the relative positions of two N-Grams in the text will allow an 

improved discrimination. 

 

 

5 Future Work 

We are investigating the usefulness of new GP functions: 
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 Special functions for identifying word order.  For example FOLLOWS X Y 

(Bergström 2000) indicates that the word matched by N-Grams Y must follow 

the word matched by N-Gram X in the text of a document. 

 Kleene's star (*) could be included as a marker for an arbitrary sequence of 

characters, e.g. a*t matches any of "at", "ant" or "agony aunt" within an N-

Gram. We will also investigate the use of full regular expressions for the rules 

evolved by the GPs. 

 Functions for identifying words that are ADJACENT in the text or NEAR one 

another.  

 New functions together with numeric terminals for identifying frequency 

information may be introduced.  Functions such as ‘>’ return a Boolean value 

based on the frequency of a particular N-Gram in comparison to an integer 

terminal.  This frequency could be a simple count of the occurrence of an N-

Gram in a document or a more sophisticated measure such as the term 

frequency inverse document frequency (tf-idf) described above. 

 

We believe that the system described here may be of particularly value when used in 

conjunction with other classification systems in a classification committee (Sebastiani 

2002) because the method of producing the classifier is quite different to other 

automatic classifiers based on vectors of weights. 

 

 

6 Conclusion 

We have produced a system capable of discovering rules based on a rich and varied 

set of features which are useful to the task of discriminating between text documents.  

We suggest that there may a number of areas within automatic text analysis where the 

basic technology described here may be of use. 
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Table 1: GP Types 

GP Type Description 

String A sequence of one or more characters. 

Boolean True/False: the return type of all GPs 

 

Table 2: GP Functions 

Function 

Name 

Number of 

Arguments 

Type of 

Arguments 

Return 

Type 

Description 

EXPAND 2 String String Concatenate 2 N-Grams and return 

the nearest N-Gram of the same 

length extracted from the training 

data.  If found in the set of N-Grams 

extracted from the training data 

return that N-Gram else return the 

next N-Gram in the set. 

EXISTS 1 String Boolean IF the N-Gram is found in a 

document return TRUE ELSE return 

FALSE 

AND 2 Boolean Boolean Return arg1 AND arg2 

OR 2 Boolean Boolean Return arg1 OR arg2 

NOT 1 Boolean Boolean Return NOT arg1 

ANDSTR 2 String Boolean IF arg1 AND arg2 are found in the 

document return TRUE ELSE return 

FALSE 

ORSTR 2 String Boolean IF arg1 OR arg2 are found in the 

document return TRUE ELSE return 

FALSE 

NOTSTR 1 String Boolean IF arg1 is NOT found in the 

document return TRUE ELSE return 

FALSE.   
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Table 3: GP Parameters 

Parameter Value 

Population 800 

Generations 50 

Typing Strongly typed 

Creation Method Ramped half and half 

GP format Tree Based 

Selection type Tournament 

Tournament size 7 

Mutation probability 0.1 

Reproduction probability 0.1 

Crossover probability 0.8 

Elitism No 

ADF No 

Maximum tree depth at creation 9 

Maximum tree depth  17 

Maximum tree depth for mutation 4 
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Table 4: Rules evolved for Reuters top 10 categories 

Name F1 The Rule 

Crude 0.826 (OR  (OR  (OR  (ORSTR arrels~ rude~)   

(EXISTS opec~)  (EXISTS energy)  (EXISTS oleum)))) 

Corn 0.835 (ORSTR aize~ corn~) 

Earn 0.857 (OR (ORSTR shr~ qt)  (EXISTS ividend)) 

Grain 0.550 (OR  (ORSTR ulture~ crop~)  (EXISTS nnes~)) 

Interest 0.569 (OR  (OR  (AND  (ORSTR engla deposit)   

(OR  (NOTSTR vity)  (EXISTS ny)   

(OR  (AND  (ORSTR lending epurcha)   

(ORSTR ~fut cut)  (AND  (OR   

(ANDSTR g-t ~l)  (ORSTR ederal~ ~money~)   

(EXISTS further)  (OR  (AND   

(ORSTR epurc sbank)  (NOT  (EXISTS ny)   

(AND  (OR  (ANDSTR g-t bl)  (ORSTR ngland~ 

~money~)  (NOT  (EXISTS ny)))) 

money-fx 0.612 (ORSTR ~mone dollar~) 

Ship 0.745 (OR  (OR  (ORSTR trike hips~)  (ORSTR vesse river)  

EXISTS ipping~))) 

Trade 0.761 (AND  (ORSTR kore rade~)  (OR  (OR  (AND  (ORSTR 

~yeu rade~)  (ORSTR oods ficit)  (ORSTR ~yeu domes)  

(ORSTR ~bil rplus))) 

Wheat 0.663 (AND  (NOTSTR prio)   

(AND  (NOTSTR opme)  EXISTS wheat)) 

Acq 0.755 (ORSTR cqui hares) 
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Count of unique N-grams by size (Reuters 21578 data)
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Figure 1. Count of unique N-Grams by size. 
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Figure 2: Evolution of a rule for the Reuters 21578 Crude category 

 

 

 

 


