Sheffield
Hallam _
University

Gravity-driven granular free-surface flow around a circular
cylinder

CUI, Xinjun <http://orcid.org/0000-0003-0581-3468> and GRAY, J.M.N.T.
Available from Sheffield Hallam University Research Archive (SHURA) at:
https://shura.shu.ac.uk/6151/

This document is the Accepted Version [AM]
Citation:

CUI, Xinjun and GRAY, J.M.N.T. (2013). Gravity-driven granular free-surface flow
around a circular cylinder. Journal of Fluid Mechanics, 720, 314-337. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk


http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Under consideration for publication in J. Fluid Mech. 1

Gravity driven granular free-surface flow
around a circular cylinder

By X. CUI' AND J. M. N. T. GRAY?

! Aerospace Engineering, Department of Engineering & Mathematics, Sheffield Hallam
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2School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of
Manchester, Manchester M13 9PL, UK

(Received 7?7 and in revised form ?7)

Snow avalanches and other hazardous geophysical granular flows, such as debris-flows,
lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, gen-
erating rapid changes in the flow height and velocity in their vicinity. It is important to
understand how a granular material flows around such obstacles to improve the design of
deflecting and catching dams, and to correctly interpret field observations. In this paper
small scale experiments and numerical simulations are used to investigate the supercrit-
ical gravity driven free-surface flow of a granular avalanche around a circular cylinder.
Our experiments show that a very sharp bow shock wave and a stagnation point are
generated in front of the cylinder. The shock standoff distance is accurately reproduced
by shock-capturing numerical simulations, and is approximately equal to the reciprocal
of the Froude number, consistent with previous approximate results for shallow water
flows. As the grains move around the cylinder the flow expands and the pressure gradients
rapidly accelerate the particles up to supercritical speeds again. The internal pressure
is not strong enough to immediately push the grains into the space behind the cylinder
and instead a grain free region, or granular vacuum, forms on the lee side. For mod-
erate upstream Froude numbers, and slope inclinations, the granular vacuum closes up
rapidly to form a triangular region, but on steeper slopes both experiments and numerical
simulations show that the pinch-off distance moves far downstream.

1. Introduction

Gravity driven granular free-surface flows, or granular avalanches, are more common
than one might imagine. They occur whenever grains are poured (Boudet, Amarouchene,
Bonnier & Kellay 2007; Johnson & Gray 2011), flow in chutes (Savage 1979; Akers &
Bokhove 2008) or are rotated in drums and industrial mixers (Shinbrot & Muzzio 1998;
Gray 2001). Hazardous geophysical mass flows, such as snow avalanches (Savage & Hutter
1989; Jéhannesson 2001; Jomelli & Bertran 2001), debris-flows (Iverson & Denlinger 2001;
Johnson et al. 2012), lahars (Vallance 2000) and pyroclastic flows (Branney & Kokelaar
1992; Cole et al. 1998; Mangeney et al. 2007) are all forms of granular free-surface flows
that occur regularly in our natural environment. Despite the enormous difference in
scales these examples are all commonly modelled using depth-averaged shallow-water
type theories that have additional momentum source terms (Grigorian, Eglit & Takimov
1967; Savage & Hutter 1989; Iverson 1997; Gray, Wieland & Hutter 1999; Gray, Tai
& Noelle 2003; Mangeney-Castelnau et al. 2003). These relatively simple theories have
proved to be particularly effective at modelling geophysical flows as well as being able to
accurately reproduce carefully controlled small scale experiments.
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FIGURE 1. Experimental setup showing the flow of non-pareille grains (commonly known as
100’s and 1000’s or Sprinkles) past a circular cylinder on a chute inclined at an angle ¢ to the
horizontal. The z-coordinate is aligned with the downslope direction, the y-coordinate is across
the chute and z is the upward pointing normal.

The study of granular flows past obstacles, see for example figure 1, has attracted much
attention in recent years, because of its importance in the design of deflecting and catching
dams (Sigurdsson, Tomasson & Sandersen 1998; Tai et al. 1999; Hauksson et al. 2007;
Cui, Gray & Johannesson 2007; Jéhannesson et al. 2009). These are used extensively in
mountainous regions to protect people and infrastructure from geophysical mass flows. As
well as being able to fly over, or overtop, these defensive structures (Hadkonardéttir et al.
2003; Faug et al. 2008) they also generate shock waves in front of, or adjacent to, them, at
which there are rapid changes in the avalanche thickness and flow velocity (e.g. Tai et al.
2001; Gray et al. 2003). Shock waves arise naturally from the hyperbolic structure of the
shallow water equations. In two-dimensions there are stationary granular jumps, that
are analogous to hydraulic jumps in open channel flows (Savage 1979; Brennen, Sieck &
Paslaski 1983), as well as, propagating granular bores that bring material rapidly to rest
(Gray & Hutter 1997; Gray & Tai 1998). In three-dimensions, weak, strong and detached
oblique shocks develop when the oncoming flow is deflected by a sharp tipped wedge (Gray
et al. 2003; Hakonardottir & Hogg 2005; Cui et al. 2007; Gray & Cui 2007; Vreman et al.
2007; Akers & Bokhove 2008), which are analogous to oblique shocks in shallow water
(Preiswerk 1938; Rouse 1938; Ippen 1949) and gas dynamic flows (Ames Research Staff
1953). Unsteady inward propagating granular jumps form when a jet of grains hits a
flat plate (Boudet et al. 2007) and when the plate is inclined, a rich variety of steady
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and unsteady shock waves form (Johnson & Gray 2011). In dilute granular flows, shock
waves in density and velocity develop instead, and highly agitated low solids volume
fraction flows past wedges (Rericha et al. 2002) and cylinders (Buchholtz & Poschel
1998; Wassgren et al. 2003; Boudet & Kellay 2010) have also been investigated in this
context. High speed dilute and dense granular flows exhibit similar shock waves to those
observed in gas dynamics and shallow water flow; which themselves have a well known
relationship between them (Preiswerk 1938; Courant & Friedrichs 1948).

The aim of this paper is to investigate what happens when a dense granular avalanche
impacts on a blunt body, described by a wall boundary, rather than a sharp tipped wedge
(e.g. Gray & Cui 2007) or a topographic feature with a finite slope, such as a pyramidal
obstacle (Gray et al. 2003). It is shown how a body-fitted grid (Vinokur 1974; Viviand
1974) combined with shock-capturing numerical methods (e.g. Godunov 1959; Nessyahu
& Tadmor 1990; LeVeque 2002) can be used to solve for the motion around an arbitrarily
shaped walled obstacle. The particular case that we focus on is that of a circular cylinder,
which is not only a classical shape, but is of fundamental practical interest for the design
of pylons that are able to withstand such flows (Sovilla et al. 2008), as well as being
representative of common obstacles such as tree trunks. To provide basic physical insight
into the problem as well as quantitative data to compare the model against, we begin by
performing a series of small scale experiments.

2. Small scale experiments

The experimental set up is shown in figure 1. It consists of a smooth plexiglass chute
that is 300mm wide and 600mm long and is inclined at an angle ¢ to the horizontal. At the
top of the chute is a hopper, where the grains are loaded, and there is a gate mechanism
that controls the height and flux of material entering the chute. A 30mm diameter circular
metal cylinder is attached in the centre of the chute 300mm downstream of the inflow
gate, so that its axis of revolution is normal to the inclined plane. The flow in figurel
shows a thin, rapidly moving, avalanche of non-pareille (commonly known as hundreds
and thousands or Sprinkles) on a slope inclined at ¢ = 38°. The grains are approximately
Imm in diameter and are coloured red and white. Individual grains can be identified in
the hopper where there is relatively little motion adjacent to most of the transparent side
walls. A relatively long exposure is used to produce surface streaks and help visualize
the particle trajectories. Just upstream of the cylinder there is a strong jump in the flow
thickness and velocity, which is termed a “bow shock wave”. On the lee side a particle
free region forms, which is termed a “granular vacuum” by direct analogy with vacuum
boundaries in gas dynamics, where the density, p, is zero, rather than the avalanche
thickness, h. Grains run freely off the end of the chute into a collecting box, so there is
no significant upstream influence by the outflow conditions.

The formation of shock waves is insensitive to the particular type of granular material
used, although the resolution of the shocks is better if the grains are small relative to
the typical scale of flow features. Figures 2 and 3 show closeup oblique and overhead
views of the steady fully developed flow of a soft masonry sand avalanche around the
circular cylinder on a ( = 36° slope. The sand is poly-disperse, but the majority of grains
lie in the range 100-400um, and, although they are not of contrasting colour, they still
produced subtle streak lines in the photographs that reveal the particle paths. The bow
shock starts just upstream of the obstacle and is very abrupt, appearing as a sharp line
in the overhead view in figure 3, that wraps around on either side of the cylinder. It
separates the oncoming supercritical flow (where the Froude number Fr > 1) from the
deflected flow on the downstream side, which has regions of both subcritical (Fr < 1) and
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FIGURE 2. Perspective view of a bow shock, stagnation point and particle free granular vacuum,
generated when a sand avalanche flows around a circular cylinder. The chute is inclined at
¢ = 36° to the horizontal and the Froude number just upstream of the shock is approximately
equal to six. The flow is from top left to bottom right. Individual grains can be seen near the
stagnation point.

supercritical flow. The deflected flow appears slightly lighter than the oncoming flow, in
figure 3, due to the lighting. The avalanche thickens significantly across the shock, rising
to a maximum height immediately above the furthest upstream point on the cylinder
wall. This is also where the stagnation point is located. The flow is slowed so much near
the stagnation point that it is possible to just see some of the individual particles in the
photographs in figures 2 and 3.

As the grains move around the top side of the cylinder the flow expands, causing the
thickness to decrease and the grains to rapidly accelerate reaching supercritical speeds
again. The dividing line between sub- and supercritical flow is called the “critical line”
and is where Fr = 1. Close to the wall the avalanche develops steep sides that cast a
shadow on either side of the cylinder as shown in figure 3. This part of the expansion is
so strong that the avalanche reaches zero thickness before the two streams meet and the
flow detaches from the wall. Downstream the grains are pushed inwards on either side
by the lateral pressure gradients, and the zero thickness boundary moves inwards and
eventually intersects at a sharp point some distance downstream. The sides of this grain
free region are almost straight, so the granular vacuum on the lee side looks triangular
in shape. The point of intersection of the two streams, or pinch-off point, is similar to
those observed by Johnson & Gray (2011) during jet impingement on a plane. In this
case, however, there is no flux of grains from the vacuum region.
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FIGURE 3. Overhead view of the bow shock, stagnation point and particle free granular vacuum,
under the same conditions as in figure 2. The flow is from top to bottom. Individual sand grains
can be seen near the stagnation point.
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3. Governing equations

We use the dimensionless model formulated by Gray et al. (2003) in our discussion. It
is set up in a coordinate system, Oxyz, with the = axis pointing down a plane inclined
at ¢ to the horizontal, the y axis pointing across the slope and z being the upward
pointing normal, as shown in figure 1. The depth-integrated mass and momentum balance
equations are

oh 0, _ 0, _

En + %(hu) + 8—y(hv) =0, (3.1)
9, 0 o D, D (1, _
0 _ 0 __ 0 —2 0 1 2 —

respectively. The avalanche thickness, h, and the depth-averaged velocity u = (u,?)
in the downslope and cross-slope directions, have been non-dimensionalized using the
scalings

h = Lh, (:ivg) =L (:E,y), (1:1‘71:)) = \/L_g(ﬂal_})a t= V (L/g) 2 (34)

where the tildered variables are dimensional, g is the constant of gravitational acceleration
and L is the diameter of the cylinder. For the experiments in this paper, L = 0.03 metres,
which implies that the velocities are scaled by /Lg = 0.54ms™! and time is scaled by
v/L/g = 0.055 seconds. The source terms S; and S3 on the righthand side of (3.2) and
(3.3) are composed of the downslope component of gravity, which drives the avalanche
downslope, and Coulomb basal friction, which resists the motion

S1 =sin¢ — p(a/|ul) cos¢, (3.5)
So= - p(o/lal)cosc, (3.6)

where p = tand is the coefficient of friction and ¢ is the dynamic basal angle of friction.
The parameter A arises during depth-integration of the momentum transport terms, since
the average of the product of two velocity components is not equal to the product of the
average of those velocity components. Usually these factors are assumed to be unity,
which is equivalent to the assumption that velocity profiles are uniform with depth.
Assuming that the lateral and downslope velocity profiles, (u,v), are of the same form,
the parameter A is the same for each product, and is defined as

pp— g d L d L[ d 3.7
_W/ou Z_%OUUZ_WOU z. (3.7)
Various authors have considered the effect of other assumed profiles. Savage & Hutter
(1989) showed that A = 6/5 for a parabolic velocity profile, Pouliquen & Forterre (2002)
obtained the value of 4/3 for a linear profile (with no basal slip), and Borzsonyi, Halsey &
Ecke (2008) showed that for a convex Bagnold profile, A = 5/4. On rough beds Pouliquen
& Forterre (2002) showed that numerical computations are relatively insensitive to the
value of A\ because the flows are sufficiently slow that the momentum transport terms do
not play a large role. Nevertheless, deviations of A away from unity can cause difficulties
near vacuum boundaries, since the characteristic surface no longer coincides with the
motion of the boundary and the degenerate nature of the equations is lost. Such problems
are often circumvented by requiring the shape factor A — 1 as h — 0.

In this paper, the flows are strongly accelerated, which implies that the momentum
transport terms play a much more important role than for slow flows on rough beds.
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However, there is also a greater degree of basal slip. The lateral velocities may reasonably
be approximated by the linear profiles

u:ﬂ(a—i—Q(l—a)%), vzﬁ(a+2(1—a)%), (3.8)

which give plug flow (o = 1), simple shear (o = 0) and linear shear with basal slip for
a € (0,1). For these profiles the parameter
1
A= g(4—2c>hLa2). (3.9)
For a typical value of @ = 0.75, the shape factor A = 1.0208, which is sufficiently close
to unity that we shall assume A = 1. In this case the Froude number

Fr = |a|/c, (3.10)

is defined as the ratio of the flow speed |u| to the wavespeed ¢ = /hcos(. The major
difference of the avalanche equations (3.1)—(3.3) to standard shallow water flows is the
presence of the source terms on the righthand side.

4. Steady state accelerating flows on a smooth bed

In the chute flow experiments, shown in figures 1-3, the base is relatively smooth
and the grains are able to accelerate downslope rather than attaining a steady uniform
velocity, as they might on a rough bed (Pouliquen 1999a; Pouliquen & Forterre 2002).
This leads to a considerable thinning of the flow as it exits the gate as shown in figure 4.
The acceleration is controlled by the dynamic angle of friction d, which characterizes the
rate-independent Coulomb friction that is generated at the base by the slightly dilated
agitated flow of grains above. It is usually several degrees less than the microscopic static
basal friction angle. In this section a new method for determining ¢ is described, which
is based on constructing a one-dimensional exact solutions for the accelerating flow.
Assuming that the flow is steady, and v is identically zero, the mass balance equation
(3.1) and the downslope momentum balance (3.2) reduce to

o,
9 (haz+ th2eo ¢)=hs (4.2)
ar " T3 56 ) =L '

where the source term S; is now constant, i.e.
S1 =sin¢ — tand cos = secdsin 3, (4.3)
and the angle
B=C(—9, (4.4)
is the difference between the slope inclination and the basal angle of friction. The mass
balance equation (4.1) can be integrated directly, subject to the boundary condition that

the avalanche velocity and thickness at the inflow are ug and hg, respectively, to give a
relation between the flow thickness and the velocity

hii = hoio. (4.5)
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FIGURE 4. (a) A photograph through the transparent sidewall of the chute showing how an
avalanche of non-pareille exits under a control gate at a Froude number of approximately
Fr = 1.42 and dramatically thins as it accelerates downslope. The camera and the chute are both
inclined at an angle of 38° to the horizontal. (b) A PIV measurement of the velocity vectors
overlapped with the contour lines of the downslope velocity u in m/s.

The momentum balance equation (4.2) can be simplified by expanding out the derivatives,
using equation (4.1) and then dividing through by h to give
ou oh

U—— — =25 4.6

Ume + cos( p | (4.6)
Using (4.5) to substitute for the avalanche thickness, equation (4.6) can be integrated,
subject to the condition that the inflow lies at = 0, to give a cubic equation for the
avalanche velocity

a4 — (2812 + U3 + 2hg cos )i + 2hgtig cos ¢ = 0. (4.7)
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FIGURE 5. A comparison between the exact solution (solid lines) for @(z) and surface Particle
Image Velocimetry (PIV) measurements for non-pareille (circles) and sand (triangles). The ex-
periment with non-pareille was performed on a chute inclined at ¢ = 38° and an inflow gate
height ho = 0.43. The best fit was obtained with an inflow velocity uo = 1.24 and basal angle of
friction § = 23°. The sand experiments were performed with an inflow height of ho = 0.4 and a
slope of ¢ = 36° and the best fit was found with § = 26° for @y = 0.8.

This can either be solved by numerical root finding techniques or by using Cardano’s
formula for @ = @(x). For inflow Froude numbers above unity there are three real solutions
for x > 0. One is strictly negative, the other two are positive, by Descartes’ rule of signs,
and correspond to an accelerating and a decelerating flow, respectively. The decelerating
solution can be physically realized by using downstream control gates (e.g. see Gray
& Cui 2007), but normally the accelerating solution is selected. This necessarily has a
decreasing thickness distribution, which can be calculated from (4.5).

The solution provides two very simple ways of determining the dynamic basal angle
of friction, §. One strategy is to measure the thickness of the flow as a function of x and
the steady-state mass flux, mez¢, per unit width at the end of the chute. For an inflow
gate height, hg, the depth-averaged velocity at the inflow is @y = mMegit/ho, provided
(4.1) holds. The value of § can then be determined by fitting the exact solution to
the measured thickness . This approach relies on being able to measure small height
variations very accurately. Alternatively, Particle Image Velocimetry (PIV) can be used to
measure the surface velocity as a function of x. Figure 5 shows two sets of surface velocity
measurements for non-pareille (also known as 100’s and 1000’s or Sprinkles) and for sand.
This has the advantage that the surface velocity is considerably easier to measure, and
has larger variation than the thickness. However, this is not the depth-averaged velocity,
@, and an assumption about the downslope velocity profile with depth (3.8) needs to be
made to relate the two. Figure 4(b) shows PIV measurements through the sidewall of
the chute for a relatively thick flow exiting the hopper. While these velocities may be
effected by the sidewall friction they indicate that the velocity profile is plug-like with
only a relatively small amount of vertical shear. For simplicity, we shall therefore assume
plug flow, i.e. the surface velocity is equal to the depth-averaged velocity, which may lead
to a small over-estimate of the depth-averaged velocity. Setting the inflow velocity, g,
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and then matching the solution @(x) to the data yields the dynamic basal angle of friction.
For non-pareille 6 = 23°. While for fine sand § = 26°. This approach is a considerable
improvement on previous measurement techniques for § (Hungr & Morgenstern 1984a,b;
Savage & Hutter 1989; Wieland, Gray & Hutter 1999). Furthermore, the two methods
can also be used in combination to constrain the solution even further. For instance, it
may yield useful information on the degree of shear through the layer or changes in bulk
density.

5. Numerical method

The boundary conditions on the wall of the cylinder are more easily applied by solv-
ing the governing equations in a body fitted coordinate system. This transformation is
achieved by using the conservative variables h, m = hu and n = hv to write the system

of equations (3.1) to (3.3) in vector form as
oUu OE OF
— 4+ —4+—=—==-5 5.1
ot + oz + Oy ’ (51)

where U = (h, m,n)7T is the vector of conservative variables and the superscript T’ denotes
the matrix transpose. The respective flux and source term vectors are

E = (m,m?/h+h%cos(/2,mn/h)T,
F = (n,mn/h,n*/h+ h?cos(/2)7T, (5.2)
S = (0,hS1,hS:)T.

For computing the flow around a circular cylinder the body fitted coordinates reduce to
a polar coordinate system O'rf defined by

— —10)2+4y2, fH=tan* Y =t 5.3
r (x )2+ 2, an (x—l()’ T=t, (5.3)
as shown in figure 6. Note that the origin O’ is centred on the cylinder, and there is
therefore an offset of 10 non-dimensional units (30cm) from the outflow gate at = 0.
The transformed equations are not in conservative form, but they can be written in
conservative form (e.g Vinokur 1974; Viviand 1974; Anderson 1995, see pages 183-186)

oU OE 0OF .

— +—=—4+==5 5.4

or “ar Tag = (5.4)

by defining the new conservative variables, fluxes and the source terms as
U=J"'v, E=J'r,E+r,F), F=JY0,E+0,F), S§=J7'§, (55)

where the unbracketed subscripts denote differentiation with respect to that subscript
and the Jacobian coefficient J = r;0, — 1,0, = (x,yo — zgy,) " '. The major advantage of
this method is that it works for any smoothly varying body surface, not just a circular
cylinder. For instance, Gray & Cui (2007) used this method to compute the flow past an
obliquely inclined wedge.

The system of equations (5.4) is solved numerically by a Non-Oscillatory Central
(NOC) scheme, which is a high-resolution shock-capturing method that does not re-
quire Riemann solvers. The original NOC scheme (Nessyahu & Tadmor 1990) switches
between a grid, and a grid offset by half a grid cell in each direction, at alternate time-
steps, which can make application of the wall boundary conditions difficult. We therefore
use the NOC scheme of Jiang et al. (1998) that uses a single grid. Figure 6(b) shows a
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FIGURE 6. Coordinate mapping (a) between rectangular “Ozy” and polar O'rf coordinates,
with the origin O at the hopper gate and O’ centred on the cylindrical obstacle. An O-type grid
(b) is used in the computation, where 7 denotes the radial coordinate from 1 (cylinder wall) to
n; (outer boundary) and j denotes the circumferential grid points anti-clockwise from 1 to n;.

typical computational domain, with a uniform distribution of circumferential grid points
and a stretched radial distribution to allow a higher resolution close to the cylinder. In
the experiments the radius of the cylinder R was equal to 15mm, which is equivalent
to R = 0.5 dimensionless units, since the diameter L = 30 mm is used in the scalings
(3.4). The grid covers a range from r = 0.5 to » = 10 units, with » = 0 at the center
of the cylinder and (r,0) = (10, 7) corresponding to the position of the inflow gate. The
simulations can either be performed on a half grid, 0 < 8 < 7, with a symmetry condition
along, y = 0, or, on a full-grid, 0 < § < 27, with a wrapping condition along the grid
lines j = 1 and j = n;. Both methods have been tested and give the same results up to
numerical accuracy. The results from the full-grid simulations are presented for ease of
comparison with the experiments.
Initially the chute is assumed to be grain free, i.e.

h=0, at t=0. (5.6)
The gate then opens instantaneously, so that the supercritical inflow condition is
h=hy, u=1uy, v=0 at =0, t>0, (5.7)

where hg is determined by the gate height and @ is measured by Particle Image Velocime-
try. In order to apply the inflow condition (5.7) on the O-type grid, a one-dimensional
solution without an obstacle is pre-computed on a rectangular grid to determine the
upstream values of h(z,t) and @(x,t) as the avalanche enters through the outermost
upstream grid cells, i.e. j € [nj1,n;3] on ¢ = n; in figure 6. The fact that the flow
front remained one-dimensional, in regions that were not influenced by the cylinder, as
the front propagated through the domain provided a strong test of the method. For the
experiments and computations presented in this paper the downstream outflow is also su-
percritical, so no physical boundary conditions need to be applied for j € [1,n;1]U[n;3,n;]
on i = n;. On the cylinder wall (i = 1) a no normal flux condition is applied

hu-n=0, at r=0.5. (5.8)
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This condition is satisfied when either (i) the flow is parallel to the wall, w-n = 0, or
(ii) the flow thickness is zero, h = 0. The later condition allows the grain free vacuum
boundary to detach from the wall. A cutoff threshold of h = 10~ non-dimensional
units is used to prevent division by zero when the momentum transport terms (5.2) are
computed. Following Gray et al. (2003) the results are plotted with the lowest contour at
h = 1072 non-dimensional units or 300zm, which is approximately equal to the average
diameter of a grain of sand. This mirrors the finite grain size in the experiments and
prevents spurious zero thickness contour lines being depicted in the grain free-regions.

6. Time-Dependent evolution of the avalanche

A series of photographs of the avalanche impinging on the circular cylinder on a slope
inclined at ¢ = 36° are shown in the left hand panels (a,c,e & g) of figures 7 and 8.
A supplementary movie of the experiment is available at journals.cambridge.org/flm.
The pictures were taken with a shutter speed of 1/20 of a second, a frame rate of 25
frames per second and show how the bow shock and the granular vacuum are formed
in a close up region near the cylinder (18.6cm X 13.8cm). The righthand side panels
(b,d,f & h) in figures 7 and 8 show contours of the evolving avalanche thickness from
a corresponding numerical simulation. The time intervals between frames are equal to
0.72 non-dimensional units. The initial conditions hg = 0.4 and @y = 0.8 and the basal
angle of friction § = 26° for the simulation were determined by the method described
in §4. The computations were performed on an O-grid with 501 x 251 grid-points in the
circumferential and radial directions, respectively.

The position of the evolving vacuum boundary, which separates the avalanching grains
from grain-free region, provides a very sensitive test of the numerical simulations as its
position is strongly influenced by the local velocity field, pressure gradients and source
terms. The position of the boundary is superimposed on the experimental images to
provide a quantitative comparison between the experiments and the simulations. Figures
7(a,b) show the avalanche front just upstream of the cylinder prior to impingement.
In the experiments the front is diffuse, this is partly due to motion blur, and partly
because as the depth of the flow reaches that of a single grain, the particles can start to
bounce down the slope rather than avalanching en masse. In the numerical computations
neither of these effects occur and there is a sharp front that is still uniform in the cross-
slope direction. Since the gate release was out of camera shot, the simulation and the
experiment were synchronized by using the front position of approximately x = 8 units
at time ¢ = 7.4 units.

As the avalanche first impinges on the obstacle (fig.7¢,d) it is quite thin and trav-
eling very fast. As a result only those particles that collide with the cylinder wall are
significantly affected by the obstacle, and away from this region the flow front continues
to propagate uniformly downstream. By ¢ = 8.84 units the bow shock in front of the
cylinder is already quite well developed (fig. 7e,f) and the uniform part of the avalanche
front has propagated out of camera shot. The granular vacuum lies immediately down-
stream of the cylinder and still has almost straight sides in the experiment, which are
now much sharper and well-defined than the initial diffuse front. The computed position
of this moving boundary agrees extremely well with the experiments. The bow shock
continues to strengthen (fig. 7g,h) growing slightly in height and moving only slightly up-
stream until the oblique shocks on either side of the obstacle are almost fully developed
by t = 10.28 in figure 8(a,b). In contrast the vacuum boundary takes longer to develop.
It slowly closes (figs. 7g,h & 8a,b) in response to the lithostatic pressure within the body
that pushes the grains sideways, before it finally pinches off just before ¢ = 11 in figure
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FIGURE 7. Photographs (a,c,e,g) and superimposed computed boundary showing the time-de-
pendent development of a bow shock and a vacuum boundary as a sand avalanche flows around a
circular cylinder on a chute inclined at ¢ = 36°. Consecutive images are 0.04 seconds apart. Nu-
merical solutions (b,d,f,h) for the avalanche thickness h at corresponding times. The simulations
are performed with ho = 0.4, 4o = 0.8, § = 26° and all units are dimensionless.
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FIGURE 8. Photographs and superimposed computed boundary (a,c,e,g) and numerical solutions
(b,d,f,h) showing the continuation of the time-dependent development of a bow shock and a vac-
uum boundary shown in figure 7. Consecutive images are 0.04 seconds apart, which corresponds
to 0.72 non-dimensional units. A movie showing the time-dependent evolution of the experiment
is available at journals.cambridge.org/flm.
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8(c,d). The pinch-off point then propagates upstream until it reaches an almost steady
configuration by ¢ = 12.44 in figure 8(g,h). The grain-free vacuum region therefore forms
a triangular shape on the lee side of the cylinder. At all stages of the computation the
spatially, temporally and topologically evolving vacuum boundary agrees extremely well
with what is observed in experiments, indicating that this simple two-parameter model
captures all the essential physics.

7. Steady-State Solution

At later times the experimental flow reaches a steady state regime with no further
evolution within the field of view, apart from some small fluctuations due to the slightly
unsteady nature of the hopper flow. The time to reach steady state (in the field of
view) after the initial impingement on the cylinder (i.e. between figures 7a and 8g) is
approximately 5 non-dimensional time units or 2.77 seconds. The vacuum pinch-off occurs
at a distance x = 11.8 in the final steady state for the sand avalanche, shown in figure
9(a,b), which is very slightly shorter than at ¢ = 12.44. For comparison, the steady state
experiment and numerical simulation for non-pareille on a slope of { = 38° is shown in
figure 9(c,d). The parameters for the simulation are given in figure 5 and a movie of the
experiment is available at journals.cambridge.org/flm. This is particularly revealing, as
one can clearly see the particles upwelling between the bow shock and the stagnation
point and then being accelerated strongly in the cross slope direction on either side of the
symmetry line. The bow shock wave in the non-pareille is very similar to that in sand,
but the shape and extent of the granular vacuum is markedly different. These similarities
and differences will be investigated below.

7.1. Standoff distance of the bow shock

The upstream Froude number, Fry, is an important parameter in the theory, which
increases strongly with downstream distance due to the net acceleration of the slope.
The Froude number at the inflow is approximately, Frog = 2.1, for sand and, Fryg = 1.4,
for non-pareille, but by x = 9, just upstream of the shock, the one-dimensional solution
and parameters derived in §4 imply that Fr; = 6.04 (sand) and Fr; = 6.87 (non-pareille),
respectively. Both of these are high and equivalent problems in gas dynamics would be
classed as hypersonic flows (e.g. Hayes & Probstein 1966). The jump conditions for the
system of avalanche equations (3.1)—(3.3) are independent of the source terms (see e.g
Gray & Cui 2007), which implies that the jumps in h and w across the shocks are not
directly influenced by the acceleration, although they are influenced indirectly by the
changing local value of the Froude number. As the Froude numbers of the sand and
the non-pareille are comparable at x = 9 the size and shape of the bow shocks are also
comparable. The slightly higher value of Fr; for non-pareille produces a larger jump in
height across the shock, but the standoff distance x5 of the bow shock in front of the
cylinder is almost the same as that for sand.

Figure 10 shows a graph of the standoff distance, x5, as a function of the upstream
Froude number, Fr;. The experimental values are determined by performing experiments
at different slope angles and gate heights and measuring the velocity, @, just upstream of
the shock with PIV and reading off the flow height h; through the transparent sidewall.
For Fr; > 2, the bow shock forms and has a sharp jump in thickness. The experiments
show that the standoff distance decreases with increasing Froude number, Fr;, becoming
equal to approximately one quarter of the cylinder diameter by Froude number six. For
upstream Froude numbers below about two, the shocks are so diffuse that the standoff
distance can not be accurately defined. This is consistent with previous observations
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FIGURE 9. Photographs of steady-state avalanches of sand (a) and non-pareille (c) past a circular
cylinder. The equivalent steady-state computational contours of the avalanche thickness h are
shown in panels (b) and (d), respectively, together with particle paths (dashed lines). The
parameters for the simulations are given in figure 5 and movies showing the time-dependent
evolution of both experiments are available at journals.cambridge.org/flm.

(Gray & Cui 2007; Johnson & Gray 2011), and suggests that the effects of the depth-
averaged rheology (e.g. Forterre 2006) are sufficiently strong to prevent wave steepening.

There have been a large number of studies that have developed approximate solutions
or practical empirical relations for the shock standoff distance in gas dynamics and hy-
personics (e.g. Lin & Rubinov 1948; Hida 1953; Kim 1956; Lighthill 1957; Lobb 1964;
Hayes & Probstein 1966; Louie & Ockendon 1991; Belouaggadia, Olivier & Brun 2008).
However, despite the isomorphism between smooth shallow water and isentropic gas dy-
namic flows when the gas constant v = 2 (Preiswerk 1938; Courant & Hilbert 1962) these
relations can not be used for granular avalanches, because energy is not conserved across
shocks. There are comparatively few studies for shallow water flows. Forbes & Schwartz
(1981) considered the supercritical shallow water flow past a blunt body, such as a bridge
pier, that supports a detached bow shock. The problem is formulated inversely, by pre-
scribing the upstream Froude number and the shock to be a conic section, and then
calculating the location of the body by using Padé approximants to analytically continue
Taylor series expansions. For a parabolic shock, Forbes & Schwartz (1981) showed that
for large, Fry, the standoff distance, g, is approximately equal to the reciprocal of the
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FIGURE 10. The non-dimensional detachment, or standoff, distance xs of the bow shock as
a function of the incoming Froude number Fr; obtained in computation (solid-line with open
circles), experiment (filled diamonds) and the approximate series solution, 1/Fr1, of Forbes &
Schwartz (1981) (dot-dash line). The upper schematic diagram shows, x, and the cylinder radius
R = 0.5, the lower inset shows the computed and series approximation for the standoff distance
for Froude numbers five to thirteen.
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This is shown by the dot-dash line in figure 10 and provides a reasonable approximation
to the experimental data even at low Froude numbers. Numerical computations for the
standoff distance at higher Froude numbers (Fig. 10 inset) also show good agreement
with Forbes & Schwartz’s (1981) approximation (7.1), although it becomes increasingly
difficult to calculate solutions, because the magnitude of the jumps increase at the same
time as the shock detachment distance becomes closer to the wall. The results suggest
that at Froude number six the standoff distance should be one sixth, but measured values
are closer to one quarter. There are two possible explanations for this disagreement. One
possibility is that we have over-estimated the experimental Froude number, Fry, from
the PIV measurements by assuming that the flow is plug-like. An alternative possibility
is that new physics comes into play, as in shallow water flows (Mignot & Riviere 2010),
where horseshoe vortices form. In the case of granular flows, a small deposit is left
upstream of the cylinder when the flow ceases. The deposit looks similar to that observed
by Gray et al. (2003) on the upstream facing side of a pyramid, but in contrast there is
no evidence of it from free-surface observations during the flow. There may, however, be
a sub-surface static, or very slowly moving, zone adjacent to the cylinder, which would
effectively change its shape, and tend to move the standoff distance further upstream.
The source terms do not significantly affect the position of the bow shock or the
thickness at the stagnation point. To see this we consider the motion along the central
streamline from the bow shock to the stagnation point. The mass and momentum jump

X as Fr; — 0. (7.1)
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conditions (see e.g. Gray & Cui 2007) across a normal shock imply that
hlﬂl = hQ’l_LQ, (72)
1 1
hia? + Eh% cos ¢ = hotis + §h§ cos C, (7.3)

where the subscripts ‘1’ and ‘2’ indicate the value on the rearward and forward side of
the shock, respectively. Using (7.3) to eliminate @y in equation (7.3) implies that the
ratio of thicknesses across the shock satisfies

ho \/1+8Fr —1 (7.4)

hi 2

For a steady flow with shape factor A = 1 the downstream momentum balance (3.2) can
be reduced to the one-dimensional steady-state equation (4.6), irrespective of the fact
that both 0u/dy # 0 and 95/dy # 0. This is because the mass balance (3.1) can be
used to simplify the momentum transport terms and the cross slope velocity v is equal
to zero on the central streamline. Equation (4.6) can then be integrated from the shock
to the stagnation point, where the downstream velocity tsiqg is by definition zero, and
the corresponding stagnation thickness is

—9
U

2cos(’
For typical chute parameters and standoff distances, the first term on the righthand side
is approximately 0.04 units, which is much smaller than typical stagnation point heights,
which are order unity, so the source terms play a negligible role. Substituting (4.3) and
using (7.3) and (7.4) to eliminate ho and s, allows the ratio of the stagnation-depth to
the inflow depth to be expressed in terms of the upstream Froude number

hstag — Ts . 15 1 ([1+8Frjt/2-3)3

I _h_1566551n6+1+§H1_T6 (I8P _1) (7.6)
which is the generalization of Forbes & Schwartz’s (1981) result. The additional contri-
bution from the source terms is usually very small because both sin § and the standoff
distance x are small. To emphasize this point, the standoff distance for the numerical
computations in figure 10 are calculated by assuming that, S = 0. This shows that the
source terms play a negligible role for the position of the bow shock, but they do play an
important role when they act over longer distances. Given the upstream flow thickness
hi and Froude number Fry, equation (7.6) places a constraint on the minimum height
of the obstacle to prevent overtopping by an avalanche. This therefore provides a very
useful engineering approximation that can be used for the design of avalanche protection
structures.

hstag = x5 cos((tan{ — tand) + ha +

(7.5)

7.2. Pinch-off distance of the granular vacuum

Since the Froude numbers just upstream of the cylinder are comparable in the steady-
state experiments shown in figure 9(a,c), the major difference between them is the ac-
celeration that the grains experience. The parameter § = ¢ — ¢ introduced in (4.4) is
useful, as it determines the net acceleration of an avalanche down an incline. Slopes are
described as being accelerative if § > 0, non-accelerative if 8 = 0 and decelerative if
B < 0. For typical basal angles of friction, secd is just above unity and therefore the term
sin § in the source term (4.3) controls the effective acceleration in the downslope momen-
tum balance (4.2). The slopes in figure 9 are both accelerative, with 5 = 10° for sand
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FIGURE 11. The non-dimensional vacuum pinch-off distance z, for fixed inflow height ho = 0.43
as a function of the net acceleration angle § = ¢ — ¢ obtained from computation (solid-line with
open circles) and experiment (filled diamonds). The inset is a schematic showing .. Note that
these experiments and computations have been performed by changing the angle ¢ of the chute.
This alters both the inflow Froude number and evolution of the Froude number along the chute.

and 8 = 15° for non-pareille. While a five degree difference in 8 may not seem much, it
represents a 50% increase, and it is sufficient to significantly affect the position and shape
of the vacuum boundary. Indeed the non-pareille vacuum boundary is still almost the
same width as the cylinder at the edge of the photograph in figure 9(c), which contrasts
with the short triangular vacuum in sand (fig. 9a). This sensitivity of the position of the
vacuum boundary, therefore provides an exacting test for theoretical models.

For the non-pareille experiments the upstream Froude number (Fr; = 6.87) is higher
than that for sand (Fr; = 6.04) and as the grains move around the cylinder they have
more momentum. The expansion is therefore not quite as strong. As a result the vacuum
boundary detaches from either side of the cylinder slightly higher upstream and the
initial angle of closure is significantly less. The simple avalanche model described in §3
suggests that the vacuum will always close. This is because if the lateral velocity, v = 0,
the cross-slope source term, Sz, defined in (3.6), is zero, and hence the lateral pressure
gradients in (3.3) will apply a force that drives particles into the vacuum. Evidence for
this is provided by the streak lines in figure 9(c). Close to the vacuum detachment point
the particle paths are initially directed outwards, but slowly bend inwards and begin to
converge, although the pinch-off point lies out of shot. A numerical simulation of the
avalanche using the parameters determined in §4 accurately reproduces the slow closure
of the non-pareille vacuum (fig. 9d) as well as the triangular shape for sand (fig. 9b).

Figure 11 shows the pinch off distance x,, which is defined as the distance from the
rear of the cylinder to the pinch-off point, as a function of the net acceleration angle
B for a fixed inflow height hg = 0.43. The experimental data points were determined
by varying the slope angle from ¢ = 23° — 40° for the non-pareille (i.e. 8 = 0° — 17°)
and measuring the pinch-off distance z,. The initial velocity, @y, was also measured for
each increment in ¢ and a series of corresponding numerical simulations were performed.
From figure 11 it can be seen that the pinch-off distance between the experiment (filled
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diamonds) and the computation (open circled line) agrees well for a broad range of the
accelerating angle 5. When f tends to zero, the pinch-off distance approaches zero too,
indicating that the granular vacuum closes up almost immediately behind the cylinder.
For larger values of 8 the extent of the vacuum increases non-linearly rising rapidly to
about eight non-dimensional units at a slope angle ¢ = 40°. As the inclination angle is
increased the average Froude number increases as well as its variation along the chute.
Higher Froude numbers suggest thinner faster moving flows, where the pressure gradients
play less of a role, the vacuum closes more slowly and the pinch-off distance therefore
extends further downstream.

7.3. Wake development

Heil et al. (2004) investigated the ‘V’-shaped Mach cone that developed as a thin cylin-
drical rod was moved rapidly horizontally through a thin layer of vibro-fluidized granular
material. They drew a parallel with gas dynamics and shallow water theory and exper-
imentally verified that the half-angle of the Mach cone 6 satisfied the classical relation
sinf = c¢/uod, where ¢ = \/gh. They also identified a scaling law (Landau & Lifshitz
1959) for the decay of the shock height Pmaz with increasing cross-slope distance y,
which should be Apmaz < y~3/2. Heil et al. (2004) showed that their experiments were in
good agreement with this scaling in the range /D = 3 and 15. We have been unable to
test this hypothesis against our simulations, because our grid is simply not big enough,
but we anticipate deviations away from this relation, because our flow continues to be
accelerated with increasing downstream distance.

8. Discussion and conclusions

Small scale experiments with sand and non-pareille have been used to show that when
a granular avalanche flows around a circular cylinder, a bow shock wave is generated
in front of it, and on the lee side there is a grain-free granular vacuum. Numerical
simulations are used to show that a simple two-parameter depth-averaged avalanche
model (e.g. Gray et al. 2003) is able to accurately predict the position of the bow shock
and the granular vacuum. The simulations rely on a boundary fitted coordinate system
(Vinokur 1974; Viviand 1974) and the use of a high-resolution shock-capturing numerical
method (Nessyahu & Tadmor 1990; Jiang et al. 1998). It is sufficiently general to be able
to calculate the flow around any smooth walled obstacle (with the wall normal to the
slope). In order to prescribe the upstream boundary conditions correctly, it is necessary
to calculate a one-dimensional solution for the undisturbed flow, as it enters the body-
fitted mesh. The results for the temporal and spatial development of the bow shock and
the vacuum boundary are in very good agreement with the experiments (see figures 7
and 8). Indeed even the slow upstream propagation of the vacuum pinch-off point (fig. 8)
before steady state is reached, is reproduced accurately by the scheme. Experimentally
the shock standoff distance is seen to decrease with increasing upstream Froude number,
reaching approximately a quarter of the cylinder diameter at Froude number six (fig. 10).
Our numerical simulations and previous approximate solutions (Forbes & Schwartz 1981)
imply that as the Froude number tends to infinity the standoff distance continues to
reduce as the reciprocal of the Froude number (7.1). This leads to a small discrepancy
with the experimental data near, Fr;y = 6, which might be due to the formation of a
subsurface dead-zone. The position of the bow shock is not strongly influenced by the
source terms, but the closure rate of the vacuum is very sensitive to the net acceleration
B = — 4. As the difference between the slope inclination angle ¢ and the dynamic basal
angle of friction § increases, the pinch-off point moves far downstream (fig. 11).
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These results are of practical importance for natural hazards, such as snow avalanches,
rockfalls, debris-flows, lahars and pyroclastic flows, which frequently impinge on obstacles
such as trees (Cole et al. 1998; Gray & Kokelaar 2010) or pylons (Hauksson et al. 2007;
Sovilla et al. 2008; Hu, Wei & Li 2011). For engineers a fundamental task is to determine
the impact pressures and dynamic loadings that man-made structures need to be able
to withstand, as well as the necessary height of the obstacles to prevent overtopping
by an avalanche. The shape of the obstacle, and the angle that the avalanche impinges
upon it, have an important affect on whether shock waves will detach to form bow waves
or not (Gray & Cui 2007; Cui et al. 2007; Baroudi, Sovilla & Thibert 2011). However,
when detached shocks do form, the simple relation (7.6) for the ratio of the stagnation
height to the inflow height at a given Froude number, may provide a useful engineering
approximation for optimizing the height of the obstacle.

At the European avalanche test site at the Vallée de la Sionne in Switzerland an
instrumented mast is used to make measurements of the flow velocity in the dense basal
avalanche. The measurements are made by cross-correlation of optical sensors that are
placed on an obliquely inclined wedge. Understanding the flow around such masts is of
crucial importance in interpreting the resulting data. For instance, if an oblique shock
wave is generated by the wedge, then the undisturbed upstream conditions can be inferred
by using the oblique shock relations (e.g. Gray et al. 2003; Hakonardéttir & Hogg 2005;
Gray & Cui 2007; Cui et al. 2007; J6hannesson et al. 2009). This has not yet been done
at the Vallée de la Sionne, although measured velocities seem consistent with order of
magnitude estimates of the avalanche flow speed, and are probably at most 20% smaller
than the undisturbed upstream values. The flow thickness at the mast is measured by the
depression of switches, and can be significantly thicker than the upstream flow, suggesting
that inferred downstream Froude numbers (1 < Frp < 6) may be considerably less than
the real upstream values. The mast also has a number of blunt surfaces, which suggest
that it is possible for a bow shock to form. If this is the case then it becomes almost
impossible to relate downstream velocity data to the upstream conditions, because the
flow velocity varies from zero near the stagnation point to quite large values over a very
short distance. There is therefore still scope to optimize the design of instrumented masts
in order to reliably relate upstream flow conditions to measurements made adjacent to
the obstacle wall, i.e. to eliminate all possibility of shock detachment. Conversely, in
order to optimize the design of avalanche protection structures, not used for velocity
measurement, it may be beneficial to promote the formation of detached bow shocks,
because much more energy is dissipated in strong shocks than in weak shocks (Gray &
Cui 2007).
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