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Abstract:  

The paper reports the findings of a two year case study into the performance of solar 

thermal hot water (STHW) systems installed on new build properties in South 

Yorkshire, UK. All properties were fitted with 12 No. flat-plate solar thermal panels, 

covering 4.67 m
2
 and designed to supply, on average, up to 1064 kiloWatt hours (kWh) 

of solar energy output per annum. The case study concentrates on properties with high 

occupancy levels: an arbitrary level of 87% was chosen which enabled ten properties to 

be considered. 

The results show that there is a significant difference in performance across the selected 

STHW systems and none of the systems achieved the design specification. The average 

gas energy displaced was only 5% with a solar fraction (including losses) of just 19%. 

However, the STHW systems (along with the installed photovoltaic systems) working 

to their full capacity have the potential of generating 29% of the average household 

energy demand per annum.  

Keywords:  
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1 Introduction 

Solar thermal hot water (STHW) systems offer an opportunity to reduce carbon dioxide 

(CO2) emissions from homes and contribute to the UK Government's target of 

generating 15 percent of the UK's energy supplies from renewable sources by 2020 

[DCLG, 2009]. However, there are many variables that can have an influence on the 

performance of STHW systems, thereby limiting their ability to save on water heating 

bills and contribute to carbon reduction targets. This paper explores the impact of 

STHW’s in a domestic setting, based on an evaluation of STHW systems installed in a 

social housing scheme in South Yorkshire, UK. The scheme of 23 three-bedroom super-

insulated homes fitted with renewable energy technologies was completed in September 

2007. All of the homes are fitted with solar photovoltaic (PV) and STHW systems, but 

this paper focuses primarily on the performance of the STHW systems. 

2 Literature Review 

The UK Government’s 2006 review into the sustainability of existing buildings in the 

UK [DCLG, 2006] found that 152 million tonnes of carbon (MtC) were emitted from 

the UK’s building stock in 2004. In total, 27% of this figure, or 41.7 MtC, was 
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attributable to the housing stock. Domestic emissions will have to fall by 33.4 MtC to 

8.7 MtC by 2050 if the housing sector is to reduce emissions by 80% to meet overall 

carbon emissions targets.  

As of 2008, there were around 100,000 STHW systems installed across the UK 

[Element Energy Ltd., 2008], although new systems were only being installed at a rate 

of a few thousand per year. For instance, just 4,000 STHW systems were installed in the 

UK in 2006. Despite STHW technologies being available for many decades, there are 

very few publications that focus on the performance of STHW systems in-situ. 

Relatively few STHW systems that have been installed are subjected to detailed 

monitoring and data from those monitored systems are not often publicly available. As a 

result, there is a lack of understanding of the costs of the energy generated by these 

systems [Bates et al, 1999].  

3 Case Study Detail 

The case study scheme consists of twenty three properties, five of which are detached 

and eighteen semi-detached. All properties had 4.67m
2
 (4.12m

2
 based on aperture area) 

of STHW on a roof pitch of either 40 or 27. The systems used in this study are 

indirect, using a heat transfer fluid (glycol), and active (forced circulation via a pump). 

The pump in the system is programmed to switch on when a temperature differential of 

5C is sensed between the lower store temperature in the bottom of the cylinder and 

temperature of the glycol in the solar panel. Properties also benefited from the 

installation of either 58 or 72 solar PV tiles and their short-term performance is 

considered elsewhere [O'Flaherty
 
et al, 2009]. 

4 Research Methodology 

The solar energy, in kWh, was manually recorded from a Resol Deltasol BS Plus solar 

controller in the pump station kit in each property. The design specification included a 

temperature sensor on the return pipe near the cylinder with a flow temperature sensor 

installed near the solar collector. Flow rates were factory set at 6 litres/min. All 

pipework was fully insulated to minimise heat losses. For a combined cylinder system 

(i.e. water is pre-heated in the bottom of the cylinder before being heated to the required 

delivery temperature by an auxiliary boiler), the most accurate method of calculating the 

solar energy is to consider the collector heat output in kWh [Energy Savings Trust, 

2001]. However, standing and pre-heat losses may occur in the cylinder and these are 

ignored in this calculation. As it is difficult to measure the pre-heat losses in a combined 

cylinder system [Energy Savings Trust, 2001], the measured solar energy figures 

presented in this paper are higher than is actually the case, but these losses are estimated 

in Section 7.1 when calculating energy savings.  

Solar energy datum readings were taken upon commissioning the systems in August or 

September 2007 with final solar energy readings taken two years later. These readings 

were validated via independent sensors which were installed on STHW systems in two 

properties and this is described in Section 6. Financial limitations meant that only two 

properties could be independently monitored. 



 

 

5 Findings and Discussion 

Table 1 gives details of the solar systems, energy outputs and energy consumption over 

the two year monitoring period for ten properties with high occupancy levels. The 

property identification is given in col. 1. The solar energy output, recorded as described 

in Section 4, is given in col. 2. Two roof pitches were used in the design of the 

properties (27 and 40) and these are shown in col. 3. The monitoring duration for each 

property is given in col. 4 and varies slightly due to the inability to gain access to some 

properties on the date of the second anniversary of commissioning. The occupancy 

dates are given in col. 5 and relates to when at least one person was living in the 

property. The occupancy dates are converted to percentage occupancy in col. 6. For 

simplicity, the number and type of occupant is not considered, nor is the time of the year 

to which the occupancy relates. A more accurate calculation would prove to be very 

difficult since some properties are rented and the number and type of occupant can 

change on a regular basis. The cylinder hot water temperature from a typical winter's 

day in November/December 2008 are given in col. 7 and will be used to possibly 

explain differences in performance in Section 5.1. Gas and electricity consumption in 

kWh are given in cols. 8 and 9 respectively. The electricity consumption was taken from 

the calibrated household electricity meters in kWhs but units of gas consumed were 

recorded in m
3
 from the calibrated household gas meters and converted to kWhs using a 

standard procedure as shown in Equation 1: 

Gas (kWh) = Gas units x volume conversion factor (1.0226400) x calorific value 

(31.3241) ÷ kWh conversion factor (3.6)               Equation 1 

5.1 Variation in Solar Energy Outputs 

Referring to Table 1, there is a significant difference between the best and worst 

Table 1. Solar thermal hot water monitoring data 
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V 1,990 27 2.02 15/10/07 - end of monitoring 95 24.5 6,371 5,230 

R 1,166 27 1.99 27/10/07 - end of monitoring 92 42.9 9,948 3,137 

B 961 40 2.04 15/10/07 - end of monitoring 92 45 18,517 pre-pay 

P 947 27 2.04 20/11/07 - end of monitoring 87 35.5 10,366 4,353 

I 677 27 2.04 15/10/07 - 13/11/08; 

15/12/08 - end of monitoring 

87 42.7 13,881 6,081 

F 549 40 2.08 1/11/07 - end of monitoring 90 49.7 14,904 12,710 

K 495 27 2.15 15/10/07 - end of monitoring 87 50.2 12,867 8,166 

T 476 27 1.99 15/10/07 - end of monitoring 94 64.9 16,097 6,470 

S 437 27 2.03 15/10/07 – 24/05/2009; 

1/06/09 - end of monitoring 

91 58.4 15,901 6,851 

O 200 27 2.11 15/10/07 - end of monitoring 88 58.4 8,729 4,734 

Av: 790    90  12,758 6,414 



 

 

performing STHW systems for high occupancy properties. The best performing STHW 

system generated 1990 kWh during the monitoring period whereas the worst system 

generated only 200 kWh. It is also obvious in Table 1 that none of the STHW systems 

achieved the design specification of 2,128 kWh of solar energy (1,064 kWh/year - 

design calculations were not available from the designer to check this specification).   

The performance of STHW systems is very much dependant upon sufficient usage of 

hot water from the cylinder. Allen et al [2010] report that while the volume of hot water 

used by the households is known to vary widely, even between otherwise similar 

households [BSI, 1989], an Energy Saving Trust study [2008a] confirmed that STHW 

performance is primarily dependent on the number of occupants. Therefore, if some 

properties have higher occupancy levels and a higher number of residents, they are 

likely to use more hot water, hence the heat transfer cycle is repeated more often, 

assuming of course their is sufficient heat in the collector from solar gain. However, a 

key reason why none of the STHW systems achieved the design specification is that 

each property is fitted with an electric shower over the bath, meaning that hot water 

usage from the cylinder will be significantly reduced.  

The variation in individual performance is mainly due to householders working with 

their solar hot water systems and using their boilers in partnership with the system. It 

was shown that householders who do not alter their boiler timings or patterns of hot 

water demand will have a lower performance, whereas properly timed and controlled 

input from the subsidiary heating system will lead to enhanced performance [Powell and 

Monahan, 2009]. 

To complement the above theory, Figure 1 provides a relationship between the 

measured solar energy over the two year monitoring period (Table 1, col. 2) and the 

cylinder hot water temperature on an arbitrary winter's day in November/December 

2008 (Table 1, col. 7). The cylinder hot water temperature for an afternoon at this time 

of the year was chosen as it is unlikely that the STHW system will provide sufficient 

energy to heat the water to a usable temperature, hence auxiliary boiler input will be 

required. Referring to Figure 1, the properties with higher solar energy outputs appear to 

have a lower cylinder hot water temperature and it is likely that these households alter 

the boiler timings to provide hot water as and when required as opposed to continuously 

maintaining the water at a high temperature. This would enable the STHW system to 

work at every opportunity. The properties with highest cylinder hot water temperatures 

generally exhibit lowest solar energy outputs and these can be considered as homes 

where the boiler timings are not altered and the STHW system is competing with 

limited success against this auxiliary heater. 

5.2 Efficiency of STHW Systems 

The solar irradiation available to a STHW collector varies with its azimuth, pitch and 

geographical location [Allen et al, 2010]. The location of the STHW panels in South 

Yorkshire in the UK would mean annual global irradiation of approximately 950 

kWh/m
2
 of panel on a horizontal surface, assuming no shading [Suri et al, 2007]. For a 

typical UK roof pitch of 15–50, and for SE to SW facing installations, the energy 

available will be increased by approximately 10–15% from these values [BSI, 1989], 

meaning at least 1,045 kWh of global irradiation per m
2
 of panel. This value also 

corresponds to 20 years of solar irradiation data proposed by Page and Lebens [1984]. 



 

 

 

Figure 1. Measured solar energy versus cylinder hot water temperature 

Therefore, the annual gross solar resource available to the 4.67m
2
 collectors was 

estimated as 4,880 kWh/year. The best performing system (Property V) generated 1,990 

kWh over two years (on average 20% gross efficiency per annum), the worst 

performing system (Property O) generated only 200 kWh over the same time period (on 

average 2% gross efficiency per annum). The average efficiency was only 8%. The 

gross efficiency in this study compares unfavourably to a previous study where it 

ranged between 22-39% (average: 32%) [Martin and Watson, 2001]. When used to 

calculate efficiency, gross area provides less favourable results for collectors [Martin 

and Watson, 2001]. However, to enable comparisons to be made with other studies, the 

gross collector area was used as opposed to the aperture or absorber area to calculate 

performance data.  In one previous study [Bates et al, 1999], it was observed that there 

was a striking variation in the parameters monitored in each STHW system - some 

organisations were not necessarily aware of what parameters should be monitored and 

why they should be monitored. Performance data based on gross area were available for 

all studies and, hence, were used to compare performances here (Section 6.1). 

6 Validation of Data 

Two properties had additional monitoring equipment installed to independently monitor 

the performance of the solar thermal hot water system in the present study. However, 

these properties remained unoccupied for a substantial part of the two year monitoring 

period and are, therefore, excluded from Table 1. The intermittent data collected during 

times of occupancy was used to validate the readings from the solar controllers. This 

involved installing two brass body paddle wheel flow meters (Burkert S030) on the flow 

and return pipes to measure the quantity of glycol passing through the system. These 

were accompanied by a pulsed output flow transmitter (Burkert 8035) which enabled 

the flow to be logged by a data logger (model R-Log GPRS). Settings were based on the 

pipe size and material of the flow meter, with a K factor of 49.03 being used to signify 

49.03 pulses being recorded for every litre of glycol circulating around the system. The 

flow and return temperatures were also monitored using two PT100 temperature 



 

 

sensors. The logger was programmed to continuously monitor at two minute intervals 

and send the data on a daily basis at midnight via GPRS. 

However, the data logging system did not perform as expected and there were time 

periods when the data were not sent via GPRS. Despite many attempts to rectify the 

problem in conjunction with the suppliers, both data loggers in the properties were 

eventually changed but this only partially solved the problem, the logging system in one 

property became more reliable but the logger in the second property continued to 

malfunction. In addition, it was noticed over time that the paddle wheel flow meter also 

exhibited signs of malfunction and a possible reason for this was that tiny fragments in 

the glycol (e.g. burrs from the copper pipework during installation or other 

contaminants from storage vessels) accumulated at the paddle wheel causing it to stick; 

this was also evident in other similar flow meters being used by the authors elsewhere. 

Since manual readings were taken on a random basis from the solar controllers, the aim 

was to match time periods where both manual and logged data were available to enable 

a comparison to be made for verification purposes. A three week period in July 2008 

was selected for this from one of the properties when manual and logged data periods 

corresponded and the paddle wheel meter was working freely. 

The logged data (vol. of flow, flow and return temperatures) were analysed using a Heat 

Transfer Analysis method. Data were analysed to determine the quantity of energy 

transferred to the water in the cylinder and Equation 2 was used for this purpose: 

Q = ()(V)(Cp)(T)            Equation 2 

where  = density of the glycol, kg/m
3
 Cp = Circulating fluid coefficient, J/kgK 

V = volume of flow, m
3
, obtained from the 

number of pulses recorded by the data 

logger (49.03 pulses per litre) 

T = Difference in flow and return 

temperatures, K, recorded via temperature 

sensors 

A full detailed analysis of this procedure is outside the scope of this paper. Referring to 

Table 2, the two types of readings are given in col. 1 followed by the solar energy 

outputs under consideration in cols. 2 and 3 from the manual data. Col. 4 shows the 

difference in solar energy output during the three week period: 175 kWh for the manual 

readings (col. 3 - col. 2) and 189 kWh for the heat transfer analysis. This gives a 

difference of 14 kWh or 8% between the two. It can, therefore, be considered that the 

manual data presented in this paper reflects fairly accurately the performance of the 

solar thermal hot water systems being monitored, as a difference of 8% is within normal 

research error parameters.   

7 Benefits of STHW Systems 

The average solar energy output in properties with occupancy levels above 87% (ten 

properties) were used to estimate the impact of the STHW systems in reducing carbon 

emissions. The average generation from these ten properties (Table 1, col. 2) is 790 

kWh or, if divided equally between years one and two for the purpose of analysis, 395 

kWh per annum, well below the design specification of 1064 kWh per annum. 

However, the average occupancy level was 90% (Table 1, col. 6) so the average 

generation of 395 kWh is slightly underestimated. 

 



 

 

Table 2. Validation of solar thermal hot water monitoring data 

1 2 3 4 5 

 Reading 1 

4/7/08, kWh 

Reading 2 

25/7/08, kWh 

Solar energy 

kWh 

Difference 

% 

Manual readings* 427 602 175 8 

Heat Transfer Analysis** - - 189 

* from the solar controller  ** from independent flow meters and temperature sensors 

7.1 Useful Energy Savings (Energy Displaced) 

An estimate of the energy savings due to the performance of the STHW systems is 

given in Table 3. Referring to Table 3, the property ID is given in col. 1 and the solar 

energy output is given in col. 2. The primary circuit losses avoided are given in col. 3 

and are based on the fact that the boiler operates less frequent and runs for less time to 

heat the solar pre-heated water. Heat losses from the pipework connecting the boiler to 

the cylinder are, therefore, avoided and are added to the energy benefit of having the 

solar heating system [BRE, 2008]. In this analysis, an allowance of 5% for pipe losses is 

made [Energy Saving Trust, 2003]. The excess cylinder losses are given in Table 3, col. 

4 and are based on not all solar energy input to the cylinder being useful. Higher heat 

losses are evident from the cylinder due to the solar system holding the cylinder at a 

higher temperature for more of the time during the summer months than a conventional 

heating system would [BRE, 2008]. In this analysis, the excess cylinder losses are 

estimated at 20% [Energy Saving Trust, 2001] although a more complicated analysis 

based on U values was conducted by Cruickshank and Harrison [2010]. In reality, the 

solar energy input to the cylinder that is not used, for example when the properties are 

unoccupied during holidays, should not be counted towards energy savings [BRE, 

2008], but due to the complexity of monitoring this, it is excluded from the analysis. 

Table 3. Displaced energy and CO2 savings 
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V 1,990 100 -398 1,692 1,879 -70 1,809 316 

R 1,166 58 -233 991 1,101 -41 1,060 185 

B 961 48 -192 817 908 -34 874 153 

P 947 47 -189 805 894 -34 861 150 

I 677 34 -135 575 639 -24 615 107 

F 549 27 -110 467 519 -19 499 87 

K 495 25 -99 421 468 -18 450 78 

T 476 24 -95 405 450 -17 433 76 

S 437 22 -87 371 413 -15 397 70 

O 200 10 -40 170 189 -7 182 32 

Av: 790 

(395/yr)    

746 

(373/yr) 

 718 

(359/yr) 
125 

(63/yr) 
a
 estimated at 5% from Energy Savings Trust, 2003 

b
 estimated at 20% from Energy Savings Trust, 2001 

c
 estimated as 3.75% of gas energy saved from Building Research Establishment, 2008, 2009 



 

 

The useful solar energy benefit is shown in col. 5 (col. 2 + col. 3 - col. 4).  In addition, 

the boilers fitted to each property will have an efficiency of less than 100% but since 

they are new boilers, they are assumed to have an efficiency of 90% for the purpose of 

this analysis. The useful solar energy benefit in col. 5 is corrected for the boiler 

efficiency giving the gas energy saved in col. 6 [BRE, 2008]. However, the solar 

controller and pump use electricity to circulate the heat transfer fluid around the loop. In 

previous studies, this averaged 4% [BRE, 2008] and 3.5% [BRE, 2009], so an average 

of 3.75% is used. This parasitic electricity is shown in col. 7, Table 6 and is subtracted 

from gas energy saved (col. 6) to give the energy displaced in col. 8. The average fuel 

energy displaced from the ten high occupancy properties is 359 kWh/year (col. 8). 

7.2 Carbon Reductions due to STHW 

A kWh of solar energy generated in place of gas eliminates 0.18 kg CO2 [DEFRA, 

2010], assuming the natural gas-fired boiler is used to heat the water and not the 

immersion heater. A kWh of electricity generates 0.32 kg CO2 [DEFRA, 2010]. 

Applying these values to col. 6 (savings) and col. 7 (emissions), Table 3 respectively, 

gives the net CO2 savings in col. 9. Referring to Table 3, col. 9, there are, on average, 

63 kg of CO2 saved per annum per property.  There are approximately 24.8m domestic 

properties in the UK [Technology Strategy Board, 2007] and the carbon savings 

required by 2050 is 33.4 MtC, or approximately 1.35 tons per property if the 

Government's 80% reduction target is to be met by 2050. The average solar thermal 

performance in this study saved only 0.063 tons, or 5% of the target per property.  

However, a 4.67m
2
 STHW system generating on average only 395 kWh per annum 

(Table 3, col. 2) has a gross efficiency of approximately 8%, hence more savings can be 

made with better performances and consideration of the criteria responsible for 

performance (e.g. ensuring showers are fed from the cylinder, use of hot-feed washing 

machines, residents understanding the technology better etc.). Application of renewable 

energy technologies will help in meeting this target but as a minimum, design 

specifications must be met. Low cost, non-technological changes, for example, 

changing peoples' behaviour by using more energy efficient white goods, installing 

more insulation for energy conservation, installing energy efficient boilers, switching 

off or using standby mode on TV or audio appliances etc. will contribute significantly to 

this target. 

7.3 Impact of STHW Systems on Household Load 

The average gas consumption in the Yorkshire and Humber region of the UK is 18,500 

kWh per annum (2007 figures) [DECC, 2007] and 3,300 kWh per annum for electricity 

for a medium sized house, Table 4, cols. 1 and 2 [Lynas, 2008]. Referring to Table 1, 

the average gas consumption for the ten properties with occupancy levels greater than 

87% is, on average, 6,379 kWh per annum (12,758 kWh over two years). Since the 

occupancy levels varies for these properties from 87% to 95%, an estimation of gas 

usage assuming 100% occupancy can be made by simply uplifting each individual 

property's usage on a pro-rata basis for the purpose of comparison. This would give an 

average gas consumption of 7,079 kWh (14,158 kWh over two years, Table 4, col. 3). 

However, the STHW system, on average, has displaced only 359 kWh per annum for, 

on average, 90% occupancy (Table 3, col. 8). Again, for the purpose of comparison in 

Table 4, this figure is uplifted to 399 kWh on a pro-rata basis if normalised to 100%  



 

 

Table 4. Energy displaced per annum due to renewable energy technologies 

1 2 3 4 5 6 7 

Energy 

Average  

use 

 

 

Average 

imported 

energy
a
 

 

Average 

energy 

displaced
b
 

Average 

energy 

demand  

Regional/ 

national 

comparison 

Average 

energy 

displaced
b
 

kWh kWh kWh kWh % % 

Gas/STHW 18,500 7,079 399 7,478 - 60 5 

Electricity/PV 3,300 3,570 902
c
 4,472 + 36 20 

Totals 21,800   11,950   

Table 4 (cont'd). Energy displaced per annum due to renewable energy technologies 

1 8 9 10 11 12 

Energy 

Hot water 

demand 

Solar 

fraction 

(incl. 

losses) 

Actual 

renewable 

energy
d
 

Actual 

renewable 

energy 

Potential 

renewable 

energy 

kWh % kWh % % 

Gas/STHW 2,091 19 2,203 18 29 

Electricity/PV - -    

Totals      
a
 based on 100% occupancy for ten properties for gas, nine for electricity

 b 
based on ten properties and 

gas assumed for water and space heating, 100% occupancy 
 c

 assumed as 50% of PV energy used in the 

home and 50%  exported to the grid 
  d

 assumes 100% of average PV energy generation (1,804 kWh) 

occupancy (Table 4, col. 4), and if it is assumed that gas is used to meet the hot water 

and space heating needs in these properties, the total average energy demand is 7,478 

kWh (7,079 + 399 kWh, Table 4, col. 5). This is 60% below the regional average (Table 

4, col. 6). The average energy displaced (399 kWh) equates to only 5% of the gas 

energy demand for space and water heating, as shown in Table 4, col. 7.  

Applying a similar analysis to the electricity usage for comparison, the average 

consumption of grid supplied electricity per annum of nine properties under 

consideration (one property had a pre-pay meter so cannot be included) is 3,207 kWh, 

or 3,570 kWh if normalised to 100% occupancy on a pro rata basis (Table 1, col. 9; 

Table 4, col. 3). In addition, the ten properties generated, on average, 3,605 kWh of 

electricity through the photovoltaic system over the two years (the photovoltaic systems 

were switched on continuously in these properties so were unaffected by occupancy), 

or, on average, 1,803 kWh per annum (for simplicity, the two year performance of the 

PV arrays is considered elsewhere, O'Flaherty, 2009). It is assumed that 50% of the 

electricity generated through the photovoltaics was used in the home and 50% was 

exported to the grid - some residents received payments from the energy supplier based 

on this assumption (the scheme only included generation and import meters, an export 

meter was not installed and in addition, this agreement was prior the Feed-in-Tariff 

being introduced). The average household consumption for the photovoltaic generated 

electricity is, therefore, 902 kWh (1803 kWh x 50%, Table 4, col. 4). This gives a total 

household electricity consumption of 4,472 kWh (Table 4, col. 5), or 36% above the 

national average of 3,300 kWh (Table 6, col. 6). The average electricity displaced by the 

PV generation is 20% (Table 4, col. 7). The analysis, therefore, shows that the 

properties clearly benefit from being super-insulated as gas consumption is well below 

the regional average (60%) but electricity consumption is over a third higher than the 



 

 

national average, possibly due to the installation of the electric shower and perhaps due 

to the use of the auxiliary electric immersion heater on occasions. However, the total 

average energy demand for the properties is 11,950 kWh (Table 4, col. 5), or 55% of the 

average use of 21,800 kWh (Table 4, col. 2) 

Hot water accounts for around 15 to 20% of a household's energy bill annually [Energy 

Savings Trust, 2008b]. Since the average energy consumption for these properties was 

11,950 kWh, hot water demand equates to 2,091 kWh (assuming 17.5% of the 

consumption is due to hot water needs, Table 4, col. 8). Therefore, in this study, the 

STHW systems provided, on average, a solar fraction of only 19% of the hot water 

needs of the properties per annum (based on fuel energy saved and 100% occupancy, 

Table 4, col. 9, the solar fraction is 21% if based on the solar energy delivered to the 

cylinder and normalised to 100% accuracy). The STHW suppliers estimated that 4.67m
2
 

of solar panels should meet up to 60% of the household hot water demand per annum 

but this was not the case in this study. Residents need to better understand the operation 

of their renewable energy technologies to ensure maximum performance. 

7.4 STHW as a Renewable Source 

It was stated in Section 1 that the UK Government has a target of generating 15% of the 

UK's energy supplies from renewable sources by 2020 [DECC, 2009]. It was shown in 

Section 7.3 that the average energy demand of the properties under consideration was 

11,950 kWh (Table 4, col. 5). Since the renewable energy systems on average displaced 

2,203 kWh of energy (399 kWh for the STHW and 1,804 kWh for the PV systems using 

100% of actual generation and 100% occupancy, Table 4, col. 10), the proportion of 

renewable energy generated by these properties was 18% of the total energy demand 

(Table 4, col.11). If the 15% target was applied to each individual property, then these 

properties, on average, exceeded the target by 3% despite the poor performance from 

the STHW systems. For the purpose of comparison, if the STHW systems provided 

their full specified 1064 kWh (taken as fuel energy saved as opposed to solar energy 

output), in addition to the 3.02 kWp photovoltaic system [O'Flaherty, 2009] generating 

its specified 2,400 kWh of electricity, then approximately 29% of the energy needs of 

these properties would be, on average, met by renewable sources (Table 4, col. 12). This 

highlights the needs for these renewable energy technologies to be fully functional to 

ensure the best possible chance of meeting UK emissions reduction targets. 

8 Conclusion and Further Research 

The following conclusions can be drawn from the analysis presented in this paper: 

- None of the STHW systems monitored in this project achieve the design specification 

of 1064 kWh of solar output per annum. The systems in properties with a high 

occupancy level had an average solar energy output of 395 kWh (8% solar efficiency) 

- Only 5% of the average total gas energy demand for high occupancy properties was 

displaced by the STHW systems and on average, only 19% of the gas supplied hot water 

energy demand was met (solar fraction = 19% including losses) 

- The fuel energy saved due to the installation of the STHW systems was, on average, 

359 kWh/yr based on an average 90% occupancy. This led to average CO2 savings per 

property of only 63 kg 



 

 

- Residents need to understand how to get the most out of these technologies. For 

instance, the STHW systems should be used to compliment the energy provided by the 

auxiliary boiler/immersion heater and not operated in competition with them. 

- Cylinder water usage will be significantly reduced if the property is fitted with an 

electric shower instead of relying on the STHW system to heat the water. 

- Adopting a 'fit and forget' approach in renewable energy technology schemes is not 

sustainable. Systems should be monitored to ensure they are working at their optimum 

and low performing systems should be re-commissioned. Fully functional renewable 

energy systems in this study had the opportunity of displacing up to 29% of the 

property's energy demand if they met their full design specification. In this study, 18% 

of the energy demand was provided by renewable energy technologies. 
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