A Study of Aluminium Zinc Indium Thermal Spray Coatings for the Protection of Steel Rebars in Reinforced Concrete

LEWIS, Oliver, O’FLAHERTY, Fin <http://orcid.org/0000-0003-3121-0492>, LAMBERT, Paul, STEPHENSON, Dan, BODEN, M and THISTLETHWAITE, S

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/5666/

Published version


Copyright and re-use policy
See http://shura.shu.ac.uk/information.html
A Study of Aluminium Zinc Indium Thermal Spray Coatings for the Protection of Steel Rebars in Reinforced Concrete

O. Lewis¹, F. O’Flaherty¹, P. Lambert², D. Stephenson², M. Boden² and S. Thistlethwaite³

1. Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield. S1 1WB
2. London and Scandinavian Metallurgical Ltd, Fullerton Road, Rotherham. S60 1DL

Background

- Steel reinforcement, or ‘rebars’ are extensively used in concrete structures but are susceptible to corrosion attack, leading to cracking and spalling of the concrete.
- Mitigation measures include modifying the internal environment in the concrete (e.g. chloride extraction), adopting cathodic protection, creating a barrier between the reinforcement and the concrete (i.e. coating the reinforcement) or using more corrosion resistant materials for the rebars.
- A metallic, thermally sprayed coating, on the concrete surface can form a protective barrier, whilst also cathodically protecting the rebars, provided an electrical connection is made to the coating.
- The benefits of this method include the ability to deposit a diverse range of thick (up to around 500 µm) coatings which can also be repaired in-situ (figure 1).

Project Objectives

- Determine the ability of thermally sprayed Al-Zn-In coatings to sacrificially protect steel rebars in a chloride environment.
- Investigate the effect of surface finish on the bond strength of the coatings after exposure.

Experimental Procedure

Concrete Blocks

Concrete blocks measuring 170 x 170 x 55 mm were cast with one of three surface finishes:
- Steel mould finish
- U4 float finish in accordance with MCHW 1⁴
- Grit blasted finish to BS EN 1766⁵

Coatings

Commercially available aluminium zinc indium coatings (composition given in table 1) were applied by arc spraying.

Coatings with a nominal thickness of 200 and 350 µm were applied for comparison.

<table>
<thead>
<tr>
<th>Composition (wt%)</th>
<th>Zinc</th>
<th>Indium</th>
<th>Aluminium</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5-5.5</td>
<td>0.02-0.05</td>
<td>Remainder</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Nominal Composition of Al-Zn-In Coating

Testing

The ability of the coatings to sacrificially protect steel rebars was studied by measuring the corrosion current using a zero resistance ammeter (ZRA). The experimental arrangement is shown in figure 2. A 1:1 anode-cathode ratio was used.

After 2 weeks exposure to 5% w/v sodium chloride solution, the adhesion of the coatings was determined by pull-off tests using 50 mm diameter dollies attached to the surface (figure 3). A minimum of two tests was performed on each sample.

Results

- Thermally sprayed Al-Zn-In coatings are able to cathodically protect steel rebars.
- Post-exposure coating adhesion is better on grit blasted surfaces.
- Increasing coating thickness has a negative effect on bond strength.

Conclusions

- Further ZRA tests and pull-off bond tests of different coatings thicknesses and surface finishes.
- Depolarization tests in chloride solution.
- Comparative trials with pure aluminium coatings.

Further Work

- Further ZRA tests and pull-off bond tests of different coatings thicknesses and surface finishes.
- Depolarization tests in chloride solution.
- Comparative trials with pure aluminium coatings.

References

3. Design Manual for Roads and Bridges, Waterproofing and Surfacing on Concrete Bridge Decks, BD 67/96