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Abstract 
Registration is the process of geometrically aligning two images taken from 

different sensors, viewpoints or instances in time. It plays a key role in the 
detection of defects or anomalies for automated visual inspection. A multiagent 
distributed blackboard system has been developed for intensity-based image 
registration. The images are divided into segments and allocated to individual 
agents on separate processors, allowing parallel computation of a similarity metric 
that measures the degree of likeness between reference and sensed images after the 
application of a transform. The need for a dedicated control module is removed by 
coordination of Distributor, Manager, and Worker agents through communication 
via the blackboard. Tests show that the system achieves large-scale registration 
with substantial speedups, provided the communication capacity of the blackboard 
is not saturated. The success of the approach is demonstrated in the detection of 
manufacturing defects on screen-printed plastic bottles and printed circuit boards. 

1 Introduction 
In fields as diverse as manufacturing and medicine, there is an increasing need 

for automated visual inspection in the detection of defects or anomalies. The main 
motivating factors for the adoption of an automated approach include reliability, 
reproducibility, reduction of labour costs, and speed. In a manufacturing context, 
increased speed holds the potential for inspection rates matched to high-speed 
production.  

A comprehensive overview of automated visual inspection for the detection of 
functional and cosmetic defects is provided by Newman and Jain [1]. The 
processing techniques can be grouped into referential comparison, non-referential 
modelling, and hybrid inspection [2]. In general, visual inspection is performed by 
moving samples in front of a camera. A high-resolution image is then captured and 
sent to a processing unit for analysis. Knowledge is extracted from fixed (i.e. 
reference) images and moving (i.e. captured) images in order that alignment and 
referential comparison can be made. 



 

Many of the visual inspection methods reviewed in the literature employ image 
registration to align geometrically data taken from different sensors, viewpoints or 
instances in time [3]. During registration, fixed and moving images are aligned 
through a combination of translation, rotation, and scaling [4]. A universal 
registration technique is not possible due to the wide variety of noise and 
geometric deformations within captured data. Often these distortions are caused by 
the diverse methods of imaging available. Currently, registration is classified as 
either feature- or intensity-based, where both techniques have their own advantages 
and disadvantages.  

Feature-based registration [5] is only as accurate as the initial selection of 
landmarks. In contrast, intensity-based registration methods [6] use all data within 
an image. Additional masking can be introduced to emphasise special features. The 
basic intensity approach consists of transform optimisation, image re-sampling and 
feature-matching stages. Feature matching is the most fundamental stage and is 
achieved through the use of a similarity metric [7], in which a degree of likeness 
between corresponding images is calculated. Both in practical and research terms, 
iterative computation of the similarity metric represents a considerable 
performance bottleneck that limits the speed of a visual inspection system. The 
flexibility of the inspection process is also limited by the inability to select between 
computational strategies for similarity based on their relative strengths, such as 
insensitivity to noise or possession of a large capture range [8]. 

The distributed multiagent framework presented in this paper achieves high-
performance intensity-based image registration, which is a significant step in 
addressing the limitations of visual inspection. The innovative approach supports 
multiple distributed agents organised in a Worker/Manager model [9]. Agent 
interaction and cooperation is achieved through the blackboard architecture, which 
has emerged from its 1970s origins as a modern, practical means of managing 
agent cooperation towards a common goal [10]. The original blackboard 
architecture was envisaged as a coordinated and distributed problem-solving 
environment that could be used to combine multiple processing techniques [11]. 
Advances in networking and agent-based technologies mean that this vision is now 
a reality. In the current work, rapid image registration is achieved, without recourse 
to expensive hardware, by sharing the computational task among separate agents 
that can run on any networked computer.  

2 The Blackboard Architecture 
A blackboard system is analogous to a team of experts who communicate their 

ideas via a physical blackboard, by adding or deleting items in response to the 
information that they find there. The experts were originally represented by 
specialist modules known as knowledge sources but, in a modern blackboard 
system, they are replaced by independent autonomous agents with specialized 
areas of knowledge. 

Agents can communicate only by reading from or writing to the blackboard, a 
globally accessible working memory where the current state of understanding is 
represented. As each agent can be encoded in the most suitable form for its 
particular task, blackboard systems offer a mechanism for the collaborative use of 
different computational techniques such as rules, neural networks, genetic 
algorithms, and fuzzy logic. Each rule-based agent can use a suitable reasoning 



 

strategy for its particular task, e.g., backward- or forward-chaining, and can be 
thought of as a knowledge-based system in microcosm [10]. 

Since the emergence of the first blackboard architectures, most notably the 
Hearsay-II speech understanding system [12], a variety of frameworks have been 
employed in the inspection field. ARBS (Algorithmic and Rule-based Blackboard 
System) combined rules, algorithms, and neural networks for the interpretation of 
ultrasonic images [13]. More recently, artificial neural networks embedded in a 
different rule-based blackboard system have been employed to identify erosion in 
steel bridge structures [14]. Both of these examples are non-distributed 
architectures comprising three main components: the blackboard module, the 
agents, and a control or scheduler module. 

DARBS (Distributed ARBS) [15, 16] is a distributed blackboard system based 
on a client/server model. The server functions as the blackboard while agents are 
implemented as client modules. The distributed nature of the implementation 
means that both blackboard and client modules run as separate processes and that 
no controller or scheduler is required. These independent processes may reside on 
a single processor or on any TCP/IP networked computers. Reading from and 
writing to the blackboard is implemented as standard functionality and provides a 
mechanism for communication between all agents. Storage of working data on the 
blackboard ensures equal access for all active agents. 

Worker N agent

Distributor agent Manager agent 

Blackboard 

Worker 1 agent 
 

Fig 1 Worker/Manager model for the multiagent framework. The Distributor agent 
segments the image, Worker agents perform concurrent processing of the 
segments, and the Manager agent coordinates Worker agent activities. 

3 Distributed Image Registration 
Fig 1 shows that the image registration framework consists of Distributor, 

Manager, and N Worker agents. For an agent to be part of the framework it must 
first establish connection with the blackboard over the network. Framework 
initialisation and image selection are performed by the Distributor agent. The 
Distributor agent then splits fixed and moving images into segments before placing 
them on the blackboard. Worker agents take image segments from the blackboard 
and calculate local gradients using a global transform [17]. The Manager agent 
then updates the global transform based on local gradients, while coordinating 
Worker agent activities. Calculation of local gradients and updating of the global 
transform is repeated until predefined thresholds are exceeded. Finally, a resulting 
image is constructed from registered segments. 

On the blackboard, data partitioning is used to balance agent communication 
and processing workloads. Due to the exhaustive search required, a drop in 



 

performance can be expected with a single-partition implementation. Similar 
inefficiency can be expected when an agent requests information through 
management and processing of excess partitions. To combat these problems the 
chosen partition scheme allows interaction between agents in a logical and efficient 
manner. DARBS’s unique ability to create, manipulate, and destroy partitions 
during run time overcomes the limitations of less dynamic blackboard 
implementations. The partitioning of data also aids design of the multiagent 
framework by introducing structure to an area of shared memory. This simplifies 
creation of agent rule files as the number of partitions with which an agent works is 
kept to a minimum. 

As shown in Fig 2, the blackboard is initially divided into seven partitions. 
Image data are transmitted to and from the blackboard by the agents. Transmission 
data are divided into three parts: segment identification number, segment size, and 
pixel data. 

Blackboard 

Worker agent Manager agent 

Distributor control

Fixed

Worker control Manager control

Moving Processed

Parameters

Distributor agent 

 
Fig 2 Blackboard partitions used for logical storage and efficient retrieval of data. 
Arrows indicate the specific partitions accessed by the individual agents. 

A distribution scheme was chosen whereby full resolution images are divided 
into a variable number of segments, each containing approximately the same 
number of pixels. Fig 3 shows how an image is split up into any number of 
segments between two and ten. This maximises the possibility of detail appearing 
in all segments and evenly distributes the workload between processors. The 
distribution scheme also benefits from the fact that no inter-processor 
communication is required. Duplication methods were not considered due to their 
transmission overheads. 

109876

1 2 3 4 5

 
Fig 3 Image distribution scheme used to maximise detail appearing in each 
segment.  



 

In a sequential registration process, a similarity metric is used to compute the 
degree of likeness between fixed and moving images after the application of a 
transform. To distribute similarity computation, two new correlation-based metrics 
have been developed for the registration framework. They are adaptations of 
metrics implemented as part of the ITK toolkit [18]. Mutual Information metrics, 
described elsewhere [19], can also be implemented in the framework. During 
evaluation of a transform, for each pixel coordinate in the fixed segment, a 
corresponding coordinate in the moving segment is calculated. By repeating the 
process within predefined regions of interest and summing intensities from a 
gradient image for all valid pixel coordinates, local gradients are calculated by 
Worker agents. The chosen interpolation scheme is used to compute non-discrete 
pixel coordinates. Accumulation and summation of local gradients by the Manager 
agent allows for computation of either mean-squares (MS) or normalised-
correlation (NC) similarity metrics between fixed (A) and moving (B) images. In 
the ITK implementations, MS and NS are defined as 
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where Ai and Bi are gradients at the ith pixel coordinates and Np is the number of 
valid pixels considered. A pixel coordinate is thought valid if it maps to a position 
within the boundaries of the moving image. The new, more efficient, distributed 
version of these metrics, implemented as part of the registration framework, are 
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where Ai
j and Bi

j are gradients at the jth pixel coordinates of segment i from image 
A and B respectively, Pi is the number of valid pixel between segments identified 
by i, and S is the number of segments into which the images are divided. The 
output from each metric is a similarity measure in the form of a double precision 
number. 



 

4 Agent Implementation 
Worker and Manager agents are provided with image registration functionality 

through the embedding of shared library algorithms in rule files. An intensity-
based algorithm suited to images of the same modality forms the basis of this 
functionality. The algorithm can be tailored, via the blackboard, to a specific 
problem with dynamically selectable components. The components consist of 
transform, interpolation and optimiser types. Both translation-only and centred-
affine transform types are available to perform a spatial mapping between fixed 
and moving segments. In order to evaluate non-discrete pixel coordinates, linear 
and b-spline interpolation schemes are provided. A gradient-descent optimiser is 
used to search iteratively for the transform that best satisfies the chosen metric. 

4.1 Distributor agent 
The Distributor agent consists of four rule files. Tasks performed by 

Initalise_Distributor include clearance of all data from the blackboard. The 
Select_Images rule causes the appearance of a user interface consisting of a simple 
image viewer and Open File dialog box. On image selection, the user interface is 
automatically closed. Moments calculated from the selected images are used to 
estimate centres of mass. The vector that joins both centres is used as an initial 
transform and added to the Parameters partition. These actions form part of the 
Set_Transform rule. On firing of Store_Segments, the images are divided into 
segments and sent to the blackboard. A region of interest is also generated for each 
segment and again added the blackboard. The region of interest is designed to 
create a border at the edges of a segment. 

As illustrated in Fig 4, only edges that face neighbouring segments have a 
border. The border is intended to remove non-pixel values that enter at the edges of 
a segment, due to translation and rotation during registration. Although the size of 
border is variable, the setting of a wide border will cause a decrease in efficiency 
as additional redundant data will be accrued and processed. 

Distributor agent 

1

Fixed Image

Segments 

1

Moving Image

Segments 

MovingFixed

Segment n

50_50-122
Segment n

50_50-121

 
Fig 4 The Distributor agent divides an image into segments and places them in the 
Fixed and Moving blackboard partitions. 



 

4.2 Worker agent 
A Worker agent comprises five rule files. Connection to the blackboard and 

initialisation of a Worker agent are performed by the Initalise_Worker rule. On 
firing of Fetch_Segments, both fixed and moving segments with a corresponding 
region of interest are retrieved from the blackboard. The Worker agent then enters 
a loop, by means of Wait_Worker, where it waits for a transform to appear in its 
control partition. 

Fig 5 shows addition and retrieval of data from the blackboard by a Worker 
agent. As soon as a transform appears, it is removed. This stops the Worker agent 
from repeatedly firing the Perform_Optimisation rule. On firing of 
Perform_Optimisation, a local gradient between fixed and moving segments is 
calculated by the registration module using the fetched transform. Once calculated, 
the number of valid pixel coordinates and local gradient are placed in the Worker’s 
control partition. The process is repeated each time an updated transform appears 
in the Worker agent’s control partition. When a final transform appears, the 
Resample_Segment rule is fired, causing translation and rotation of the moving 
segment using final transform parameters and return of the registered segment to 
the blackboard. 
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Fig 5 The Worker n agent iteratively collects transform parameters and calculates 
gradient and pixels data. 

4.3 Manager agent 
The Manager agent consists of four rule files and is the most complex 

component of the framework. To initialise the Manager agent, on firing of 
Initalise_Manager, the initial transform placed in the Parameters partition is 
retrieved. The transform is then propagated to all Worker control partitions. 
Wait_Manager causes the Manager agent to enter a loop, where it waits for the 
number of valid pixel coordinates and local gradients to appear in all Worker 
control partitions. No action is taken if pixel coordinate or gradient data are 
missing, and the process is restarted. 



 

Addition and retrieval of data from the blackboard by the Manager agent are 
shown in Fig 6. A similarity measure is calculated using the total number of valid 
pixel coordinates and local gradients, on firing of Advance_Transform. The 
similarity measure is used to calculate an updated transform. A convergence test is 
then carried out that considers the updated transform’s length, the magnitude of 
similarity measure and number of iterations performed. In the event of these 
parameters exceeding a predefined threshold, the updated transform is replaced 
with a final transform. Otherwise, the updated transform is propagated to all 
Worker control partitions and the process is repeated.  

Reconstruct_Image is fired on appearance of the final transform. This rule 
causes registered segments to be retrieved from the blackboard. Each registered 
segment then has its borders removed before being inserted into a resulting image. 
The resulting image is automatically displayed by means of an image viewer. 
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Fig 6 The Manager agent collects gradient and pixel data, which it uses to 
compute similarity, update transform parameters, and test if convergence of the 
registration process has been reached. 

4.4 Interaction between agents 
As each agent adds to an iterative process, a control scheme was needed to 

coordinate contributions. Most blackboard implementations achieve coordination 
by the inclusion of a dedicated control module to activate specific agents. In the 
registration framework described here, preconditions are attached to agent rule 
files. These preconditions determine, in accordance with information on the 
blackboard, when an agent can make its contribution at any given time. This 
reactive behaviour removes the need for a dedicated control module and related 
overheads. 

Fig 7 shows the iterative nature of both Manager and Worker agents during the 
registration process. The propagation of updated transforms to all Worker agents is 
shown, as well as the flow of gradients and valid pixel coordinate numbers to the 
Manager agent. As previously discussed, to ensure local gradients are calculated 
based on the same transform, the transform is removed from the blackboard when 
it is fetched by a Worker agent. To ensure that updating of the transform is based 
on local gradients and valid pixel coordinate numbers from the same iteration, 



 

these items are also removed from the blackboard. A corrupt path through 
transform search space would occur if both Manager and Worker agents operated 
with parameters from different iterations. 

Blackboard

Worker 1 agent 

Gradient & Pixels

Transform

Worker n agent 

Gradient & Pixels

Manager agent 

Gradients & Pixels

Transform
 

Fig 7 Flow of gradient data and updated transform parameters between agents. 
Once updated by the Manager, transform parameters are propagated to all Worker 
agents. 

5 Experimental Results 
Registration into a common coordinate system requires iterative computation 

of a similarity metric before any referential comparison by an inspection system 
can be made. Accuracy of the registration process is also wholly dependent upon 
the selection of appropriate transform, interpolation and optimisation types. 
Components selected to perform testing of MS and NC metrics were therefore 
based on a priori knowledge. The following components were chosen: 

• a centred-affine transform that allows rotation, scaling, shearing, and 
translation of image segments; 

• b-spline interpolation in order to achieve greater accuracy than linear 
interpolation; 

• a regular step gradient descent optimiser because of its compatibility with 
other components. 

In order to evaluate the increased performance of the registration framework, 
quantitative evidence of its advantages over an alternative method currently in use 
was required. A sequential algorithm, provided by the ITK toolkit, was updated 
with the same components and used as a benchmark for comparison. 

Ultimately, the choice of resolution will determine the smallest size of 
detectable defect. Therefore large images, containing screen-printed bottle logos of 
approximately 1400×1800 pixels, were chosen as test samples. The fixed image 
represented a sample with an acceptable and verified quality of manufacture. In 
contrast, the moving images contained samples with a variety of defects. These 
included screen leak and missing print, both of which can be caused by incorrect 
ink viscosity, material contamination or tool wear. Subtraction before testing 
revealed that an unknown translation and rotation between fixed and moving 
images existed. In all cases, once selected, images were divided by the Distributor 
agent into segments and a 10-pixel wide border was assigned. 

To simulate the referential comparison performed by an inspection system, 
additional image processing functionality was added to Worker agents. Now, on 
firing of the Resample_Segment rule, fixed and registered segments are 
thresholded using levels calculated by determining the between-class variance of 
each segment’s intensity histogram [20]. A difference image is then created by 



 

subtracting the thresholded fixed segment from the registered segment. Finally, 
noise is removed from the difference image using morphological opening [21]. 
This process results in an opened segment which is returned to the blackboard in 
place of the registered segment. 

An example of a fixed reference image, the corresponding moving image data, 
and a resulting registered segment after alignment by a Worker agent is shown in 
Fig 8. An area of missing print is clearly visible in the moving and registered 
segments. Translation and rotation caused by the alignment process has introduced 
non-pixel locations which are visible at the bottom (C) and right-hand sides (D) of 
the registered segment. These extraneous pixels are removed by the Manager agent 
when it constructs the resulting image. 

D

C

 
Fig 8 Fixed, moving and registered image data. An area of missing print is clearly 
visible in the moving and registered segments. 

Fig 9 shows the difference segment created by subtracting the thresholded 
fixed image from the thresholded registered image. Phantoms (E and F) appear 
along the contours of the logo because the threshold level selection considers pixel 
intensities only. This reliance on intensity makes segmentation particularly 
sensitive to changes in scene illumination and results in the extraction of features 
with slightly different boundary conditions. Even minor alignment differences after 
subtraction always appear as phantoms. The opened segment, also shown in Fig 9, 
illustrates how expansion and contraction of the difference segment results in the 
removal of such phantoms. Although slightly eroded, the segmented missing print 
(G) is clearly visible in the opened image, demonstrating that detection of minor 
defects has been achieved. To conserve small defects, the morphological 
structuring element used as an opening operator consisted of a single pixel. The 
opening operator can be used to eliminate both large and small phantoms through 
changes in size and shape of the structuring element. 
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Fig 9 Referential comparison of the fixed and registered segments reveals a 
screen-printing defect. 

To demonstrate the flexibility of the registration framework, printed circuit 
board [22] images were also tested. Fig 10 shows how samples containing 
artificially introduced defects can also be successfully registered and segmented by 
the framework. A spur (H) and an open circuit (I) have been detected. These are 
typical manufacturing defects that can be caused by dirt on the preprinted board or 
by air bubbles from electrolysis. 

H
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Fig 10 Referential comparison of the fixed and registered segments reveals printed 
circuit board defects. 

Performance testing of the image registration framework was carried out in a 
computer laboratory with personal computers interconnected by an Ethernet 
100Mbps switch. All computers in the network contained AMD Athlon 1.67GHz 
processors with 224 megabytes of random access memory and were running the 
Debian Sarge Linux operating system. During testing, the number of Worker 
agents was equal to the number of segments. Distribution of the framework also 
represented the ideal case, i.e. one processor for the blackboard and one processor 
for each agent. Each algorithm was applied to four images and the average 
processing time calculated. On convergence of the registration process, the number 
of iterations and final transform parameters were compared with the sequential 
implementation. 

Figs 11(a) and 11(b) illustrate the sequential execution time and distributed 
speedup achieved during registration of bottle images with the MS and NC 
similarity metrics respectively. It can be seen that, in each case, the distribution of 
image data among seven Worker agents reduces the execution time by 
approximately 60% compared with sequential processing. The performance 
diminishes as the number of processors is increased beyond seven. 

Table 1 provides the basic registration parameters for both MS and NC metrics 
after convergence. With each increase in the number of Worker agents, the 
framework converged after the correct number of iterations with transform 



 

parameters that matched those computed by the sequential algorithm. This 
correspondence of parameters indicates that the path through transform search 
space followed was the same for sequential and distributed implementations. Thus, 
the framework achieves increased performance when compared to an existing 
implementation. The reduced processing time of the MS metric, compared with the 
NC implementation, is caused by its shorter path through transform search space. 
The shorter path and hence fewer iterations is reflected in the timescale of Fig 11. 
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Fig 11 Sequential and distributed similarity metric performance with increasing 
numbers of Worker agents: (a) MS metric, (b) NC metric. 

 

Mean-squares (MS) Normalised-correlation (NC) Registration 
parameters: Sequential Distributed Sequential Distributed 
Iterations 19 19 31 31 
Translation in x 13.806 13.806 13.681 13.681 
Translation in y 10.945 10.945 10.657 10.657 
Rotation centre x 665.707 665.707 665.799 665.799 
Rotation centre y 896.997 896.997 896.983 896.983 
Angle 9.95° 9.95° 9.898° 9.898° 

Table 1 Registration parameters after convergence. 

6 Discussion 
Computation of similarity metrics is inherently parallel and well-suited to 

distributed implementation. The registration framework described in this paper 
shows that a distributed blackboard architecture, such as DARBS, is well-matched 
to such an implementation. Although successful in achieving performance 
increases, the increases diminish when image data are distributed between growing 
numbers of processors. Blackboard saturation occurs when the rate of requests by 
Worker and Manager agents to the blackboard becomes faster than the servicing of 
these requests. The saturation effect is magnified by the shrinking size of image 
segments and increased communications to growing numbers of agents. One 
simple solution to this underlying problem is to increase the power of the 
blackboard processor. An alternative approach, which has been adopted by the 
registration framework described, is the reduction of control data stored on the 
blackboard. 



 

Efficiency of the framework is reduced by an initial overloading of 
communications caused by Worker agents that try to obtain segments from the 
blackboard when first triggered. A second overload occurs when Worker agents 
have finished processing and try to return registered segments to their respective 
partitions. This synchronisation occurs when Worker agents operate in a first-come 
first-served fashion, particularly in situations when the number of segments is high. 
Creation of a schedule, prior to commencement of the Worker agents, represents a 
static load-balancing approach that could be adopted. Similarly, compression of 
transmission data should increase communication efficiency. The goal of any such 
approaches will be to distribute communications better and to reduce the idle time 
of Worker agents. 

7 Conclusions 
High image resolutions, coupled with complex algorithms, have increased the 

demand for greater performance capabilities in the automated visual inspection 
field. Based on a worker/manager model and implemented using a distributed 
blackboard architecture, an innovative framework has been presented that achieves 
high-performance intensity-based image registration for use in referential 
comparison. Data partitioning and distribution, followed by dynamic algorithm 
selection and computation of either MS or NC similarity metric, are achieved with 
specialised agents that work in parallel. Defect detection on screen-printed bottles 
and printed circuit boards has demonstrated the effectiveness of the approach. 

The performed tests show that parallel calculation of the similarity metric, 
which is seen as the major performance bottleneck associated with intensity-based 
registration, results in significant speedup compared with a non-distributed 
implementation. The approach described is cost-effective and can be easily 
expanded by the addition of agents and processors, unlike schemes with specialised 
hardware, such as shared-memory and multiprocessor environments. Other 
similarity computation strategies can be added as specialised agents, without 
changes to the framework. 

For future work, it is intended that additional flexibility will be added to the 
framework in the form of metrics that are suited to images of differing modalities 
[23] and volumetric data [24]. Because some metrics need to be initialised with 
near optimal transform parameters while others have larger capture ranges, the 
selection of an appropriate metric for an inspection application will be dependent 
on the registration problem in hand. 
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