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Managing Uncertainty in Sound based Control

for an Autonomous Helicopter

Benjamin N. Passow, Mario A. Gongora, Sophy Smith, and Adrian A. Hopgood

Abstract— In this paper we present our ongoing research us-
ing a multi-purpose, small and low cost autonomous helicopter
platform (Flyper). We are building on previously achieved
stable control using evolutionary tuning. We propose a sound
based supervised method to localise the indoor helicopter and
extract meaningful information to enable the helicopter to
further stabilise its flight and correct its flightpath. Due to the
high amount of uncertainty in the data, we propose the use
of fuzzy logic in the signal processing of the sound signature.
We discuss the benefits and difficulties using type-1 and type-2
fuzzy logic in this real-time systems and give an overview of
our proposed system.

I. INTRODUCTION

Autonomous helicopters have been well studied in the past

years as their demand in industry, military and civil sectors

has grown rapidly [1]. Much of the existing research is car-

ried out on relatively large helicopters with rotor spans from

more than a metre (e.g. [2]), to rotor spans of over 3 metres

(e.g. [3]). These platforms provide the required payload for

a large number of sensors and computing equipment. On

the other hand they are often rather loud, emit fumes, are

more dangerous, and test set-ups and experiments are more

complex.

In our work, we are currently developing a small au-

tonomous indoor helicopter platform which we are using to

experiment on. Our helicopter has only a small payload to

carry equipment but can be used indoors, is relatively cheap,

is safer, and is more flexible in its application. We called

our helicopter Flyper - flying performing robot. In order to

achieve stable control we first evolved the existing heading

and altitude controllers, evaluating individual solutions di-

rectly on the real helicopter. In this paper we confirm stable

control in flight tests.

We propose a new method to further stabilise the heli-

copter, and to enable it to accurately follow a flight path

without adding any additional sensors or transmitters. In this

paper, we present our sound based supervised system which

can handle uncertainty and noise in its input.

II. BACKGROUND

Much research has been done on large helicopter plat-

forms. These have the advantage of a much higher payload
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compared to lightweight helicopters but also have many dis-

advantages. Our research is done on a small and lightweight

autonomous helicopter. We propose a sound based system

to enable a supervising robot to support the helicopter with

additional information extracted from the helicopter sound

signature.

This section presents background information and other

related work in the fields of helicopter control, sound analysis

and fuzzy logic in signal processing and classification.

A. Helicopter Control

Traditional control techniques using a combination of

Proportional-Integral-Derivative (PID) control methods have

been successfully used in helicopter control [4], [5], [6].

Puntunan and Parnichkun introduce a heading direction

and floating height controller for a single rotor helicopter [6].

The control system uses a Proportional plus Derivative con-

troller (PD) to maintain the helicopter’s heading and height,

while a human pilot controls the horizontal movements

remotely. Puntunan and Parnichkun present test results that

confirm stable controlling capability with a relative small

margin of error.

Sanchez et al. present in [4] an unmanned helicopter con-

trol system combining a Mamdani type fuzzy logic controller

with PID controllers. The Fuzzy Inference System (FIS)

controls the translational movement while the PID controllers

handle the altitude and attitude of the helicopter. The system

was tested in a simulation for hovering and slow velocities

showing good performance.

Saripalli et al. introduce an autonomous helicopter which

uses differential GPS, an Inertial Measurement Unit (IMU),

and a sonar sensor to determine the helicopter’s position

and attitude [5]. The control behaviours use Proportional

plus Integral (PI) controllers. Seven test flights confirm the

successful control and landing of the helicopter. The work

shows that PI controllers work well and the integral control

parts are very useful in helicopter control.

B. Sound Analysis

To further enhance the helicopter’s stability and extend its

capabilities we propose a sound based supervised method.

This method does not require additional sensors on the

lightweight helicopter and uses a supervising robot to analyse

the intrinsic sound signature of the helicopter.

Mammal binaural hearing is efficient and accurate but very

difficult to reproduce on a robot using only two microphones.

Fortunately robot audition is not limited to two microphones.



An array of eight microphones is used by Valin et al. [7]

to accurately localise the direction of a sound source. Results

show that the set-up is capable of localising sound sources

accurately within a few degrees. Detecting the distance to

a sound source has not been tested but initial simulation

showed less encouraging results. Kagami et al. present in [8]

an array consisting of 128 microphones capable of localising

sound sources. A large number of microphones increases the

computational complexity and also the accuracy might not

increase significantly. Valin et al. state in [7] that they have

not seen much difference in localisation accuracy when using

seven or eight microphones.

Much research has been done on sound source localisation

within the last decade [9]. Common and well understood

methods are Time Delay Of Arrival (TDOA), beam forming,

MUSIC, Maximum likelihood method, and many more [10],

[7], [11], [12], [13]. These methods show good accuracy

determining the direction of a sound source within a few

degrees. For full localisation the distance to the sound source

also needs to be determined. Other work shows distance

estimation to unknown sound sources to be a challenging

task where little accuracy is obtained [14], [7].

Analysing a sound can not only provide the location of the

sound source but also give information about its state. State

and fault detection is an area of research concerning sound

and vibration. Many people get their car checked when they

start to hear an unfamiliar sound coming from it. The change

of the typical sound of a machine is often an indication of

an incipient problem with it. In [15] Samuel and Pines, and

in [16] Pawar and Ganguli present reviews on fault and state

detection techniques for helicopters.

In [17], the state of a turbo pump is detected by analysing

its sound signature. Westemeyer et al. first transform the

sound signature into the frequency domain and then use two

methods to identify the pump’s state from the frequencies.

The first technique used was a feedforward neural network

where the inputs were the average of slots of frequencies.

Clearly this method was not able to detect the shift in

frequencies the pump is emitting when running up or down.

The second method used a heuristic approach where the

frequencies with the strongest signal are tracked over time

to determine the state. This technique showed adequate

accuracy.

C. Fuzzy Logic in Signal Processing

All of the above techniques process and analyse the sound

signature and provide information about the sound sources

origin or state. In [18], Mendel argues that non-singleton

fuzzy logic systems (FLS) are especially useful in signal

processing where the input data contains uncertainty through

noise. He shows that the fuzzifier of the FLS works as a built-

in pre-filtering mechanism. A non-singleton type-1 FLS is

able to handle measurement uncertainties.

Liu and Huang present in [19] a methodology to separate

news broadcast from commercials, music, and other content

based on audio data. A hard threshold based classifier is

compared to a fuzzy logic based classifier. Experimental

results show that the fuzzy logic based classifier outperforms

the hard threshold based system.

In [20], Baldwin et al. present a method for processing and

classifying dolphin sounds in real time. The method is based

on fuzzy logic where the rules are generated automatically.

Experimental results show excellent classification compared

to many other methods including a variety of neural networks

and statistical pattern classifiers.

Although type-1 FLS can handle measurement uncer-

tainties, they cannot handle rule uncertainties within the

constructed FLS. Type-2 FLS on the other hand can handle

this additional uncertainty [21]. Generalised type-2 FLS and

even interval type-2 FLS are more computational expensive

than type-1 FLS [22], [21].

For the purpose of achieving sound based supervised con-

trol, it is important that the sound analysis on our supervising

robot is fast and efficient. The helicopter needs to be able

to react to this new information while it is still valid, thus

it has to be in real-time. For this reason we will only use

type-1 fuzzy logic within our sound signature analysis to be

able to handle the uncertainties within the data but keep the

system slim and efficient.

III. SYSTEM SETUP

We have developed a flying robot called Flyper. This

section gives details on the robot’s basic hardware set-up,

control architecture, and the sound based supervised control.

A. Flying Performing Robot

It is based on a Twister Bell 47, a remote-controlled coax-

ial dual-rotor helicopter model. The autonomous helicopter

has a rotor span of 340 mm, a weight of about 230 grams

without battery, and can fly for about 10 minutes with its

standard battery.

The control program runs on a microcontroller which reads

all sensors and controls all actuators. A Bluetooth module

provides a communication link between the microcontroller

and a host computer. The main purpose of this link is to stop

the helicopter in case of an emergency but it also provides the

host computer with flight telemetry for performance analysis.

The Bluetooth uplink to the helicopter is also used for the

sound based control method described later in this paper.

The sensors give all the information needed to achieve

stable flight except for drift. Moving air, as caused for

example by air-conditioning, as well as very small errors

in roll and pitch cause the helicopter to drift off. In order to

solve this and other problems without adding a large number

of additional sensors, we propose a novel method based on

sound.

B. Control Architecture

The program running on the microcontroller reads all

sensors and calculates the four actuator outputs using four

separate PID controllers. Others showed that PID controllers

are very capable of stabilising helicopters [23], [5], [6].

Nevertheless, determining good PID control parameters can

be a challenging task [24].
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Fig. 1. Original evolved altitude controller in flight test.

We applied two GAs to tune the heading and altitude

controllers of the helicopter. Rather than using a simulation

of the system, we used the real helicopter to evaluate the

fitness of individuals in the GA. We have shown that the

GA tuned heading controller evolved towards more robust

solutions due to naturally occurring noise in the system [25].

Based on these results we have tuned the altitude controller

in a similar way. The helicopter has been attached to a stand

that allows the small helicopter to take off and fly at a

height of up to 1.4 meters with fixed heading, roll, and pitch

angles. The mass of the stand is kept to a minimum and the

weight of the stand is neutralised with long springs. Every

GA individual is evaluated by the controllers performance

in reaching and keeping to predefined setpoints. Although

elitism has been applied, the best individual’s fitness does

not increase monotonically. This is caused by the noise in the

real system, giving a variable fitness for different instances

of the same individual.

We tested the heading and altitude control parameters as

identified by the GAs. Figure 1 shows the altitude controller’s

performance when tested on the helicopter without the stand

and with the altitude setpoint set to 50 cm. The plot is based

on readings from the helicopter’s sonar sensors. Although

the GA found very fit altitude control parameters, the stand

to which the helicopter was attached, increased the overall

mass and thus the inertia of the system. The integral part of

the controller accelerates the movement towards the setpoint.

Figure 1 clearly shows that the system overshoots just after

reaching the setpoint. This is a typical reaction when the

integral gain is not set correctly. In order to correct the

controller we reset the integral gain to zero and retested the

helicopter. We made test flights with the original evolved

heading controller and the adapted version of the altitude

controller with the altitude setpoint set to 50 cm. Figure 2

shows a representative flight.

Figure 2 a) shows the altitude of the helicopter together

with the altitude controllers command. At a glance it can

TABLE I

CONTROLLER PERFORMANCE IN TEST FLIGHTS

Altitude Controller Heading Controller
Mean error Std.dev. Mean error Std.dev.

Flight 1 7.77 cm 5.77 11.37◦ 3.14

Flight 2 7.05 cm 5.87 14.52◦ 21.61

Flight 3 6.14 cm 4.34 10.82◦ 2.88

be seen that the controller reaches the setpoint but with

oscillation. The overall change of mass made a difference

when applying the evolved parameters to the real system. In

other words, although we evolved the parameters on the real

system, we experienced the “reality gap” as the stand altered

the original system. Still, for all three flights the altitude

error was only once bigger than 20 cm, which is about the

height of the helicopter itself. The results confirm that the

new altitude PD controller is suitable.

The heading controller’s performance is shown in Figure 2

b) together with the control command. Before analysing the

controllers performance it should be noted that altitude and

heading of the helicopter are highly coupled. An increase in

rotor speed causes the top rotor with the connected flybar to

accelerate slower than the lower rotor, causing a change in

heading. Oscillation from the altitude controller forces the

dual rotor helicopter to constantly change its heading. The

reactive heading controller then tries to correct this change

back to the setpoint. This can be observed in Figure 2 b),

where oscillation of the same frequency takes place.

Table I shows statistics on all three test flights which con-

firms that the overall stability of the helicopter is satisfactory

but not perfect. Videos of test flights can be found online1.

The mean absolute error in heading of the controller in all

three test flights, with induced oscillation from the altitude

controller, is 12◦ . The mean absolute altitude error of the

adapted GA-tuned altitude controller in all three test flights

is 7 cm.

C. Enhancing Control with a Supervised Robot

Up to this point we developed an autonomous helicopter

capable of stable flight. We tuned the controllers to further

enhance its stability. But the helicopter cannot cope with

small drift due to a lack of knowledge about its absolute

location. One possible solution would be to add additional

sensors to the helicopter to localise its position as well as

to gain further information about its state. The helicopter

is designed for indoor use only so GPS cannot be used.

Other sensors and techniques could be used to localise its

position and sense its state and the environment, but these

would dramatically increase the payload of the lightweight

helicopter and the cost of the system. Rather than using

additional sensors, we propose a system where a supervising

robot analyses the helicopter’s intrinsic sound signature to

localise the helicopter and identify its current state.

1Videos of test flights available at http://www.youtube.com/TheCCI
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(a) Absolute altitude and altitude control command of a test flight. Altitude setpoint at 50cm.
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(b) Absolute heading and heading control command of a test flight. Heading setpoint at 0◦ .

Fig. 2. Performance of a) altitude controller and b) heading controller in flight test.

IV. SOUND BASED CONTROL

The sounds generated and emitted by the helicopter

present a huge source of information for the supervising

robot. This supervising robot will use a microphone array, as

the one suggested by Valin et al. [7], to record and analyse

the sound in real time. The supervising robot sends the

extracted information back to the helicopter to enable it to

further stabilise its flight and correct its position and flight

path.

A. Initial Tests and Results

The helicopter’s intrinsic sound signature consists of a

mixture of sounds produced by the rotor blades, the air pass-

ing the helicopter body, motor noise and servo movement.

The motors, rotor blades and the flybar generate a specific

sound based on the power supplied to them and their current

speed. The servos have a specific sound when changing their

lever position. These sounds can be heard by a supervising

robot which analyses them to extract information about the

helicopters location and state.

In an initial experimental set-up we recorded the heli-

copter’s sound signature in various distances and states while

being fixed to a slim stand. Figure 3 shows the complete

spectrum of the helicopter up to 10 kHz at a distance of

3 meters. We increased the overall motor and rotor speed

to 100% and commanded the helicopter to change heading,

pitch, and roll rotational angles, performing each manoeuvre

for approximately 5 seconds. The sound spectrum consists

of the sounds generated by the helicopter including their

harmonics. In the start-up phase while increasing motor and

rotor speed to 100% it can be observed that the helicopter’s

overall loudness increases together with the frequencies of

the emitted sounds.

The first and most important information we want to

obtain is the location of the helicopter. The direction of

the helicopter can be determined by the supervising robot

using a sound localisation technique such as a frequency-

domain beamformer [7]. Pinpointing the actual location of

the helicopter requires the direction as well as the distance

to it. Determining the distance to a sound source without

knowledge about its loudness is a challenging task [14], [7].

The loudness of the helicopter is relative to the distance

between helicopter and microphone as well as to the speed

of its motors and rotors. In another experiment we slowly

increased motor and rotor speed from 40% to 100% while the

helicopter was again fixed to a slim stand. This experiment

confirmed that a change of motor and rotor speeds causes

a shift in the observable frequency spectrum. Although the

helicopter was commanded to increase motor and rotor speed

gradually over the duration of the experiment, the spectrum

shows a slightly curved shift in frequency. This is to be

expected as the helicopter’s power supply, a Lithium-Polymer

battery pack, is not able to provide high amounts of power

near the batteries limits, as easily as low amounts. The

motor and rotor speed can be estimated by determining the

frequency in the sound signature. By taking this estimate

and the loudness of the helicopter, the distance to it can be

determined, since its intrinsic noise is consistent and the level



Fig. 3. Helicopter sound spectrum flying a variety of manoeuvres.

TABLE II

HELICOPTER LOUDNESS FOR DIFFERENT DISTANCES

Distance Loudness Std.dev.
[meter] [arbitrary unit]

1 0.147 0.003

2 0.129 0.005

3 0.117 0.005

4 0.102 0.006

can be known. As expected, in an experimental set-up we

were able to see the consistent difference in loudness of the

helicopter for constant motor and rotor speed and different

distances (Table II).

We implemented our motor and rotor speed estimation

technique based on our previous results. The system anal-

yses only part of the complete frequency spectrum between

1200Hz and 2350Hz, not to detect other harmonics as shown

in Figure 3. Further, only frequencies larger than the mean

of the spectrum are considered. This restricts the system

to detect only major frequencies within the received sound

signature. The centre of gravity of the remaining major

frequencies is used to calculate an estimate of the motor

and rotor speed.

The system has been tested using an experimental setup

where the helicopter slowly increased speed from 40% to

100% over 60 seconds, keeping at each percent increase for

one second. In order to compare the results of the speed

estimation with the known power input command we applied

a constant correcting factor. The speed estimate between 0

and 1 is taken to the power of 1.55 to best fit the nonlinear

behaviour of the battery. Further we call this technique

“constant estimation” method. Figure 4 shows the test results

where the x-axis is the command input in percent and the

time in seconds. The y-axis is the motor and rotor speed

estimates converted to match the motor power command in

percent.
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Fig. 4. Motor and rotor speed estimation test on training data, increasing
speed from 40% to 100% over 60 seconds.

TABLE III

SOUND BASED MOTOR AND ROTOR POWER ESTIMATION TEST RESULTS

Method Mean Error StdDev Min Max

Const.estimate 1.93% 1.94% 0.02% 6.64%

ANFIS estimate 1.67% 1.62% 0.03% 7.76%

Table III presents the results from the test in numerical

form. The mean error is the mean of the absolute value of all

errors of estimates bigger than 40%. For the standard devia-

tion of the error, the minimum error, as well as the maximum

error only estimates larger than 40% are considered.

B. Fuzzy Logic to Cope with Uncertainties

We showed that the system we propose is capable of

extracting additional information from the intrinsic sound

signature of the helicopter. This information is fed back to

the helicopter to enable it to further enhance its stability and

correct its flight path. Unfortunately there are a few issues

with this system that make extracting additional information

more challenging.

The sound consists of a mixture of individual sounds

generated all over the helicopter’s body. The way the sonic

signature is generated, additional reverberation on ground,

ceiling and walls, and a change of the air-stream when the

helicopter experiences the so-called ground effect all have

an influence on the sound signature. Additionally, there is

a close coupling between individual sounds. For example,

when the helicopter is changing heading, one rotor speeds

up while the other rotor slows down. This change clearly

has an influence on the rotor speed estimate. Finally, there is

a reasonable amount of noise in the system. A crisp system

such as we implemented and tested in the previous section

cannot handle such uncertainties.

Non-singleton type-1 FLS are capable of handling mea-

surement uncertainties in the input data, such as noise.
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Fig. 5. Rotor speed estimation in real flight test.

Although type-2 FLS can also handle uncertainty in rules and

membership functions, they are much more computational

complex. In [18], Mendel designed a type-1 FLS based

on available training data and then created a type-2 FLS

by including information about the measurement noise on

the training data. The system showed to be able to handle

uncertainties in the rule base and membership functions.

Unfortunately, type-2 FLS are much more computational

expensive than type-1 FLS [21], [22]. Our autonomous

helicopter is running 15 control cycles a second and our

sound based and supervised approach should match this

speed in real time. Therefore, we implemented a type-1 fuzzy

logic based sound analysis system.

We used an Adaptive Network-Based Fuzzy Inference

System (ANFIS) [26] to learn the consequent parameters of

our FLS from existing training data. This method provides

fast and effective means to develop Takagi-Sugeno-Kang

(TSK) [27] based fuzzy systems. Our training data is derived

from the experimental setup previously explained, where the

helicopter sound signature was recorded while the helicopter

slowly increased speed from 40% to 100% over 60 seconds.

ANFIS trained the system’s 3 input membership functions,

3 rules, and linear consequents from this data.

Figure 4 shows the test results next to the “constant

estimate” method. Table III presents the results from the test

in numerical form. The results confirm that the ANFIS based

system can estimate the rotor speed with a smaller mean error

on the training data.

To confirm that the overall system works it was tested

in flight. For this purpose, we recorded a sound signature

of the helicopter during a test flight. Figure 5 shows the

results of our system together with the motor and rotor power

command.

Before analysing the performance, it should be pointed

out that the power command does not always match the

actual motor and rotor speed. For example, although the

helicopter command is set to 100% just before take-off,

it takes many control cycles for the rotors to increase the

speed to the desired rotational velocity. Another important

effect that should be noted is that an increase or decrease

in motor power results in a change of heading. Heading

is controlled by changing the ratio of power distributed to

the two counter rotating rotors. The rotor with the attached

flybar has a different mass and resistance to the other. This

causes them to change speed at different rates. This also

happens when the helicopter changes or corrects its heading,

the helicopter also increases or decreases overall rotor speed

and thus altitude.

At a glance, the speed estimates in Figure 5 seem to be

rather noisy. In the beginning of the flight, the heading is

often corrected, causing one rotor to spin at a different speed

to the other. The two different speeds are present in the sound

signature our system analyses. Another interesting behaviour

can be found right after control cycle 120. The increase of

the speed estimate seems to precede the power command

increase. The previous sudden decrease of rotor speed caused

a change in heading. The heading controller then reacts to

this change and corrects it, increasing the speed on one rotor

while decreasing the speed of the other. This also has an

effect on the altitude and the rotor speed. Therefore, the

sound based speed estimate detects this change while the

command is unchanged. In the second half of the flight, the

fuzzy logic based speed estimate follows the command more

closely.

V. CONCLUSIONS

In this work we presented our ongoing research in using

a multi-purpose small and low cost autonomous helicopter

platform. First, we evolved heading and altitude PID con-

trollers and showed that we achieved stable control. We

proposed a sound based supervised method to localise the

indoor helicopter and extract meaningful information to en-

able the helicopter to further stabilise its flight and correct its

flightpath. Initial experiments confirm that this methodology

does work. Due to the high amount of uncertainty in the data,

we propose the use of fuzzy logic in the signal processing

of the sound signature.

In order to handle uncertainty within our system we

propose the use of fuzzy logic. A non-singleton type-1 fuzzy

logic system can handle noise and uncertainty in input data.



The fuzzifier of a FLS works as a built-in pre-filtering

mechanism that can filter out uncertainty in our input data,

such as reverberations, distortion, and other phenomenon.

Type-2 fuzzy logic can handle additional uncertainty in the

membership functions and rule base. A typical cause of such

uncertainty is noise within the training data used to create

the fuzzy logic system. Unfortunately, generalised as well as

interval type-2 FLS are much more computational expensive

than type-1 FLS.

It is most important that our sound analysis is fast and

efficient in order to enable the helicopter to react to this new

information while it is still valid. In other words, the system

needs to be in real-time. For this reason we implemented a

type-1 TSK FLS within the sound signature analysis. Our

system learned its consequent parameters from training data.

We showed that our sound based method is capable of

estimating the rotor speed of a helicopter with high amounts

of noise and uncertainty.
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