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Abstract—We present a novel method for mining itemsets that
are both quantitative and temporal, for association rule mining,
using multi-objective evolutionary search and optimisation. This
method successfully identifies temporal itemsets that occur more
frequently in areas of a dataset with specific quantitative values
represented with fuzzy sets. Current approaches preprocess data
which can often lead to a loss of information. The novelty of
this research lies in exploring the composition of quantitative
and temporal fuzzy itemsets and the approach of using a multi-
objective evolutionary algorithm. This preliminary work presents
the problem, a novel approach and promising results that will
lead to future work. Results show the ability of NSGA-II to evolve
target itemsets that have been augmented into synthetic datasets.
Itemsets with different levels of support have been augmented to
demonstrate this approach with varying difficulties.

I. INTRODUCTION

Data Mining is the process of obtaining high level knowl-

edge by automatically discovering information from data in

the form of rules and patterns. Data mining seeks to discover

knowledge that is accurate, comprehensible and interesting [1].

Association rule mining is a well established method of data

mining that identifies significant correlations between items

in transactional data [2]. An example association rule for the

classical market basket problem of a supermarket would look

something like “40% of customers who purchase bread and

milk also purchase cheese”. The novel aspect of this paper

is the extension of the classical problem by exploring the

composition of two variants of association rule mining which

are commonly found in real-world data.

Classical association rule mining assumes the dataset to be

static where discovered rules hold across the entire period of

the dataset. In many cases this does not reflect real-world data.

Often there can be a temporal pattern behind the occurrence of

association rules. The scope of these patterns is far reaching,

many systems producing time series data have underlying

processes/systems that are dynamic. For example, association

rules may occur more frequently:

• In the days leading up to a large sports event.

• When an unforeseen event occurs, such as hurricanes

(e.g., [3]) and network intrusions.

• During a temporary change of state of a measurable

object i.e. scientific experiments.

Discovering and adapting to changes with well-informed

information is important in many domains. Within business

it is critical for success, whilst for scientific applications it

can enhance insight and understanding. Association rules that

incorporate temporal information have greater descriptive and

inferential power [4], and can offer an additional element of

interestingness [1].

Association rule mining uses data with Boolean attributes

to represent the occurrence of items. However, many real-

world applications provide a richer source of information with

quantitative (e.g. height, pressure) or categorical attributes (e.g.

type of species, fruit). Quantitative association rule mining [5]

discovers rules that express associations between intervals of

item attributes. This type of data is a challenge because of the

large range of distinct values for each attribute. A common

approach is to discretise attributes, with a method such as

partitioning (e.g. [5]) or clustering (e.g. [6]), to produce

new attributes representing interval values that can then be

applied to classical association rule mining methods. However,

preprocessing can lead to a loss of information. Evolutionary

computing has been used to remove the requirement for prior

discertisation, and so relying upon prior knowledge, which

can be detrimental to accuracy and overall result. The synergy

of evolutionary computing and fuzzy sets has become popular

for data mining tasks [7] such as classification and association

rule mining.

The composition of temporal association rule mining and

quantitative association rule mining provides in-depth and

interesting information. In this work the combination of as-

sociation rule mining problems is treated as a multi-objective

optimisation problem to jointly tackle criteria for quantitative

and temporal tasks. The aim is to extract temporal itemsets

from quantitative data using fuzzy sets, that can later be

used to generate association rules. The use of fuzzy sets

[8] allows a linguistic interpretation, a smoother transition

between boundaries and provides an ability to better handle

uncertainty. The itemset space, temporal space and quantitative

space are simultaneously searched and optimised. This paper

extends our previous work in [9] by including a quantitative

element. The temporal itemsets sought are those that occur

more frequently over an interval of the dataset, which are seen

as an area of greater itemset density. Applications benefiting

from this composition of association rule mining tasks are

identifying red tide caused by Noctiluca scintillans [6], mining

changes in customer behaviour [10] and network behaviour



anomaly detection, to name a few.

This paper is organised as follows. An overview of related

work covering association rule mining, including the quan-

titative and temporal variants, is discussed in Section 2. In

Section 3 the multi-objective evolutionary algorithm (MOEA)

for mining temporal fuzzy itemsets from quantitative data is

presented. An experiment to analyse the efficacy is presented

and discussed with results in Section 4 and we conclude our

work in Section 5.

II. ASSOCIATION RULE MINING

Association rule mining is an exploratory and descriptive

rule induction process of identifying significant correlations

between items in Boolean transaction datasets [2] used for data

analysis and interpretation. Association rules are expressed as

an implication of the form X ⇒ Y where the consequent and

antecedent are sets of Boolean items where X ∩ Y = ∅.
A dataset contains a set of N transactions D =

{d1, d2, ..., dN} where each transaction comprises a subset

of items, referred to as an itemset, from M items I =
{i1, i2, ..., iM}. To extract association rules from datasets

the support-confidence framework was introduced with the

Apriori algorithm in [11]. Support determines the strength of

a relationship by measuring how often the rule occurs in a

dataset.

s(X ⇒ Y ) =
σ(X ∪ Y )

N
(1)

Confidence determines how frequently the items in the

consequent occur in transactions containing the antecedent,

which measures the reliability of the inference.

c(X ⇒ Y ) =
σ(X ∪ Y )

σ(X)
(2)

These measures have minimum thresholds which are used

by a deterministic method to extract rules from the dataset.

A. Quantitative Association Rule Mining

Classical quantitative association rule mining uses statistical

methods such as equal depth (support) discretisation [5] and

clustering [12]. For example, age is numeric, it could be

partitioned into new items such as young, middle-aged and

old. A disadvantage of these classical methods is they require

preprocessing of the data which can lose information [13].

Rule generation is then limited to the crisp boundaries of

the discretised values, potentially allowing for other rules to

be hidden. Over the years soft computing techniques have

been used to overcome this issue by optimising the intervals

for quantitative data and inducing rules. In [13] a genetic

algorithm was used to evolve attribute intervals with each

attribute directly represented in the chromosome, which differs

from the variable number of attributes used in this approach.

Evolutionary algorithms are suitable for association rule min-

ing because they can search complex spaces and they address

difficult optimisation problems, which has led to much recent

interest in this data mining problem.

Fuzzy association rules [14] deal with the inaccuracies in

physical measurements and better handle unnatural boundaries

found in crisp partitions. They provide a linguistic interpre-

tation of numerical values, which is of importance when

interfacing with experts. Evolving fuzzy association rules [15]

enhances the interpretability of quantitative association rules.

There are two common approaches to mining quantitative

association rules. One approach is to tune the membership

functions and then use a deterministic method to induce

rules afterwards, as seen in [16]. This typically aims to

tune the membership functions to produce maximum support

for 1-itemsets before exhaustively mining the rules. Another

approach is to extract the association rules as well as define

the attribute intervals [13] or membership functions [15]. In

[17], an alternative approach to tuning the fuzzy sets includes

combining clustering with a MOEA. Although the association

rules are identified as well as fuzzy sets tuned, all the dataset

attributes are directly represented in the chromosome.

B. Temporal Association Rule Mining

A key issue of classical methods, based on the support-

confidence framework, is that temporal patterns with low sup-

port values can escape below the minimum support threshold.

For example, consider a product item in a supermarket, it

may be available for sale only during a particular seasonal

period, such as British asparagus during summer. Its support

since it was introduced is high but its support across the entire

dataset is low. This rule may not be discovered with classical

association rule mining algorithms if its support across the

entire dataset drops below the threshold. Assuming that the

minimum support is sufficiently low for the asparagus rule

in summer to be discovered, further analysis is then required

to ascertain any temporal pattern. The lifespan property was

introduced in [18] as an extension on the Apriori algorithm to

incorporate temporal information. This is a measure of support

that is relative to the lifespan of the itemset defined by a

time interval, known as temporal support, corresponding to

the first and last occurrences of the itemset. But this does not

consider datasets where the frequency of rules may be skewed

towards particular areas whilst still occurring throughout the

entire dataset.

A step towards analysing areas of a dataset where rules

occur more frequently is found in cyclic association rule

mining [19]. Cyclic rules are induced from user-defined par-

titions of regular periods throughout a dataset. Support values

of association rules in user-defined partitions are represented

as binary sequences and pattern matching identifies cyclical

patterns. These are fully periodic rules because they repeatedly

occur at regular intervals. Partially periodic rules [20] relax

the regularity found in fully periodic so the cyclic behaviour

is found in only some segments of the dataset and is not

always repeated regularly. Defining the temporal intervals with

calendar-based schemas is less restrictive and reduces the

requirement of prior knowledge [21]. These works illustrate

the types of temporal patterns that can be potentially by

extracted with our proposed method.



Our previous work [9] has demonstrated the efficacy of

mining association rules that occur more frequently over single

areas of a Boolean dataset. Iterative Rule Learning evolved

temporal itemsets based on the temporal support metric used

in [18] by simultaneously searching the itemset space and

temporal space. This paper extends our previous work by

including an additional search space and employing a more

capable evolutionary computing method.

III. MULTI-OBJECTIVE EVOLUTIONARY SEARCH AND

OPTIMISATION

The aim of this evolutionary method is to extract a set

of fuzzy itemsets, leading to fuzzy association rules, from

areas of the dataset where they occur more frequently. This

is treated as a multi-objective problem, which is defined

as the optimisation (minimisation/maximisation) of two or

more functions, whilst satisfying optional constraints [22].

A MOEA finds optimal solutions which are compromises

between objectives, these solutions are said to have trade-

offs. These trade-offs are often managed with the concept of

Pareto Optimality. A solution is said to be Pareto optimal when

no change in the solution will improve one objective without

degrading another objective.

For association rule mining a Pareto based MOEA is

capable of producing multiple rules from a single run be-

cause a set of maximally-spread Pareto-optimal solutions is

maintained with crowding distance. This is desirable when

the cardinality of the optimal set may be more than one,

for instance in the case of multiple temporal patterns. This

is an improvement of our previous work [9] which required

numerous runs of the algorithm with Iterative Rule Learning

to idenitfy multiple temporal patterns. This is a challenging

task that involves simultaneously searching the itemset space,

the temporal space and the quantitative space, which together

form a multi-dimensional search space. Previous MOEAs

for association rule mining have focused on Boolean data

[23] and quantitative datasets [15], but not the composition

of temporal and quantitative, which is a significant step in

problem dimensionality.

From the plethora of MOEAs, NSGA-II [24] is selected for

its popularity, computational speed and ability to maintain a

diverse set of solutions, which is suitable for extracting mul-

tiple patterns. NSGA-II is based on a non-dominated sorting

approach and uses elitism. Previous works on association rule

mining have used NSGA-II for Subgroup Discovery [25], a

closely related area, and motif sequence discovery [26], a

different form of temporal mining.

A. Representation

The Michigan approach of representing a single solution

with a chromosome is adopted. Normally an association rule

is encoded in the representation so the direct output of the

algorithm is a rule. In this research only the itemset is

encoded, without distinguishing antecedent from consequent,

but containing the same items as would be found in a rule.

Only the support of the association rules/itemsets is used to

identify temporal patterns. The confidence is not calculated to

generate association rules from itemsets because the support is

considerably more influential in identifying temporal patterns,

as seen in [18] and [19]. The generation of association rules

occurs after the algorithm has executed, similar to that of [13].

The Apriori algorithm uses the downward closure property to

generate candidate itemsets, but the method presented here

uses evolutionary computing to generate itemsets. For this

reason only k length association rules are produced from

itemsets.

A mixed coding scheme is used to represent the temporal

interval and fuzzy itemsets as

C = (t0, t1, i0, a0, b0, c0, . . . , ik, ak, bk, ck) (3)

where the temporal interval is defined with t0 and t1
as integers. The items are integers denoted with i and the

basic parameters of the triangular membership functions are

real numbers indicated with a, b and c for itemsets with k
distinct items. The number of items, k, is limited to 4 for this

study. The membership function parameters are limited to a

granularity of 0.05, as seen in [16].

B. Objectives

The fitness objectives are designed to search the multi-

dimensional space based on temporal support, fuzzy itemset

support and membership function widths. The following ob-

jectives are minimised to zero.

1) Temporal Support: The temporal support objective

guides the MOEA to find itemsets that occur more frequently

in areas of the dataset. Modified from [18] and used in our

previous work [9], this is redefined as a minimisation function

ts(X, lX) = 1−
σ(X)

lX
(4)

where l is a time interval i.e. lX = t1 − t0 where t0 is the

lower endpoint and t1 is the upper endpoint and σ(X) denotes
support of itemset X . A minimum temporal support is used to

prevent solutions evolving towards the smallest time interval

of length 1.

2) Fuzzy Itemset Support: This objective optimises the

membership function parameters of matching itemsets. The

quantitative values are modelled with fuzzy sets and the

objective’s optimal solution is one where the fuzzy sets support

the quantitative values associated with the itemset to the

highest degree of membership. Fuzzy itemset support, fis,
is the sum of the degrees of memberships, sum(µ(x(i))), for
a chromosome itemset, x(i), in the ith transaction.

fis = (k · (t1 − t0))−
t1
∑

i=t0

sum(µ(x(i))) (5)

sum(µ(x(i))) =
k

∑

j=0

{

µ(x
(i)
j ), dataset item matches gene item

0, otherwise

(6)



µ(x
(i)
j ) =















x
(i)
j

−a

b−a
, if a ≤ x

(i)
j < b

c−x
(i)
j

c−b
, if b ≤ x

(i)
j ≤ c

0, otherwise

(7)

Equation 5 subtracts the sum of the actual degrees of

memberships from the maximum possible sum if all items

in a transaction match those in the chromosome. Equation 6

performs the summation of actual degrees of memberships

for chromosome items matching dataset transaction items.

Equation 7 is the triangular memerbship function.

3) Membership Function Widths: The aim of this objective

is to prevent the membership function parameters evolving to

cover the entire range of values i.e. the feet of the membership

function (a and c) nearing the limits of the attribute values.

Without this objective solutions evolve to cover the entire

range of attribute values because this yields higher support

values as it includes more items.

mf widths =

{

∑k

j=0 cj − aj , if cj − aj > 0

nitems, otherwise
(8)

C. Initialisation

The initial population is randomly generated using the

Mersenne Twister pseudorandom number generator. The item-

set is randomly generated without item duplication. The num-

ber of items in the dataset (e.g. inventory) must be greater

than the itemset size otherwise this will result in chromosomes

where the only difference is the ordering of items. The mem-

bership function parameters are randomly generated within

the limits of the dataset’s attribute range and reordered, in

ascending order, if required.

The lower and upper endpoints are generated within prox-

imity to the first and last transactions. The endpoint range

defines the range for creating and also mutating endpoints.

Defining initial time endpoints near the boundaries of the

dataset initialises the algorithm with solutions having large

temporal coverage of the dataset. Without the endpoint range

random sampling of time intervals occurs. This may lead

to some potentially strong itemsets being lost, for example,

British asparagus being assigned a time interval over the

winter months would produce 0% temporal support, assuming

the item is not present. This initial large temporal coverage,

combined with the mutation operator mentioned below, pro-

vides more opportunity for solutions with great potential that

initially may be weak.

D. Genetic Operators

The crossover operator is based on uniform crossover and

consists of three methods for operating on different sections of

the chromosome which have different constraints. The section

of a chromosome containing the lower and upper endpoints

are crossed over with uniform crossover and the feasibility

of offspring is ensured by satisfying the minimum temporal

support constraint on endpoints t0 and t1, shown here as

t1 − t0 >= min temp sup (9)

For the itemsets found in the next section of a chromosome,

uniform crossover is adapted to ensure that only feasible

solutions are produced, i.e. combinations of integers without

duplicates. The method for crossing over only the itemsets is

taken from [9] and is presented in Figure 1. The advantage

of this method is that the ordering of items remains unless a

duplicate is present in the itemset. A summary of each stage

of the crossover is briefly described here.

Stage 1

Merge the chromosomes from two selected parents

into an intermediate array so that no two items from

the same parent are adjacent.

Stage 2

Check each item in the array for duplicate values

against the remaining items. If a duplicate is found

the duplicate item is swapped with the next item. The

result is that all duplicate items are now adjacent and

the items can now be selected from the intermediate

array to form offspring.

Stage 3

Select items from the intermediate array by iterating

over every even index value. A random integer (0 or

1) is added to the index and the indexed item is added

to the offspring. If a 0 is generated, it is checked for

duplicates with the preceding item and if a duplicate

is found it adds 1 to the index otherwise it adds 0.

The cross over of membership functions depends on whether

the parents have the same itemset. If two parents have the same

Fig. 1. Algorithm for performing crossover on itemsets

Require: Parent1.length ≡ Parent2.length
{Stage 1}
for i = 0 to Parent1.length− 1 do

Auxiliary[2i] = Parent1[i]
Auxiliary[2i+ 1] = Parent2[i]

end for

{Stage 2}
for i = 0 to Auxiliary.length− 1 do

for j = i+ 2 to Auxiliary.length− 1 do

if Auxiliary[i] ≡ Auxiliary[j] then
exchange Auxiliary[j] with Auxiliary[i+ 1]

end if

end for

end for

{Stage 3}
for i = 0 to Parent1.length− 1 do

if i > 1 and Auxiliary[2i− 1] ≡ Auxiliary[2i] then
Child[i] = Auxiliary[2i+ 1]

else

Child[i] = Auxiliary[2i+RANDOM(0,1)]
end if

end for



itemset then uniform crossover is applied to those member-

ship function parameters. Otherwise, the membership function

parameters are copied across. This prevents crossing over

membership parameters from different items, which would

be more exploratory (i.e. mutation) than exploitative. The

membership function parameters are reordered if they are out

of sequence as a result of uniform crossover.

To produce a mutated individual, a randomly chosen gene is

replaced with a randomly created value. Mutated genes form-

ing the itemset part of chromosomes are randomly generated

with an identical process to that used during initialisation.

For genes forming the time interval endpoints, the values are

generated within the endpoint range (epr) where the midpoint

is the value of the current gene (g), such that the mutated

value is a member of the set {−epr/2, . . . , g, . . . , epr/2}.
This reduces the effect of randomly sampling the dataset. The

endpoint range is decremented every generation until reaching

10, to allow further mutations. Reducing the range of mutation

reduces the magnitude of mutation with the aim of fine tuning

solutions towards the end of evolution.

IV. EXPERIMENTAL STUDY

A. Methodology

The IBM Quest Synthetic Data Generator [11] 1 has been

used to generate a dataset for experimentation. The genera-

tor produces datasets that replicate transactions. A synthetic

dataset is chosen rather than a real-world dataset so that

a controlled experiment can be conducted to validate this

approach before progressing to real-world datasets. The data

generator has been extended to include quantitative values for

item attributes. A similar method to [16] is used to randomly

generate quantitative values. Individual temporal itemsets that

exhibit relatively low, medium and high support are identified

and used as target solutions.

A dataset has been produced with the following features:

1000 transactions, 50 items, an average transaction size of 10

and a maximum size for quantitative values of 20. There is

no guarantee that the generated dataset contains any temporal

patterns so, to include temporal information, the method from

[9] was used to augment temporal patterns into datasets with

the following process:

1) Run Apriori algorithm on dataset to produce frequent

itemsets.

2) Select a frequent itemset with desired level of support.

3) Insert the itemset as a transaction near to the centre

of the dataset. Transactions are constructed exclusively

from the entire frequent itemset with no additional

items so no unexpected correlations between items are

introduced.

4) Crop datasets to same number of transactions.

Figure 2 is a histogram of a dataset augmented with a

high support itemset that illustrates how the itemset frequency

1Original source no longer available, instead see
http://www.cs.nmsu.edu/˜cgiannel/assoc gen.html, Last accessed 23rd
October 2010.
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Fig. 2. Histogram of high support itemset {8, 12, 21, 45}

TABLE I
RESULTS OF AUGMENTING VARYING ITEMSET SUPPORTS

Itemset
Pre.-Aug. Discovered

Support target in runs

24(12), 31(16), 32(10), 38(14) 0.2% 7/50

12(3), 31(11), 41(9), 48(15) 1.5% 17/50

8(9), 12(14), 21(6), 45(19) 3.5% 50/50

of the dataset has been modified. The peak represents the

target itemset that the MOEA seeks to identify, along with

corresponding membership functions for quantitative values.

The parameters of the MOEA were determined through trial

and error to achieve best results. The parameters were set as a

population size of 1000, a crossover probability of 0.5 and a

mutation probability of 0.4. The algorithm was limited to 200

generations as test showed that no further improvements were

discovered beyond this. Minimum temporal support is set at

30 and the endpoint interval is set at 100.

B. Results

Various levels of itemset support were selected and aug-

mented with the same dataset to investigate the efficacy of

our approach. These low (0.2%), medium (1.5%) and high

(3.5%) itemset support datasets are shown in Table I with

their corresponding support measures. The algorithm was run

50 times with different random seeds on each dataset. The

number of times the algorithm found the augmented itemset

within a correct time interval was recorded in Table I. From

these results it can be seen that the algorithm successfully

evolved the high support itemset for every run of the algorithm,

it was not as successful with the medium support itemset and

less successful for the low support itemset. A low support

itemset occurs infrequently and so also produces low temporal

support, hence a it is a weaker individual that struggles to

survive through the evolution process. Despite varying levels

of performance with each dataset, the target temporal pattern

has been discovered for each.

Table II shows some of the chromosomes from a population

of a run. A 0.5% threshold on the temporal support was taken,

where all results matched the target itemset and corresponding

time endpoints. These chromosomes, and those in Figure 7,

demonstrate how the objectives conflict for fuzzy itemset
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(d) Item 45 with quantity 19 and
MF(15.9,17.6,19.7)

Fig. 3. Example derived membership functions (solid lines) for target
quantities (dashed lines) of items with fuzzy itemset support fitness 163.18
and function width fitness of 7.68

support and membership function widths. As the fuzzy itemset

support grows it tends to widen the shape of the membership

function to gain more coverage of quantitative values.

The quality of the derived triangular membership functions

can be seen in Figure 3, which shows a dashed vertical

line representing the target item against the representative

membership function. The membership functions were chosen

from a final population of a run with the high support itemset.

Most peaks of the triangular membership functions are close to

the value of the target quantitative values, with the exception

of item 21 with quantity 6 (Figure 3(c)). Here the membership

function is much wider and its central point (parameter b) is

not close to the quantity. From inspecting more examples of

the solutions in Table II, it can be seen that this individual

repeatedly evolved incorrect membership function parameters.

Figures 5, 6 and 7 show each objective plotted against one

other for a proportion of a final population’s best solutions

from a high support itemset. The temporal support objective

in Figures 5 and 6 clearly show discontinuous regions where

many solutions have settled, predominately on vertical lines

with temporal support fitness 0.43, 0.45 and 0.47. Each region

contains solutions with the same itemset and the same time

interval, the vertical height of the region comes from the

variation in one of the other objectives. The presence and

height of each discontinuous region demonstrates NSGA-II’s

ability to maintain diversity.

The evolved endpoints, as seen from examples in Table II,

are shorter than the actual time interval of the itemset aug-

mented into the dataset. This is due to the minimum temporal

support being lower than the augmented time interval. This is

a difficult parameter to set because in a real-world application

we would not know the length of the itemset.

For the purposes of evaluating our approach, a target tem-

poral pattern has been augmented into the dataset and so the

desired result is known a priori. For real-world applications

where the temporal patterns are genuinely not known then

the Pareto front of the final population is used to identify

results. All objectives have been plotted in Figure 4. The

Fig. 4. All objectives for best solutions in a final population
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Fig. 5. Objectives 1 and 2 for best solutions in a final population

Pareto front is found on the outer edge of points that near

towards the miniumum fitness of objectives. These solutions

are a trade-off between the fitness of the objectives, which

can be used to obtain the most interesting temporal patterns

for a particular real-world application. The selected indivdual

for this evaluation is depicted in Figure 3 with time endpoints

of 502 and 532, and itemset (membership parameters) of 8

(5.75,9.4,10.85), 12 (9.85,14.5,17.6), 21 (0.2,10.6,14.25), 45

(15.9,17.6,19.7).

V. CONCLUSION

In this paper, we have proposed the use of a multi-objective

evolutionary algorithm for extracting fuzzy itemsets, leading

to association rules, from quantitative data that form tem-

poral patterns. The temporal patterns sought are those that

occur more frequently in areas of the dataset. NSGA-II is

applied to mining temporal fuzzy itemsets and is shown to

maintain diversity within the population. The advantages of

the proposed approach is that it does not exhaustively search

the various spaces, it requires no discretisation and yields



TABLE II
EXAMPLE CHROMOSOMES FROM A FINAL POPULATION WITH FITNESS OBJECTIVES

Chromosome Objectives

Start End Item (Membership Function Parameters) 1 2 3

502 532 8 (5.75,9.4,10.85) 12 (9.85,14.5,17.6) 21 (0.2,10.6,14.25) 45 (15.9,17.6,19.7) 0.47 163.18 7.68

502 532 8 (5.2,9.05,10.65) 12 (2.7,14.5,14.55) 21 (1.75,13.7,19.9) 45 (14.55,19.1,19.7) 0.47 159.25 10.15

502 532 8 (6.2,9.2,15.65) 12 (0.8,4.5,14.75) 21 (2.45,10.6,16.3) 45 (3.2,9.4,19.45) 0.47 159.8 13.38

502 532 8 (8.4,13,19.3) 12 (8.55,9.2,14.45) 21 (15.9,18.3,18.45) 45 (16.45,18.05,19.7) 0.47 185 5.65

501 532 8 (11.8,13.7,14.7) 12 (10.3,19.35,19.95) 21(0.15,0.95,13.9) 45 (7.7,18.35,19.85) 0.45 195.09 9.61

501 531 8 (2.05,2.15,5.6) 12 (2.8,3.6,7.2) 21 (11.55,15.65,17.15) 45 (2.7,5.65,18.85) 0.43 209.14 7.43

502 535 8 (8.4,9.6,11.8) 12 (5.95,13.1,16.45) 21 (19.65,19.65,19.75) 45 (17.45,17.95,18.15) 0.48 218.52 3.68

501 536 8 (12.25,17.95,19.75) 12 (4.7,6.8,9.1) 21 (16.2,18.05,18.4) 45 (7.2,12.25,19.4) 0.46 227.34 6.58
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Fig. 6. Objectives 1 and 3 for best solutions in a final population
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Fig. 7. Objectives 2 and 3 for best solutions in a final population

numerous diverse itemsets, which are potentially different

temporal patterns.

Our approach is capable of evolving target solutions that

have been augmented into datasets with varying levels of

difficulty. The more challenging datasets are those where the

itemsets forming the temporal patterns occur very infrequently

throughout the dataset. A key aim of future work will be to

enhance the algorithm’s robustness when using more challeng-

ing datasets, perhaps by providing a good starting point in

the initial population or a completely different approach. The

few experiments conducted for this paper have shown that the

derived membership functions do not always correctly identify

the target quantitative values. This suggests a second stage of

fine tuning the final population may be required.

We have evaluated our methodology with a synthetic dataset

augmented with temporal pattens so future plans include

using real-world datasets. Depending on these datasets, the

scalability of this approach may need to be analysed. The

novelty of this paper is in both the problem of extracting

temporal patterns from quantitative data and also the use of

a MOEA for temporal pattern mining. So, to demonstrate the

suitability of our method we will compare against statistical

data mining algorithms and methodologies, such as a temporal

based Apriori algorithm and discretisation, but also other

MOEAs.
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