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Transform Ranking: a New Method of  

Fitness Scaling in Genetic Algorithms 

A. A. Hopgood1 and A. Mierzejewska2

Abstract   The first systematic evaluation of the effects of six existing forms of 

fitness scaling in genetic algorithms is presented alongside a new method called 

transform ranking. Each method has been applied to stochastic universal sampling 

(SUS) over a fixed number of generations. The test functions chosen were the 

two-dimensional Schwefel and Griewank functions. The quality of the solution 

was improved by applying sigma scaling, linear rank scaling, nonlinear rank 

scaling, probabilistic nonlinear rank scaling, and transform ranking. However, this 

benefit was always at a computational cost. Generic linear scaling and Boltzmann 

scaling were each of benefit in one fitness landscape but not the other. A new 

fitness scaling function, transform ranking, progresses from linear to nonlinear 

rank scaling during the evolution process according to a transform schedule. This 

new form of fitness scaling was found to be one of the two methods offering the 

greatest improvements in the quality of search. It provided the best improvement 

in the quality of search for the Griewank function, and was second only to 

probabilistic nonlinear rank scaling for the Schwefel function. Tournament 

selection, by comparison, was always the computationally cheapest option but did 

not necessarily find the best solutions. 

1 Introduction 

Two common forms of selection for reproduction in a genetic algorithm are 

roulette wheel sampling with replacement and stochastic universal sampling 

(SUS). Both are forms of fitness-proportional selection, i.e., the probability of an 

individual being chosen for reproduction is proportional to its fitness. Such 

approaches are susceptible to both premature convergence and stalled evolution. 
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To overcome these problems, fitness scaling methods have been devised to 

transform the raw fitness, i.e. the objective function, into a scaled selective 

function used in selecting individuals for reproduction [1]. This paper presents the 

first systematic analysis and comparison of the performance of a range of six 

existing fitness scaling methods against two challenging benchmark optimization 

problems. A new scaling technique called transform ranking is also introduced and 

evaluated. These seven techniques are also compared with tournament selection, 

for which the application of fitness scaling would have no effect, since tournament 

selection is determined by the rank ordering of fitness rather than absolute values. 

2 Fitness scaling 

Fitness scaling can be applied at the early stages of evolution to weaken selection 

and thereby encourage exploration of the whole search space. Conversely, at the 

late stages of evolution, fitness scaling is intended to strengthen the selection 

pressure in order to converge on the exact optimum. Six existing approaches to 

fitness scaling are considered here. More detail is available in [1].  

Generic linear scaling: 

This is a simple linear relationship between the scaled fitness, si, and raw fitness fi.

Kreinovich et al [2] have demonstrated mathematically that linear scaling is the 

optimal form of scaling, but only if optimal scaling parameters are known. 

Sigma scaling: 

Sigma scaling is a variant of linear scaling where an individual’s fitness is scaled 

according to its deviation from the mean fitness of the population, measured in 

standard deviations (i.e., ‘sigma’, ).

Boltzmann scaling: 

Boltzmann scaling is a nonlinear method that uses the idea of a “temperature”, T,

that drops slowly from generation to generation.  

Linear rank scaling: 

In linear rank scaling, the scaled fitnesses are evenly spread based on the rank 

ordering of the chromosomes from the fittest to the least fit.  

Nonlinear rank scaling: 

This is a nonlinear form of rank scaling that increases the selection pressure. 

Probabilistic nonlinear rank scaling: 

Nolle et al [3] have integrated nonlinear rank scaling into roulette wheel selection 

and SUS, rather than treating it as a separate initial stage. 
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3 A new scaling algorithm: transform ranking 

Linear rank scaling ensures an even spread of scaled fitnesses and hence a lower 

selection pressure than the nonlinear form. It is therefore suggested that linear 

rank scaling is well-suited to the early stages of evolution, when exploration of the 

search space is to be encouraged. It is further suggested that nonlinear rank 

selection is better suited to the later stages of evolution, when exploitation of the 

optimum is to be encouraged.  

This paper therefore proposes a new form of rank scaling, transform ranking, 

that progresses from almost linear to increasingly nonlinear. Its basis is 

probabilistic nonlinear rank scaling: 
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where ni is the reverse linear rank of individual i selected by this process for 

mating, N is the population size, xi is a set of N random numbers in the range 0–1 

(evenly distributed in the case of SUS), c is a constant that controls the degree of 

nonlinearity, and roundup is a function that returns the smallest integer that is not 

less than its argument. 

Nolle et al [3] have already shown that Equation 1 is close to linear rank 

scaling at c = 0.2, but becomes highly nonlinear at c = 3.0. So the transition 

between the two modes can be achieved by a progressive increase in c, analogous 

to the cooling schedule in Boltzmann scaling. The transition schedule can be 

either linear or geometric: 
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where ct and ct+1 are the values of c at successive generations,  is the increment 

added at each generation, and k is a percentage increase at each generation.  

4 Experimental method 

The two-dimensional Schwefel [4] and Griewank [5] functions were used as 

fitness landscapes for testing the genetic algorithms. Both are symmetric, 

separable, continuous and multimodal functions. Each reported result is the 

highest fitness obtained after 50 generations, which was the termination criterion, 

averaged over 5000 test runs. Initial experiments were carried out to find optimal 

parameters, which were then retained for all the scaling experiments. Tournament 

selection was included in the evaluation for comparison purposes only.  
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5 Results and Discussion 

The comparative results of the selection strategies are shown in Fig. 1. For both 

test functions, the highest fitness solution has been improved through each of the 

following scaling methods: sigma scaling, linear rank scaling, nonlinear rank 

scaling, probabilistic nonlinear rank scaling, and transform ranking. Generic linear 

scaling and Boltzmann scaling were each of benefit for one fitness landscape but 

not the other.  

The best improvement of all was achieved by probabilistic nonlinear rank 

scaling for the Schwefel function (Fig. 1(a)) and by transform ranking with a 

linear transform schedule (  = 0.1) for the Griewank function (Fig. 1(b)). The 

success of transform ranking as a new approach to fitness scaling supports the 
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Fig. 1 Best fitness solution using scaled SUS: (a) 2-D Schwefel function, (b) 2-D Griewank 

function. Tournament selection is included for comparison.
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original hypothesis that the transformation from linear to nonlinear rank scaling 

can lead to improved control of the selection pressure. The improvement is 

greatest for the linear transform schedule. The geometric transform schedule is 

highly sensitive to parameter k.

The results show the best fitness obtained, averaged over 5000 test runs. This 

value was more strongly influenced by the number of times the algorithm failed to 

reach the global optimum than how effectively the global optimum was exploited. 

The poor performance of Boltzmann scaling is consistent with the concern 

expressed by Sadjadi [6] that the method might be susceptible to premature 

convergence at a local optimum if faced with a complex fitness landscape.  

The benefits of fitness scaling always bring a computational cost. Fig. 2 

shows the computational costs, normalized with respect to unscaled SUS so that 

they are machine-independent. The average times for the unscaled SUS were 295s 

and 299s respectively for the Schwefel and Griewank functions on a 1.5 GHz Inter 

Pentium computer with 1 GB RAM. The most computationally expensive 
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Fig. 2 Computational cost of scaled SUS compared with the unscaled version: (a) 2-D Schwefel 

function, (b) 2-D Griewank function. Tournament selection is included for comparison.
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methods are nonlinear rank and Boltzmann. Encouragingly, the two most effective 

scaling mechanisms, probabilistic nonlinear rank and transform ranking, are both 

comparatively inexpensive.  

Tournament selection gave poor results for the Schwefel function, but 

performed much better for the Griewank function. As tournament selection was 

the computationally cheapest option, it might have found better solutions if the 

problem had been time bounded rather than bounded by the number of iterations. 

6 Conclusions

The benefits of fitness scaling have been demonstrated in searching for the 

optimum of the two-dimensional Schwefel and Griewank functions. The highest 

fitness found has been improved through sigma scaling, linear rank scaling, 

nonlinear rank scaling, probabilistic nonlinear rank scaling, and transform ranking. 

However, this benefit was always at a computational cost. Although tournament 

selection performed relatively poorly, particularly against the Schwefel function, it 

is nevertheless the computationally cheapest option and would therefore have the 

benefit of additional iterations in time-bounded trials. 

A new fitness scaling function, transform ranking, progresses from linear to 

nonlinear rank scaling during the evolution process, in accordance with a 

transform schedule. The version with a linear transform schedule provided the best 

improvement in the quality of search for the Griewank function, and was second 

only to probabilistic nonlinear rank scaling for the Schwefel function. 
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