
Time series forecasting using a TSK fuzzy system tuned 
with simulated annealing

ALMARAASHI, Majid, JOHN, Robert, COUPLAND, Simon and HOPGOOD, 
Adrian

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/5635/

This document is the Accepted Version [AM]

Citation:

ALMARAASHI, Majid, JOHN, Robert, COUPLAND, Simon and HOPGOOD, Adrian 
(2010). Time series forecasting using a TSK fuzzy system tuned with simulated 
annealing. In: IEEE International Conference on Fuzzy Systems (FUZZ), 2010. IEEE
xplore, 1-6. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Time Series Forecasting Using a TSK Fuzzy System tuned with
Simulated Annealing
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Abstract—In this paper, a combination of a Takagi-Sugeno
fuzzy system (TSK) and simulated annealing is used to predict
well known time series by searching for the best configuration
of the fuzzy system. Simulated annealing is used to optimise
the parameters of the antecedent and the consequent parts of
the fuzzy system rules. The results of the proposed method are
encouraging indicating that simulated annealing and fuzzy logic
are able to combine well in time series prediction.

I. INTRODUCTION
One of the features of fuzzy systems is the ability to be hy-

bridised with other methods such as neural networks, genetic
algorithms and other search methods. These approaches have
been proposed because of the lack of learning capabilities in
fuzzy systems [1]. Fuzzy systems are good at explaining how
they reached a decision but can not automatically acquire the
rules or membership functions to make a decision [2, p.2].
On the other hand, learning methods such as neural networks
can not explain how a decision was reached but have a
good learning capability [2, p.2]. Hybridisation overcomes
the limitations of each method in one approach such as
neuro-fuzzy systems or genetic fuzzy systems.
Soft Computing is a branch of computer science de-

scribed as “a collection of methodologies aim to exploit
the tolerance for imprecision and uncertainty to achieve
tractability, robustness and low solution cost” [3]. Among
Soft Computing techniques combinations, we are interested
in the combination of fuzzy logic with simulated annealing
to design a high-level performance and low-cost system.
When designing a simple fuzzy system with few inputs,
the experts may be able to give their knowledge to provide
efficient rules but as the complexity of the system grows, the
optimal rule base and membership functions become difficult
to acquire. So, researchers often use some automated tuning
and learning methods and evaluate their solutions by some
criterion [4]. Although optimisation search algorithms such
as genetic algorithms and simulated annealing are not specif-
ically designed for learning, they offer some advantages for
machine learning as many machine learning methodologies
are based on a search of a good model among a space of
possible models such as the space of rule sets allowing these
types of methodologies to model the learning process as a
search problem [5]. From an optimisation perspective, the
task of finding a good knowledge base (KB) for a problem is
equivalent to the task of parametrising the fuzzy knowledge
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base (KB) and equivalent to the task of finding the parameters
values that are optimal based on the criteria of the problem
design [1].
Simulated annealing has been used in some fuzzy systems

to learn or tune the fuzzy system. For example, simulated an-
nealing has been applied to optimise fuzzy logic controllers
and showed that the optimality of the solutions is proved
in probability if the optimisation process is infinite and
provides efficient solutions in finite cases [6]. Garibaldi and
Ifeachor have applied simulated annealing to tune a medical
fuzzy expert system and showed that the fuzzy expert system
tuned by simulated annealing outperformed the fixed fuzzy
expert system and the crisp expert system [7]. Also, they
comment on their experience that simulated annealing can
be applied easily to either discrete or continuous variables
which allowing the tuning of the structure and the parameters
of the model at the same time. Liu and Yang [4] presented
a study of using simulated annealing for learning and tuning
the membership functions showing the efficiency of this al-
gorithm as providing promising results. Compared to genetic
algorithms, the main strength of simulated annealing is its
wide applicability [4]. In this paper, a forecasting method is
proposed by combining (TSK) fuzzy system with simulated
annealing algorithm to predict two time series, Mackey-Glass
time series and Henon Time series. The rest of the paper
starts by describing the time series data sets in section II
followed by a review of fuzzy systems (section III) and
simulated annealing (section IV). The methodology and the
results of this paper are detailed in section V where the
conclusion is drawn in section VI.

II. THE PREDICTED TIME SERIES

A. Mackey-Glass Time Series

Mackey-Glass Time Series is a chaotic time series pro-
posed by Mackey and Glass [8]. It is obtained from this
non-linear equation :

dx(t)

dt
=

a ∗ x(t − τ)

1 + xn(t − τ)
− b ∗ x(t)

Where a, b and n are constant real numbers and t is the
current time where τ is the difference between the current
time and the previous time t − τ . To obtain the simulated
data, the equation can be discretised using the Fourth-
Order Runge-Kutta method. In the case where τ > 17,
it is known to exhibit chaos and has become one of the



benchmark problems in soft computing [9, p.116]. Mackey-
Glass equation with τ = 30 is considered as a good example
of low-dimensional chaos [10].
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Fig. 1. Mackey-Glass time series when Tau=17

B. Henon Time Series
The Henon map proposed by [11] is a dynamical system

that exhibits chaotic behaviour. It is a simple model that
has the same essential properties of Lorenz system [12]
of differential equations. Henon mapping is based on the
following equations :

x(n + 1) = yn + 1 − a ∗ x2

y(n + 1) = b ∗ xn
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Fig. 2. Henon Time Series

III. TYPE-1 FUZZY SYSTEMS
In this research, we are interested in the role of simulated

annealing in fuzzy systems. A type-1 fuzzy system is a rule
based system which can be viewed as a process that maps
crisp inputs to crisp outputs by using the theory of fuzzy
logic [13, p. 106]. The Mamdani fuzzy model contains four

components : fuzzifier, rules, inference engine and output
processor or defuzzifier [9, p. 6]. The TSK fuzzy model
is different from Mamdani in the inference engine and the
output processor. The fuzzifier maps crisp inputs to fuzzy sets
by evaluating the crisp inputs x = (x1, x2, . . . , xn) based on
the antecedents part of the rules and assigns each crisp input
to its fuzzy set A(x) in X with its degree of membership
in each fuzzy set. A fuzzy rule is a conditional statements
in the form of IF-THEN where it contains two parts, the
IF part called the antecedent part and the Then part called
the consequent part. To acquire these rules, many methods
can be used such as getting them from experts or using
statistical data. The inference and defuzzification processes in
Takagi and Sugeno model [14] are different from the known
Mamdani model as the rules in TSK are based on input fuzzy
sets in the antecedent part and a mathematical linear function
in the consequent part. The ith rule in the first-order TSK is
described as follows:

Ri : IF x1 is Ai
1
and x2 is Ai

2
... and xp is Ai

p

THEN yi(x) = ci
0
+ ci

1
∗ x1 + ci

2
∗ x2... + ci

p ∗ xp

Where i represents the rule number and ci
0, c

i
1, c

i
2 and

ci
p are the the coefficients of the consequent part of the
fuzzy system rules. The final control value Y is computed
as follows:

Y =

∑n
i=1

αi ∗ yi∑n
i=1

αi

Where αi is the firing level for the ith rule which is derived
by using a t-norm operator such as minimum or product.

IV. SIMULATED ANNEALING ALGORITHM
The concept of annealing in the optimisation field was

introduced by Kirkpatrick et al in 1982 [15]. This concept
is based on the analogy between the annealing process in
metallurgy where heating and controlled cooling of materials
is used to recrystallize metals by increasing the temperature
to the maximum values until the solids almost melted then
decreasing the temperature carefully until the particles are
arranged and the system energy becomes minimal. Simulated
annealing is a powerful randomized local search algorithm
that has shown great success in finding optimal or nearly
optimal solutions of combinatorial problems [16]. We now
define the simulated annealing algorithm. Let s be the current
state and N(s) be a neighbourhood of s that includes
alternative states. By selecting one state s′ ∈ N(s) and
computing the difference between the current state cost and
the selected state energy as D = f(s′) − f(s), s′ is chosen
as the current state in two cases [17, p.124]

• If D < 0 then s′ is chosen as the current state as
downhills always accepted.

• If D > 0 and the probability of accepting s′ is larger
than a random value Rnd such that e−D/T > Rnd

then s′ is chosen as the current state where T is a
control parameter known as Temperature which is



gradually decreased during the search process making
the probability of accepting uphill moves decreasing
over time. Rnd is a randomly generated number where
0 < Rnd < 1. In this case uphill moves might be
accepted to avoid being stuck in a local minima.

In the last case where D > 0 and the probability is
lower than the random value e−d/T <= Rnd, no moves
are accepted and the current state s continues to be the
current solution. In the original proposed version of sim-
ulated annealing by Kirkpatrick, Gelatt and Vecchi, the
probability of accepting s′ equals 1 when f(s′) <= f(s).
Simulated annealing can be implemented to find the optimal
annealing by allowing infinite number of transitions or can
be implemented to find a closest possible optimal value
within a finite time. When starting with a large cooling
parameter, large deteriorations are accepted. Then, as the
temperature decreases, only small deteriorations are accepted
until the temperature approaches zero when no deteriorations
are accepted. Therefore, adequate temperature scheduling
is important to optimise the search. In the case of finite-
time implementation, the cooling schedule of finite values of
temperature and a finite number of transitions of each value
of temperature is specified by four components [16]:
1) Initial value of temperature.
2) A function to decrease temperature value gradually.
3) A final temperature value.
4) The length of each Homogeneous Markov chains
which is a sequence of trials where the probability of
the trial outcome depends on the previous trial outcome
[18, p.33].

One of the methods used to determine the initial tem-
perature value proposed by [19] is to choose the initial
temperature value within the standard deviation of the mean
cost. Markov chains are not used in this experiment.

V. METHODOLOGY AND RESULTS
The experiment can be divided into three steps : generating

time series, constructing the initial fuzzy system and opti-
mising the fuzzy system parameters. Firstly, the time series
are generated. Two Mackey-Glass time series are initialised
with the following parameters : alpha = 0.2 , Beta = 0.1
, τ = 17 for one experiment and τ = 30 for the second
experiment and initial condition x(0) = 1.2. A Henon time
series is generated with the following values : alpha=1.4 and
beta = 0.3. From each time series, input-output samples are
extracted in the form x(t− 18), x(t− 12), x(t− 6) and x(t)
where t = 118 to t = 1117 using a step size of 6. Then the
generated data are divided into 500 data points for training
and the remaining 500 data points for testing. Four initial
input values x(114) and x(115) and x(116) and x(117) are
used to predict the first four training outputs.
The fuzzy system is a four-inputs one-output first-order

Takagi-Sugeno fuzzy model and consists of four input fuzzy
sets A1, A2A3 and A4. Gaussian membership functions were
chosen to define the fuzzy sets. However, any other types of
membership functions can be chosen. The training procedure

aims to optimise the the parameters of the antecedent parts
and the coefficients of the consequent parts of the fuzzy sys-
tem rules. Then, the found parameters are used to predict the
next 500 testing data points. For the sake of comparison of
the performance with other methods, all settings of Mackey-
Glass examples were chosen as close as possible to [20]
when tau = 17 and to [21] and [22] when tau = 30. Using
a step size of 6, the input values to the fuzzy system are the
previous data points x(t− 18), x(t− 12), x(t− 12) and x(t)
while the output from the fuzzy system is the predicted
value x(t + 6). The parameters of the Gaussian membership
functions are the mean m and the standard deviation σ. All
the means and standard deviations are initially chosen for all
the input fuzzy sets as following [22] : m = ml − 2σl and
m = ml+2σl respectively whereml and σl are the mean and
standard deviation of all 500 inputs. The standard deviation
of all input fuzzy sets is chosen as σ = 2σl. The initial
fuzzy sets are depicted in figure 3. The fuzzification process
is based on the minimum t-norm. By using four inputs and
two fuzzy sets for each input, we end up with 16 rules and
8 input fuzzy sets representing all possible combinations of
input values with input fuzzy sets. While each rule is linked
with 5 coefficients c0, c1, c2, c3, c4, there are 8 means and 8
standard deviations are linked with all these rules. The total
number of optimised parameters is 8 + 8 + (5 ∗ 16) = 96.
The objective is to find the best set of parameters for all the
rules.

Fig. 3. The initial state for all input fuzzy sets for Mackey-Glass time
series when tau=17

The optimisation process is done using simulated anneal-
ing that searches for the best configuration of the parameters
by trying to modify one parameter each time and evaluate
the cost of the new state which is measured by Root Mean
Square Error (RMSE). The simulated algorithm is initialised
with a temperature that equals to the standard deviation of
mean of RMSE’s for 100 runs for the 500 training points.
The cooling schedule is based on a cooling rate of 0.99990
which allows a slow cooling process. The neighbouring states
for a current state are chosen randomly by adding a small



TABLE I
THE FORECASTING RESULTS FOR MACKEY-GLASS TIME SERIES BY

TWO TAU VALUES

Experiment Tau RMSE
Training Results 17 0.00364
Training Results 30 0.00417
Testing Results 17 0.00366
Testing Results 30 0.00649

TABLE II
THE FORECASTING RESULTS FOR HENON TIME SERIES

Experiment RMSE
Training Results 0.01308
Testing Results 0.01465

number between -0.1 and 0.1 to one of the 80 coefficients in
the current state or adding a small number between −0.02
and 0.02 to one of the 16 antecedent parameters. Then, the
new state is evaluated by examining the 500 data points
outputs. The proposed method shows a small RMSE for the
testing data in Mackey-Glass time series which is 0.00366
for τ = 17 and 0.00649 for τ = 30 as shown in Table
I. For Henon time series, the RMSE was 0.01465 for the
testing data as shown in Table II. The results of predicting
of Mackey-Glass data are depicted in figures 5 and 6 while
the results of predicting Henon time series are depicted in
figure 7. Figures 8, 9 and 10 show the the absolute prediction
error for results. To show the final state of the membership
functions, Figure 4 shows the final two input fuzzy sets after
optimisation for the first input only to predict Mackey-Glass
time series when tau=17. Other fuzzy sets for each input have
different values for their means and standard deviations.
For comparison purpose, The results obtained by other

methods for Mackey-Glass time series with τ = 17 taken
from [20] are shown in Table III. These results are measured
by non-dimensional error index (NDEI) which is defined as
the root mean square error divided by the standard deviation
of the target time series [20] which is in our experiment
equals to 0.016. We see that our result of (NDEI)= 0.016 is
the closest result to the best result which was obtained by
ANFIS. When τ = 30 the result is the best among the two
methods shown in Table V while the prediction of Henon
time series is quite accurate and better than the LS-SVM
with GA method proposed by [23] which is RMSE=0.024.

TABLE III
RESULTS COMPARISON FOR PREDICTING MACKEY-GLASS TIME SERIES

WHEN TAU=17
Method None-Dimensional Error Index (NDEI)
ANFIS 0.007

Auto Regressive Model 0.19
Cascaded-Correlation NN 0.06
Back-Propagation NN 0.02
Sixth-Order Polynomial 0.04

This Model 0.016

Fig. 4. The final two input fuzzy sets after optimisation for the first input
only to predict Mackey-Glass time series when tau=17
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Fig. 5. The actual and predicted data of Mackey-Glass time series when
tau=17 for the training and testing data showing the precision of the method
where the real data and predicted data are indistinguishable
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tau=30 for the training and testing data showing the precision of the method



TABLE IV
RESULT COMPARISONS FOR PREDICTING MACKEY-GLASS TIME SERIES

WHEN TAU=30
Method RMSE

Back-Propagation with fuzzy system [22] 0.02
One-Pass Method with fuzzy system [22] 0.04
Gradient Descent with fuzzy system [21] 0.21

This Model 0.00649
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Fig. 7. The actual and predicted data of Henon time series for a sample
of 50 testing data showing the precision of the method

VI. CONCLUSION

Simulated annealing is used to optimise Takagi-Sugeno
fuzzy system by searching for the best parameters of the
antecedent and the consequent parts of the fuzzy system.
Two time series have been predicted by this method which
are Mackey-Glass and Henon time series. The combination
exhibited good performance. We are planning to extend the
experiment to introduce more uncertainty in other data set
mirroring much of the data in the real world. We believe that
type-2 fuzzy logic will produce good performance as type-2
fuzzy sets are known to handle highly uncertain data well
[22] and we will compare the performance of the approach
between type-1 fuzzy systems and type-2 fuzzy systems.
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