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Towards Cognitive Robotics: Robotics, Biology 
and Developmental Psychology 

Mark Lee, Ulrich Nehmzow and Marcos Rodrigues 

 

1   Introduction — Early Robotics Research 
The question of how “intelligent” controllers can be designed for machines has always attracted 
much interest and research activity. The idea of reproducing some facets of human cognition in a 
designed artifact has fascinated scientists, philosophers and charlatans throughout history. But 
despite the enormous efforts that have been directed at this issue in the twentieth century, only very 
recently has any significant progress been made. The robots of the last century typically were 
brittle, they failed in even simple tasks as soon as these tasks deviated even slightly from the 
original specifications; they were slow; and they needed constant attention from software 
engineers. 

Up to the late 1980s and early 1990s robotics research was dominated by work originating from 
the control theory and cybernetics communities, which meant that the fundamental assumptions of 
how intelligent behaviour could be achieved were very similar if not identical. The Sense-Think-
Act cycle [Nehmzow, 2003] was one such assumption: sensor signals (“sense”) would be perceived 
by the robot, processed through various processing stages (“think”) and result in motor action 
(“act”). This cycle would then be repeated. Another common assumption was the Physical Symbol 
System Hypothesis [Newell and Simon, 1976], which claimed that general intelligent action could 
be achieved by manipulating symbols (which represented states of the real world) through a set of 
“the right kind” of rules. Assumptions like these influenced much of early robotics research 
towards a “programming approach” to intelligent behaviour, involving rules, knowledge-bases, 
agents and simulated environments. 

This changed drastically when Rodney Brooks' introduced the concept of “Behaviour-based 
Robotics”, and many laboratories started to pursued research in the "New AI" or “Embodied 
Intelligence” as it became known. This approach considered work with physically embedded 
machines as essential, used little or no symbols (using neural or “subsymbolic representations”), 
and saw the behaviour of a robot as emergent from the robot's interaction with the environment, the 
robot's morphology, and the many unknown factors that influence robot behaviour. In the last 
decade this approach has blossomed into the “Embodiment” movement which argues that truly 
autonomous intelligent agents must be situated, embedded, and embodied, and, currently, the only 
exemplars are to be found in the natural world. This has spurred much biologically-inspired 
robotics research that has taken ideas and models from brain science (neurology, anatomy, 
physiology), psychology (behaviour, perception and psychophysics), cognitive science, ethology, 
and even evolutionary theory. 

This chapter has its origins in an early collaborative robotics research project conducted jointly 
by the Universities of Edinburgh and Aberystwyth that led not only to new insights in robot 
control, but also stimulated novel research in related areas. The project was unusual for its time in 
that it integrated robotics expertise from a Computer Science department at Aberystwyth 
University in Wales with the interests of the Laboratory for Cognitive Neuroscience in the 
Psychology Department at Edinburgh University. Details of the project are given in the 
Acknowledgements. 

Our main motivation was, and still is, to gain an understanding of how robot systems could 
achieve some of the rich, flexible behaviour seen everywhere in the autonomous agents of the 
animal kingdom. There still remains a large gulf between the behaviour produced by our best 
robotic efforts and the richness of behaviour, learning and adaptability so obviously manifest in 
living systems. In the 1990s we were unsatisfied with the current methods for designing and 
engineering of intelligent systems, and found a lack of general principles for embodied intelligence 
research. In particular we saw psychology as the potential missing link, with its higher-level 
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models, emphasis on behaviour and relative openness to the problems of complexity. Since then, 
we have developed our approach further and have followed three principled lines of research, each 
quite different but all relating in their own way to the central problem of understanding and 
designing complex autonomous systems. 

In the next section, we briefly expand on the important issue of autonomy in robotics. Then 
follows a summary of our early founding work, before the three following sections each describe 
in turn our three lines of attack: steps towards a science of mobile robotics; an approach for 
developmental learning; and the potential role of full 3D geometric knowledge of the world.  

 

2 Autonomy and Embodiment 
The concept of Autonomous Systems can have many realisations but a central characteristic is the 
ability to sense, understand and act upon the environment in which the system operates. Thus, any 
internally processed information must be grounded in meanings ultimately derived by sensing and 
acting in the environment. This is why robotics is an excellent framework for autonomous systems 
research as it forces issues like sensing, perception, action, error-recovery and survivability, to be 
faced in an integrated and challenging format. 

The important paradigm shift in robotics brought about by the Embodied movement has been 
the rejection of simplified “toy worlds” or artificial simulated environments and the emphasis on 
the “real world”. Furthermore, unstructured environments are the required proving ground for 
modern experiments, bringing not only realistic noise, disturbance and uncertainty to the fore, but 
also opening up the enormous complexity that autonomous systems must ultimately face and 
manage. 

For example, consider the following scenario. A robot is to patrol the sea-facing pedestrian area 
at a popular costal resort. The robot might be required to perform costal surveillance, 
environmental audit, assist the public, monitor local conditions and search for missing persons (e.g. 
via heat sources). Such assistive robots will need a wide variety of sensors (to monitor local 
conditions; weather, waves, tide), some form of interface for interactions with the public, a link to 
remote services (control room or coastguard), and sophisticated perceptual processes (tracking and 
awareness functions to raise security warnings; novelty analysis for unusual events or objects). 

It is clear that such a system must survive unattended for long periods thus requiring genuinely 
autonomous operation. But autonomy is not dependent on any group of specific functions or 
capabilities. Rather, autonomy is the ability to cope with changing situations and circumstances, 
and this in turn depends upon gaining a grounded understanding of those very situations from 
experience. For example, a sea-front robot that is temporarily unable to deliver a warning message 
directly may communicate with other robots or agents to recruit their help and achieve the task by 
different means. Similarly, actions that fail in one context (e.g. sandstorm) might be reconfigured 
through experience with other actions in related conditions (e.g. fog). 

Embodiment is a vital property of autonomous systems because any understanding of the 
environment must be built up from sensory-motor activity and the morphology and physical 
hardware of a robot is an essential factor in determining both its behaviour and the extent of its 
cognitive abilities. We take the view of others [Lakoff, 1987] that all cognitive competencies are 
grounded in sensory-motor acts and even higher functions such as language are intimately related 
to basic sensory and motor experience [Rizzolatti and Arbib, 1998]. 

The achievement of autonomy is seen by the robotics community as one of the most pressing 
research challenges and is essential for the successful deployment of robots in service, domestic 
and health-care scenarios as well as in hostile and remote environments. 

3 Control and Perception in Mobile Robots 
In the early 1990s we began exploring new approaches for building autonomous robots working in 
everyday unstructured environments. Our joint task concerned the development of a courier robot 
capable of locating and identifying targets in order to carry out a given cognitive task, namely the 
delivery of mail or messages via mapping, route finding and navigation of its local environment. 

We used mobile robots of various manufacture. Figure 1 shows a typical modern wheeled robot 
with a cylindrical body and a range of sensors (ultrasonic, infra-red, laser) mounted around its 
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circumference. There are 2 main wheels, set on a diagonal, so that by driving these in contra or 
similar directions the robot can either rotate about its centre or move forward. 

The difference between normal and unexpected events is of vital importance for autonomous 
systems and so one of our first investigations concerned the notion of novelty. We defined “novel” 
events as those not conforming to the current model of usually experienced events, and we built a 
variety of data-driven novelty filters that adapted through real-world robot-environment 
interaction. Using sonar as the sensing modality, a self-organising feature map performed 
clustering on the pre-processed sonar perceptions of the robot. This was demonstrated in a corridor 
exploring task where the robot initially only sees closed doors in a corridor and so treats open 
doors as “novel” but later treats both open and closed as “normal”. 

This work was extended for dynamic environments where dynamical objects (e.g. other robots) 
are present and need to be learned as "normal". Using visual input from cameras on the robot we 
adopted a model-based approach which combines expectations from a model with current sensory 
perceptions. If either an abnormal sensory perception is perceived, or a behaviour is detected that is 
unusual in the robot's current context, the situation is classified as novel [Neto and Nehmzow, 
2004] . A robot behavioural model was obtained using the Narmax system of non-linear 
polynomial identification (described in section 4.3) and then the robot was tested in a complex 
environment that had been encountered before. Novelty is signaled by a large error difference 
between the input perceptions and the model predictions. When any significant change was made 
to the environment, such as removing a small pillar, adding a barrier between two pillars or 
displacing a pillar, all were successfully detected as novel events [Ozbilge et al., 2009]. 

 
Development of Competencies 

BEHAVIOUR MAPPING LEVEL OF VISION 
Reactive Stage   
go_forwards none threshold sonar 
Locative Stage   
go_forwards position of defaults threshold sonar 
go_forwards sonar values + defaults distance-value sonar 
goto_point (using goJorwards) (uses map data) distance-value sonar 
Vision Stage   
fincLany .object object position object/non-object 
 + sonar values + 

defaults 
sensing + distance-value sonar 

label_specific_object object name and 
position 

distant object sensing + 

 + sonar values + 
defaults 

+ feature identification + 
distance-value sonar 

findjspecific_object (uses map data) as above as above 
(using goto_point with avoid turned off)   
 
Another emphasis was on the growth of competence necessary if an autonomous robot is to 

build on its experience. An illustration of this can be seen in our early implementation of a visual 
layer of competence. A camera and visual processing system on a mobile robot were used to 

Figure 1: A typical modern mobile 
robot. 



4 

develop adaptive and learned responses to obstacles, recognise objects and recognise target 
locations [Nehmzow et al., 1993]. The cognitive levels in the final system consists of three major 
parts: a reactive layer, a locative competence, and a visual ability. The interaction, growth and 
development of theses stages were our focus of interest. The three stages of competence can be 
summarised in the above table. The table shows the behaviours growing in complexity from a 
simple propensity to move forwards to a many-layered ability to find a specific object whilst 
avoiding intermediate objects and obstacles. 

Sonar and vision competence also develops gradually from a simple threshold sonar device that 
can only ask the question 'am I too close to a surface?' to advanced vision that can discriminate 
between two different objects of interest to the agent and ask, 'is this the object I want?'. 

The mapping process largely reflects the maturation of the other two areas of development. It 
starts by plotting where defaults occur during the 'goJorward' behaviour and then adds the 
information that it gets from the visual/sonar system as it becomes more complex. At the same 
time, the robot is using the lowest-level, and computationally simplest, visual information that it 
can to perform a task, and thus costly high level visual information is only used when necessary to 
open up new possibilities. 

 
 
3.1 Control in organically unstructured environments 

 
After taking account of relevant considerations from ethology we developed for robotics the 

servo-based model of behavioral control proposed by William Powers [Powers, 1973]. In classical 
control theory any feedback signals (usually negative) are fed back from the output of the 
controlled plant. Thus a motor speed controller will monitor the speed of the output shaft and use 
the error value to adjust the input power accordingly. The basic conceptual difference in Powers's 
model was to take the feedback signal from the environment, that is, after the effects of the plant 
had been felt on the environment. Thus the feedback loops are closed by environmental interaction. 
The difference from the behaviour-based methodology is that the feedback is now within the 
perceptual process, thus behaviour becomes the consequence of acting to reduce perceptual 
mismatch. We produced a variation on Powers theory, and implemented several models to 
investigate its properties [Rodrigues and Lee, 1994]. This approach offers a framework in which 
low level reactive behaviour can be integrated with higher level schemas in a control hierarchy - a 
challenging issue in Embodied Intelligence. 

 

 
Figure 2: Sandwich assembly. A laser stripe (visible at extreme lower left) produces a profile of 

the product on an imaging camera when the belt is moving. This is then used to deduce the items 
that are missing and direct the robot to fetch and place such components of the sandwich. 
 

We applied these ideas in various real applications with cluttered environments for both mobile 
robots and robotic manipulator arms and hands. One example was the development of robot 
grasping strategies for unprocessed natural food products, including packing fish portions into 
boxes and sandwich assembly. A typical task is to grasp and place natural food items at target 
locations with an industrial quality assembly robot, but with no prior knowledge of the product size 
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or shape. Natural food items are extremely variable in their shape, consistency and quality and 
these features preclude any preprogrammed grasping pattern. Using the Powers approach we 
designed a grasping algorithm that solves this problem by adapting the robot gripper orientation to 
perceived features of the product without operator intervention. Figure 2 shows a layer of 
cucumber and tomato slices being located during the assembly of a sandwich. 

Another feature of this work was the application requirement for absolutely no programming to 
be allowed not only for the grasping of variable items but also for setting up the equipment for 
different batch runs. This was because of the hygiene regime and the management obsession to 
completely minimise human involvement. We achieved this by a system of "teaching by showing". 
A single exemplar sandwich would be shown to the camera system in each of its partial assembly 
stages, then the robot could deduce the action required by noting the difference between the current 
stage Si and the next successive stage Si+i. The robot action was automatically generated by the 
goal of reducing the difference to zero. In this way, any assembly sequence could be defined, and 
the quality of the result would reflect the quality of the examples initially shown to the system. 

 
 

4   Scientific Methods in Robotics: Towards a theory of robot-
environment interaction 

 
The literature in robotics research contains many impressive feats of engineering. A typical 

paper will describe the problem analysis, design and performance results of a system that tackles 
some challenging task. The modus operandi has often been one of prototype building with 
successive refinement and the cumulative growth of expertise and knowledge (on the part of the 
experimenter). This process might characterise the very early days of Victorian engineering but is 
unsatisfactory for modern science. In particular, the most glaring omission is the lack of 
reproducibility of the published results. It is almost impossible to test claimed results by 
reproducing experiments because (a) the full details of the equipment, software and conditions are 
not given (usually because they would take far too much space), (b) it is impossible to duplicate 
the exact same laboratory apparatus as the equipment is often part original or modiied, and (c) the 
initial conditions for experiments (including ambient conditions like lighting) are not fully 
recorded or are otherwise unavailable. 

We believe that this situation must change if we are to attain a more scientiic approach to 
building robot systems. We must build up an organised body of scientiic knowledge that facilitates 
a much better understanding of such systems and allows for proper evaluation of our understanding 
and progress. 

Taking mobile robotics as an example, assume that a small mobile robot is to be used in 
experiments to trace around the walls of an arena - this is known as a wall-following task. A 
program will cause the robot to act but the actual path taken will depend upon the combined 
influences of the control program running on the robot, the robot's physical properties, and the 
environment itself. Hence robot behaviour can not be reduced simply to the output of a program 
but is the result of interactions of the triple: Robot/Environment/Task. This is why robotics 
research is hard, as can be appreciated by the following case study based on real trials. Our wall-
following robot is programed to move parallel to any wall, while maintaining a constant distance 
from the wall. Unfortunately we soon find that the robot's path - its trajectory around the arena - is 
not repeatable. Each time we try to start it off in exactly the same location with exactly the same 
speed and heading we always find that after a while its path deviates from the previous one. Figure 
3 shows an example of the deviation between two trajectories in four increasing time snapshots. At 
first the paths are near identical but they gradually diverge and eventually may become completely 
different trajectories. This effect is caused because of very slight variations in friction, material 
properties or ambient conditions. Such microscopic effects are unavoidable and uncontrollable, and 
consequently present a problem for our desire for scientiically repeatable results.  

This problem is one of chaos — however careful we are, we have no way of controlling the 
conditions so that identical behaviour is produced — this is the sign of a chaotic system. Note that 
this is the case even though all the components of the experiment may be deterministic in nature. A 
solution might involve a way of measuring behaviour that can take account of these chaotic effects. 
We need a suitable “Behaviour Meter” that can be used to compare different behaviours. If we 
consider just the dynamics of our mobile robot behaviour then various possible quantitative 
methods can be considered. We have experimented with quantitative descriptions of phase space 
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and found three particular measures very helpful [Nehmzow, 2009]. 
 

4.1 Phase space 
Phase space is a concept from dynamical systems theory and is used to describe all possible 

states of a dynamical system. Not only spatial position but velocities will typically be involved, 
thus phase spaces may have high dimensionality. It turns out that if a log is taken of robot variables 
at regular time intervals during a behavioural trajectory then the phase space for the system can be 
reconstruction from the observations in these timeseries alone. Figure 4 shows an example of part 
of a reconstructed phase space (this is a 5 dimensional phase space but only 3 can be shown). Note 
that this is not a robot spatial trajectory but a plot in phase space — the variation in the traces 
indicates the degree of unpredictability; a strictly periodic behaviour would produce a single curve. 

 
4.2 A behaviour meter 
Given a phase space we can then apply our three measures from our "Behaviour Meter"; these 

are, the Lyapunov exponent, the Prediction Horizon, and the Correlation Dimension. The 
Lyapunov exponent is a measure of the phase space that describes the rate of divergence of two 
trajectories that started ininitesimally close to each other. Figure 5 shows the trajectories of a 
mobile robot executing two different behaviours: wall-following and obstacle-avoidance. It is clear 
that wall-following is the more predictable behaviour as the trace shows.  Obstacle-avoidance 
causes the wall to be avoided as soon as it is detected and therefore looks more unpredictable and 
chaotic. The Lyapunov exponent for the wall-following case was calculated as between 0.02 and 
0.03 bits/sec, while in the obstacle-avoidance trial it was between 0.11 and 0.13 bits/sec. This 
shows that obstacle-avoidance is indeed more chaotic than wall-following. 

The Lyapunov exponent is expressed as information loss per unit time; in other words it 
indicates the loss of information in the system (or degree of chaos) as one predicts the system state 
for longer and longer times ahead. We may be able to predict our robot's state in the next second 
fairly accurately but we would expect large errors if we try to predict several hours ahead. The 
Lyapunov exponent tells us how bad the situation is — if the Lyapunov exponent is zero then we 
have a noise-free, perfectly deterministic system whose behaviour we can accurately predict for 
any length of time. But as the Lyapunov exponent increases so our predictions get worse and 
eventually become no better than a guess. We refer to the point in time where complete loss of 
predictability occurs as the Prediction Horizon. Using information theory analysis we find that the 
Prediction Horizon for the wall-following behaviour was greater than 25 minutes (6000 steps at 
sampling rate of 4Hz) and for the obstacle-avoidance was only 80 seconds. This shows that wall-
following is much more predictable and for any model of obstacle-avoidance, however good the 
model, it will not be able to predict the exact path of the robot for more than about 80 seconds. 

Figure 3: Four snapshots of two trajectories. Starting from top left, time increases 
clockwise. 
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The final measure of chaos is the Correlation Dimension, which gives a measure of aperiodicity 

or how close the system variables return to previous values (zero indicates strictly periodic data). 
For the wall-following behaviour the Correlation Dimension was calculated as around 1.5 while 
for obstacle-avoidance it was 2.5, again clearly indicating the increased chaotic nature of the 
obstacle-avoidance behaviour [Nehmzow, 2009]. 

 
4.3 Faithful and transparent modelling of robot-environment 

interaction 
 
The issues we have discussed regarding real robot behaviour have some important implications 

for modelling and simulation. For a model to have any value it must be accurate and faithful, that 
is, it must predict or generate identical behaviour to the originally perceived behaviour. Models 
should also be reasonably transparent and analysable so that we can understand their meaning and 
what they represent. As an example of a non-transparent model consider the case of a neural 
network that has been well trained on some specific task. The only information we have available 
is the weight matrix that has captured the essence of the input-output relationship. But 
unfortunately the weight matrix is just an array of numbers that obscurely encode whatever the 
model has learned; they are quite unintelligible to humans. By comparison we are interested in 
transparent, parsimonious models that aid understanding of these complex situations. 

Clearly, if there are indications of chaotic behaviour then the predictability of any models may 
be severely limited. However it is possible to discern structure in even noisy data in many cases. 
The field involved in producing models of unknown systems is called System Identication, and a 
powerful and relevant method for robotics is the Narmax technique [Chen and Billings, 1989]. 
This is a mathematical method that produces a non-linear polynomial of the system variables that 
expresses the relationship between a set of inputs and outputs. As a simple illustration consider a 
system with two inputs, u1 and u2, and a single output, y. We chose the system equation as: 

y(n)= u1(n)2 + 0.5u1(n)u2(n), where n is the timeseries index. Thus this gives the ideal or 
theoretical output for any input values. But in the real life situation, (a) the inputs contain a lot of 

Figure 5: Trajectories of wall-following and obstacle-avoidance as recorded from an 
overhead camera. 
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noise and (b) we have no idea of any equation that might represent the system. This is where 
system identification methods are useful and to demonstrate we use the Narmax method [Chen and 
Billings, 1989]. First we collect some data by generating a set of values for u1 and u2 and add 
Gausian distributed noise giving u1 and u2, then we pass this data through our system (the above 
equation) to produce the output data y. We now have a set of input-output data for a noisy system. 
This data is then processed through the Narmax method, which delivers the following result: 

y(n) = -0.01 + 0.05u1(n)+0.01u2(n)+0.91u1(n)2 + 0.52u1(n)u2(n) 
This is very close to the true underlying relationship: y(n)= u1(n)2 +0.5u1(n)u2(n), and we now 

have a model of the system for further analysis, simulation or prediction [Nehmzow, 2009]. 
 
 
4.4 Robot control 
 
We have applied these techniques to a number of standard robotic problems. An interesting 

approach is to build the system model from data collected while human operators drive a robot to 
achieve a particular task. The resulting model then contains the expertise of the operators and can 
be used as a controller to drive the robot autonomously. Figure 6 shows a doorway navigation task 
viewed from above. On the left an operator has driven the robot from many starting points (in the 
region at the top) and navigated through the gap in the wall (the gap is 2 robot diameters wide). 
Narmax models produce polynomials with many terms, for the various combinations of inputs and 
their products. In this case there were many laser and sonar inputs and the model polynomial came 
out with 38 terms. The robot was then run under control of the model, taking its actions from the 
model processed sensory input. The traces in Figure 6 show 39 runs and those of the human (on the 
left) are noticeably less smooth than those produced by the model (on the right). Doorway traversal 
is a delicate task, requiring a careful balance between several signals, but the Narmax model was 
successful every time. Post analysis of the model showed that just a few of the sensors were 
playing a major role and these were all monitoring one side of the doorway. This strategy of 
following one side closely is clearly seen in Figure 6 and was an unexpected effect. The model 
driven robot was much smoother and more accurate than a human operator! 

 
5 The Importance of Development for Cognitive Robots 

 
We have argued that true autonomy involves dealing with the new or unknown without external 

aid. This means that systems must not only adapt in accordance with current experience but must 
also be capable of adapting their learning processes themselves. Thus, new competencies must 
emerge as conditions change and new demands are made. The way this problem has been solved in 

humans and 
other mammals is through processes of structured growth generally known as "development". 

In this section we consider the role of development in relation to cognitive aspects of robotics. 
Developmental psychology has long studied human cognitive growth and produced many 

Figure 6: Robot under manual control ..... and under model 
control. 
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theories that could explain such growth. It is very surprising that, despite the vast body of 
psychological knowledge on learning and adaptation built up over the last century, very little work 
has considered implementing developmental processes in artificial systems. 

This situation has finally changed and the topic of Developmental Robotics has recently 
become established as a new research area [Lungarella et al., 2003]. This approach emphasises the 
role of environmental and internal factors in shaping adaptation and behaviour, and posits a 
developmental framework that allows the gradual consolidation of control, coordination and 
competence [Prince et al., 2005]. 

 
 
5.1   Developmental stages 
 
A key characteristic of human development is the centrality of behavioural sequences: no 

matter how individuals vary, all infants pass through sequences of development where some 
competencies always precede others. This is seen most strongly in early infancy as one pattern of 
behaviour merges into another. These regularities are the basis of the concept of behavioural stages 
— identifiable periods of growth and consolidation. Perhaps the most influential theories of staged 
growth have been those of Jean Piaget who emphasised the importance of sensory-motor 
interaction, staged competence learning and a constructivist approach [Piaget, 1973]. It is 
recognised that stages tend to have vague boundaries and also vary greatly with individuals. 
Nevertheless, the existence of stages in development and their role in the growth of cognition 
appears to be very significant. 

We believe that research into developmental algorithms for robotics should begin with and be 
firmly rooted in the early sensory-motor period. This is for several reasons: (1) it is logical and 
methodologically sound to begin at the earliest stages because early experiences and structures are 
highly likely to determine the path and form of subsequent growth in ways that may be crucial; (2) 
according to Piaget, the sensory-motor period consists of six stages that include concepts such as 
motor effects, object permanence, causality, imitation, and play — these are all issues of much 
relevance to robotics; (3) sensory-motor adaptation and learning is vital for autonomous robots; (4) 
it seems likely that sensory-motor coordination is a significant general principle of cognition 
[Pfeifer and Scheier, 1997]. 

Hence, we are investigating the earliest level of sensory-motor development: the emerging 
control of the limbs and eyes during the first three months of life. To the casual observer the 
newborn human infant may seem helpless and slow to change but, in fact, this is a period of the 
most rapid and profound growth and adaptation. From spontaneous, uncoordinated, apparently 
random movements of the limbs the infant gradually gains control of the parameters, and learns to 
coordinate sensory and motor signals to produce purposive acts in egocentric space [Gallahue, 
1982]. We believe there is much to learn for Embodied Intelligence and robotics from this 
scenario. 

 
5.2 The key role of constraints 

 
Any constraint on sensing, action or cognition effectively reduces the complexity of the inputs 

and/or possible action. This reduces the task space and provides a frame or scaffold which shapes 
learning [Bruner, 1990, Rutkowska, 1994]. When a high level of competence at some task has been 
reached then a new level of task or difficulty may be exposed by the lifting of a constraint 
[Rutkowska, 1994]. The next stage then discovers the properties of the newly scoped task and 
learns further competence by building on the accumulated experience of the levels before. 

Various examples of internal sensory and motor constraints are seen in the newborn, for 
example the neonate has a very restricted visual system, with a kind of tunnel vision [Hainline, 
1998] where the width of view grows from 30 degrees at 2 weeks of age to 60 degrees at 10 weeks 
[Tronick, 1972]. Although this may seem restricted, these initial constraints on focus and visual 
range are "tuned" to just that region of space where the mother has the maximum chance of being 
seen by the newborn. When "mother detection" has been established then the constraint can be 
lifted and attention allowed to find other visual stimuli. 

Many forms of constraint have been observed or postulated [Hendriks-Jensen, 1996] [Keil, 
1990] and we have identified a range of different types in robotics. These include: anatomical or 
hardware constraints imposed by the system morphology; sensory-motor limitations (e.g. accuracy, 
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resolution, bandwidth); cognitive/computational constraints; maturational constraints from internal 
and biological processes; and, not least, external or environmental constraints. 

In our current research we are following these ideas of staged development and building robotic 
learning architectures in which sensory-motor competence grows cumulatively. Our method 
involves an overarching constraint network that restricts the ranges and number of parameters 
available to the robot during its early stages. 

 
5.3 The LCAS approach 
As mentioned before, we try to find explicit, abstract models and avoid preselected internal 

representations and methods. Accordingly, we have produced a general mechanism for staged 
development which takes “constraint lifting” as a key process in allowing transitions between 
stages. We use novelty and expectation as the drivers and so any trigger for stage transitions is 
likely to be related to internal global states, not local events. Local stimuli (spatially and 
temporally) may cause local responses but global values can indicate levels of general experience 
or expectation. 

Thus, global states such as global excitation can act as indicators that can detect qualitative 
aspects of behaviour such as when growth changes have effectively ceased or when a mapping 
between modalities has become saturated. They can then signal the need to enter a new level of 
learning by lifting a constraint or accessing a new sensory input. In this way, further exploration 
may begin for another skill level, thus approximating a form of Piagetian learning. 

Our approach then consists of implementing the cycle; Lift-Constraint, Act, Saturate (LCAS), 
at a suitable level of behaviour. First, the possible or available constraints must be identified and a 
schedule or ordering for their removal decided. Next a range of primitive actions must be 
determined together with their sensory associations. Also any sensory-motor learning or adaptation 
mechanism is incorporated at this stage. Finally a set of global measures need to be established to 
monitor internal activity. When this is implemented the initial behaviour may seem very primitive, 
but this is because all or nearly all constraints have been applied and there is little room for 
complex activity. During the Act process varying patterns of action effectively explore the scope 
for experience and any new experiences are learned and consolidated. Eventually there are no new 
experiences possible, or they are extremely rare, and this level becomes saturated. The global 
indicators then reach a critical level and the next constraint in the schedule is lifted and the cycle 
begins again. 

The ideas reported here have all been explored in experiments on hand/eye robot systems. The 
details cover the learning of sensory-motor control for eye-saccades [Chao et al., 2010], visual 
search [Huelse et al., 2009a], and hand-eye coordination [Huelse et al., 2009b, Huelse et al., 2010]. 
The behaviours observed from our experiments display an increasing progression from initially 
spontaneous limb movements (known as "motor babbling"), followed by more exploratory 
movements, and then directed action towards touching and grasping objects. Our research is 
continuing in a programme that aims to demonstrate autonomous cognitive growth on an iCub 
humanoid robot [Metta et al., 2008]. We 

are exploring constraint networks as an overarching framework for orchestrating development 
and have build such networks by transposing a large sensory-motor constraint analysis of the 
human infant. 

 
 
6   The Role of Geometric Knowledge in Recognition Tasks 
 
The application described in section 3.1, involving robotic handling of natural food products, 

operated very successfully with only 2 dimensional images of the environment. No prior 
information about the product shape was available and the only knowledge used was a set of 
control variables in a geometric relationship and the sensory input. 

A follow-on research question addresses the opposite end of the knowledge spectrum: would 
full geometric knowledge of the shape allow us to explore in more detail the 
perception/anticipation/action model? In order to address this question, objects in the real world 
need to be directly perceived by artificial sensors and their geometries reconstructed from such 
perceptions. 

Our research has focused on 3D data acquisition and exploitation from single 2D images using 
structured light methods, e.g. [Robinson et al., 2004, Brink et al., 2008, Rodrigues and Robinson, 
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2009]. We demonstrate that a robot can effectively track targets in 2D and reconstruct these into 
3D as it wanders through the environment. 

 
6.1 2D tracking and 3D reconstruction 
 
The OpenCV Intel libraries [Bradski and Pisarevsky, 1999] provide built-in routines for real-

time face detection based on Haar-like features. It is possible to train and use a cascade of boosted 
classifiers for rapid object detection for any arbitrary object. We have used the libraries to train 
classifiers for left and right eye. The general problem with such detection techniques is the number 
of false positives. For instance, in any image there could be various detected faces and some might 
not be real faces. Similarly for eyes, the routines normally detect more eyes than there are in the 
scene. 

The solution is to run face and eye detection in separate threads and impose constraints: first, 
there should be only one face detected in the image and the face must be larger than a certain 
threshold; second, there should be only one left and only one right eye detected in the image, and 
these must be within the region of interest set by the face detection; third, the position of the face 
and eyes must not have moved more than a set distance since last detection so to avoid taking 
blurred shots due to undesirable motion. The routines are thus dedicated and continuously track 
multiple face and eyes. Only when the above constraints are satisfied a shot is automatically taken; 
an example is depicted in Figure 7 (left). 

We have developed a suite of routines for real-time 3D reconstruction using structured light 
patterns [Robinson et al., 2004]. To avoid the need for accurate mechanisms and in order to speed 
up the acquisition process, a number of stripes can be projected at the same time and captured as a 
sequence of stripes in a single frame. However, it may be difficult to determine which captured 
stripe corresponds to which projected stripe, when we attempt to index the captured sequence in 
the same order as the projected sequence. We call this the stripe indexing problem. For this reason 
methods have been devised to uniquely mark each stripe, by colour [Rocchini et al., 2001], stripe 
width [Daley and Hassebrook, 1998], and by a combination of both [Zhang et al., 2002]. 

Our research has shown the dependence between the stripe index and the measurement of a sur-
face vertex defined by the common inclination constraint [Robinson et al., 2004]. We also deal 
with occlusions [Wang and Oliveira, 2007] to improve the validity of the boundaries. Moreover, 
we have investigated how far the indexing problem can be solved with uncoded stripes, where the 
correct order of stripes in the captured image is determined by original algorithmic methods such 
as the maximum spanning tree algorithm [Brink et al., 2008]. A number of 3D post-processing 
techniques can be applied such as the ones discussed in [Rodrigues and Robinson, 2009, Wang and 
Oliveira, 2007] resulting in 3D models as depicted in Figure 7 (right). 

 
6.2 Pattern recognition 
 
Object recognition is based on feature extraction starting from three key feature points: the 

location of the eyes and tip of the nose. Our method is based on cutting oriented planes from the 
key features and detecting points on the mesh at the interception of those planes. We require pose 
alignment where the origin is placed at the tip of the nose, the eyes are aligned with the x-axis, and 
the y-axis is at a constant angle to a point at mid-distance between the eyes. This is achieved 
through an automatic iterative process, which has proved to work successfully even if the subject is 
not directly facing the camera; it has been tested on images facing up to 45 degrees to either side. 
A total of 43 points are located at the intersection of the various planes defined from the key 
features. An example of such points is depicted in Figure 8. Measurements are taken from such 
points as distances and ratios in addition to area, volume, perimeter, and various types of diameters 
such as breath and length resulting in a set of 191 measurements per face model. The face models 
have been tested and recognized at 97% accuracy for a database containing 276 models.
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6.3 Discussion 
 
Our research has demonstrated that defining specific robotic recognition tasks can be achieved 

in two distinct stages using appropriate constraints: 2D is well-suited for tracking objects in real 
time based on redundancy of information. Many objects (e.g. faces and eyes) can be tracked from a 
2D scene and the actual selection of a particular scene for 3D reconstruction is made using 
constraints of size and number of objects detected. 

Once a scene is reconstructed in 3D, then more specific knowledge is required about the object 
of interest. We used the example ol lacial recognition that relies on geometric knowledge of a face 
object for pose normalization and feature extraction. The need for further knowledge is likely to be 
true for the recognition of most 3D objects as their boundary conditions are only partially 
controlled through 2D tracking. 

While the original question on deploying the perception/anticipation/action model remains 
largely unanswered, our research into 3D has opened new avenues of investigation. This includes 
games, animation, entertainment, security and engineering among others. The limitations of the 
method are related to projection issues, as objects over 4m from the camera cannot be 
reconstructed. We are currently working on new techniques to project sharp stripes over longer 
distances. 

Figure 7: Left: when 2D constraints are satisfied for face and eye tracking, structured light 
is projected. Right: the captured 2D image is processed into 3D and texture mapping can 
be changed by 3D postprocessing operations. 

Figure 8: Automatic pose alignment and feature 
extraction. 
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7 Summary 
 
In our research journey we have learned much about the nature of autonomy and embodiment. 

It is interesting that our original research themes have continued, albeit in much advanced form, 
but still focussed on certain key themes. We summarise these briefly. 

In the quest for more fluid, flexible and animate behaviour from our robots, we need to 
continue with the Embodied Intelligence approach to building artificial cognitive systems because 
the nature of the physical hardware of a robot is an essential factor in determining both its 
behaviour and the extent of its cognitive abilities. In addition, Developmental Robotics starts from 
the assumption that early experience provides a vital grounding for later competencies and thus 
offers an approach into the difficult problem of the growth of competence. Constraint networks 
could provide an environment in which behaviour develops without complex mechanisms for each 
stage, in other words: "Gradual removal of constraint could account for qualitative change in 
behaviour without structural change"   [Tronick, 1972]. 

Our interest in novelty as a learning spur has been justified by much current interest in Intrinsic 
Motivation [Oudeyer et al., 2007] which is examining the drivers for self-motivation, of which 
expectation and novelty are integral aspects. 

We have seen the value of insisting on natural, unstructured environments, and the high degree 
of complexity that this may entail. We have argued that complexity and chaos need to be faced, not 
avoided, and that tools for measuring behaviour in such situations are essential for good science. 
Our examples included tools to measure the degree of chaos and sensitivity to initial conditions. 
We hope that more robotic science and high quality results will emerge from the use of new 
measurement techniques, proven authentic models, and take maximum advantage of psychological 
knowledge of cognitive growth. 
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