
Protecting Against Address Space Layout Randomization
(ASLR) Compromises and Return-to-Libc Attacks Using
Network Intrusion Detection Systems

DAY, David and ZHAO, Zhengxu

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/5233/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DAY, David and ZHAO, Zhengxu (2011). Protecting Against Address Space Layout
Randomization (ASLR) Compromises and Return-to-Libc Attacks Using Network
Intrusion Detection Systems. International Journal of Automation and Computing, 8
(4), 472-483.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Protecting Against Address Space Layout Randomization (ASLR)

Compromises and Return-to-Libc Attacks Using Network Intrusion Detection

Systems

 David J Day Zhengxu Zhao
1

 School of Computing and Mathematics Faculty of Information Science and Technology

 University of Derby Shijiazhuang Tiedao University

 Derby, UK. Shijiazhuang Hebei, China.

 d.day@derby.ac.uk zhaozx@sjzri.edu.cn

1
Corresponding Author: Zhengxu Zhao

Abstract: Writable XOR eXecutable (W ○+ X) and

Address Space Layout Randomisation (ASLR), have

elevated the understanding necessary to perpetrate

buffer overflow exploits [1]. However, they have not

proved to be a panacea [1] [2] [3] and so other

mechanisms such as stack guards and prelinking have

been introduced. In this paper we show that host based

protection still does not offer a complete solution. To

demonstrate, we perform an over the network brute

force return-to-libc attack against a pre-forking

concurrent server to gain remote access to a shell. The

attack defeats host protection including W○+ X and

ASLR. We then demonstrate that deploying a NIDS

with appropriate signatures can detect this attack

efficiently.

Keywords:::: Buffer overflow, Stack overflow, IDS, Signature,

Rules, Return-to-libc, Attack, Pre-forking

I. INTRODUCTION

Nearly all internet worms are facilitated through the
exploit of buffer overflow vulnerabilities [4] and the
threat of buffer overflow exploits continues to dominate
as the most severe and frequent [5]. Buffer overflow
vulnerabilities have been exploited for over 20 years and
continue to evolve [6] despite innovative progress with
host based protection mechanisms.

Buffer overflow attacks are made possible through
absent or erroneous bounds checking of user input data.
These vulnerabilities only exist when developing
software using languages which do not enforce run-
time bounds checking such as C and C++. These two
languages account for more software than any other [7],
exacerbating the problem.

The software industry has responded to these types
of attacks by releasing patches for their applications.
These code corrections are released at a point where the
vulnerability becomes known, usually after it has been
penetrated, and this leads to a patch-penetrate cycle of
software security [8]. Unfortunately this treats the
symptom rather than the underlying cause.
Consequently systems remain vulnerable to attacks
perpetrated prior to the software vendor being aware of
any vulnerability (zero day attacks).

A. Buffer overflow protection

 Since the first reported buffer overflow attack, the
Morris worm in 1988 [9], system designers have been
developing protection mechanisms to eradicate them.
Most have proposed host based protection mechanisms
which prevent changes to program execution flow e.g.
StackGuard [10] and Propolice [11]. Other techniques
involve modifying the CPU and operating system e.g.

ASLR and W○+ X. However, while the safeguards have

raised the bar significantly, the attackers continue
finding creative ways to defeat them. Reactive
protection mechanisms cannot prevent human error, thus
the solution may be better design and testing of software
or the use of languages that enforce run-time bounds
checking. This philosophy is creditable but also
expensive [12], and is unlikely to be done at the cost of
performance [13]. It seems almost inevitable that buffer
overflows will continue to emerge as a result of human
error either via the generation of new vulnerable code or
the re-use of legacy vulnerable code. In either case the
root cause is putting performance before security.

B. NIDS and Shell code detection

A popular method of mitigating the risk of buffer

overflow attacks is through the use of Network

Intrusion Detection Systems (NIDS). NIDS’s monitor

network traffic for suspicious activity by examining

packets for patterns indicative of known exploits. This

is performed by placing the systems at key points within

the network, to scan as much relevant inbound and

outbound traffic as necessary [14]. Many inventive

proposals have be made in this area including the use of

Artificial Intelligence to predict attacks [15]

Often malicious parties intend to gain remote access

to a system via a system shell. They can then perform a

number of malicious activities, including the

introduction of root kits, which facilitate easier future

access to the remote system. As a result various IDS

rules have been developed to detect the injection of

shell code into applications [16] [17]. Most of these

involve techniques to either detect or obfuscate shell

code, respectively.

1) Present NIDS and Shell code detection

limitations

The release dates of rules for software vulnerabilities

are often close to that of the patch. Hence the

application may be susceptible to zero day attacks [18].

In addition, other attack methods which make use of

buffer overflow vulnerabilities also exist e.g. return-to-

libc. These attacks use code already loaded in memory

and do not need to inject shell code [5]. This renders

many shell code detection rules useless. Wide scale host

based protection mechanisms such as (W○+ X) and

ASLR have been implemented to prevent these types of

attacks, however scenarios exist where they can be

perpetrated. One of these, brute force attacks against

pre-forking daemons [2], will be the primary focus of

this paper

C. Organisation of paper

The remainder of this paper is constructed as
follows. Section II discusses the threat posed by buffer
overflow attacks and how mainstream protection
mechanisms attempt to protect against them. In Section
III, we explain and demonstrate through simulation, how

the implementation of (W○+ X) and ASLR still leaves a
residual threat. This threat, namely that posed by pre-
forking concurrent servers, is proved through a
demonstration of our own brute force return-to-libc
attack. In Section IV we exhibit protection mechanisms
that attempt to prevent this type of attack variant,
discussing their efficiency and short comings. In
Section V we explain the role Intrusion Detection
Systems might play in obviating these attacks and create
some generic rules, implemented in Snort [19], which
could be used to detect them. We then test these rules
using real-world traffic and report our findings in section
VI. In section VII, we offer our conclusions.

II. BUFFER OVERFLOW ATTACKS AND PROTECION

MECHANISMS

Structural programming languages such as C use

procedures and functions to alter the flow of execution

of a program, this takes place when a procedure is

“called”. Procedures and functions may have their own

local variables, allocated at runtime, along with other

variable values that are passed into their parameters as

arguments. They may also return values to the calling

procedure when necessary. When a procedure or

function has finished processing, the path of execution

will return to the point immediately after the instruction

which called the procedure. The stack is used to keep

track of the flow of program execution and the

procedure’s local variables and parameters. In essence it

is used as temporary storage with values pushed onto it

when the function/procedure is called (the prologue) and

popped off when the procedure returns (the epilogue)

[20]. The information stored on the stack for a called

procedure is referred to as its stack frame. The

following figure shows the stack layout after a code

injection buffer overflow attack has taken place. The

extensible base pointer (EBP) or frame pointer, is used

to locate components on the stack frame as offsets, and

NOPS are assembler operations that do not perform any

operation other than moving to the next instruction in the

sequence.

Shell code

NOPS

Functions Arguments

Return Address

EBP

Local Variables

Buffer

Fig.1 Stack state after a traditional attack

In Fig. 1 memory reserved for the buffer has been

flooded such that shellcode and a number of nops (no-op

sled) have been injected onto the stack. In addition the

return address has been overwritten with the predicted

address for the shellcode. If this predicted address is

inaccurate then flow of execution may be resumed from

an area of the no-op sled where it will proceed through

each no-op instruction until it ultimately reaches and

then executes the shellcode. Thus the flow of

execution would be re-directed as a result of the

vulnerable functions epilog.
The same result can be achieved by modifying

function pointer arguments which point to the address of
a function [21] or by changing the saved frame pointer
to point to a frame with a compromised return address
[22]. These vulnerabilities are available since C and
C++ [23] allow the use of arrays and pointers without
bounds checking, when this is combined with the c-
libraries dangerous string functions e.g. strcpy, strcat,
sprint, gets, which terminate based on a null character
rather than a defined number of bytes, the buffer can be
overflowed.

A. Host based protection mechanisms

Host based protection consist of compilation, CPU,
and operating system mechanisms. The most prominent

are W○+ X, ASLR and stack based buffer overrun.

These protection mechanisms along with the attacks that
are designed to obviate their functionality are discussed
in the sections immediately following

1. W○+ X

W ○+ X allows the processor to mark memory

locations which should not contain executable code, e.g.
the stack and heap, as Write XOR eXecute [24]. That is
they can be written to or executed, but not both. It is also
referred to as Data Execution Prevention (DEP). The
intention is to ensure that the return address would only

Stack

grows

up

Addresses

grow

down

point to the address of trusted code [25]. However it can
be bypassed using the return-to-libc method.

a) Return-to-libc attack

This attack uses addresses of c-library functions
already loaded into memory. Thus it avoids placing

executable code on the stack, evading W○+ X. An

example of the state of the stack is shown in fig. 2.

Fig 2. Stack of stack after a return-to-libc attack

Fig. 2 shows that once the vulnerable function returns it
will execute the system function and parameter.

Defeating W○+ X using the return-to-libc technique

inspired the creation of ASLR [26].

2) Address Space Layout Randomisation
ASLR randomises the base address of the stack,

heap, code, memory mapped segments of executables,
and dynamic libraries at load and link time [27]. Return-
to-libc attacks are defeated through c-library address
randomisation at execution. However, this isn’t entirely
dependable, elements of the operating system may be
protected, but not all third party applications are
appropriately compiled for ASLR and remain vulnerable
to existing code attacks such as dynamic link library
(dll) and binary trampolining [28].

a) dll and binary trampolining

Due to oversight, incompatibilities, or in an effort to
increase performance, some applications aren’t compiled
to use ASLR. The binary processes address space, or
related dll’s, will contain known addresses of operator
codes. If they contain a buffer overflow vulnerability,
these addresses can be injected onto the stack and used
to change the flow of program execution. These types

of attack can be foiled by W○+ X or stack based buffer

overrun protection.

3) C Library Address Posistioning

The Openwall Project [29] produced a Linux kernel

patch which ensures the c-library address is loaded into

memory under 0x10000000 [30]. This affords some

protection from return-to-libc attacks as the c-library

function address to be injected will contain null bytes.

This can cause malicious strings to terminate

prematurely. The patch was released in September 2002

[29] yet it has not implemented by default in most Linux

distributions e.g. Ubuntu 9.

4) Stack based buffer overrun protection
Stack based buffer overrun protection adds a

compilation stage transforming the program in an
attempt to meet the ideal stack model [22], see fig. 3.
An interpretation of this, Stack Smashing Protection
(SSP), has been included in GCC since version 4.1 [31].

In fig. 3, the stack is shown amended compared to fig. 1.

A guard is placed on the stack prior to the buffer to

protect the values preceding it from an overflow i.e. the

frame pointer, return address and function’s arguments.

This is facilitated by GCC recording the size of the

buffer and adding specific code to the object. This code

inserts a guard and guard inspection mechanism.

Alteration of the guard at runtime causes the process to

terminate with an error message. In addition, local

variables are arranged on the stack after the buffer, thus

protecting function pointers from overwrites [22].

Functions Arguments

Return Address

EBP

Guard

Buffer

Local Variables

Fig.3 Ideal stack model

This defense is not flawless however. A common

method of circumnavigating this is via SEH (Structured

Exception Handling) attacks [32] .

III. PREFORKING SERVERS OFFERING A RESIDUAL

BUFFER OVERFLOW THREAT

ASLR can leave an attacker with little choice but to

guess the addresses of commands needed to perpetrate a

return-to-libc attack. However, if an attacker launches

an attack against a vulnerable pre-forking server, such

as that used by the Oracle 9 PL/SQL Apache module

[33], they can utilize the fact that spawned child

processes inherit the same virtual address space as that

of their parent process. As such they are suitable to

brute force return-to-libc attacks. The format of this

type of attack was first laid out by Shacham [2] in 2004,

and is explained here for the purpose of providing both

additional detail and context.

 A pre-forking concurrent server operates by pooling

a number of listening processes at start up. This offers

superior performance to alternative concurrent server

designs e.g. handling requests iteratively, or spawning a

child process for each new client request [34]. The

benefits make it a very popular method of handling

requests for http, imap and smtp servers.

By forking, child processes are capable of accepting

new connections on the same listening socket as their

parent, yet they also inherit the same virtual address

space, see fig. 4. This leaves them vulnerable to brute

force attacks that continually connect and overflow the

buffer such that the return address on the stack is

overwritten with a guess for the address of a specific c-

library function. An incorrect guess will result in a

segmentation fault which causes the child process to

terminate and a new child process to be spawned in its

place. Thus a process of elimination can be used to find

a c-library function.

System Parameter String

Pointer to System Parameter

Padding

Address of system()

Padding

Buffer

Addresses

grow down

Stack

grows up

Stack

grows

up

Addresses

grow

down

ASLR unpredictability is not extensive, on a 32 bit

host this has been documented for PaX ASLR as 16bits

(65536 addresses) [35]. Yet, we discovered during our

experimentation with ASLR on Fedora and Ubuntu

boxes that this number is significantly less. The

logistics of our attack are outlined in the following

sections

 High

Memory

Low Memory

Fig.4 Virtual Address Space

A. Test bed environment

Our attack, inspired by Shacham [2], consists of a

reconnaissance component followed by the exploit

itself, the latter making use of the information gleaned

from the former. The following figure shows how our

test environment was assembled:

Fig. 5 Virtual Test Environment

The test environment was created using VMware

workstation [36], this allowed for rapid control transfer

between guest machines via tabs.

The attack box is also the host for the virtual

machines and it holds the host operating system

Microsoft Vista, along with the VMware software

necessary to facilitate the virtual environment.

VMware is configured to allow the use of a virtual hub

where each of the guest machines, along with the host

itself, is connected. The Vista host (attack box) has a

shared folder which is configured to allow the guest

machines access to custom written vulnerable pre-

forking server applications. This allowed us to test

Ubuntu 9 and Fedora 10 buffer overflow security

mechanisms. The attack box also contains code to

facilitate a brute force over the network reconnaissance

and return-to-libc attack, allowing a remote shell to be

opened on the victim’s machine. The attack box

includes Apache and the malicious application rshell

available for download via the web server. The Snort

box contains a copy of Wireshark [37] for capturing

traffic to assist in rule creation, and a running copy of

the IDS Snort [38] used to test and tune rules.

B. Vulnerable pre-forking server (ssprocess)

Ssprocess is a pre-forking concurrent server; it was

written in C and compiled using GCC for use with a

Linux operating system. The server pools a number of

listening processes, this is specified by its parameter

(150 child processes were selected as this is the default

for the Apache web server) at start up. Each child

process is capable of accepting the connection on the

same listening socket and executes the vulnerable

function each time a connection is accepted and data is

received. This received data is copied into a buffer

without performing bounds checking, and it is this

simulated oversight which leaves the function open to a

stack based buffer overflow attack.

C. Reconassence application (NetClientExploit)

NetClientExploit is the process responsible for

reconnaissance. It makes a connection to the vulnerable

server and overflows the buffer such that the return

address is overwritten with a guessed address for the c-

library function usleep. 8 bytes prior to this on the

stack, i.e. usleep address guess + 8 bytes, is the

parameter of the usleep function. The value chosen

is 16,000,000 so that if the usleep function was

guessed correctly this would cause the server system to

pause for 16 seconds.

This is achieved by the attacking application looping

through successive incremental guesses for the usleep

function, repeatedly making a connection to the server

and sending a crafted buffer to compromise the stack, as

shown in the following figure.

Argument for usleep – 16,000,000

VF’s Argument overwritten

RA Overwritten with Guess for usleep

EBP overwritten with Buffer

VF variables, inc Buffer

VF – Vulnerable function
RA - Vulnerable function s Return Address

Fig. 6 Compromised stack

The score through sections in the figure depicts

legitimate storage on the stack which has been

overwritten. During a function’s epilogue the

following takes place

STACK (grows down)

.

.

Shared Memory, e.g. library

functions

.

.

HEAP (grows up)

DATA - Uninitialised data (bss)

Initialised data

TEXT, compiled code

• The stack pointer is replaced with the frame

pointer, also called the Extended Base Pointer

(EBP) i.e. mov %ebp, %esp

• The base pointer is removed from the stack (it

was placed there during the prologue) i.e. pop

%ebp

• The return address is popped from the stack

and program execution is redirected to this

address. With a legitimate program this value

would have been placed there during the “call”

command for the function [39] .

Considering the vulnerable function, at this point

there are two possible outcomes; if the guess is

incorrect, then a segmentation fault will occur.

Segmentation faults occur when a program attempts to

access a disallowed memory location or attempts to

access it in an inappropriate way. If a function, which

is not usleep, is discovered then the program could

attempt to execute it, however it is unlikely to execute

correctly with an integer parameter of 16,000,000 and

this would classify as inappropriate and a segmentation

fault would occur. Once a segmentation fault occurs,

ssprocess will terminate the child process before

launching a new child process. Since the child inherits

its address layout from the parent it will have an

identical layout to the one previously terminated.

NetClientExploit will respond to the closed connection

by closing the socket, incrementing the guess address

for usleep and trying again.

If the correct guess is made then execution will

resume from the usleep function when the vulnerable

function exits. During a function’s prologue the

following occurs [20].

• The frame pointer is pushed onto the stack i.e.

pushl %ebp

• The stack pointer is copied as the frame

pointer, making it the new frame pointer

• Room is made on the stack for the functions

local variables.

The usleep function will be expecting its

parameter 8 bytes up the stack relative to the EBP, if the

function had been called legitimately then the parameter

would have been placed there prior to the function’s

“call” command, however in this instance it has been

maliciously injected there. As discussed usleep

executing with the parameter 16,000,000 will cause the

server to suspend activity while it waits 16 seconds,

NetClientExploit times the amount of time taken for the

vulnerable server to start accepting data on its socket

and if it exceeds this then the correct address of

usleep is deemed to have been found. The location

of c-library functions always remain constant in relation

to each other, thus, once the address of one function

has been established it is a trivial exercise to determine

the location of the others.

1) Determining ASLR entropy

ASLR is designed to randomise the base addresses

of the core sections in a processes virtual address space

[40]. This includes the base address of the c-library

which is the target of the exploit. In order to establish

the value of this offset, for any given instance of

randomisation, it was necessary to manually turn off

address space randomisation and then determine the

base address. The former is performed using sysctl –w

kernel.randomise_va_space=0 and the later established

using cat /proc/<PID>/maps for a running process,

where <PID> is the process identifier [41]. In the case

of Linux Ubuntu 9 this is identified as /lib/libc-2.9.so

and in our experiment this is at 0xb7e6f000. The offset,

called delta_mmap, can be established using a

debugger, breaking at main, and displaying the address

of usleep, in our experiment this was 0xb7f4c110.

The offset is thus 0xdd110 and will remain fixed

regardless of base address randomisation.

In order to determine if the attack has been

successful it is necessary to establish the theoretical

maximum number of guesses needed, if this figure is

surpassed the attack can be deemed to have failed.

There is little to document the level of entropy

employed by the various distributions of Linux.

However PaX, a Linux kernel patch which facilitates

ASLR, is documented as randomising the base

addresses of the process address space for the

executable (data and text), mapped (heap and shared

libraries) and the stack as now described. A random

variable is added to each area of the section in the

process address space, in the case of the shared library,

this variable is called delta_mmap. Since IA32

architectures use a 4k page file bits 0-11 cannot be

randomised as it would interfere with the page offset.

In addition the high nibble (bits 28-31) is not

randomised as this is used to allow for large memory

mappings. This leaves 16bits of arbitrariness for base

addresses [35]. However, while PaX has been in

operation since 2000 [42] it is still not enforced by

default in the majority of Linux distributions, including

Ubuntu 9, which is being used for the experiment.

There is, however, a basic form of ASLR which has

been present in many Linux distributions since RedHat

enterprise version 3 [25]. This is the Arjan van de Ven’s

ASLR implementation. Unfortunately the level of

randomness provided by this mechanism isn’t implicitly

publically documented, hence in order to determine this,

empirical observation was performed. This was done

by analyzing the output of a script which ran the unix

shell command ldd, 2�� times for an arbitrary

program. 2�� times was chosen as it is documented that

Arjan Van de Ven’s implementation has less

randomness than PaX (16bit) therefore this should

prove more than sufficient to ensure a complete output

of all possible c-library locations. The output was

analysed and it was observed that the c-library starts at

its lowest at address 0xb7d70000 and at its highest at

b7f6e000. It was also observed, as expected, that the

final 12 bits are not randomised, this is due to

aforementioned page offset. Hence a maximum number

of 0x1FE+1 or 511 guesses is needed, as given by

m = � ���
	
�			�+1

Where m is the maximum number of guesses and u

and l are the upper and lower limits of the start address

for the c-library that can be randomly generated.

During our experiment we ensured that Linux

Ubuntu 9 was running with its default security e.g.

ASLR and (W ○+ X) were in effect. We ran the

NetClientExploit against ssprocess 30 times with it

configured to spawn 150 child processes. The results

showed a mean average of 249 guesses needed to guess

usleep, within 2.5% of the true value of 255.5, with

an average time to discover it of 13.5 seconds. Please

note that the usleep function causes a pause for 16

seconds in this experiment hence the total average

reconnaissance time was 29.5 seconds.

With the location of the usleep function

uncovered the location of the c-library functions

necessary to perform a return-to-libc attack were then

calculated. Our attack makes use the function’s

system and exit which are 0xa38b0 and 0xaeae0

memory locations lower in the c-library than usleep.

D. Perpetrating the attack

Fig. 7 Overview of malicious assault

Step1: The attack commands are pushed into the

vulnerable application via a buffer and flooding the

stack.

Step2: The attack string is executed causing the victim

to initiate a “wget”

Step3: The malicious application is downloaded from

the hostile system.

Step4: Once the malicious application has been

downloaded and executed it sets up a connection socket

to the malicious system which is listening for the

incoming connection. The standard terminal input and

output is redirected to the socket and a shell is opened

thus passing control to the malevolent party.

1) Creating the attack string

There are two challenges which need to be

overcome to create an attack string which will result in

the successful perpetration of this attack. Firstly, when

the vulnerable function exits, program execution must

be redirected to the c-library’s system function, and

second that a pointer to the address of the part of the

string which constitutes the system functions

parameter is located 8 bytes higher on the stack than the

function [43]. The latter of these two challenges is a

particular issue when we consider that ASLR in Ubuntu

9 randomises the starting location of the stack. Hence

the injected attack string will not be successful if it

contains a hard coded stack address pointing to the start

address of the buffer. To avoid the need to hardcode

this it’s necessary to find the address of a pointer to the

start address of the buffer, i.e. the desired system

function’s parameter, within the stack and overwrite the

stack such that the system function is located 8 bytes

before it. Our vulnerable application has such a pointer

in the stack frame of a previous function and so this is

achievable. However, the side effect of modifying the

stack in this way is that the system function will not

be positioned over the return address for the function.

The method of overcoming this, as documented by

Shacham [2], involves injecting a number of iterations

of a ret operator address between the functions

expected return address and the address of the system

function. This operator can easily be discovered in the

binary of the application. Hence ret codes are injected

onto the stack such that they overwrite the original

return address and continue until 12 bytes from the

pointer to the buffer. At this point the system

function address is written onto the stack as shown in

fig. 8.

Fig. 8 Stack after malicious assault

Similar to a nop sledge which allows shell code to be

slid into, this could be considered a “ret op” sledge

offering a similar purpose of moving through the stack.

When the vulnerable function returns it will pop the

address of the ret operator off the stack, change the

instruction pointer (EIP) to this address and resume

execution from there. This then causes the execution of

another ret operator and the process continues until

the final ret in the sledge is executed and the address

of the system function is placed in the EIP with its

string parameter accurately located +8 bytes further on.

Since the system parameter points to the address of

the buffer we insert the intended system parameter

string into the start of the buffer variable. The string in

our attack is:
sh -c 'wget www.attack.com/rshell/rshell;

chmod +x rshell;./rshell

Executing this causes the victim’s machine to download

the malicious application rshell, change its permission

to ensure it is executable, and then execute it.

2) Developing rshell

The application rshell is designed to be downloaded

and executed on the victim’s machine. Once executed

it makes a connection to the attack machine which is set

listening, in our example we used the tool Netcat [44]

for this purpose. The application rshell makes use of

the dup2 function as follows; where s is the file

descriptor for the connection to the attack box.

dup2(s, 0);

dup2(s, 1);

dup2(s, 2);

file descriptors 0,1 and 2 are the descriptors for stdin,

stdout and stderr respectively [45]. Hence this will

have the action of redirecting all input and output to and

from the victim to the attack box. The net effect of this

is to allow the attacker control of the victim’s machine.

Since this attack is initiated from the client and not the

server it will mitigate protection afforded by many

stateful packet inspection (SPI) firewalls and NIDS

rules which trigger on “flow established to server” rules.

IV. ATTACK MITIGATION USING HOST BASED

PROTECTION MECHANISMS

The previously outlined attack shows that both

(W○+ X) and ASLR do not adequately protect against

this form of attack. However, since the first

documented report of this attack method, Linux

distributions have undergone a changes that affect the

efficiency and viability of the attack. This section will

outline the affect that compiler created buffer overflow

protection mechanisms and prelinking have had in this

area and discuss their performance and potential for

wide spread mitigation of the attack.

A. Placing c-library functions below 0x01000000

Some Linux distributions employ a protection patch

created by the Openwall project [29] e.g. Fedora 10.

This patch ensures that the positioning of the c-library

functions are always below 0x1000000. This ensures

that if any c-library functions address is injected onto

the stack it will include a null byte (/0). Many of the

dangerous non bounds checking string handling

functions, which allow this attack to be possible, look

for a null byte to terminate strings e.g. strcpy.

Hence the attack outlined here, which relies on the

strcpy function, fails when implemented in Fedora

core 10. Only a fragment of the malicious string will

be copied into the buffer as it terminates at the point it

reaches the null byte in the system function address.

While the Openwall Project’s patch is available for

most Linux distributions it is not applied by default to

many of them e.g Ubuntu 9. In addition where the patch

is applied a similar attack can still be crafted if the

overflow is caused using a non-bounds checking

function which doesn’t terminate on a null byte, e.g.

recv.

B. Prelink

 Due to the significant number of shared libraries

now deployed there is a considerable performance price

in relocating these libraries during dynamic linking.

Prelink speeds this up by doing it in advance,

calculating address offsets for each library to ensure

that during execution they will not be loaded into the

same address space, and then storing these offsets in the

libraries themselves. By doing this for all shared

libraries and object files the time taken to start

applications is reduced [45]. Unfortunately however

Prelink is not compatible with ASLR since ASLR

randomises the address space layout for each process on

execution and thus negates the work done by Prelink. In

order to address the security deficit left by disabling

ASLR, Prelink randomly selects the address bases the

libraries are loaded at. However this is only done when

Prelink is run (this is performed every 2 weeks) [46],

rather than for each execution of a process, and thus it

could be viewed as less effective. Indeed this could be

the reason that many Linux distributions have not

enabled it by default, including Ubuntu. When

considering its effect on perpetrating the act defined in

this paper it is significant. Prelink cannot randomise

bits 0-11 as they are used for the page offset however

unlike PaX bits 28-31 can be randomised, hence 20 bits

of entropy. This would increase the maximum number

of guesses needed in the reconnaissance phase to 2�	.

This would significantly increase the amount of time

taken to perform the reconnaissance part of attack. Our

experiment performed approximately 18.45 guesses per

second, thus it would take an average of 7hrs 53

minutes to complete the reconnaissance and determine

the c-library function addresses. Nevertheless once the

reconnaissance is completed the address locations of the

c-library functions used for all processes are known up

to the time Prelink is run. Since ASLR would be

disabled on any machine with Prelink enabled this

signifies that the attacker can perform standard return-

to-libc attacks on any buffer overflow vulnerable

applications, pre-forking or otherwise. Essentially then

it could be demonstrated that while prelinking would

cause an increase in the initial reconnaissance time,

once it has completed the system would have an

increased vulnerability to return-to-libc attacks.

C. Stack guards and SSP

The effect of the stack guard, as outlined in section II, is

demonstrated when the vulnerable application has been

compiled using a GCC version with SSP enabled. To

determine SSP’s effect on our attack we replicated the

reconnaissance phase using Ubuntu 9 which is

distributed with GCC v4.3.3. When attempting to

perform the reconnaissance phase of this attack under

this new environment the attack failed to uncover the

address of usleep. SSP uncovered each attempt to

overflow the buffer and immediately terminated the

child process thus preventing a successful overflow.

The experiment was repeated on Fedora 10 using the

identically compiled vulnerable application and

matching results were observed. While these results

indicate that SSP is a significant tool in preventing

buffer overflow attacks, a number of factors need to be

considered. Firstly SSP was not introduced into GCC

until the release of version 4.1 on February of 2006

[31], meaning all applications compiled using GCC

prior to this will not be afforded its protection. Second,

since SSP was not enabled by default until version 4.3.3

in January 2009 [31] any application compiled with

GCC prior to this would be required to have the feature

manually activated using the switch settings at

compilation. With the onus to do this on the developer

it may be reasoned that either without an understanding

of merits or possibly even an awareness of the feature,

this might not be performed. Further, a developer may

choose to intentionally compile without SSP due to

concerns over performance overhead, which has been

recorded as up to 8% [11], [47]. In addition not all

programs will operate correctly when compiled with

SSP enabled, in particular software developed with the

Gecko API [48], [49].

V. INTRUSION DETECTION SYSTEMS RULES

The previous section argues that while the numerous

host based protection mechanisms (operating system

compiler and cpu) are effective in preventing brute

force return-to-libc attacks their success is only assured

if all the mechanisms are implemented on all systems

on the network. As previously discussed this is not

always feasible, realistic or desirable. An alternative

approach could be to detect the attack at the network

perimeter and either nullify it at that point (Intrusion

Prevention), raise an alert to allow further analysis of

the situation (Intrusion Detection), or to automate an

action or actions to prevent further breaches (Active

Response). Each of these measures would require an

accurate rule to be written for an IDS or IPS to ensure

that the attack is detected with minimum, ideally nil,

false positive or negative responses. Sourcefire, the

creators of the open source IDS Snort, suggest that the

most effective way to develop a rule is to design it to

trigger on the vulnerability rather than the specific

exploit pattern [50] and by doing so reduce the breadth

of the rule i.e. the number of rules required, and

increase its precision i.e. its ability to address mutations.

The alternative approach is to compare empirical traffic

patterns produced while a controlled attack is taking

place against the vulnerable application, with that of

legitimate traffic. Unique patterns differentiating the

two are thus identified and used to form a rule. While

this later method is a quick and often high performance

way of writing rules they often lack precision leading to

false negatives when the attack data is slightly

modified, or false positives while parsing legitimate

traffic [51].

Through this work a detailed analysis of the

vulnerability and attack method has been gained to help

facilitate the production of precise, high collision rate

rules. Since the attack outlined in this work requires

multiple phases, both active reconnaissance and attack,

it would seem prudent to prepare rules for all of these

phases. Further, to increase completeness rules should

be created to detect not only the attack method but also

the payload, another reason for this is the observation

that often zero day attacks use known payloads. By

using this “component based rules” approach an attack

would need to mutate on all the components, including

the payload, simultaneously to avoid detection. The

rules outlined in the following sections are written

around an attack type rather than a specific attack,

further, they have not been created with a particular

traffic environment in mind either. As such they have

been intentionally written with high precision and

collision in mind [51]. While this reduces the speed in

which the rules can be processed, it is the intention that

they can be modified to make them either specific to an

attack or traffic environment thus expediting their

process time.

A. Rules to detect the attack

W ⊕ X and ASLR protection implementations are

prevalent in most modern operating systems, thus the

attack rules outlined here are created with the

assumption that they are enabled. As such code

injection stack based buffer overflow attacks are not

implicitly discussed. Further, rule precision has been

increased by focusing on the generic components of an

attack that are unlikely to exist in legitimate traffic.

While it is acknowledged that this presumption is

dependent on the role of the systems on the internal

network, the rules outlined herein would need a very

specific set of non-malicious circumstances to trigger

them.

1) Rule to detect the reconnaissance attempt

The following rule was created to detect the initial

reconnaissance attempt of establishing the start location

of the shared c-library:

Rule 1

alert tcp 192.168.10.3/32 any -> any any

(msg:“Stack smashing brute force or DOA

attack”; flow:to_client,established;

flags:R; threshold: type both, track

by_dst, count 5, seconds 5; priority: 1;

classtype:attempted-user; sid:1234567;)

The rule counts the number of reset messages sent from

the server to the client in the time specified. In this

instance 5 reset messages received in 5 seconds will

result in an alert; this is deemed indicative of remote

connection brute force attempt.

2) Rules to detect malicious injection

Rule 2

alert tcp 192.168.10.2/32 any -> any any

(content: "Wget"; msg:"wget request,

possible malicious code download

attempt";priority: 1;

classtype:attempted-user; sid:5234567;)

“wget” is an application designed to retrieve

information from web servers [45] and is inherent in

almost all Linux distributions. The preceding rule

attempts to identify when a wget is attempted from the

server. While it could be used for a legitimate

download such as updating software, it is considered a

strong enough possibility as an attack to justify its

inclusion as a rule trigger.

Rule 3

alert tcp any any -> 192.168.10.2/32 any

(flow:to_server,established; content: "sh

-c"; msg: "shell command sent from client,

possible

remoteattack";classtype:attempted-user;

sid:3234567;)

As previously discussed the attack uses a pattern of

a repeated return operator address taken from the

executable to manipulate the stack such that the

system function address is placed appropriately

relative to its argument which exists in a previous stack

frame. Since the address of the ret operator will

depend upon the operating system, any rule devised to

look for this characteristic could not look for a

hardcoded address. As such Snorts ‘content’ [52]

option cannot be used. Fortunately Snort rules allow

the use of Perl Compatible Regular Expressions (PCRE)

for matching [52]. Utilising PCRE the following rule

was created:

Rule 4

alert tcp any any -> 193.60.151.200/24

80,443,20,25,110,143

(flow:to_server,established; pcre:

([^\x00]{4})\1; msg: "repeated words,

possible stack

overflow";classtype:attempted-user;

sid:9234567; rev:3;)

The PCRE option of this rule looks for a repeated

concurrent 4 byte pattern which contains any character

other than null byte characters i.e 0x00. Detection of

repeated null bytes has to be avoided due to the

standard practice of NIC drivers implementing Ethernet

padding [53] using null bytes. Including these in the

match is likely to lead to false positives. The \1 option

in the rule is a back reference option used to allow the

pattern to refer back to the results of a previous match

[54], in this instance an alert is raised if four non null

byte characters are identified and then followed by four

more identical characters. This rule is discussed further

in section 5.

3) Rules to detect the Exploit Payload

In this attack the payload has not been obfuscated and

as such has identifiable Unicode text in the symbol table

section of the Elf binary [45] which is stealthily

downloaded via the wget command to the vulnerable

client as part of the attack. As discussed previously this

malicious payload uses the dup2 function to redirect

standard input, and standard output to a maliciously

connected socket thus allowing the malevolent party to

take control of the system. Considering the prospect of

dup2 being used as part of a rule, due consideration is

paid to the prospect of it creating false positives. The

dup2 function is commonly used in Unix based pipes

allowing 2 way communication between child and

parent processes [55] . In addition it is habitually used

in connection based daemons to allow a child process to

redirect a pipe provided by a parent process to a file

descriptor specified by the child [56]. Once redirected,

the parent process may optionally close the original

pipe and/or terminate whilst the child continues to use

the pipe. For example, a child process may use dup2

to redirect stderr to stdout [45]. Consequentially it

could be possible that a rule based on this function

could fire an alert on a legitimate upgrade of a server

containing it. Nevertheless dup2 is considered likely

enough to be indicative of malicious activity and is

included in the following rule:

Rule5
alert tcp any any -> 192.168.10.2/32

any(flow:to_client,established;content:

"dup2"; msg: "dup2 in string table,

possible remote shell

attack";classtype:attempted-user;

sid:4234567;)

In the string “bin/sh”, sh is a symbolic link in to a

shell [45]; this could be any shell variant such as bash

or dash. Since it is generic it is more likely to be used

in a malicious attack, as opposed to a specific shell

command. A payload being downloaded to a server

which contains this string in the elf string table is

considered to be potentially malicious and can be

identified by the following rule:

Rule 6

alert tcp any any -> 192.168.10.2/32 any

(flow:to_server,established; content:

"/bin/sh"; msg: "binsh request, possible

remote shell attack";classtype:attempted-

user; sid:2234567;)

VI. TESTING THE RULES

Implementation of the security mechanisms outlined

in section IV is not universal. Not all applications are

complied with the necessary protection, thus benefit

could be gained by detecting brute force return-to-libc

attacks. In the previous section several rules were

created to match both the reconnaissance, malicious

string injection and undesired download phases of the

attack. These generic rules act as a blueprint for more

specific ones tuned to a particular organisations traffic.

All of these rules were tested using the test bed

environment outlined in section III A. Due to the need

for frequent repeated testing and rule modification, the

attack traffic was captured to a pcap file during an

initial run of the experiment. Further iterations of the

experiment were then performed by running the file

through Snort while monitoring the result.

The PCRE option component of rule 5 was initially

tested using RegexBuddy [57] by loading the file

containing the attack data, as discussed in section III D,

into it. This file was thus used within the application

for the purposes of testing and modifying the PCRE

option to fulfil the requirement of identifying repeated 4

byte words.

Once all the rules were firing using pcap data they

were subsequently all tested again simultaneously in a

real-time simulated attack as outlined in section IIId.

All the rules fired as expected with zero false

negatives.

To test the results for false positives 294MB of

traffic was captured from a university web server and

replayed into Snort and the results monitored. Initially

some of the rules needed modifying to establish zero

false positives, it is these modified versions that are

included in this work.

1) Detection and Performance testing and rule

modification

While it is not the intention to perform detailed

performance testing, some minor work in this area has

been performed. In our experiment Rule 4 alerted with

4744 false positives; using the Basic Analysis and

Security Engine (BASE) [58] the traffic patterns

responsible for creating these alerts were examined.

The alerts were being largely generated by repeated

ASCII “A” characters which existed as part of the http

authentication negotiation procedure [59]. It would be

simple to write a PASS rule to allow http authentication

traffic to pass unchecked e.g. by content checking on

the string “Authorization: Negotiate”. However it has

been documented that the type of attack discussed here

could be performed during http authentication [60] and

thus this would increase the likelihood of false

negatives. An alternative approach was attempted

which filtered out the repeated “A” characters by

extending the PCRE component i.e.
pcre:"/([^\x00]{4})\1([^\x41]{4})\2/"

However this approach was abandoned as it still caused

119 false positives, on examination these were largely

due to the repetitive nature of binary values contained in

image downloads. Further to this, excessive filtering

dependent on a solitary traffic characteristic, offsets the

intention to keep the rules generic. In addition to the

false positives, the rule was also CPU intensive taking

over 25% of the total processing time when reading in

the test traffic. This is due to the high CPU costs

inherent in using PCRE and as such it is desirable to use

it after a less expensive match has prequalified the

pattern [61]. As such it was combined with rule 3 as

shown:

Rule7 (combining rule 3 and 4)
alert tcp any any -> 192.168.10.2/32 any

(flow:to_server,established; content: "sh

-c"; pcre: ([^\x00]{4})\1; msg: "shell

command sent and repeated words, possible

remote attack"; classtype:attempted-user;

sid:3234567;)

The new rule was tested, it did not produce any false

positive or negatives and the resultant processing

overhead was negligible.

Since Rule 1 did not contain a “content:” option it

could not make use of the fast pattern matcher

employed by Snort and thus was applied against

approximately 50% of the traffic during this test. While

initially this appears to be problem, further analysis

shows only 2.5% of the total time spent processing the

test traffic was spent in processing this rule. As such in

this environment this could be deemed acceptable.

VII. CONCLUSIONS

In order to determine the efficacy of mainstream host

based protection mechanisms a practical return-to-libc

brute force attack was constructed and launched against

a vulnerable pre-forking concurrent server. Preforking

listening processes is a common way of creating HTTP,

SMTP, and IMAP servers. With the vulnerable

application compiled using a version of GCC predating

4.3.3, the attack was able to mitigate the protection

offered by both W○+ X and ASLR inherent within the

Ubuntu 9 operating system. Compiling the application

using GCC with the switch -fstack-protector-all

or compiling without this switch in a version of GCC at

4.3.3 or above, in which the option is active by default

[31], would prevent the attack. This is due to the

insertion of stack guards which detect undesired

injection onto the stack and ASLR applied to the binary

preventing predictability of determining the address of

return operators within the executable.

The Openwall project suggested that the memory

addresses of c-library functions should be located under

0x10000000, thus ensuring if such an address was

hardcoded as part of an attack it would contain a null

byte and cause the malicious string to terminate without

causing a security breach.

Prelinking increases performance by re-locating

shared library and object files prior to dynamic linking.

It is incompatible with ASLR [46], is performed by

default every fortnight and offers additional entropy

when compared to Arjan van de Ven’s ASLR

implementation. Prelink affects the reconnaissance

phase of the attack by increasing the time taken. Still,

since it is incompatible with ASLR, once this phase had

completed the address space for all applications would

be known until Prelink is run. Thus it could be argued

that Prelink increases performance at the cost of

security.

Deficiencies of host based protection mechanisms

were recognized and the residual threat of brute force

return-to-libc attacks established. As such Snort was

used to demonstrate how NIDS’s can be employed to

mitigate this threat. Several rules were created that

when exposed to 294mb of traffic from a universities

web server showed no false positives. When exposed to

a simulated brute force return-to-libc attack each rule

fire as expected, 100% true positive. The processing of

the rules exhibited an acceptable overhead.

 When considering future work; in this study we

discovered repeated attack patterns in the traffic. Study

into their detection via intelligent pattern matching

algorithms such as the Motif tracking algorithm [62],

could prove fruitful.

 Further, mobile devices are becoming more

sophisticated, acting as both peers and servers. A

question arises; can they be hacked in a similar method

to that discussed in this work? Since Android phones

utilise a Linux kernel similar to that used in these

experiments initiating a similar attack seems likely. If

so, can this risk of attack be mitigated through NIDS?

VIII. ACKNOWLEDGEMENT

This paper is partially sponsored by the National

Natural Science Foundation of China, Funding Number

60873208.

REFERENCE

1. Browser Security: Lessons from Google Chrome. Reis, C,

Barth, A and Pizano, C. New York : ACM, 2009, Vol. 52(8),

pp. 45-49. doi:10.1145/1536616.1536634.

2. On the Effectiveness of Address Space Randomization.

Shacham, Hovav, et al. Washington : ACM, 2004. 1-58113-

961-6.

3. Sotirov, Alexander and Dowd, Mark. Bypassing Browser

Memory Protections. The art of software security assessment.

[Online] 7th August 2008. [Cited: 25 October 2008.]

taossa.com/archive/bh08sotirovdowd.pdf.

4. Fast and Automated Generation of Attack Signatures: A

Basis for Building SelfProtecting. Liang, Z and Seikar, R.

Tucson : ACSAC, 2005. 21st Annual Computer Security

Applications Conference (ACSAC). pp. 215-224.

5. Foster, James, et al. Buffer Overflow attacks. Burlington :

Syngress, 2005.

6. SANS. The Top Cyber Security Risks. [Online] Sans,

September 2009. [Cited: 06 April 2010.]

http://www.sans.org/top-cyber-security-risks/#trends.

7. TIOBE Software. TIOBE Programming Community Index

for September 2008. TIOBE Software. [Online] September

2008. [Cited: 11 September 2008.]

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.

html.

8. Building Software Securely from the Ground Up. Ghosh, A

K, Howell, C and Whittaker, J A. Washington : IEEE

SOFTWARE, 2002, Vol. 19(1). pp. 14-16. MS.2002.976936.

9. Schmidt, C and T, Darby. The What, Why, and How of

the 1988 Internet Worm. The What, Why, and How of the

1988 Internet Worm. [Online] snowplow.org, July 2001.

[Cited: 6 April 2010.]

http://www.snowplow.org/tom/worm/worm.html.

10. Cowan, C. Buffer Overflow Attacks. StackGuard:

Automatic Adaptive Detection and Prevention of Buffer-

Overflow Attacks. [Online] 9 December 1997. [Cited: 1

October 2008.]

http://www.usenix.org/publications/library/proceedings/sec98/

full_papers/cowan/cowan_html/node3.html.

11. Etoh, H. Evaluation. GCC extension for protecting

applications from stack-smashing attacks . [Online] IBM, 11

August 2000. [Cited: 27 January 2010.]

http://www.trl.ibm.com/projects/security/ssp/node5.html.

12. Death, Taxes and Imperfect Software: Surviving the

Inevitable. Crispin Cowan, Carlton Pu, and Heather

Hinton. Charlottesville : Association for Computing

Machinary, 1998. Proceedings of the New Security Paradigms

Workshop.

13. Buffer Overflows: Attacks and Defenses for the

Vulnerability of the Decade. Crispin Cowan, Perry Wagle,

Calton Pu, Steve Beattie, and Jonathan Walpole.

Washington : IEEE Computer Society, 2000. DARPA

Information Survivability Conference & Exposition - Volume

2. pp. 119-129.

14. Bradley, Tony. Introduction to Intrusion Detection

Systems. About.com. [Online] 2nd April 2008. [Cited: 09

January 2009.]

http://netsecurity.about.com/cs/hackertools/a/aa030504.htm.

15. A Neuro-genetic Based Short-term Forecasting

Framework for Network Intrusion Prediction System,

International Journal of AUTOMATION AND COMPUTING.

Sindhu, S,S,S, et al. 4, Dordrecht : Springerlink, 2009, Vol.

6(4). pp. 319-363.1751-8520.

16. Network-Level Polymorphic Shellcode Detection Using

Emulation. Polychronakis, Michalis, Anagnostakis, Kostas

G and Markatos, Evangelos P. Paris : Springer Paris, 2006,

Vol. 2(4). pp. 257-274 1772-9890.

17. A polymorphic Shellcode Detection Mechanism in the

Network. Huang, Hsiang-Lun, et al. Suzhou : ACM, 2007.

978-1-59593-757-5/07/0006.

18. Lippmann, R, Webster, S and Stetson, D. The Effect of

Identifying Vulnerabilities and Patching Software on the

Utility of Network Intrusion Detection. [book auth.] A Wespi,

G Vigna and L Deri. Recent Advances in Inrusion Detection.

Berlin / Heidelberg : Springer , 2002.

19. Rule Performance Part One: Content Matches. VRT.

[Online] Sourcefire, 8 July 2009. [Cited: 6 April 2010.]

http://vrt-sourcefire.blogspot.com/2009/07/rule-performance-

part-one-content.html.

20. Aleph1. Smashing The stack for fun and profit. Phrack

Magazine. [Online] 8 September 1996. [Cited: 08 September

2008.]

http://www.phrack.org/issues.html?issue=49&id=14#article.

21. Haendel, Lars. The function pointer tutorials.

www.newty.de. [Online] 6 January 2005. [Cited: 13 September

2008.] http://www.newty.de/fpt/intro.html#what.

22. Etoh, Hiroaki. Stack Protection Systems: (propolice,

StackGuard, XP SP2). pacsec.jp. [Online] 2004. [Cited: 13

September 2008.] pacsec.jp/psj04/psj04-hiroaki-e.ppt.

23. Schildt, Herbert. C++ A beginners Guide . Maidenhead :

McGraw-Hill Professional, 2003.

24. Sanders, Chris. Buffer Overflows, Data Execution

Prevention, and You. WindowSecurity.com. [Online]

WindowSecurity.com, 28 October 2009. [Cited: 6 April 2010.]

http://www.windowsecurity.com/articles/Buffer-Overflows-

Data-Execution-Prevention-You.htm.

25. van de Ven, Arjan. New Security Enhancements in Red

Hat Enterprise Linux v.3, update 3. Raleigh, North Carolina,

USA : Red Hat, August 2004.

26. Whitehouse, Ollie. An Analysis of Address Space Layout

Randomization on Windows Vista. Cupertino : Symantec,

2007.

27. appsec.ch. Bypassing Windows Vista's Address Space

Layout Randomization. Lösliweg, Felsberg, Switzerland :

skillTube.com, 2007.

28. Secure and Practical Defense Against Code-Injection

Attacks using Software Dynamic Translation. Hu, W, et al.

New York : s.n., 2006. ACM/Usenix International Conference

On Virtual Execution Environments . pp. 2-12.

29. Linux kernel patch from the Openwall Project. Openwall

Project. [Online] September 2002. [Cited: 06 December 2009.]

http://www.openwall.com/linux/.

30. Lacroix, P and Desharnais, J. Buffer Overflow

Vulnerabilities in C and C + +. s.l. : Unpublished report, 2008.

31. GCC steering Committe. http://gcc.gnu.org/releases.html.

GCC, the GNU Compiler Collection . [Online] 6 April 2010.

[Cited: 6 April 2010.] http://gcc.gnu.org/releases.html.

32. skape. Preventing the exploitation of SEH overwrites.

Uninformed. [Online] September 2006. [Cited: 28 September

2008.] www.uninformed.org/?v=5&a=2&t=pdf.

33. Security Focus. Oracle 9I Application Server PL/SQL

Apache Module Buffer Overflow Vulnerability.

SecurityFocus. [Online] SecurityFocus, 11 July 2009. [Cited:

6 April 2010.] http://www.securityfocus.com/bid/3726/discuss.

34. Stevens, R S, Fenner, B and Rudoff, Andrew M. Unix

Network Programming. Boston : Pearson Education, Inc.,

2003.

35. Defeating PaX ASLR protection. Durden, T. 59, s.l. :

Phrack, 2002, Vol. 12.

36. vmware. Workstation 7. vmware. [Online] vmware, 2010.

[Cited: 6 April 2010.] www.vmware.com/workstation.

37. Wireshark. Wireshark. Wireshark. [Online] [Cited: 14

April 2010.] http://www.wireshark.org/.

38. Sourcefire. Snort. Snort. [Online] Sourcefire. [Cited: 14

April 2010.] http://www.snort.org/.

39. The advanced return-into-lib(c) exploits. Nergal. 58, s.l. :

Phrack Inc, 2001, Vol. 11.

40. Explotation for Phun and Profit. Bucko, C. s.l. :

HACKPL Security Lab.

41. van Riel, R and Feng, S. Documentation for

/proc/sys/kernel. The Linux Kernel Archives. [Online] 2009.

[Cited: 06 April 2010.]

http://www.kernel.org/doc/Documentation/sysctl/kernel.txt.

42. the PaX Team. Documentation for the PaX project.

Homepage of The PaX Team. [Online] [Cited: 6 April 2010.]

http://pax.grsecurity.net/docs/index.html.

43. Rash, Michael, et al. Intrusion Prevention and Active

Response. Rockland : Syngress Publishing, Inc., 2005.

44. The GNU Netcat Project. The GNU Netcat Project. The

GNU Netcat Project. [Online] [Cited: 14 April 2010.]

http://netcat.sourceforge.net/.

45. LinuxManPages.com. LinuxManPages.com.

LinuxManPages.com. [Online] [Cited: 6 April 2010.]

http://linuxmanpages.com/.

46. Moser, J R. Prelink and address space randomization.

LWN.net. [Online] 5 July 2006. [Cited: 6 April 2010.]

http://lwn.net/Articles/190139/.

47. Buffer Overflows:Attacks and Defenses for the

Vulnerability of the Decade. Cowan, C, Wagle, P and

Calton, P. Pennsylvania : IEEE, Attacks and Defenses for the

Vulnerability of the Decade. 0-7695-0490-6/99.

48. Mozilla. Mozilla wiki. Mozilla wiki. [Online] Mozilla, 26

January 2010. [Cited: 27 January 2010.]

https://wiki.mozilla.org/Gecko:Home_Page.

49. Alioth Project. Stack Smash Protection. Debian SbD.

[Online] Alioth Project. [Cited: 27th January 2010.] http://d-

sbd.alioth.debian.org/www/?page=ssp.

50. Sourcefire Vulnerabilty Research Team. Sourcefire

Vulnerability Team. Sourcefire Vulnerability Team. s.l. :

Sorcefire, 2006.

51. Writing detection signatures. Jordan, Christopher. 6,

Berkeley : USENIX;login:, 2005, Vol. 30.

52. The Snort Project. Snort Users Manual. Snort Users

Manual. s.l. : Snort, 2009.

53. IEEE Computer Society. Part 3: Carrier sense multiple

access with Collision Detection (CSMA/CD) Access Method

and Physical Layer Specifications. Part 3: Carrier sense

multiple access with Collision Detection (CSMA/CD) Access

Method and Physical Layer Specifications. New York : IEEE,

2008. ISBN 973-07381-5796-2 STD95819.

54. Hazel, P. PCRE - Perl Compatible Regular Expressions -

Man pages. PCRE - Perl Compatible Regular Expressions.

[Online] 3 January 2010. [Cited: 6 April 2010.]

http://www.pcre.org/pcre.txt.

55. Friedl, Steve. Mapping UNIX pipe descriptors to stdin

and stdout in C . Steve Friedl's Unixwiz.net Tech Tips. [Online]

[Cited: 3 February 2010.] http://unixwiz.net/techtips/remap-

pipe-fds.html.

56. Leffler, Samuel J, et al. An Advanced 4.4BSD

Interprocess Communication Tutorial. [Online] [Cited: 03

February 2010.]

http://docs.freebsd.org/44doc/psd/21.ipc/paper.pdf.

57. Goyvaerts, Jan. JGsoft. Learn, Create, Understand, Test,

Use and Save Regular Expressions with RegexBuddy. [Online]

Just Great Software Co. Ltd, 11 March 2010. [Cited: 6 April

2010.] http://www.regexbuddy.com/.

58. Basic Analysis and Security Engine . Basic Analysis and

Security Engine . [Online] Basic Analysis and Security

Engine , 28 May 2009. [Cited: 6 April 2010.]

http://base.secureideas.net.

59. Davenport WebDAV-SMB Gateway. The NTLM

Authentication Protocol and Security Support Provider.

[Online] GNU. [Cited: 6 April 2010.]

http://davenport.sourceforge.net/ntlm.html#ntlmHttpAuthentic

ation.

60. Vulnerability Note VU#878603. US-CERT United States

Computer Emergency Readines Team. [Online] US

Department of Homeland Security, 15 March 2002. [Cited: 6

April 2010.] http://www.kb.cert.org/vuls/id/878603.

61. Baker A, R, et al. Snort IDS and IPS Toolkit. Burlington :

Syngress, 2007. 1-59749-099-7.

62. The Motif Tracking Algorithm, International Journal of

AUTOMATION AND COMPUTING. Wilson, W, Birkin, P

and Aickelin, U. 1, Dordrecht : SpringerLink, 2008, Vol. 5.

pp. 32-44. 1751-8520.

Authors Biography

David J Day, BSc, MSc in

computing systems and

computer networks, he is a

Senior Lecturer in

Computing and a Teaching

Fellow for the Faculty of

Business Computing and Law at the University of

Derby. He is a PhD candidate in networking systems

and his research interests include computing system

intrusion detection and prevention, mobile device

security and computer network management.

 Zhengxu Zhao, BSc, MSc, PhD

in computing science and

technology, Professor and Chair in

Applied Computing at the

University of Derby from 1995

and 2008 and holds a DSc from

Derby for his research work in

information technology and

scientific visualization. He is currently Professor and

Dean of Faculty of Information Science and

Technology at the Shijiazhuang Tiedao University,

China. His research interests include virtual reality

systems, scientific visualization, and information

organization.

