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Abstract. This paper presents a program, called In-Close2, that is a
high performance realisation of the Close-by-One (CbO) algorithm. The
design of In-Close2 is discussed and some new optimisation and data
preprocessing techniques are presented. The performance of In-Close2
is favourably compared with another contemporary CbO variant called
FCDbO. An application of In-Close2 is given, using minimum support to
reduce the size and complexity of a large formal context. Based on this
application, an analysis of gene expression data is presented. In-Close2
can be downloaded from Sourceforge *.

1 Introduction

The emergence of Formal Concept Analysis (FCA) as a data analysis technology
[2,7,15] has increased the need for algorithms that compute formal concepts
quickly. When Kuznetsov specified, in Close-by-One (CbO) [11], how repeated
computations of concepts could be detected using their natural canonicity, it
was no longer necessary to exhaustively search through previously generated
concepts to determine the uniqueness of a newly generated one. Algorithms
have been developed based on CbO, such as In-Close [1], FCbO [9] and FCbO’s
predecessor [8], which significantly outperform older algorithms that relied on
searching [12].

In a recent, albeit small, international competition between concept comput-
ing algorithms [14], FCbO took first place and In-Close took second. In-Close2,
the program described in this paper, develops the previous implementation of
In-Close by adding breadth searching to allow elements of an intent to be in-
herited, and by implementing some new optimisation and data preprocessing
techniques.

2 The In-Close2 Design

In-Close2 has been designed with the fast back-tracking canonicity test of In-
Close [1] combined with a dual depth-first and breadth-first approach, used in

! http://sourceforge.net /projects/inclose/



algorithms such as FCbO [9], to provide attribute inheritance. In-Close2 incre-
mentally closes parent concepts whilst noting new child extents along the way.
The attributes collected during closure are then passed down to each child ex-
tent, so that during the closure of a child concept these attributes do not need
to be tested for inclusion.

2.1 Structure of In-Close2

In In-Close2 a formal context is represented by a Boolean matrix, I, with m rows,
representing a set of objects {0,1,...,m — 1}, and n columns, representing a set
of attributes {0,1,...,n — 1}. For an object ¢ and an attribute j, I[i][j] = true
says that object ¢ has attribute j.

A formal concept is represented by an extent, A[r] (an ordered list of objects),
and an intent, B[r| (an ordered list of attributes), where r is the concept number
(index). For example, if B[r] = (3,5,7), B[r][2] = 7. For the purposes of the
following pseudocode, A[r] and B[r] will be treated as sets, where convenient.
Thus, B[r]U{j} appends attribute j to B[r].

In the algorithm, there is a current attribute, j, the index of the parent
concept, r, and a global index of the candidate new concept, rye,. The candidate
concept is instantiated if it is canonical.

There are two procedures, InCloseII(r,y) and IsCanonical(r,Tpew,J),
where y is a starting attribute. The supremum is the concept with index 0
and is initialised as A[0] = (0,1, ...,m — 1), B[0] = 0. Initially, r,e, = 1 and the
invocation of InCloseIl is InCloseII(0,0).

The pseudocode is presented below, with a line-by-line explanation.

2.2 Explanation of main procedure, InCloseIl

The procedure iterates across the context from y, forming intersections between
the current extent and the next attribute extent. When the current extent is
found in an attribute extent, that attribute is added to the current intent. When
a different intersection results, its canonicity is tested to determine if it is a new
extent. If it is new, it is added to the children of the current concept for closing
later. The current intent is inherited by the children by passing it down though
the recursion.

Lines 2 and 3 - Initially there are no children of the current concept.

Line 4 - Iterate over the context, starting at attribute y.

Line 5 - If the next attribute, j, is not an inherited attribute then...

Lines 6 to 9 - ...form a new extent by intersecting the current extent with
the attribute extent of j.

Line 10 - If the new extent is the same as the current extent then...

Line 11 - ...add attribute j to the current intent.

Line 13 - Else if the new extent is canonical then...

Line 14 - ...add the starting attribute of the child concept,...

Line 15 - ...add the index number of the child concept,...



InCloselI(r, y)

1 begin

2 jehildren < (;

3 rchildren < (;

4 for j < y upton —1do

5 if j ¢ B[r] then

6 Alrnew] + 0;

7 foreach i in A[r] do

8 if I[i|[j] then

9 L L Alrnew]  Alrnew] U {i};
10 if A[rnew] = Alr] then
11 | B[r] «+ BlrJu{j}
12 else
13 if IsCanonical(r, rpew, j) then
14 jchildren < jchildren U {j};
15 rchildren < rchildren U {ryew};
16 Blrnew] + B[r]U{j};
17 Trnew $ Tnew + 1;

18 for k < 0 upto |jchildren| — 1 do
19 L InCloseII(rchildrenlk], jchildren[k] + 1);

20 end

Line 16 - ...inherit the current intent and...
Line 17 - ...increment the concept index.
Line 18 - Iterate across the children...

Line 19 - ...closing each by passing the concept number and next attribute
to InClosell.

2.3 Explanation of procedure IsCanonical

The procedure searches backwards in the context for the new extent, skipping
attributes that are part of the current intent.

Line 2 - Starting at one less than the current attribute, j, iterate backwards
across the context.

Line 8 - If the next attribute, k, is not part of the current intent then...

Lines 4 and 5 - ...intersect the new extent with the attribute extent of k.

Line 6 - If the extent is found, stop searching and return false (the new
extent is not canonical).

Line 7 - If this line is reached, the new extent has not been found, so return
true (the new extent is canonical).



IsCanonical(r, Tnew, J)

Result: Returns false if A[rpew] is found, true if not found
1 begin

2 for k£ <+ j — 1 downto 0 do

3 if k ¢ B[r] then

4 for h < 0 upto |A[rnew]| — 1 do

5 L L if not I[A[rnew][h]][k] then break;

6 if h = |Arnew]| then return false;

return true;
end

® N

2.4 The effect of attribute inheritance on performance

Table 1 compares the number of intersections performed by In-Close2 (lines 6-
17 of InClosell, above), with and without attribute inheritance, using three
well-known public data sets from UCI [4]. An ‘extended’ formal context of the
UCT Adult data set is used that includes scaled continuous attributes from the
data and was created using a context creation tool called FcaBedrock [3]2. The
context for the UCI Internet Ads data set used here also includes scaled con-
tinuous attributes, created using the same tool. Hence both the extended Adult
and the Internet Ads contexts contain more attributes and concepts than is
typically found in other publications. The times, in seconds, are also given. The
experiments were carried out using a standard Windows PC with an Intel E4600
2.39GHz processor with 32KB of level one data cache and 3GB of RAM. Note
that the times in Table 1 are taken from a version of In-Close2 that incorporates
the data preprocessing and optimisation techniques presented later in this paper.

Table 1. Number of intersections performed and time taken by In-Close2, with and
without attribute inheritance.

UCI Dataset| Mushroom Adult Internet Ads
|G| x |M]| 8,124 x 125 32,561 x 124 3,279 x 1,565
#Concepts| 226,921 1,388,468 16,570
no inheritance: #intersections| 2,729,388 4,644,001 1,953,155
time 0.824 3.323 0.345
inheritance: #intersections| 1,193,779 2,919,135 1,925,734
time 0.568 2.632 0.323

% http://sourceforge.net /projects/fcabedrock/



3 Data Preprocessing and Optimisation Techniques for
Efficient use of Cache Memory

3.1 Physical Column Sorting

The well-known technique of sorting context columns in ascending order of sup-
port is implemented in In-Close2. The typical approach is to sort pointers to the
columns, rather than the columns themselves, as this takes less time. However, in
In-Close2, the columns are physically sorted to make more efficient use of cache
memory. If data is contiguous in RAM, cache lines will be filled with data that
are more likely to be used when carrying out column intersections in InCloseIl
and when finding an already closed extent in IsCanonical. This significantly
reduces level one data cache misses, particularly when large contexts are being
processed. The overhead of physically sorting the context is outweighed by the
saving in memory loads. A comparison between logical and physical column sort-
ing is given in Table 2. The figures for level one data cache misses (L1-DCM)
were measured using Intel’s V-Tune profiling tool.

Table 2. L1 data cache misses and time taken by In-Close2, comparing logical and
physical column sorting.

UCI Dataset| Mushroom Adult Internet Ads
|G| x | M|| 8,124 x 125 32,561 x 124 3,279 x 1,565
#Concepts| 226,921 1,388,468 16,570
logical sort: L1-DCM| 67,300,000 617,300,000 47,000,000
time 0.922 4.563 0.362
physical sort: L1-DCM| 33,900,000 252,000,000 32,100,000
time 0.743 3.104 0.341

3.2 Reducing Row Hamming Distance

The Hamming distance between two strings of equal length is the number of
positions at which the corresponding symbols are different [6]. In bit-strings this
is the number of positions in the bit-strings at which 0s and 1s differ. In In-
Close2, after physical column sorting, the rows are then also physically sorted
to reduce the Hamming distance between consecutive rows. By treating rows as
unsigned binary integers, sorting them numerically minimises the number of bits
that change from row to row (see Figure 1). This increased uniformity in the
data significantly reduces level one data cache misses (see Table 3).

3.3 Using a Bit-Array

The well-known technique of storing the context as a bit-array, rather than an
array of bool (byte) data, is implemented in In-Close2. The usual reason for this
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Fig. 1. Row sorting reduces Hamming distance (HD)

Table 3. L1 data cache misses and time taken by In-Close2, with and without reduced
Hamming distance.

UCI Dataset| Mushroom Adult Internet Ads
|G| x | M|| 8,124 x 125 32,561 x 124 3,279 x 1,565
#Concepts| 226,921 1,388,468 16,570
HD not reduced: L1-DCM| 33,900,000 252,000,000 32,100,000
time 0.743 3.104 0.341
HD reduced: L1-DCM| 10,200,000 50,400,000 21,900,000
time 0.568 2.632 0.323

is that it allows larger contexts to be stored in RAM. However, in the imple-
mentation of In-Close2, because the array is sorted physically there is a further
improvement in the efficiency of the cache. Although there is an overhead in
the extra code required to access individual bits, once contexts have become
too large to comfortably fit into cache memory in one-byte data form, this is
outweighed by the efficiency gained in the use of the cache. Using two versions
of In-Close2, one implementing the context as a bool-array and the other im-
plementing the context as a bit-array, the point at which this occurs is clearly
visible in Figure 2. Using a context density of 1% and 200 attributes, the number
of objects was increased from 5000 to 25000. With fewer than 10,000 objects,
the bool-array implementation was quicker. With more than 10,000 objects, the
bit-array implementation was quicker.

4 In-Close2 Performance Evaluation

A number of experiments were carried out to compare In-Close2 with FCbO.
An implementation of FCbO was supplied by an author of FCbO, with the
understanding that it was a highly optimised version, but with only some details
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Fig. 2. Comparison of performance between bool and bit-array context data

about the optimisations used. In testing, it was a faster version of FCbO than
the one in the competition at ICCS 2010 [14].

Another promising program, called AddExtent, was also tested in the experi-
ments. This program is an attribute-incremental implementation of an algorithm
called AddIntent [16] and was supplied by an author of AddIntent.

Experiments were carried out using the three well known public data sets
already mentioned in this paper, three artificial data sets and several series of
random data sets. The public data sets allowed the programs to be compared
under real conditions, the artificial data sets were a means of simulating real
conditions but with larger data sizes and the random data sets allowed controlled
comparison over key variables: number of attributes, context density and number
of objects.

The experiments were carried out using a standard Windows PC with an
Intel E4600 2.39GHz processor with 32KB of level one data cache memory and
3GB of RAM. The times for the programs are total times to include data pre-
processing. The results are given below.

4.1 Public data set experiments

The results of the public data set experiments are given in Table 4. There was
no clear winner; each of the programs performing best with one of the data sets.
The largest of the contexts was that of the Adult data set, and here In-Close2



significantly outperformed the other two. The strong performance of In-Close2
with regard to large context size is borne out by the results of the artificial and
random data set experiments that follow.

Table 4. UCI data set results (timings in seconds).

Mushroom Adult Internet Ads

|G| x | M|| 8,124 x 125 32,561 x 124 3,279 x 1,565
Density| 17.36% 11.29% 0.97%
#Concepts| 226,921 1,388,469 16,570
AddExtent 5.787 72.080 0.324
FCbO 0.508 5.687 0.812
In-Close2 0.568 2.365 0.328

4.2 Artificial data set experiments

The following artificial data sets were used:

M7X10G120K - a data set based on simulating many-valued attributes. The
scaling of many-valued attributes is simulated by creating ‘blocks’ in the con-
text containing disjoint columns. There are 7 blocks, each containing 10 disjoint
columns.

M10X30G120K - a similar data set, but with a context containing 10 blocks,
each with 30 disjoint columns.

T1014D100K - an artificial data set from the FIMI data set repository [5].

In these experiments, only times for FCbO and In-Close2 are given (Table
5), because times for AddExtent were very large. For each of the three artificial
data sets, In-Close2 significantly outperformed FCbO.

Table 5. Artificial data set results (timings in seconds).

M7X10G120K M10X30G120K T10I4D100K
|G| x |M]| 120,000 x 70 120,000 x 300 100,000 x 1,000

Density 10.00% 3.33% 1.01%
#Concepts| 1,166,343 4,570,498 2,347,376
FCbO 4.281 28.812 40.765

In-Close2 2.233 20.648 24.277



4.3 Random data set experiments

Three series of random data experiments were carried out to compare the per-
formance of In-Close2 and FCbO, testing the affect of changes in the number of
attributes, context density, and number of objects:

Attributes series - with 1% density and 10,000 objects, the number of at-
tributes was varied between 400 and 1,800 (Figure 3). In-Close2 significantly
outperformed FCbO, increasingly so as the number of attributes increased.

Density series - with 200 attributes and 10,000 objects, the density of 1s
in the context was varied between 1 and 9% (Figure 4). The performance was
simliar, although In-Close2 was slightly faster with densities below 7% and FCbO
outperformed In-Close with densities greater than 7%, increasingly so as the
density increased.

Objects series - with 1% density and 200 attributes, the number of objects
was varied between 100,000 and 500,000 (Figure 5). In-Close2 significantly out-
performed FCbO, consistantly so as the number of objects increased.
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Fig. 3. Comparison of performance with varying number of attributes
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5 Application of Context Reduction by In-Close2 in
Gene Co-expression Analysis

A feature of In-Close2 is to use the well-known idea of minimum support to
reduce the size and complexity of formal contexts. A minimum support for both
objects and attributes can be specified so that only concepts that satisfy the
support will be mined. In-Close2 then outputs a reduced context excluding all
objects and attributes that are not part of concepts that satisfy the support.
This allows a readable concept lattice to be produced from a large and complex
context.

This technique was applied to a data set produced in collaboration with
Herriot-Watt University, Edinburgh, Scotland, UK, from the EMAGE Edinburgh
Mouse Atlas Project database. The dataset consisted of mouse gene expression
data for 6,838 genes in 2,335 mouse tissues (coded as so-called EMAP numbers).
There were seven levels of strength of gene expression in the tissues, ranging
from ‘not detected’ to ‘strong’. By interpreting a gene as a formal object and
a combination of tissue with level of expression as a formal attribute, this data
was converted into a formal context using the context creator tool, FcaBedrock.
In the context created, In-Close2 detected 208,378 concepts, each representing a
gene co-expression. By specifying a minimum support of 14 for genes and 18 for
tissue/levels (through a process of trial and error), 13 concepts were detected
that satisfied the support, and the context became reduced to 24 objects and 14
attributes. The reduced context is shown in Figure 6.

If a technique such as fault tolerance [13] was applied to this context, so that,
for example, the ‘missing’ relation (Tqfbi, EMAP:81/46-strong) was assumed to
exist, it could be argued that the context should be approximated to a single
concept of gene co-expression; all 24 genes being strongly expressed in all 14
tissues. Alternatively, the ‘missing’ relations could be investigated by examining
the original data, where it was found, for example, that there was no record for
gene Tgfbi in tissue EMAP:8146 (perhaps indicating that such an experiment
has not yet been carried out). On the other hand, a record for gene Dnajc18
in tissue EMAP:8349 did exist, stating a ‘moderate’ level of detection; a good
enough indication, perhaps, that this gene/tissue pair should be part of this
concept of co-expression.

It also became interesting to discover what bones are missing from the co-
expression and why. There are bones in the skull for which there were no data
recorded for particular genes, but when an image of the embryo from the relevant
experiment was subsequently examined, it was clear that these bones did have
expression in them. Thus, another possible use for this FCA technique is in
inferring the most likely level of expression for a gene-tissue pair when data is
missing.

It was also noted that the tissues are mostly bones in the skull and that they
are all from the same development stage of the mouse embryo ( Theiler Stage 23).
Further biological investigation is now required to determine the significance of
this co-expression; what is happening in the development of the mouse skull at
Theiler Stage 237
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6 Conclusion

In-Close2 has been shown to outperform FCbO and AddExtent, apart from
where the formal context was a combination of dense (> 7%) and random. In
such cases, FCbO was the best performer. This is probably because, although
FCbO closes a concept before testing its canonicity, it does it very quickly by
using bitwise operations on 32 bit data when performing closure (i.e., 32 com-
parisons of context table cells are performed at a time). In-Close2 tests each cell
individually in its backtracking canonicty test, which avoids having to close a
concept before testing its canonicty, but can be slower if the context is random
and dense. This is probably because it is more likely that several cells will have
common crosses tested before the comparison fails. In real and artificial data
sets, density seems to have less of a detrimenatal effect on In-Close2, probably
becuase of the natural predominance of patterns over random noise, reducing the
number of ‘near misses’ when testing canonicity. Further investigation would be
required to confirm this hypothesis.

Optimisations have been shown in this paper that significantly improve the
performance of In-Close2, by making better use of cache memory. These optimi-
sations are quite general and could be applied to many algorithms that operate
on Boolean data. It is not clear from the authors of FCbO the extent to which
similar techniques have been used in their implementation of FCbO, although
they stated that their implementation was “highly tuned”.

The usefulness of a high-performance concept miner has been shown by the
analysis of a large, complex, context of gene expression data using the technique
of context reduction though minimum support. A large co-expression of genes in
the skull bones of a mouse embryo has been discovered. Uses for FCA in focusing
further investigation and inferring missing data have been shown.
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