Sheffield
Hallam _
University

A case study of 3D technologies in higher education:
scanning the Metalwork Collection of Museums Sheffield
and its implications to teaching and learning

RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303>, KORMANN,
Mariza and DAVISON, Lucy

Available from Sheffield Hallam University Research Archive (SHURA) at:
https://shura.shu.ac.uk/5038/

This document is the Accepted Version [AM]
Citation:

RODRIGUES, Marcos, KORMANN, Mariza and DAVISON, Lucy (2011). A case
study of 3D technologies in higher education: scanning the Metalwork Collection of
Museums Sheffield and its implications to teaching and learning. In: 2011
International Conference on Information Technology Based Higher. IEEE, 1-6. [Book
Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A Case Study of 3D Technologies in Higher
Education: Scanning the Metalwork Collection
of Museums Sheffield and its Implications to
Teaching and Learning*

Marcos A Rodriguesl, Mariza Kormann' and Lucy Davison®

'Geometric Modeling and Pattern Recognition Research Group, Communication and Computing Research Centre,

Sheffield Hallam University, Sheffiedl, S1 2NU

’Museums Sheffield, Leader House, Surrey Street, Sheffield, S1 2LH (email lucy.davison@museums-sheffield.org.uk)

Abstract—This paper describes results from the fast 3D scanning
project conducted at Sheffield Hallam University in collaboration
with Museums Sheffield. We focus on the technological aspects that
are required for fast scanning and discuss the steps in the process
from scanning and noise removal to 3D post-processing and how the
resulting 3D models can be made available on a standard web
browser. We also discuss some implications to the teaching and
learning of 3D technologies to undergraduate and postgraduate
courses.

Index Terms—3d scanning, 3d post-processing, WebGL, browser

I. INTRODUCTION

D technologies have a number of useful applications in

several diverse areas such as games, animation, TV,
medical applications, security, industrial monitoring and
control to mention a few. Traditionally, higher education (HE)
institutions have been the main enablers of 3D technologies
bringing them to mainstream applications through research
and development. Increasingly, high technology companies
such as Google and Mozilla are driving the technology agenda
and this is most apparent in recent years through their efforts
to bring interactive 3D to the web browser. Typically, once
the required background technology is available, companies
are able to establish themselves. In turn, this creates markets
for professionals that need to be educated and trained in 3D
technologies. This evolutionary model creates opportunities
for both industry and academia and it is important that HE
institutions fast adapt their curricula and teaching methods to

*

RODRIGUES, Marcos, KORMANN, Mariza and DAVISON,
Lucy (2011). A case study of 3D technologies in higher education: scanning
the Metalwork Collection of Museums Sheffield and its implications to
teaching and learning.In: 2011 International Conference on Information
Technology Based Higher. IEEE, 1-6.

industry’s training needs.

This paper describes results from the fast 3D scanning
project conducted at Sheffield Hallam University in
collaboration with Museums Sheffield and some implications
to the teaching and learning of 3D technologies to both
undergraduate and postgraduate courses. The major
challenge for the project is the scanning of metal surfaces,
which are notoriously difficult to scan. In the context of 3D
scanning to preserve cultural heritage it is often easier to
scan large non-reflective surfaces such as the structures of an
ancient temple than stainless steel small objects. Optimal
scanning conditions have to be found and a number of post-
processing operations are required, some are discussed
below. The focus of this paper is on the technological aspects
that are required for fast scanning and discuss the steps in
the process from scanning and noise removal to 3D post-
processing and how the resulting 3D models can be made
available on a standard web browser.

Most museums worldwide have space constraints and
normally more items are kept in their stores than we see on
display. However, merely displaying an object does not mean
that it can be fully appreciated. In real physical displays items
cannot be seen from all angles, as some surfaces of the
objects remain hidden. Also, many items can only be
appreciated from non-optimal distances for a variety of
reasons such as security or the objects being too fragile to be
handled. Worldwide, there has been a recent trend towards
digitization of cultural heritage and making this accessible to
the wider public. In this context, 3D technologies offer a
unique way to make available large collections online where
the viewer can interact with and close inspect each item.

The metalwork collection at Museums Sheffield has

Designated status, which means it is recognised as
internationally important. Staff have worked on a series of
projects to increase access and understanding of this
renowned collection. All these projects strive to ensure that
researchers, academics, teachers and school children can
explore significant items from the collection that are
unavailable to them because of distance. The ability to offer
lifelike 3D representations of objects will greatly enhance the
experience of distance users, replicating as close as possible
the experience of seeing the items in person. Museums
Sheffield has the gallery space to display around 10% of its
collections at one time. This means the majority of objects
are beyond the reach of visitors. 3D imaging means that these
stored collections can be used and enjoyed in a way simply
not possible with physical displays.

In Section Il we briefly discuss the options for generating
3D models. In Section Ill we describe the steps in scanning
and reconstruction. In Section IV the technologies required to
place 3D models on the web are discussed and Section V
highlights some implications to teaching and learning. Finally
a conclusion is presented in Section VI.

Il. GENERATING 3D MODELS

3D models can be generated in a number of ways. Some
options include:

* Using a 3D modelling package,

* Using transform graphs,

* Using a 3D scanner,

* Using a combined approach with any of the above.
A brief discussion on modelling packages and transform
graphs is presented below while 3D reconstruction using a 3D
scanner is discussed in the next section.

A. Generating 3D Models Using a 3D Modelling Package

A 3D scene can be generated using a number of different
tools such as 3D Studio Max, Maya, and AutoCAD among
others. The simplest way of creating a 3D model involves the
drawing of primitive geometric shapes (e.g. triangle,
rectangle, circle) and then extruding these in a desired
direction. Extrusion is an essential operation in 3D modelling
and all modelling packages offer this functionality. A simple
3D model can be created in a couple of minutes using any of
those applications. Figure 1 depicts 3D models created from
primitive shapes and extrusion from an earlier project in
archaeological reconstruction from the Helike Project
Collection, Aegion, Greece [1]. Texture mapping was added
resembling the original colour of the objects; for instance, the
first object had a rusty colour while it is known the second

Fig. 1. Examples of 3D reconstruction in archaeology from sherds where the
symmetry of the objects simplifies modelling. From the Helike Project
Collection [1].

object to have been painted black. Note that shape symmetry
greatly simplifies modelling but it is very difficult to capture
the exact dimensions and imperfections existing in the real
objects. Moreover, more complex scenes or intricate objects

Fig. 2. Examples of synthetic 3D models derived from primitive shapes and
transform graphs.

may demand an unspecified amount of time and effort. For
the purposes of this project this option is not a realistic
alternative as for most pieces in the collection it would be too
laborious to build 3D models using this technique.

B. Generating 3D Models Using Transform Graphs

Transform graphs specify the colour, normals, effects, and
the position of objects in 3D space. These normally are
defined through low level programming language constructs
(such as C) and thus, require a good knowledge of
programming. OpenGL [2] is a low level programming
language providing a number of constructs allowing
programmers to create 3D models by defining and
manipulating transform graphs. Some examples of 3D
models are depicted in Figure 2; such objects are defined

Fig. 3. On the left the top of an object is scanned. Right shows a scan from
the bottom of the object. The angle of the incident light has been tightly
controlled to reduce noise and unwanted reflections.

A

Fig. 4. Left, the two views of the same object do not naturally fit together
after scanning. On the right, after cleaning the multiple views, 3D registration
is performed aligning the two parts of the model together.

from primitives and transformations are performed on them
such as extrusion, scale, rotation and translations.

For instance, a 3D model of a cube can be defined in
OpenGL by specifying the position of 8 vertices in space. An
example in shown below where one of its vertices coincides
with the origin and the length of each side of the cube is 1:

glBegin(GL QUADS);
glColor3f(0.0,1.0,0.0); // A Green Cube
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(1.0, 1.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(0.0, 0.0, 1.0);
glVertex3f(0.0, 1.0, 1.0);
glVertex3f(1.0, 1.0, 1.0);
glVertex3f(1.0, 0.0, 1.0);

glEnd();

Using an API (Application Programming Interface) such as
Google’s 03D [3] to define and display 3D models on a web
browser allows one to work at a higher level than OpenGL.
The reason is that O3D provides a wrapping around some
basic OpenGL functions so many low level functions can be
encapsulated into a higher-level call. For instance, the code
for creating the 3D cube using 03D would look like:

function createShapes()
{
var cube = 03djs.primitives.createCube(
g pack,
createPhongMaterial([0,1,0,1]), // green shaded
Math.sqrt(2)); // The length of each side of the cube.

Although this is much simpler to write and maintain than
the OpenGL version, this is still not an option considering the
requirements of the project. It works well for simple
geometric shapes, but for complex shapes such as the ones in
the Metalwork Collection, the only alternative left is using a
3D scanner.

I1l. 3D SCANNING AND RECONSTRUCTION

The project aims to scan representative items from the
Designated Metalwork Collection of Museums Sheffield.
Since objects in the museum are physical expressions that do
not have an equivalent CAD (Computer-Aided Design) model
and most have very complex shapes, the use of a scanner is
required for 3D reconstruction. We have tested structured
light scanners using both white and near-infrared light using
techniques described in [4],[5],[6],[7],[8]. We observed that
due to the highly reflective surfaces of metallic objects, the
resulting models are too noisy and deemed not appropriate.
The major problem with structure light scanning is the angle
of incident light that needs to be controlled to a small value.
The multiple stripe patterns of structured light mean that
some stripe patterns will always be at unfavourable angles.
The solution is to use a single stripe scanner whose angle can
then be closely controlled. For the task we used a Faro Arm
with laser scanner [9] to scan 225 items from the collection.

There are several steps in the scanning process and some
of the main intermediate results are illustrated in Figures 3—
5:

1. Scan object surfaces producing a point cloud. Typically a
point cloud will contain between 1 and 4 million points
(x,¥,2). Normally multiple views of the same object are
necessary as depicted in Fig 3 where the top and
bottom of the object were scanned.

2. Clear the noise from the surface of the scans by directly
editing the point cloud and deleting the unwanted
data points. It is necessary to have knowledge of the
object’s shape to guide this process.

3. Register (align) the various surfaces into a single 3D
model as depicted in Fig 4. Normally this is
accomplished in two steps from a coarse multiple
point registration to a fine global registration.

4. Fuse the multiple point clouds into a single cloud. Some
operations performed here include detection and
removal of outliers, and deletion of redundant points
within a set threshold. We chose the minimum
distance between points to be 0.25mm.

5. Convert the point cloud into a triangulated mesh as
depicted on the left of Fig 5. This is necessary for
obtaining correct illumination effects and texture

mapping.

6. Add texture to the model. Textures are defined from
image files, which can be synthetically generated or
from a photograph of the object.

Once a model is complete with texture mapping it is then
ready to be deployed and visualized.

IV. MAKING 3D MODELS INTERACTIVE

One difficulty with 3D scenes is their integration into HTML
files such that other e-learning materials can be incorporated
in the usual way. Web browsers are not designed to deal with
large 3D data files that require vast amount of computational
resources and thus, palliative solutions are often used. For
instance, a common option is to develop a Flash animation
from a 3D scene but the price is that this is not fully
interactive and not as immersive as provided by a standalone
playback application. Other options exist such as producing
“flat” 3D environments by taking several pictures covering
360 degrees (from the centre of a room for instance) and
stitching them together and then playing back in the web
browser. This is very limited as the end result is simply a

Fig. 5. After 3D registration the point clouds of the two scans are fused into a
single object and transformed into a triangulated surface shown on the left
blue model. On the right, texture mapping can then be applied to the
triangulated surface.

series of pictures projected on the surface of a cylinder
rotating around its centre axis.

It is clear that what is required is the ability to develop full
3D scenes that can be manipulated (rotated, translated,
scaled) interactively using an input device such as a mouse
and using a standard web browser. Standards and
technologies to achieve this are evolving as discussed by
Rodrigues and Robinson [10] [11]. We have had
announcements from Mozilla in March 2009 that they were
working on a specification to be released in early 2010 [12].
Immediately after that, Google announced in April 2009 the
release of their O3D API (Application Programming Interface)
in a browser plug in [13]. These followed -earlier
announcement from Opera releasing their 3D Canvas in
November 2007 [14]. As it happened, the Khronos Group
released the first WebGL [15] specification in February 2011.

The latest developments is that Google has incorporated its
03D APl into the WebGL standards and Apple and Opera are
working towards implementing WebGL specifications into
their web browsers. In order to handle 3D graphics, web
browsers need access to a number of core technologies and
some are highlighted as follows.

A. OpenGL

OpenGL stands for Open Graphics Library. The main source
of information is the OpenGL web site [2], which contains
news, specifications, tutorials, and downloads among other
materials. OpenGL was developed by Silicon Graphics Inc. in
1992 and has become the industry standard for graphics
applications throughout the world. Its API interface is well
developed and is being nurtured by the ARB (OpenGL
Architecture Review Board), which is an industry consortium
responsible for steering the evolution of the software.

The most appealing aspects of OpenGL are its high
performance and portability or “device independence”.
OpenGL comes pre-installed on all major operating systems
(Windows, Linux, Unix, Mac) and applications can be
developed to run on all platforms without the need for
changing the code. The OpenGL API provides a set of rich and
highly usable graphics functions allowing learners to produce
stunning 3D simulations in a short time.

OpenGL code has been written in structured programming
style providing easy integration to C/C++ applications. Other
languages such as Java require a wrapping such as JOGL (Java
OpenGL) that allows OpenGL functions, which were written in
a non-object oriented way, to be used in the Java language
[16]. The sheer power and ease of integration of OpenGL led
it to be the graphics engine of choice providing functionality
to a large number of current 3D modelling packages and
graphics and visualization applications.

While OpenGL provides the engine driving graphics
applications, it requires a front-end program to handle the
visualization. Unfortunately, web browsers do not
understand OpenGL and thus do not interface with. Thus, a
wrapper is required to interface with and translate OpenGL
graphics outputs into statements that the web browser can
understand and display; such a wrapper is JavaScript.

B. JavaScript

JavaScript is the most popular scripting language on the
Internet. Its main purpose is to add interactivity to a web
page by embedding JavaScript code into standard HTML
pages. It is an interpreted lightweight programming language
with very simple syntax and it is freely available. With
JavaScript, web designers can perform a number of useful

operations such as using dynamic text into an HTML page,
write event-driven code such as reacting to mouse events,
modify HTML elements, validate data before submitting to a
server to alleviate server load, detect the user browser and
load appropriate pages designed for that browser, create
cookies by storing and retrieving information on the user’s
computer and more [17], [18].

One of the most useful aspects of JavaScript is the ability to
handle events. The JavaScript Event Reference lists 21 events
that include the various mouse events (click, double click,
mouse button down and up, mouse motion), keyboard
events, window events (moved, get into focus, loses focus,
resized), loading of a file is interrupted, the occurrence of an
error, button is pressed, user exits the page and so on. Error
handling is a strong feature of JavaScript and the designer can
make use of try, throw and catch statements. Object oriented
programming is also supported; in addition to the built-in
JavaScript objects, it is also possible to access and manipulate
all of the HTML DOM objects with JavaScript such as
Document, Frame, Table, Image, Button, and so on.

To help designers writing compatible code for all browsers,
JavaScript allows browser detection, such that particular code
can be written for specific browsers. Creating and updating
cookies and data validation such as checking whether or not
an email is valid can also be performed in JavaScript before
forwarding to a server. It is also possible to create animated
images by setting events to load different images as the user
hover the mouse over the page. Similarly, one can create an
image map with several clickable areas on the image and
define event handlers to react to user input.

If one wishes to access resources residing on the client’s
machine (such as OpenGL) and display the outputs of the
computation using a web browser, a client-side programming
language would be a preferred choice such as JavaScript. If a
server-side language were to be used (such as ASP or PHP)
this would place undue load on the server and on the
network, resulting in performance degradation especially for
demanding applications such as 3D graphics. However, the
standard JavaScript language is not designed to interface with
OpenGL so that an extension is required; such an extension is
provided by WebGL.

C. The WebGL API

The Khronos Group defines WebGL as a cross-platform,
royalty-free web standard for low level graphics API based on
OpenGL [19]. A WebGL JavaScript application is defined
entirely within an HTML document that is loaded into a web
browser. In principle, all that a web designer needs is a text
editor to write WebGL statements. The WebGL interface
takes care of the communication with the client’s graphics

hardware through OpenGL libraries. The full power of the
underlying graphics hardware is thus, harnessed by WebGL
for a quality user experience.

Whereas WebGL does not specify file formats, current
trends to define 3D scenes use the COLLADA format [20],
which has been developed by the Khronos Group. COLLADA is
an open standard to facilitate the use and interchange of 3D
assets and its format is supported by all major content
creation applications including 3ds Max, Maya, SketchUp and
others. The problem of loading COLLADA files directly using
WebGL is that the programming soon becomes very complex,
as the developer needs to adapt to the file format and to
what COLLADA supports. A simpler, more useful and faster
solution is to load data that have been defined in JSON
(JavaScript Object Notation) format [21]. JSON is a text file
containing pairs of values in a specified order. These values
make up vertices, textures, indices, and so on.

If the 3D scene is very large with texture, animation and
other effects such as skinning, the JSON files may turn out to
be too large to be loaded in acceptable time frames. The
solution is still to convert to JSON and load those types of
assets from binary data that has been compressed. Such
solution is provided by Google through their O3D API [3],
which is a Java Script implementation on top of WebGL, thus
fully compatible with WebGL specifications.

D. The O3D API

The 03D can be seen as an extension to JavaScript
providing an APl for 3D graphics using standard event
processing and callback methods. Since it is not part of the
standard JavaScript specification it requires the installation of
a browser plug-in that is available for Windows, Macintosh,
and Linux platforms. O3D uses its own file format for
describing 3D scenes. The file has the extension tgz (tar-gnu-
zipped), which is a set of files that have been tarred (grouped)
together such that they can be handled as a single file and
then compressed using the GNU zip application. The specific
file format of O3D (with extension o03dtgz) requires the
original 3D scene to be defined in the COLLADA format.

V. |MPLICATIONS TO TEACHING AND LEARNING

Current technologies able to support interactive 3D
graphics suggest that WebGL will become the standard way
of delivering 3D contents to be visualized on a web browser
without the need for plug-ins. WebGL is a client-side
programming language based on JavaScript. The major
functional difference between standard JavaScript and
WebGL is that WebGL provides the necessary extensions to

communicate with the underlying OpenGL libraries. Thus,
OpenGL is the engine driving the 3D graphics, accessed by the
browser through WebGL constructs — an alternative option is
to access OpenGL through Google’s O3D API. Initially, Google
pushed its own technology but now it has aligned itself with
WebGL, so that O3D is simply a JavaScript extension that
operates on top of WebGL.

Any higher education institution planning to deliver
learning content that requires interactive 3D graphics needs
to consider current trends. It is clear that there will be a
demand for programmers with OpenGL and WebGL skills.
Therefore, a programme of studies should include the
teaching of OpenGL followed by WebGL. It is also clear that in
order to follow this path, students will be required to have a
good mathematics background together with C programming
skills. Here there is an opportunity to develop specialized
courses perhaps at MSc level to address those requirements.

From the point of view of Museums Sheffield, the 3D
models generated by this project have significant value to the
Museums’ learning offer. They have allowed the creation of a
bank of pre and post visit resources for schools, college and
HE groups. The models can be used to further investigate the
objects back in the classroom, and act as an aide memoire for
students. The resources provide a sustainable model for
access as learners are effectively given access to objects
without requiring facilitation by museum staff. This is hugely
important at a time when museums are critically
underfunded and the future provision of learning activities
remains in doubt. Virtual objects enable an infinitely
repeatable leaning experience by allowing detailed remote
examination of objects, with no detrimental effect to the
condition of the artefact. The models provide rich source
material to support talks and workshops for informal
learners, offer study sources for art, design and technology
students, and offer inspiration for practitioners in the
decorative arts. Crucially the techniques used here can
provide a minutely accurate version of real objects in line
with current state of the art in 3D object models.

VI. CONCLUSION

A major concern of our approach has been public
accessibility and the project has been driven by the need for
universal access. We have considered a number of candidate
technologies including OpenGL and WebGL. We have focused
on full interactive 3D models and discussed how the WebGL
solution contrasts with previous solutions such as flash
animations. The discussion in this paper is very timely as the
first specification of webGL has been released in March 2011
by the Khronos Group. The specification is supported by all

major players in industry including Mozilla, Google, and Apple
and it is likely to become the standard way of delivering 3D
content over the Internet with no need for browser plug-ins.
Concerning online access of resources represented by the
Metalwork Collection of Museums Sheffield its value has
been highlighted to the provision of the Museums’ offer.
Furthermore, it is clear that HE institutions have to address
the needs for teaching and training professionals in these
technologies.

ACKNOWLEDGEMENTS

This project is funded by the UK-JISC Rapid Digitization
Programme 2011.

REFERENCES

[1] M. Kormann, The Demise of Ancient Helike in 373BC: Analysis of
Archaeological and Environmental Evidence and Historical Records,
Certificate in Archaeology, The University of Hull, May 2003.

[2] OpenGL. The Industry’s Foundation for High Performance Graphics,
http://www.opengl.org/

[3] O3D: WebGL Implementation of O3D, http://code.google.com/p/03d/

[4] M.A. Rodrigues and A. Robinson, Novel Methods for Real Time 3D facial
Recognition, in Strategic Advantage of Computing Information Systems
in Enterprise Management, Majid Sarrafzadeh and Panagiotis Petratos
(Eds) ISBN: 978-960-6672-93-4, p169—180, 2010

[5] W. Brink, A. Robinson and M.A. Rodrigues, Indexing Uncoded Stripe
Patterns in Structured Light Systems by Maximum Spanning Trees,
British Machine Vision Conference BMVC 2008, Leeds, UK, 1-4 Sep.
2008.

[6] M.A. Rodrigues, A. Robinson and W. Brink, Fast 3D Reconstruction and
Recognition, in New Aspects of Signal Processing, Computational
Geometry and Artificial Vision, 8th WSEAS ISCGAV, Rhodes, p15-21,
2008

[77 M.A. Rodrigues, A. Robinson and W. Brink, Issues in Fast 3D
Reconstruction from Video Sequences, Lecture Notes in Signal Science,
Internet and Education, Proceedings of 7th WSEAS International
Conference on MULTIMEDIA, INTERNET and VIDEO TECHNOLOGIES
(MIV ’07), Beijing, China, September 15-17, pp 213-218, 2007

[8] M.A. Rodrigues, A. Robinson, L. Alboul, W. Brink, 3D Modelling and
Recognition, WSEAS Transactions on Information Science and
Applications, Issue 11, Vol 3, pp 2118- 2122, 2006.

[9] Faro Arm http://www.faro.com/uk.aspx

[10] M.A. Rodrigues and A. Robinson: Developing Interactive 3D Models for
E-Learning Applications, In M.T. de Mello, C.Z. Carvalho Neto, and F.J.
Spanhol (Eds) "Hipermidias Interfaces Digitais em EAD", Editora
Laborciencia Ltd, Sao Paulo, 2009, pp 155-175

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

M.A. Rodrigues and A. Robinson: 3D Post Processing Methods for Web
Based Integration, Invited Keynote Speaker at ICBL 5th International
Conference on Computer Blended Learning, 5-7 November 2009,
Florianopolis, Brazil

CNET News. Mozilla, graphics group seek to build 3D Web.
http://news.cnet.com/8301- 17939 109-10203458-2.html, 24 March
2009

AJAXIAN News. 3D Canvas in Opera. http://ajaxian.com/archives/3d-
canvas-in-opera, November 2007

AJAXIAN News. 2009. O3D: Google releases 3D APl in a Browser plug-in.
http://ajaxian.com/ archives/o3d-google-releases-3d-api-in-a-browser-
plugin 21 April 2009

The Khronos Group, Media Authoring and Acceleration
http://www.khronos.org/

JOGL, 2009. Java Bindings for OpenGL APl. The JOGL API Project
https://jogl.dev.java.net/

JavaScript Tutorial, 2011. W3Schools Online Web Tutorials.
http://www.w3schools.com/js/default.asp

JavaScript Source, 2011. The JavaScript Source,
http://javascript.internet.com/

WebGL: OpenGL ES 2.0 for the Web. http://www.khronos.org/webgl/

COLLADA. Digital Asset and FX Exchange Schema, https://collada.org
[JavaScript Tutorial, 2009] W3Schools Online Web Tutorials,
http://www.w3schools.com [JavaScript Source, 2009] The JavaScript
Source, http://javascript.internet.com/ [JOGL, 2009] Java Bindings for
OpenGL API. The JOGL API Project https://jogl.dev.java.net/

JSON Java Script Object Notation http://json.org/

