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Abstract

We discuss traffic patterns generated by swarms of robots while com-
muting to and from a base station. The overall question is whether to
explicitly organise the traffic or whether a certain regularity develops ‘nat-
urally’.

Human driven motorized traffic is rigidly structured in two lanes. How-
ever, army ants develop a three-lane pattern in their traffic, while human
pedestrians generate a main trail and secondary trials in either direction.

Our robot swarm approach is bottom-up: designing individual agents
we first investigate the mathematics of cases occurring when applying the
artificial potential field method to three ’perfect’ robots. We show that
traffic lane pattern will not be disturbed by the internal system of forces.
Next, we define models of sensor designs to account for the practical fact
that robots (and ants) have limited visibility and compare the sensor
models in groups of three robots. In the final step we define layouts of a
highway: an unbounded open space, a trail with surpassable edges and a
hard defined (walled) highway.

Having defined the preliminaries we run swarm simulations and look
for emerging traffic patterns. Apparently, depending on the initial situ-
ation a variety of lane patterns occurs, however, high traffic densities do
delay the emergence of traffic lanes considerably. Overall we conclude that
regularities do emerge naturally and can be turned into an advantage to
obtain efficient robot traffic.

Keywords:Swarm robotics; sensors and visibility; traffic patterns; traffic flow.

1 Introduction

In this paper we discuss the traffic generated by swarms of robots. The research
is part of a larger project (Penders et al., 2011), which aims to operate a swarm
of autonomous robots. The project’s swarm approach is bottom-up (Crespi
et al., 2008): we design individual agents and than look for the resulting or
emerging group behaviour patterns.

Our robot swarm is designed to survey and inspect an industrial area, for
instance a warehouse. The typical size of a warehouse is (400 × 100)m2, these
dimensions certainly require a large number of robots. Our swarm consists of
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homogeneous and autonomous robots; within the swarm the robots are anony-
mous, this means that the robots are able to recognise another robot as a robot
but they cannot identify other robots as a particular individual with a unique
name. The swarm will be able to operate in several autonomous modes. In the
basic mode the robots navigate on their own and do not communicate, but just
react to each other’s behavior; it is a decentralised swarm (Kazadi, 2009). This
non-communicative1 mode of operation is the subject of this paper.

An additional communicative mode might complement the basic mode to
allow ’higher’ level cooperation, for instance coordinated navigation. How-
ever, the swarm is intended to be applied in a warehouse, the racks of which
form a dense lattice of metal joints, moreover the racks might be packed with
tins, cans or other metal based packagings. Thus, the reception of wireless
signals is very variable and communication failures are to be expected. The
non-communicative mode has to function as a fall back provision in case com-
munication links fail. Moreover, this mode will also be applied to make the
robots search for a (wireless) communication signal when connectivity is weak
or is lost. The non-communicative mode is therefore essential to the robot
swarm.

Our interest is in what we call swarm traffic: the robot traffic generated by
a large swarm of homogenous robots. The robots are shuttling between a home
or base station and their actual job, for instance to recharge their batteries.
We call the traffic leaving the base station outbound, and the returning traffic
inbound. As there will be quite some traffic up and down the central pathway,
we call this the highway. We are particulary interested in how the robot traffic
will develop on the highway. The aim is to obtain a reasonable throughput of
the swarm traffic; the research question is whether we should organize the robot
traffic explicitly or whether a certain regularity develops ‘naturally’.

Obviously, on a chaotic highway the robots might loose much time avoiding
each other and make little progress. The obvious paradigm of organized traffic
is human driven motorized traffic, which is based on a rigid division of the road
into a left and right zone, each with one-way traffic. In contrast to motorized
traffic, human pedestrians find their way generally without any zonal distinction
being imposed. In a crowded area, for instance a shopping center or an airport,
human pedestrians generate a ‘natural’ or non-planned trail structure of a main
trail in either direction and one or several secondary trails (Helbing et al., 2001).
A remarkable ‘in between’ traffic pattern has been found with army ants. The
ants follow a trail set out by their nest mates. Couzin and Franks (2003) report
that during their overnight raids the main trail of the army-ants develops into
a three-lane highway, in which the outbound ants utilize the outer lanes whilst
the inbound ants travel on the inner lane.

The paradigm from the ants world is quite interesting. Ants have very lim-
ited brains, and are not supposed to be able to mentally overview the road and
the traffic. The assumption is that they individually apply low-level behav-
iors that happen to lead to particular group behaviors of which the three-lane
traffic pattern is an example. Our robot swarm is similar in that the robots
also individually decide on their behavior, without having any overview. The
point to investigate is whether group behaviors occur and whether our swarm

1Our robots do not leave signs or traces behind that could be picked up by fellow robots,
therefore we do not use the term stigmergy, though some authors loosely define stigmergy so
as to include our robots’ behavior, refer for instance to (Beni, 2005).
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of robots will develop certain traffic patterns. We start with using ‘perfect’
robots equipped with unlimited sensor systems and than, based on Couzin and
Franks (2003) we implement ant inspired sensor models and a trail following
mechanism to obtain robots that reflect certain ant characteristics. Thus we
will also gain insight into whether our model captures the full mechanism that
makes the army ants develop the three-lane pattern.

When studying emerging traffic, we assume that the highway is already
defined: we are not concerned about how the trail was carved out. Thus, al-
gorithms such as Ant Colony Optimization(ACO)(Dorigo and Stutzle, 2004) or
Particle Swarm Optimization (PSO) are beyond our scope. Moreover, according
to Beni, the study of these algorithms is not part of swarm robotics (Beni, 2005).
To control the robot swarm, we apply the artificial potential force field method,
which was introduced by Krogh (1984) and refined in Khatib (1986). Exposi-
tions of the method aiming at motion planning can be found in Latombe (1991)
and Lee (2004). However, a robot swarm shows very dynamic behavior for
which motion planning is not apt. In biological simulations often self-propelled
particle (SPP) (Buhl et al., 2006) models are applied. Whereas the potential
fields originate from field descriptions, the SPP models focus on describing the
behavior of the individual agent, refer to the in biology often used (SPP) model
of Vicsek et al. (1995). However, the details of swarm behavior are not yet fully
understood, mainly due to the many parameters that may affect the behavior.
Moreover, because of the complexity and the dynamics of the resulting behav-
ior, swarm research usually restricts to generating outcomes of a general nature
and aims at concepts such as ‘formation control’ (Gazi and Passino, 2004b) and
‘clustering’ (Kazadi et al., 2003) or ‘gathering’ (Flocchini et al., 2005) behavior.

To simplify the formal study of swarm control, one often assumes that each
robot knows exactly the relative position of the other robots (Reif and Wang,
1999; Gazi and Passino, 2004a) and (Kazadi et al., 2003), we will say that in
this case the robots have perfect sensors. In this paper we use this simplified
context to explain the control model and we start with small groups for which
we proof some group properties using constructive geometrical methods.

We drop the assumption of perfect sensors when studying the impact of
variations in the sensor models. A robot observes its environment including
the other robots with sensors. Based on this information each of the individual
robots makes navigation decisions. The sensors and the design of the sensor
system as a whole determine the type and quality of the information and there-
fore have a considerable impact on the swarm behavior. Flocchini et al. (2005)
note that concerning variations and limitations of sensor systems, only few the-
oretically founded results are known and many interesting directions remain
open. In our simulations each robot is treated as an individual agent with its
own particular sensor system and decision making unit. We apply a variety of
sensor systems, ranging from unrestricted perfect sensors to coarse and short
ranged sensors.

The paper is organised as follows. In Section 2 we first discuss the control
model, that is, the mathematical equations governing the robots and the swarm.
We relate our model to the model of Reif and Wang (1999) and the more recent
models of Gazi and Passino (2004a) and Gazi and Passino (2004b). For robots
with ‘perfect’ sensors we proof two special situations observed by Penders et al.
(1994). We use these situations in Section 3, where we introduce and evaluate
the impact of limitations of the sensor systems in a group of three robots. Thus,
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having set a background, we proceed with large groups and swarms. In Section
4 we define the highway and discuss simulations of robots traveling in strings.
These simulations yield upper bounds for the expected traffic flow. In Section
5 we explore our main topic which is the generation of traffic patterns. We
discuss traffic simulations in open space as well as in bounded space (i.e. a
road). Moreover, we look at sparsely occupied and quiet roads as well as at an
overcrowded highway.

2 The control model

The artificial potential field method is often used for controlling a robot swarm,
refer to Gazi and Passino (2004b) for a modern description. As the name in-
dicates, this method focuses on describing the potential field(s) in which the
robots are to operate. Biological simulations often apply the self-propelled par-
ticle (SPP) models Vicsek et al. (1995). Similar to the model in Penders et al.
(1994), the SPP models focus on describing the behavior of the individual agent;
basically the two approaches are equivalent and can describe the same control
models. The two approaches are some times referred to as Gaussian (integra-
tive field based) and Lagrangian (individual based) (Parrish and Hamner, 1997).
The advantage of the individual based SPP approach is that it is intuitive for
empirical studies to observe individuals and build up a multiple agent system or
swarm by adding individuals. In this paper we will follow the individual based
approach.

Each robot a calculates a force
−→
Fa, which is the generator of the new velocity

vector of the robot. In its general form the control model depends on four terms:

−→
F a =

∑
g∈G

−→
EA(g,a) +

∑
o∈O

−−→
ER(o,a) +

Sw∑
r 6=a

−→
IA(r,a) +

Sw∑
r 6=a

−→
IR(r,a) (1)

The first two terms represent the external influences;
−→
EA(g,a) is the attraction

of goal g on robot a and
−−→
ER(o,a) is the repulsion caused by the obstacle o ∈ O

on robot a. The second pair of terms in (1) consists of the internal forces,
which originate amongst the robots in the swarm Sw. They are the attraction−→
IA(r,a) and repulsion

−→
IR(r,a) between any swarm member r and robot a. The

attraction points directly towards the source object and the repulsion points into
the opposite direction, away from its source. Obviously, if we consider a to be a
point and let it range over the two dimensional plane, each of the terms in (1)
but also the terms together generate particular potential force fields, depending
on the functions applied in the terms. Usually, the functions for attraction

and repulsion are chosen such that on large distances the attractions
−→
EA and−→

IA dominate while on short distances the repulsions
−−→
ER and

−→
IR dominate.

The internal attraction
−→
IA(r,a) and internal repulsion

−→
IR(r,a) are sometimes

called the artificial social potential functions (Reif and Wang, 1999), as their
combination induces coherence in the swarm. At a particular distance internal
attraction and repulsion balance; this is called the equilibrium distance (Reif
and Wang, 1999). Note that if only internal attraction applies but no repulsion,
the robots will chase each other; if only repulsion applies the robots will disperse
(Penders et al., 1994).
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To introduce our simulation model, we first specify the internal force system.
We also fix a linear unit of distance, to which we refer simply as a unit. Swarm
cohesion is not sought for in our application, thus we set the internal attraction−→
IA to zero. Contrary to Reif and Wang (1999), our swarm consists of anonymous
robots and the robots react the same to any other robot thus the magnitude of
the internal repulsion depends only on the distances between the robots:

‖
−→
IR(ab)‖ = 1/dist(a, b)

2
; with dist(a, b) being the Euclidean distance. (2)

The robots are homogeneous, thus:

−→
IR(ab) +

−→
IR(ba) =

−→
0 ; a, b ∈ Sw (3)

The function applied in equation (2) does influence the detailed behaviour
of the swarm of robots, however our main results discussed below apply on any
function as long as the function is differentiable and the same for each robot.
Equation (3) however is crucial in our proofs below. We define the external

repulsion of objects
−−→
ER(o,a) for o ∈ O, a ∈ Sw similar to the internal repulsion,

but since we want objects to have only a local influence, we restrict the range
of their influence:

‖
−−→
ER(o,a)‖ = 1/dist(o, a)

2
, if dist(o, a) <= 3, (4)

= 0, elsewhere.

For the external attraction
∑−→
EA(g,a) equation (1) allows many variants. In

this paper the magnitude of the attraction is the same for all robots at every
point of the plane (we discuss some variations in section 5) :

‖
∑
g∈G

−→
EA(g,r)‖ = ‖

∑
g∈G

−→
EA(g,s)‖ = 0.5×maxspeed = constant; for all p ∈ R2; r, s ∈ Sw.

(5)
Within this constraint we consider three different cases; the basic cases are:

(i) each robot has one single goal and the direction of the attraction varies with
the position of the robot relative to the goal; (ii) each robot has a fixed travel
direction meaning that the direction and the magnitude of the attraction are
fixed and the same for all points in the plane; the third case (iii) applies for
trail following robots, on the trail the attraction has a fixed direction as in
(ii) while off the trail the attraction points back to the trail. Case (iii) is a
multiple application of (ii) in that directions vary for different sections of the
plane, we discus this in more detail below in Section 3. Though we apply only
these relatively simple cases other variants may, for instance, include: a set of
multiple goals, or models in which the external attraction is determined by a
non-constant function assigning values to the points of the plane refer to Gazi
and Passino (2004a,b). When, as mentioned in the introduction, our swarm is to
search for a wireless communication signal the attraction is determined by the
signal strength and the function representing this strength will not be trivial.

The distinction between the internal and external attraction and repulsion
is essential for understanding the behavior of the swarm. A force system may
have invariant points, invariant points depend on the functions applied and may
differ considerably. As Penders et al. (1994) and Gazi and Passino (2004a) show,
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the distance dependent internal forces defined by equation (2) above have the
centroid of the swarm as an invariant point. In other approaches, for instance
Baldassare et al. (2002), the centroid is used as the main reference point for
formation control. However, often robots are not capable of distinguishing be-
tween obstacles and other robots, whereby the distinction between internal and
external repulsion is blurred, and the robots only perform collision avoidance
(Khatib, 1986).

As said at the beginning of this section the force
−→
Fa resulting from equation

(1) is the basis for generating the new velocity vector of the robot. Reif and

Wang (1999) note that there are many ways to transfer the force
−→
Fa into a move-

ment/displacement of the robot. In our simulations, if the force sum at time

point t is
−−−→
F(a,t) and robot a is at position x(a,t) the displacement is calculated

as:
x(a,t+1) = x(a,t) + (

−−−→
F(a,t)/‖

−−−→
F(a,t)‖) ∗min(‖

−−−→
F(a,t)‖,maxspeed). (6)

Equation (6) does not account for the dynamics of a real robot. Gazi (2005)
therefore calls such models kinematic models for swarm behavior. As in our
studies, they are aimed to be used for proof of concept studies. Introducing the
full dynamic behavior of a real robot into a simulation brings a heavy computa-
tional load with it, an approximation is proposed in Gazi (2005). Similar to our
approach in equation 6, simulations of biological system usually do not account
for the dynamics of bodies, refer to Vicsek et al. (1995). In their ant traffic
simulations Couzin and Franks constraint the movements of ants by applying
an empirically determined maximum turning rate and maximum acceleration
(Couzin and Franks, 2003).

2.1 Basic cases

Three robot systems are analysed in Penders et al. (1994) and Penders et al.
(2004). The analysis is based on a simplification of (1) in which internal at-

traction
−→
IA is absent and each robot has only a single goal G, refer to (7); the

attraction of the goal is defined as in equation (5). The papers investigate cases

where external attraction
−→
EA and internal repulsion

−→
IR either are in or close

to an equilibrium. We recall these cases as they illustrate some of the afore-
mentioned statements and they also provide a good basis to evaluate sensor
models.

−→
F a =

−→
EA(G,a) +

Sw∑
r 6=a

−→
IR(r,a) (7)

The internal force system. Typically for the system of internal forces:

Observation 2.1. The centroid of the robots (CentR) is an invariant point ((Pen-
ders et al., 2004),(Gazi and Passino, 2004a)).

Observation 2.2. If the group of robots are not on the same line, then the inter-
nal repulsive forces make the robots move towards a position in an equilateral
triangle, while the centroid CentR does not move (Penders et al., 2004).

In Alboul et al. (2008) observation 2.2 is extended to larger groups and shows
that one or more equilateral polygon(s) are formed.
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The external force system. Forced by the external attraction the whole robot
team moves, meaning that the centroid CentR moves. The system of external
forces may also have invariant points. Provided that the goals are in a general
position and form a general triangle (angles < 120◦) and none of the goals Ga,
Gb and Gc coincide or are on the same line Penders et al. (2004) prove:

Observation 2.3. At the Steiner point of the triangle of goals, the sum of at-

tractions
∑Sw

r

−→
EA(G,a) =

−→
0 and the Steiner point is the unique invariant point

for the attraction.

To study the dynamics of a robot team, the points of particular interest are
those where an equilibrium occurs between the internal and external system,
usually because the repulsive and attractive forces cancel out against each other.
A simple example for a two robot systems is shown in figure 1. In the upper
part two robots have a head-on encounter and at a certain point the attraction
equals the repulsion causing the robot to come to a stand still, defined as a
‘Balanced conflict’ in (Penders et al., 2004).

Figure 1: Upper part, a two robot encounter on one line, the repulsion cancels
out the attraction; Lower part, slightly off the line small side way forces result;
figure is not scaled.

The case for a three robot team is analysed in (Penders et al., 2004), it shows
that in a balanced conflict the three robots form an equilateral triangle while the
centroid CentR coincides with the Steiner point of the goals and moreover the
CentR is on the base lines through [Gri , r], for all robots. This type of balanced
conflict is a particular case of a larger class of turning conflicts. Figure 1, lower
part shows an example of two robots that will turn aside to pass each other.
Below we recall from Penders et al. (2004) the case for three robots. We note
that the case can be generalized to teams of n robots and n goals.

Lemma 2.1. (Turning Conflicts of 3 robots) A conflict, in which the goals
and the robots form equilateral triangles and the centroid CentR coincides with
the Steiner point of the goals, but in which the robots are not situated on the base
lines [Gri , Steinerpoint], is not a balanced conflict, moreover while the conflict
is evolving, the robot-team will turn.

Figure 6 shows an example of lemma (2.1), we use the case below to evaluate
the impact of the sensor model. Note that the balanced and turning conflicts
require that the robots are inside the triangle (hull) formed by the goals. For the
traffic simulations we also apply equation (5) but define a fixed travel direction
for the robots (above discussed as case (ii)); thus in the traffic simulations the
robots are relatively close but the goals are far away on one side of the robot
team.
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Lemma 2.2. (Far-Away Goals) Assume that the goals of the robots are in-
finitely far away, though all situated in the same direction. Moreover, assume
that two robots (a and c) are on a line orthogonal to the direction of the goals,
and the third robot (b) is between the course of the robots (a and c) to their
goals, (refer to figure 2) then three cases are possible:

1. Case a: if all three robots are on the same line l (as shown in figure 2),
they proceed towards the goals while remaining on a line parallel to the
initial one.

2. Case b: assume that robot b is a little behind, then b will always remain
behind the line connecting a and c.

3. Case c: assume that robot b is ahead, then b will always remain ahead of
the line connecting a and c.

Figure 2: Three robots on one line, goals infinitely far away; the forces are
sketched (not scaled).

Proof case a. Easily understandable from figure 2. All repulsive forces work
in directions parallel to the line formed by the robots, and have no component
in the directions of the attractive forces. Remark, robot b will tend to a position

just in the middle between a and c, so that
−→
IR(b,a) equals

−→
IR(b,c).

The proofs for cases b and c are similar.

Proof case b. The repulsive forces
−→
IR(b,a) and

−→
IR(b,c) have a non-zero

component, pointing into the direction opposite of
−→
EA(b), whereas

−→
IR(a,b) and

−→
IR(c,b) have a component adding positively to

−→
EA(a) and

−→
EA(c).

Proof case c. The repulsive forces
−→
IR(b,a) and

−→
IR(b,c) and have a non-

zero component adding positively to
−→
EA(b), whereas

−→
IR(a,b) and

−→
IR(c,b) have a

component pointing into the direction opposite to
−→
EA(a) and

−→
EA(c). This ends

the proof of Lemma 2.2.

Corollary 2.3. Under the conditions of Lemma 2.2 case a, the robots disperse
along a line parallel to the line l.

Proof Straightforward from the proof of case a.

In the traffic simulations we will also have robots with goals in opposite
directions (inbound versus outbound robots) as shown in figure 3, where robot
b encounters robots a and c. If robot b is on the bisector of a and c it will slow
down, but not deviate from its course, as is clear from the forces working on
robot b. Robots a and c will turn aside to the left and right respectively. If robot
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b is not on the bisector but also not encountering any of the other two head-on,
that is on the base line of the attractive forces, robot b will tend towards the
bisection. Argumentation as in case a above.

Figure 3: Two robots on a line orthogonal to the direction of their goals, en-
countering a third robot traveling in the opposite direction

Furthermore, the traffic simulations will deal with two groups of robot, again
with the directions of the goals parallel but opposite. One row of inbound robots
may encounter a row of outbound robots, refer to figure 4. Combining the above
insights for this situation we can predict the following. If the rows are infinitely
long and evenly spaced and the robots are positioned on the bisectors between
individuals of the other group, each row will slow down but they will not adapt
their respective courses. If the opposite group is not strictly on the bisector but
also no individual is encountering any of the opponents head-on on the base
line of the attractive forces, each individual will tend towards the bisection of
its direct opponents.

Figure 4: Two rows of opposed robots

In the sections below we will be looking for lane patterns in the traffic of the
robot swarms. The mathematical considerations of the current section indicate
some important issues in advance of that discussion. The major suggestion is
that if no head-on encounters occur between the opposed groups of (inbound
and outbound) robots, any existing lane pattern will be preserved.

3 Sensors

The control model (1) is often applied such that all robots have perfect knowl-
edge about the whereabouts of all other robots (refer to Gazi and Passino
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(2004a) and its references); such robots have perfect sensors. However, real
sensor systems are usually limited, and their limitations reflect on the behavior
of the robots and the swarm.

Below we discuss swarms of robots with limited visibility; i.e. each robot ob-
serves its surroundings no further than a fixed range or distance ρmax. With re-
gard to the control model, the restricted visibility results mathematically speak-
ing into partitioning the space into bounded regions, which brings our model
closer to the models arisen in discrete mechanics (Baez and Gilliam, 1994).

Figure 5: Standard 8 sector sensor (left); Ant-sensor (middle); Shifted (right);
not to scale.

Our robots are equipped with sector sensors; these are sensors that scan
the environment in circle sectors, equally spread anti-clockwise over the 360◦

field, refer to figure 5 (left most drawing). Though the number of sectors is
variable, in most simulations eight sectors are applied such that each covers π/4
or 45◦. The front and backsides of the robots are fixed. The first sensor sector
starts at the back of the robot from the line through the center of the robot.
When an object is spotted in a sector, only the closest distance is measured
and used to calculate the repulsive force (equation (2)) with an orientation
along the bisection of the sector. In reality (and in our simulations) robots
have an extension, thus the sensors might spot another robot in more than one
sector. We also note that because of the limited and coarse sensors, situations
as described in lemma 2.2 apply in swarms of any size. If n robots are close
to be on one line cases a to c may apply to each triple of neigbouring robots.
However, the conditions to these cases do not concern the exact positions of the
robots but their representation by the sensor system of the other (observing)
robots. The sector design also results in a particular discrete representation of
a wall. For each sector, the sensor system computes only the distance to the
nearest point of the corresponding parts of the wall, and represents that part of
the wall by the distance along the bisection of the sector. Therefore, our robots
’perceive’ the wall as a finite number of discrete objects (wall sections), and not
as a continuous object. Note that a suitable set of point obstacles may generate
the same representation.

The sensors have a range limit usually set to 15 units, beyond which nothing
is observed. Robots equipped with the eight sector sensors and with all sen-
sor sectors set at the same limit, are for convenience referred to as standard
robots. However, the range of the sensor may be varied per sector, allowing to
define what we call ant sensors which model the senses of ants following the
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Figure 6: Turning conflict of robots with ant-sensors, standard robots, and
robots with perfect sensors. Open circles represent the current positions of the
robots; the full trail for each type of robot is shown.

description in Couzin and Franks (2003). Referring to figure 5 (drawing in the
middle) the front two sectors (numbers 4 and 5) are retained at the full range (of
15 units) while the ranges of all others is reduced to 3 units only. The two front
sectors represent the area covered by the antennae of an ant. The close range
sectors cover the body and the legs of the ants. We deviate from the model
of Couzin and Franks (2003) only in that the ratio between the larger and the
close range sectors is 5; in the original model the ratio is just 2. The close range
sectors should not be omitted: without them two robots may move side by side
at close distance without noticing each other, and any small sideways reaction
would make them collide.

We try the sensor models with groups of three robots situated in a turning
conflict, as described in lemma (2.1). The first group consists of robots with
perfect sensors, for this group the mathematics of the previous section applies
straightforwardly. The second group are standard robots, and the third consists
of robots with ant sensors. The simulations are shown in figure 6. The typical
difference in the behavior of these groups is that the robots with perfect sen-
sors show smooth courses, whereas the standard robots show abrupt changes.
The abruptness is due to the fact that the sensor system introduces coarse-
ness: it represents any object as if positioned on the bisection of the sector.
The robots form an equilateral triangle, however their courses are not on the
baselines [Gr, EPG] (it is a turning conflict). Thus when getting close enough,
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the robot on their left side appears suddenly in a second sensor sector inducing
considerable repulsion. The ant sensor has only two sector and this effect will
not occur, these robots end up in a balanced conflict (refer to the trails of dots
in figure 6, note that the current positions (open circles) are on the straight
lines formed by the trails).

4 The Highway

We are to explore the generation of traffic patterns on a highway, where all
robots are given a fixed traveling direction. We deal with two groups traveling
in parallel but opposite direction, representing a group of inbound and a group
of outbound robots, also referred to as north-bound and south-bound2.

In (Couzin and Franks, 2003) army ants are described, basically the ants
do follow a trail. In order to model ants we implement also trail following.
Thus we can define our ant robots as robots that have ant sensors and that
apply trail following. However, as corollary 2.3 and the discussion following it
states, in open space the internal repulsion will cause our standard robots to
disperse, refer also to Penders et al. (1994); figure 7 shows a simulation3. To be
able to observe the behaviour of standard robots on the same space as the ant
robots we define a bounded highway. Having defined a highway we explore the
characteristics of robot traffic in predefined lanes. Obviously there will be quite
some similarities with human driven motorised traffic. Since we are dealing
with robots we can manipulate the traffic in detail, thus we obtain criteria to
evaluate the swarm traffic in the next section.

4.1 Trail and trail following

Natural ants follow a trail of pheromone, created as the ants deposit pheromone
while travelling. Newly arriving ants follow trails carved out by some explorer
and also deposit pheromone. The concentration of pheromone increases with
ants passing, but it also diffuses. Trail forming is extensively studied in Ant
Colony optimisation (refer to Dorigo and Stutzle (2004)); however we are con-
sidering an established trail. Couzin and Franks (2003) note that for an intensely
used trail one can fix the pheromone concentration. Thus we simplify and de-
fine a uniform trail stretching from north to south, the width of the trail is
adjustable.

The robots are provided with a trail following mechanism; when the robots
are on the trail the direction of their goal is fixed to either north or south. Off
the trail, goal finding is adjusted to make the robots search for the trail. We have
imitated the policy of a natural ant. Ants have two antennae with which they
track the pheromone trail. When one of the antennae receives stronger input
(that is when it is closer to the trail) the ant turns into that direction to get
back to the trail (Couzin and Franks, 2003). Our trail robots behave similarly,
when off the trail they turn over an angle of (1/4π max) towards the trail. If
the robot’s orientation is orthogonal to the trail a random direction is selected,
again similar to a real ant (Couzin and Franks, 2003). Thus, off the trail the
north/southbound aspect is ignored; the result is that in the simulations when

2Full details of the simulations are given in section (4.3) below.
3From figure 7 onwards all figures have the same format, refer to section 4.3.
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Figure 7: Standard robots in open space with a trail drawn for reference only.
Simulation results in table 2, row 1.

off the trail the trail robots often display circular courses. Defining a trail and
implementing trail following allows for a ’softly’ defined highway.

4.2 Hard defined highway

We define a rigid highway layout by applying two outer walls to obtain a two
way road and if one-way lanes are required we add a third wall in the middle.
The two way road has a width of 16 units; the one-way lanes - figure 9 shows
the layout - have a width of 8 units. The robots are sensitive to static obstacles
only within a range of 3 units (equation 5), thus on the one way road there
remains a passage (2 units wide) where the robots are not subject to repulsion
from the walls.

4.3 Simulation details.

Below we discuss simulations with swarms of robots on the highway. We com-
pare the behavior of robots with full sector sensors as well as robots with ant-
sensors. Moreover the robots may apply trail-following. Therefore we have
basically three main types of robots:

1. Standard robots subdivided into

(a) Standard robots with the 8 sector sensors (figure 5, left)

(b) Standard robots with shifted 8 sector sensors (figure 5, right)
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2. Trail robots which apply trail-following, they are equipped either with

(a) the 8 sector sensors (figure 5, left) or

(b) with shifted 8 sector sensors (figure 5, right)

3. Ant robots equipped with ant-sensors (figure 5, middle) and applying trail-
following.

The highway, whether defined by walls or consisting of a trail, stretches from
y = −60 to y = +60. For convenience, we refer to the groups of robots as north-
bound and south-bound; north is towards the top of the screen y = +60 and
south downwards y = −60. When a robot arrives at the far end (surpassing
y = ±50) of the highway it is swapped back to the other end to simulate on-going
traffic, also in order to propagate the developing traffic pattern the horizontal-
position of the robot is retained in the swap operation, for instance a robot
ending at (0, 50) is swapped to (0,−50). However, to avoid projecting robots on
top of each other some variation had to be introduced in their new y positions
(this affects the speed calculations slightly). In the simulations the robots are
given a circular extension of radius 0.25 units.

In the simulations maxspeed = 1 unit/tick, thus a cruising speed of 0.5
units/tick results from equations 5, 6 and 7 if there is no repulsion. All our
simulations are based on a discrete time model. Given the position of the
robots at a time point t − 1, the situation at time point t is generated by
letting each robot observe t − 1 and calculate a course up to time point t,
as prescribed in equation (6). The conjunction of all these steps constitutes
the situation at time point t. Thus our simulations show time slices of what
can be considered a continuous evolution of our swarm, resulting in models
similar to discrete dynamic systems. The discrete model of time is a source
of abruptness as each robot makes a full step at a clock tick. To avoid that
a robot may jump onto (or over) another robot, we introduce a safety zone
sz = maxspeed+ 2× extension = 1 + (2× 0.25) = 1.5 units around the robot.
Thus the repulsion -refer to equation (2)- is implemented as:

‖~Rab‖ = 1/(dist(a, b)− sz)2. (8)

Note that the sensors and the control model are implemented without any
randomiser. The simulations with the standard robots are therefore fully deter-
ministic. In the trail following procedure a single random factor occurs when
a robot is off the trail and faces a direction perpendicular to the trail (refer to
the trial following procedure discussed above). However such occasions occur
rather seldom and in practice most of the simulations involving trail following
are deterministic as well and quite reproducible.

4.3.1 Swarm size and figure and table conventions

Swarm size. The simulations effectively use an area of 100 units length and a
variable but fixed width, the swarm size therefore characterises traffic density.
As explained below, the traffic strings can run at any density up to 2×66, as long
as the safety zones (sz = 1.5) are not infringed. We apply 2× 23 robots spaced
at 4 units. For the swarm traffic we run for each type of robot simulations with
swarms of various sizes. In the dense swarms of 52 robots the average distance
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between the robots is 3.7 units. The repulsion between robots equals the (0.5)
attraction of the goal at a distance of 2.9 units (equation 8). In the rather loose
swarms of 26 the average distance is 5.2 units resulting in a relatively weak
mutual repulsion of 0.07. To provide a feel of what happens between 26 and
52, we apply also swarms of intermediate sizes with 42, 37 and 22 robots. The
initial situations are described below in subsection 4.3.2.

Figures. Starting from figure 7 onwards all figures showing robot swarm
simulations follow the following conventions: the current position of each robot
is shown by a small open circle and the previous 8 positions are given as (a tail
of) dots. The titles above the plots, provide a short characterisation, for example
in figure 7 : ‘Open space...’; the name of the parameter file: ‘52robstad15’; and
the time points displayed, from clock tick ‘1192’ to clock tick ‘1200’. ‘Width’ at
the bottom indicates the width of the trail.

Tables. Not all simulations result in perfect lane traffic. In some simulations
huge jams occured which did not resolve in the duration of our simulations, the
tables indicate this by ’jam’: figure 14 shows an example. Typically some
individual robots do escape from the jams but at the same time new robots
get stuck. Even at clock tick 7200 the jam of figure 14 had not dissolved.
To project this to a human environment: our robots have a cruising speed of
0.5units/clocktick; 1m/sec is a reasonable speed for a pedestrian; so 7200 clock
ticks would resemble a 1 hour delay for human pedestrians.

As lemma 2.2 shows and the figures indicate, if no head-on encounters occur
the lane pattern will not change and is stable. In the tables the indication ‘ns’
stands for Non-Stable and means that a full division into lanes or zones has
not occurred yet and both groups still have head-on encounters with members
of the other group, refer to figure 8. Lane numbers with the addition ‘ns’, for
instance ‘3 ns’, indicate that distinctive lanes have developed but a few robots
(one or two) have not carved out a proper lane and continue having head-on
encounters.

4.3.2 Initial situations.

The positions from which the robots in the swarm start have a significant in-
fluence on the behavior of the swarm. Section 2.1 indicated that if no head-
on encounters occur between the opposed groups of (inbound and outbound)
robots, any existing lane pattern will be preserved. Also the string simulations
show that the strings might slightly deform, but the subdivision into two traffic
zones is preserved throughout the simulations; the simulations of table 1 rows
14-18 are allowed unlimited space, nevertheless all have the space divided into
two zones. This is no surprise: on a lane or zone the attraction is the dominant
force working either in the north or south direction (direction of the y-axis).
While in the east-west (x-axis) direction the traffic strings from the other group
generate a repulsive barrier. In order to investigate the influence of the initial
situation, we arrange several different situations in which the north and south
bound robots are uniformly mixed. They are placed within an area 10 units
wide, and the robots initially face directions unrelated to their destination with
for each group the sum of the orientation angles equal or close to a multiple of
2π. Three initial situations and the first 10 clock ticks are shown in figure 8.
The first clock tick is not part of the simulation but serves to give the robots
an initial direction; the situation at the second clock tick is the actual initial
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Figure 8: The first 10 clock ticks of swarms of 52 (left) and 26 (middle and
right) robots; the right most swarm of 26 is pre-arranged into (none straight)
lanes.
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situation.
The initial situation for the 52 robot swarm is shown on the left in figure

8. The robots are positioned such that in the horizontal direction
∑
xnorth =∑

xsouth = 0; while vertically
∑
ysouth = −

∑
ynorth = 70 both groups have

two robots extra at x = 35 for the south bounded and x = −35 for the north
bounded group. The situation is also composed such that each vertical line of
robots contains always both north and south bound robots, thus ensuring many
head-on encounters. As the figure shows this dense swarm initially bursts out
due to the repulsion amongst the robots, and at clock tick 10 only a few robots
are heading into the proper direction, quite distinct from the 26 robot swarms
shown in the middle and on the right in figure 8. The 26 swarm on the right hand
side is positioned such that in the horizontal direction

∑
xsouth = −

∑
xnorth =

15 and vertically
∑
ysouth =

∑
ynorth = 0; the initial situation includes four

lanes, two for each group. For the 26′ swarm in the middle, the ten robots in
the middle have swaped groups resulting into:

∑
xsouth = −

∑
xnorth = 9 and∑

ysouth =
∑
ynorth = 0. By breaking up the initial lanes we force head-on

encounters to occur.
The initial situation of 42 robot swarms is derived from the situation for

52 robots by deleting 10 robots around y = 0, resulting into:
∑
xnorth =∑

xsouth = 10; while vertically
∑
ysouth = −

∑
ynorth = 2. In addition, we

use swarms of 22 and 37 robots, their initial situations are roughly uniform but
slightly asymmetric.

4.4 Traffic strings

Before discussing emerging traffic patterns, we have a look at organised traffic
as this might deliver an upper bound for review and evaluation. In motorized
traffic, strings of cars are a feature of busy motor ways, and under the proper
conditions strings yield the highest throughput (Darbha and K.R., 1999), a fact
that is also true for pedestrian traffic (Young, 1999). Thus, string stability is a
wanted feature, in a stable string the spacing between vehicles remains nearly
the same (Darbha and K.R., 1999). However, car drivers are influenced by many
factors and vary their speed (and mutual distances) accordingly. In contrast, the
robots are homogeneous and behave identical in the same situation: all apply
the same control model and have the same maximum speed.

From the control model (1) it is clear that the behavior of the robots depends
mainly on their sensor system. Robots with perfect sensors in a string will be
sensitive to all robots to the front as well as those to their back. In a finite
string, the robots at the front of the string are subject to repulsion from the
many robots behind them and will speed up, the reverse is true for the ones at
the rear, they slow down or even might move backwards. Consequently, robots
with perfect sensors will neither form nor preserve a stable and equally spaced
string. Only when the string is infinitely long to both ends, it will be equally
spaced. Moreover, if no maximum speed is applied, the string might travel
at arbitrarily high speed, this is a problem noted for motor traffic simulations
(Darbha and K.R., 1999).

Our robots are restricted by a maximum speed and also their sensors are
limited. The standard robots are sensitive to what is happening in front as well
as behind them. However they are sensitive only to the nearest robot. Thus
when placed in an equally spaced string with front being the nearest robot in
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Figure 9: Strings of standard robots on two one-way lanes, trail drawn for
reference only. Note the zigzag pattern. Simulation results in table 1, row 1.

front and back the nearest at the back we have for all robots r except the first

and the last one:
−→
IR(front,r) +

−→
IR(back,r) = 0. As a result, within a string only

the external attraction (
−→
EA) is effective, which is constant and the same for

all robots. Thus we may expect to generate a nearly stable string moving at a
constant speed equaling the cruising speed of 0.5 units/tick. The cruising speed
results from equations 5, 6 and 7 if there is no repulsion. However, as figure 5
shows, the edges between sensor sectors 4 and 5, and 1 and 8 coincide with the
orientation of the string of robots. When running simulations, small rounding
errors cause disruption of the strings and the robots will form a zigzag string,
refer to figure 9. This can be compensated for by shifting the sectors over an
angle of 1/8π as shown in the right most drawing in figure 5; thus sector 5
becomes the front facing and sector 1 the rear facing sector. When in a string,
these robots remain in a nearly straight line, refer to figure 10. The ant-sensors
do not allow the sensor shift; as a consequence the ant robots always tend to a
zigzag string.

4.4.1 String simulations.

The string simulations start from an initial situation in which each group of
robots is lined up at (x = −4) for the northbound and (x = 4) for the south-
bound group, mutual spacing within the groups is 4 units. The trail robots and
the ant robots by definition do not require the outer walls to remain on the trail.
It is nevertheless interesting to evaluate their behavior when the two groups are

18



Figure 10: Strings of trail robots with shifted sensors on two one-way lanes.
Simulation results in table 1, row 7.

separated by a wall in the middle. For comparison all possible configurations
are tried: the one way lane structures with three walls and one wall as well as
the two way lanes marked of by two outer walls and open space. Table 1 shows
the resulting average speed of the robots in the string simulations. In the first
block of simulations (rows 1-5) the layout of the highway is as in figure 9, in the
second block (rows 6-8) the layout is as in figure 10, the third block’s (rows 9-13)
layout is that of figure 13 and the last block of simulations (row 14-18) uses open
space, refer to figure 7. Most patterns settle before 600 clock ticks, therefore the
average speed between 600 and 1200 is given separately. The simulations involve
46 robots and their cruising speed is 0.5 units/tick. The standard robots’ speed
of 0.496 is close (99%) to the cruising speed (refer to row 1 in table 1) a little
bit of the speed is lost as the robots incidentally get too close to the walls (refer
to figure 9). The swarms of robots with shifted sensors loose some speed as the
last robot at either end is for a period (until the next robot is placed behind)
susceptible to repulsion only (refer to figure 10). Nevertheless, these robots are
considerably faster than the ant robots, the latter travel at only 0.395 (or 79%
of the cruising speed) in the best configuration (row 13 in table 1). The reason
is that the ant robots do not observe the robot behind themselves (refer to the
difference in sensor ranges shown in figure 5 middle), thus while the external

attraction
−→
EA is constant, the repulsion

−→
IR(front,a) reduces their speed.
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Table 1: Average speeds of strings at several clock ticks. Layouts of the highway
are: rows 1 to 5 as in figure 9; rows 6-8 lay out as figure 10; rows 9-13 as in
figure 13 and rows 14-18 as in figures 7 and 8

5 Swarm Traffic

The previous section dealt with simulations of traffic in prearranged string pat-
terns. In this section we explore whether any patterns emerge naturally, or in
other words whether and how the swarms themselves organize the traffic. Doing
so we also have a look at how well the swarms perform using these patterns.
The results obtained for string patterns (table 1) provide an upper-bound for
the throughput or flow on the highway. Despite the expectation that lanes are
less efficient than strings, lane patterns are better then unorganized traffic. As
discussed above in we apply three types of robots: standard robots, trail robots
and ant robots. For each type of robot we run simulations with swarms of var-
ious sizes. The swarms and the highway and trail are described in subsection
4.3 above.

5.1 Lanes in open space

We first explore the traffic of standard robots in open space. The swarms
develop several lane patterns refer to the table 2. The swarm of 52 standard
robots (row 1 of table 2) generates four lanes or one way zones as shown in
figure 7. The swarm of 52 robots with shifted sensors develops two major lanes
and three additional lanes are utilised by one and two robots only. The swarm
of 42 robots with shifted sensors happens to create a six lane pattern with in the
lanes from left to right 3, 2, 12, 13, 6 and 6 robots. The swarm of 26 maintains
the initial four lanes with 7 and 6 robots which become equally spaced. The
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Table 2: Lane development by standard robots in open space.

swarm of 26′ develops two main lanes of 11 robots and two additional lanes of
2 robots only. As the table shows, the size of the swarm is not a good predictor
for the number of traffic lanes. However, true for all sizes of standard robot
swarms is that since they are not bound to a trail the lanes gradually spread
out, the spacing between the lanes may become as wide as the range of the
sensors. Overall we can concluded that in open space the swarms of standard
robots generate quite stable lane patterns comprising four to six lanes. In the
long run the spacing between these lanes becomes as wide as the range of the
sensors on the robots’ sides. We note that standard robots will not surpass this
boundary; however robots with perfect sensors would continue to disperse over
the plane (corollary 2.3). Note though that while in table 2 the speed is nearly
the same for all swarms, it is slightly below the speed in strings, refer to table
1 rows 14 and 15.

5.1.1 Trails

The trail robots and the robot-ants are defined to follow a trail. The width of
the trail has considerable impact on the number of lanes that will evolve. On a
very narrow trail of width 3 units - that is twice the safety zone - a single robot
blocks the thoroughfare, while on slightly wider trails an abundance of conflicts
will occur. On a trail of width 10 units two robots can pass easily. Table 3 gives
an overview of the results of various simulations with different trail widths, refer
to section 4.3 for the table’s conventions.

The trail width influences the number of traffic lanes in that on a wider trail
more lanes may develop. However, as a comparison of the swarm sizes shows,
with increased traffic density on the narrow trails the number of lanes generally
reduces. The last column of table 3 gives the average speed of the robots in the
simulation of the 52 swarms, the speed clearly increases with the trail width.
The highest speed is reached by the trail following robots with shifted sensors,
refer to rows 12−14. The initial situations for the 26, the 26′ and the 52 swarms
are defined to be symmetric in x and y they produce often an even number of
lanes. The initial situation of the 26 swarm (refer to figure 8 right) comprises
of four lanes (width 10 units) and the pattern persists on the wider trails. The
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Table 3: Lane development on a trail at clock tick 1200; ns: not stable; in the
last column the average speed up to clock tick 1200

Figure 11: Swarm of 52 trail-robots on a trail 30 wide. Simulation results in
table 3, row 7, column ’52’.
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Figure 12: Swarm of 52 ant robots on a trail 30 wide. Simulation results in
table 3, row 21, column ’52’.

22 and 37 swarms are asymmetric and often produce odd numbers of lanes.
Figure 11 shows a four lane traffic pattern of trail robots on a trail 30 units

wide and figure 12 shows the four lane traffic pattern of ant robots also with trail
width of 30 units. The trail robots retain more distance between the lanes than
the ant robots do. The explanation is that the trail robots’ sensors range further
sideways to a distance of 15 units, while the ants’ sensors span only 10.60 units
at the widest. Note also that whereas the trail robots generate curved lanes
the ants travel in straight lines, again as is to be expected from their particular
sensor system.

Overall we can concluded that in trails the swarms of robots generate quite
diverse lane patterns varying form two to five lanes. In some cases no stable
patterns have been observed. The trail robots and the ant robots are confined
by the width of the trail and obviously the higher numbers of lanes occur in
the wider trails. The spacing between the lanes varies with the sensor systems
applied, the trail robots retain a wider spacing than the ant robots.

5.2 Lanes in bounded space

Above we have discussed lane development in open space. In this section we
discuss simulations in a bounded space. We have two aims, the first is to produce
a better comparison between standard robots and the trail and ant robots. The
second aim is to study the effects of increasing the density of the swarm.

We fix the traffic area using two walls; the same structure we have used for
the string simulations refer to section 4.3. The walls are visible only within a
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Table 4: Swarm simulations in a walled space, 16 wide. Refer to figure 13 for
layout

distances of 3 units; thus the ‘free’ space for the robots is effectively 10 units,
which is also the trail width for the trail robots and the ant robots. Effectively,
we force the standard robots to behave as if on a trail. As table 3 shows, on a
trail of width 10 units the ant and trail robot swarms generate only two lanes;
similarly the standard robot also generate only two lanes, refer to figure 13.

Table 4 shows the resulting average speeds in the simulation for swarms of
sizes 22, 26, 37, 42 and 52. From left to right the traffic densities increase but
the throughput goes down. For the 26 and 37 swarms the table shows average
speeds up to clock tick 600. The larger swarms require more time to settle into
a pattern, speed averages for the 42 and 52 swarms are given up to clock tick
1200.

Figure 13: 37 Standard robots on a walled space 16 wide. Simulation results in
table 4, row 1, column ‘37’.

The two types of standard robots perform the best at the lower densities due
to their stronger tendency to seek wide spacing between the lanes, thus avoiding
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head-on confrontations. We have seen before that they are also faster in strings.
Nevertheless, with increasing density the average speed drops to half the value
with the swarms of 42 and goes further down for the swarms of 52 robots. The
trail robots with shifted sensors seem to cope best with increasing density, the
swarm of 42 performs reasonably well; the ant robots are the poorest performers
when traffic density increases. True for all types of swarms is that the swarms
of 52 robots are too dense for the bounded space defined in the simulations. All
52 swarms start as expected at a low speed, but while the simulations continue
the swarms remains entangled in a huge jam in which the swarms moves only
very slowly, refer to figure 14 for an example. The jams didn’t dissolve when
doubling the simulation time.

Table 4 also shows that the number of robots present in a simulation is not
a sufficient indicator for overcrowding; overcrowding is also dependent on the
type of robots applied. In this sense our robot simulations confirm the findings
in research on motorway traffic that road capacity and traffic flow are empirical
variables; for road traffic study refer to (Maerivoet, 2006) for an overview or the
USA, Highway Capacity Manual 2010 (Transportation Research Board, 2010)
for regulations and definitions.

Figure 14: 52 Standard robots on a walled space 16 wide, in an unsolved jam.
Simulation results in table 4, row 1, column ’52’.

It is interesting to compare the trail robots in rows 1 and 8 of table 3 with
table 4 rows 3 and 4. The swarms perform reasonably well in table 3, though the
average speed is not very high stable two lane traffic patterns generate. While
the 52 robot swarms in table 4 all remain stuck in a jam. The difference in the
simulations for the trail robots is that in the latter simulations they are bounded
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by a wall, a hard boundary which they cannot cross. In the simulations of table
3 the boundary of the trail is ’soft’: the trail robots can cross it. The robots
crossing the boundaries do not directly contribute to a high throughput of the
swarm, but their stepping aside does contribute to the development of a traffic
pattern and to traffic stability in the long run.

Figure 15: 26 Standard robots in open space, in the middle the simulation
reported in table 2 row 9; left, the southbound group has the attraction reduced
to 0.125; right, the northbound group has the attraction reduced to 0.125; the
trail (30 wide) is drawn for reference only.

5.3 Qualitative differences

Above we have discussed simulations with swarms consisting of two groups. The
difference between the groups consisted only of the traveling direction, either
northbound or southbound. In all other respects the swarms were homogeneous.
the swarms created traffic lane patterns of two to six lanes. Couzin and Franks
(Couzin and Franks, 2003) reported on the triple lane pattern in army ants and
their simulations of triple lanes. Our model creates the conditions in which
triple lanes happen to occur. However, as the tables in this section show, the
triple lane pattern is just one of several that do emerge. The latter observation
means that we have not captured the essential condition that forces a swarm
into a triple lane pattern.

Couzin and Franks (Couzin and Franks, 2003)(p.5), note that the throughput
or flow of ants in their simulation is ‘maximised when ω = 1 (i.e. ants equally
balance local conditions with their directional preference)’. In our simulations

above we have applied
−→
EA(G,a) = 0.5×maxspeed = 0.5. The attraction equals

the repulsion generated by another robot at a distance of (
√

2 + 1.5) < 3, refer
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to equation (8). For comparison we made simulations of the 26′ swarm with the

attraction reduced to a quarter:
−→
EA(G,a) = 0.25× 0.5 and simulations with the

attraction doubled
−→
EA(G,a) = 2×0.5. The 26′ ant robots developed the same two

lane patterns, in all cases with normal, reduced and doubled attraction applied,
the major difference observed is that when the attraction is less dominant the
swarms claim wider lanes. Thus, though the throughput or flows differ, the lane
patterns are similar.

In (Couzin and Franks, 2003)(p.5) it is further observed that there is a
‘qualitative difference’ between inbound and outbound ants, the outbound ants
‘exhibit a higher rate of turning during avoidance manoeuvres’. To model this
difference between the two groups, we applied double and reduced attraction of
the goal for one group only. Thus for one group the goal becomes (relatively)
more dominant or in other words reducing the (relative) willingness to turn in

the presence of other robots. In the standard setting with
−→
EA(G,a) = 0.5 the 26′

standard robot swarm developed a four lane pattern, with from left to right 2, 11,

11 and 2 robots (refer to figure 15 middle). Simulations with
−→
EA(G,a) = 0.125

for one group are shown in figure 15 on the left and right hand sides. We note
that in figure 15 left and right the lanes and positions of the groups applying 0.5
attraction are nearly copies of the respective patterns in the standard simulation
shown in the middle, while the simulation has been running as long as 1200 clock
ticks. The groups with reduced attraction have claimed slightly wider lanes.
Simulations with a swarm of 52 = 26 + 26 ants and attraction for one group
reduced other conditions the same as the simulations in table 3 produced the
following results. On a trail of 10 units wide the swarm remained stuck in a jam;
three lanes emerged on a trail of 14 units and four lanes on the trails of 16 units
and 20 units wide. As with all simulations, once lane patterns have developed
they endure, differences in turning rate do not matter in that respect. From
the variety of patterns generated, we conclude that the difference in turning
rate between the two groups is also not the essential condition for generating a
three lane pattern. For a three lane pattern to emerge from a situation where
the groups are well mixed, one group must have an inclination to ‘seek’ for the
middle ground. A difference in turning rate does not induce a preference for the
middle.

6 Conclusion

We explored with deterministic simulations when and under what conditions
traffic lanes occur in the robot swarm traffic. Lane patterns occur frequently,
however depending on the available space, trail width and range of the sensors
the number of lanes varies from two to six. The mathematical intuition that if no
head-on encounters occur existing lane pattern will be preserved are confirmed
in our simulations. Once lanes have emerged, the lane patterns are stable and
robust.

Overall, the standard robots are, due to their full sensor system, the most
efficient and on the long run the spacing between the lanes becomes as wide
as the range of the sensors on the robots’ sides. Below a certain traffic density
lane patterns emerge with all types of robots and ants, however dense swarms
show some congestion and instability; extreme overcrowding keeps all swarms
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entangled in huge jams.
In our model the triple lane pattern reported in (Couzin and Franks, 2003),

is just one of the patterns occurring in the swarm traffic. Their assumption that
a difference in turning rate does induce a preference for the middle ground does
not hold in our simulation. This seems to indicate that either the particular
initial situation or additional parameters -overlooked by ourselves and Couzin
and Franks (2003)- force army ants into a triple lane pattern.

We have made simulations with trails, where the robots may cross bound-
aries, and highways with hard boundaries which cannot be crossed. While the
boundary crossing robots do not directly contribute to a high throughput of the
swarm, their stepping aside does contribute to the development of traffic lanes
and traffic stability in the long run.

Our original question was whether we should organize the robot traffic ex-
plicitly or whether a certain regularity develops ‘naturally’. Our (simplified)
theoretical model has shown that lane patterns will not be disturbed. The sim-
ulations show that a variety of lane patterns may occur and once a pattern has
emerged it is stable. The development of the lane patterns depends strongly
on the initial situation, thus to organise our swarm traffic (and obtain a good
throughput) it suffices to ‘seed’ a lane pattern, for instance by regulating how
robots enter the high way; the swarm autonomously maintains the pattern.

Traffic density can considerably delay or even prevent the emergence of lanes.
The remaining open problem is to define traffic density and to pin point over-
crowding in order to predict congestion. Though the number of robots per unit2

is an indicator, the simulations with different robots and ant robots show that
also the type and range of the sensor system has to be taken into account.

The lane patterns reported in this paper emerged and endured on a straight
stretch of highway. Future research will focus on situations where traffic junc-
tions occur; at junctions the lane patterns are inevitably disturbed by crossing
robots.
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