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This paper describes microscopic calculations of photocurrent generation spec-

tra due to intersubband transitions in semiconductor heterostructures that can

extract energy from photons in the THz and Mid Infrared Ranges. As expected

in the mid infrared the interconduction conduction band transitions dominate

the photocurrent. However, the numerical results presented here show that

in the far infrared there is a range in which valence-band-based transitions

dominate the photocurrent and these can be sustained under perpendicular

incidence. This would lead to devices that do not need prisms and couplers in

contrast with conduction-band based intersubband absorbers. Examples for

different quantum well structures and different thermal source temperatures

are compared and contrasted numerically. It is further demonstrated that

many body effects, so far ignored in simulations of materials for photovoltaic

and thermophotovoltaic applications, are shown to be of relevance for both

conduction (TM Mode) and valence-band based (TE Mode) configurations.
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1. Introduction

Materials for intersubband (ISB) optics are leading to a plethora of significant advances

based on the generation and detection of mid infrared and THz radiation[1]. In this pa-

per, we focus on an application of those materials and structures that have been so far

mostly overlooked: increasing the efficiency of photovoltaic solar cells, which is one of the

current challenges for science and technology [2]. In conventional single-energy-gap photo-

voltaic devices, only photons with energy close to the semiconductor bandgap are effectively

absorbed and converted into current. The semiconductor is transparent for photons with

energy smaller than the bandgap. One solution for this problem is to introduce intermediate

bands (IBs) in the gap. However, IB designs suffers from two contradictory requirements:

(a) the IB should exhibit a finite energy width so that it can be partially occupied to facili-

tate simultaneous excitation from the IB to the conduction band and from the valence band

to the IB. (b) the IB should be as narrow as possible to reduce carrier transport through the

miniband [3]. Furthermore even those cannot usually absorb far infrared photons. In con-

trast, intersubband (ISB) - based thermophotovoltaic (TPV) devices are not limited by the

bandgap and can absorb photons very far in the infrared without suffering from the issues

(a,b). As a matter of fact, ISB transitions already form the basis of well established devices

such as quantum cascade lasers [4] and quantum well infrared photodetectors (QWIPs) [5].

TPVs can enhance the efficiency of existing thermal plants and recover energy lost in a

number of different engines, including automobiles. They can be customized for specific

applications and tuned to different source temperatures. Like thermoelectric devices, TPVs

can generate electricity from different types of heat sources including combustion processes,

radioactive isotopes, sun light, geothermal heat as well as nuclear and conventional reactors

[6].

The present state-of-the-art in TPV energy conversion from a thermal source at a tem-

perature of 1300 K is about 0.8 W/cm2, obtained with a 0.6-eV bandgap energy InGaAs

interband photodetector grown lattice mismatched on InP with an InPAs buffer and the

simulations in Ref. [7] indicate that at the same temperature an ISB TPV depicted can

potentially generate 1.4W/cm2. We can therefore conclude that the multiple-junction ISB

device concept has the potential to provide a substantial improvement over existing tech-

nologies.

Note that one difficulty for conventional conduction-band based structures, as in Ref. [7],
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is how to absorb photons normal to the surface efficiently, since for usual bandstructures

only TM mode absorption is possible for conduction subbands. This is the same problem of

QWIPs. One solution is to use a grating or photonic band gap coupler, but this can impart

a loss on the broad spectral coverage.

Before proceeding further it is useful to summarize unique features of this study not found

previously in the literature.

(i) A possibly more efficient solution for energy extraction in the far infrared is investi-

gated: intervalence-band based designs that lead to TE mode absorption and can directly

absorb photons normal to the surface.

(ii) Furthermore, many body effects due to the electron-electron interaction have a proven

relevance in semiconductor lasers in both interband [8, 9, 10] and intersubband optics [11, 12,

13, 14, 15, 16, 17], but have so far been ignored in studies of photo and thermo photovoltaics.

They are analyzed here, their relevance is clear and may be particularly important for hot

carrier architectures [18] where a large density of nonequilibrium carriers can be created.

They are shown to be important for structures operating under both TE and TM incidence.

There are as yet no TE mode valence-band-based TPVs. The experimental evidence of

TE valence band based electroluminescence in semiconductor heterostructures [19], make

clear that such devices are feasible. The theoretical analysis presented here is thus timely

to stimulate further experimental efforts in this promising field.

2. Numerical Results and Discussion

The ISB optical response of the semiconductor material is treated fully quantum mechan-

ically by means of our NGF approach [13, 14]. The photocurrent generation spectrum

collected by each period (n) with length dn, which is here simply the Quantum Well width,

is given by [20]

Jn(ω) = q

∫ zn+dn

zn

Gn(ω, z)dz, (1)

where the generation rate reads

Gn(ω, z) = αn(ω)F (ω)[1− R(ω)]e−αn(ω)dn . (2)

In Eq. (2) R(ω), is the surface reflection coefficient, F (ω) is the photon flux incident on the

sample surface and zn is the position of the QW along the device’s growth direction. The

absorption coefficient αn(ω) stems from the imaginary part of the susceptibility χ(ω),
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αn(ω) =
4πω

cnb

Im{χ(ω)}, χ(ω) = 2
∑

µ6=ν,~k

℘µν χν,µ(k, ω). (3)

Here nb denotes the background refractive index, c is the speed of light, ℘νµ=edνµ is the

transition dipole moment between the subbands ν and µ, The first step is the solution of

the 8 band k · p Hamiltonian. The Green’s functions and self-energies are expanded using

eigenstates and eigenvalues of this Hamiltonian. Since the electrons are assumed to be in

equilibrium when they are promoted to a higher energy subband by absorption of a photon,

the full NGF scheme is simplified and reduces to the self-consistent evaluation of chemical

potentials and self-energy matrix elements which lead to subband energy renormalisation,

dephasing constants and occupation functions. Finally, the susceptibility function that leads

to the absorption is given by the solution of the integro-differential equation for χνµ(k, ω)

obtained from the carriers Green’s function in linear response,

[h̄ω − eνµ(k) + iΓνµ]χνµ(k, ω) − δnνµk

∑
k′ 6=k

χνµ(k
′, ω)Ṽ νµ

k−k′ = ℘νµ(k)δnνµk , (4)

where δnνµk =nν(k)-nµ(k) denotes the nonequilibrium population difference between sub-

bands ν and µ. Further details of the renormalised energies eνµ, electron-electron scattering

broadening Γνµ and the Coulomb matrix elements Ṽ
νµ
k−k′ are given in Ref. 13.

Note that the intersubband relaxation is different for conduction and valence bands.

Forthcoming research will include all relevant scattering mechanisms beyond the electron-

electron scattering, along the lines of Ref. [16] and extending that research to the case of

arbitrary dispersion relations considered here. The occupations will be computed accordingly

through the full solution of the corresponding Dyson equations. Depending on the design

and the transitions exploited, the interplay between the different scattering mechanisms can

lead to faster relaxation in the valence bands as expected in simple designs. This may reduce

the TE mode TPV efficiency and will be investigated in detail.

The numerical results presented next are for a single junction section composed of either

a 5 nm or a 10 nm GaAs−Al0.3Ga0.7As quantum well. In all curves the valence band (for TE

polarization) and conduction band (for TM polarization) electrons available due to doping

are initially thermalized at 300K. Figures 1.a and 1.b compare and contrast the Photocurrent
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Generation Spectra with TE polarization with and without many body corrections at the

same level as in Ref. [13]. There is a clear difference between free carrier (dashed curves)

and manybody (solid lines) calculations, highlighting the need of combining ab initio and/or

k · p electronic structure with NGF or density matrix methods to include manybody effects

for realistic predictions of PV and TPV materials and devices. Extra structure develops

notably on the low energy side of the TE mode due to a combination of band nonparabolicity

and manybody effects as the carrier density increases. Those effects can be engineered to

increase the absorption in certain spectral regions and are thus an extra tool to improve

TPV efficiencies.

Figures 1.c and 1.d show the evolution of the Photocurrent Generation Spectra at the

TE mode for different thermal photon source temperatures. The incident photon flux shifts

to higher energies with increasing thermal source temperatures leading to a relative increase

in the peaks in the higher energy side.

The photocurrent spectra is thus more complex than just the absorption shown in Ref. [13]

and customized structures for different types of thermal sources should be designed consid-

ering all those effects together. Figure 2 shows corresponding results for the TM mode.

Manybody corrections lead to the redistribution of oscillator strength and higher contrast is

quite noticeable in the TM mode. As the thermal source temperature increases, the spectra

are further modified similarly to what happens in the TE mode.

Note that all TM mode results here are for the maximum possible effective transition

dipole moment and all practical results would be smaller. The actual oscillator strengths of

the transitions are reduced by the unavoidable nonzero incidence angle. Thus losses appear

due to projection plus further prism/coupler losses that can reduce the TM photocurrent

by an order of magnitude. This further favours the study of valence band based TE mode

in the far infrared for structures intended to extract photons in that range. Thus, Fig. 3

compares and contrasts the far infrared range performance of the quantum well absorbers

for perpendicular incidence in the TE mode and maximum incidence TM mode.

Regardless of a much larger transition dipole in the mid infrared range for the TM case,

the far infrared is dominated by the TE polarization. Lower photon source temperatures

further favour the TE case by enhancing the photocurrent in the lower energy side.

In summary, this study demonstrates that inter-valence band absorption structures may

lead to devices that can potentially convert thermal photons in the far infrared efficiently
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into current. This is a range that remains to be further exploited. Absorption due to

intervalence band transitions allows simple perpendicular incidence in the TE mode without

the need of prisms or other couplers, in contrast to interconduction-band-based TPVs, thus

simplifying the designs and avoiding corresponding optical losses. Furthermore, the analysis

demonstrates the relevance of many body effects, which are now routinely considered in

laser and optoelectronic device simulators, but have been essentially overlooked for photo and

thermophotovoltaic simulation and design considerations. Those effects should be considered

in both intersubband and interband cases for all polarizations. I hope that this paper will

stimulate further experimental studies to improve the carrier collection in the p-doped case

that may lead to a new generation of valence-band-based TPV devices. Note that this study

can be extended to other materials like Si-SiGe that so far have performed poorly in light

emitting applications but can potentially become very efficient for current generation based

on far infrared photons.
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Figure Captions

Figure 1: (Colour online) Photocurrent generation spectra of Eq. 1. with (solid) and

without manybody effects (dashed) for one section of a possible ISB device with 5 nm (a,c)

and 10 nm (b,d) QW active regions with TE polarization. From bottom in to top in (a,b)

the valence band carrier density is increased by N=1 and 3 × 1012 cm−2. The thermal

photon source temperature is T=1000 K. From bottom to top in (c,d) the thermal source

carrier temperature is increased from T=500K to T=1000 K. The valence band carrier

density is N= 3 × 1012.

Figure 2: (Colour online) Photocurrent generation spectra of Eq. 1. with (solid) and

without manybody effects (dashed) for one section of a possible ISB device with 5 nm (a,c)

and 10 nm (b,d) QW active regions with TM polarization. From bottom in to top in (a,b)

the conduction band carrier density is increased by N=1 and 3 × 1012 cm−2. The thermal

photon source temperature is T=1000 K. From bottom to top in (c,d) the thermal source

carrier temperature is increased from T=500K to T=1000 K. The conduction band carrier

density is N= 3 × 1012.

Figure 3: (Colour online) Comparison of TE (solid-black) vs TM mode at a maximum

angle of incidence (dashed-green) photocurrent generation spectra for the QWs of Figs. 1

and 2. The doping density is N = 3 × 1012 cm−2 thermalized at 300 K. The QW well widths

are 5 nm for (a,c) and 10 nm for (b,d). The thermal source temperatures are 500 K for (a,b)

and 1000 K for (c,d). All panels have the same relative scale to allow a direct comparison.

Note that actual TM mode absorption would be smaller due to the angles of incidence and

prism/coupler losses. This means that the TM mode generation spectra would be even

smaller then shown here, further supporting a study of TE valence band-based materials

and designs for the far infrared.
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Fig. 1. (Colour online) Photocurrent generation spectra of Eq. 1. with (solid) and without

manybody effects (dashed) for one section of a possible ISB device with 5 nm (a,c) and

10 nm (b,d) QW active regions with TE polarization. From bottom in to top in (a,b) the

valence band carrier density is increased by N=1 and 3 × 1012 cm−2. The thermal photon

source temperature is T=1000 K. From bottom to top in (c,d) the thermal source carrier

temperature is increased from T=500K to T=1000 K. The valence band carrier density is

N= 3 × 1012.

10



50

100

150
Many Body
Free Carriers

50

100

150

50 100 150 200
Photon Energy (meV)

50

100

150

P
h
o
to

c
u
rr

e
n
t 

G
e
n
e
ra

ti
o
n
 S

p
e
c
tr

a
 (

a
rb

. 
u
n
it

s)

50 100 150 200
Photon Energy (meV)

50

100

150

(a)

(b)

(c)

(d)

Fig. 2. (Colour online) Photocurrent generation spectra of Eq. 1. with (solid) and without

manybody effects (dashed) for one section of a possible ISB device with 5 nm (a,c) and

10 nm (b,d) QW active regions with TM polarization. From bottom in to top in (a,b)

the conduction band carrier density is increased by N=1 and 3 × 1012 cm−2. The thermal

photon source temperature is T=1000 K. From bottom to top in (c,d) the thermal source

carrier temperature is increased from T=500K to T=1000 K. The conduction band carrier

density is N= 3 × 1012.
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Fig. 3. (Colour online) Comparison of TE (solid-black) vs TM mode at a maximum angle

of incidence (dashed-green) photocurrent generation spectra for the QWs of Figs. 1 and 2.

The doping density is N = 3 × 1012 cm−2 thermalized at 300 K. The QW well widths are

5 nm for (a,c) and 10 nm for (b,d). The thermal source temperatures are 500 K for (a,b)

and 1000 K for (c,d). All panels have the same relative scale to allow a direct comparison.

Note that actual TM mode absorption would be smaller due to the angles of incidence and

prism/coupler losses. This means that the TM mode generation spectra would be even

smaller then shown here, further supporting a study of TE valence band-based materials

and designs for the far infrared.
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