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Dynamic graph-based search in unknown environments

Paul S. Haynes, Lyuba Alboul, Jacques Penders

Centre for Automation and Robotics Research, Sheffield Hallam University, City
Campus, Howard Street, S1 1WB

Abstract

A novel graph-based approach to search in unknown environments is pre-
sented. A virtual geometric structure is imposed on the environment repre-
sented in computer memory by a graph. Algorithms use this representation
to coordinate a team of robots (or entities). Local discovery of environmental
features cause dynamic expansion of the graph resulting in global exploration
of the unknown environment. The algorithm is shown to have O(k ·nH) time
complexity, where nH is the number of vertices of the discovered environment
and 1 ≤ k ≤ nH . A maximum bound on the length of the resulting walk Ω
is given.

Keywords: Team Robotics, Dynamic Search, Graph Theory, Multi-robot
Localization

1. Introduction

The method presented in this paper stems from the research in multi-
robot systems within the remits of the recently completed GUARDIANS
project1. Autonomous mobile robotics, in particular collective and coopera-
tive robotics, has gained a lot of attention recently.

Multi-robot systems pose new challenging problems such as cooperative
perception and localization, cooperative task planning and execution, team
navigation behaviors, robot interactions among themselves and with humans,
cooperative learning, and communication.

There have been some significant advances in tackling the aforementioned
problems, often based, however, on empirical approaches. They are either

1Guardians, Group of Unmanned Assistant Robots Deployed in Aggregative Naviga-
tion supported by Scent Detection, EU FP6 ICT 045269
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driven by informal expert knowledge, or by resource-intensive trial-and-error
processes [6].

There is a demanding need for formalization of methodologies and theo-
retical frameworks capable of providing solutions to general classes of prob-
lems specific to multi-robot systems.

In this paper such a framework is proposed for the problem of global self-
localization of multi-robot teams, without a priori information about the
environment.

The problem of self-localization is central in robotics, and is particularly
difficult in unknown indoor environments where such tools as GPS are un-
available.

It is directly related to the famous SLAM problem of a robot simulta-
neously localizing and building a map of the environment. This problem
has been studied extensively in the robotics literature, focusing mostly on
a single robot. Conceptually, the SLAM problem for a single robot in 2D
is considered to be solved, but in practice it may still encounter difficul-
ties, even outdoors, in urban areas or forests. SLAM approaches are mainly
probabilistic in their nature due to the uncertainty of acquired information.
Data association methods used in SLAM require significant computation in
real-life implementations, and contribute to increased complexity [7].

The problem of multi-robot localization and encountered difficulties has
not yet been fully researched [8]. A multi-robot team, by definition, repre-
sents a sensor network. An important aspect of a multiple robotic system,
as opposed to a single robot, is the richness of available information. In
a cooperative multi-robot team, robots obtain information from their own
sensors as well as other robots. This information can be of various types:
perceptual (data from lasers, various distributed cameras) as well as non-
perceptual (symbolic information, directions, and commands, obtained from
other robots or a database). Therefore, such plethora of information should
be taken into account.

In the last decade, several works appeared that tackle the problem of
cooperative multi-robot localization. Whereas some approaches still con-
sider this problem within the SLAM framework, by treating the problem
of multi-robot localization as a Multi-SLAM problem [9], others, while still
using probabilistic methods, attempt to take into consideration robots as
landmarks themselves [10]. Another trend is based on robot distribution on
site, which can work well if the group of robots is large and communication
between them is robust [11].
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A promising mathematical tool to characterize a multi-robot system is a
graph. Indeed, the problem of coordination in multi-robot systems can be
characterized naturally by a finite representation of the configuration space
using Graph Theory. Vertices represent robots with resources limited by
sensors, control design, and computational power. Edges are virtual entities
describing local interactions and can support information flow between ver-
tices/robots. If other sensor devices are present in the environment they can
be added to the sensor robot networks. Graph theory facilitates analysis of
the interplay between the communications network and robot dynamics, and
to choose strategies for information exchange which mitigate these effects.

Graph-theoretical approaches have been increasingly used for building
and analyzing communication and sensor networks [12].

In this paper we describe a graph-theoretical framework for cooperative
multi-robot localization. The (unknown) site is initially covered by an infinite
virtual triangular grid (triangular tiling) T∞, depicted in Fig. 1.

Figure 1: Virtual triangular grid.

The grid spans all directions, and as robots explore the site local parts
of the grid become actualized. The environment, therefore, represents a
subgraph L of T∞. Each robot is equipped with a Laser Range Finder (LRF)
which is used as the main sensor for position detection with radio signal as
a backup.

The length of the edges is limited by the range of the LRF, or can be
smaller depending on the initial position of the robots. Our robot team con-
sists minimally of three robots, and robots act as dynamic and static graph
vertices; they switch between these two modes in a prescribed manner. Coor-
dination of robots whilst correcting for odometry errors then becomes more
manageable and from this framework we develop a cooperative exploration
algorithm.

The choice of three robots is due to several reasons. One is that this
allows accurate calculation of robot positions and poses without assuming
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that robots are equipped with a proprioceptive motion detector as suggested
in [10], as two robots act as static beacons whilst the third robot is moving.
It also allows to develop a robust movement strategy that minimizes the
number of robot steps. Indeed, our goal is not only to achieve robust self-
localization of robots, but also explore the unknown environment in the most
optimal manner, reducing the number of visits to previously visited vertices
in L.

From a theoretical point of view, our method, to a certain extent, rep-
resents a fusion and further development of strategies proposed in [14] and
[13]. One crucial difference is that movements of the robots in our approach
are not random, but are determined in a structured and adaptive manner.
The robots build the representation of the environment simultaneously whilst
moving. For this reason, we consider the dual graph H∞ to T∞; the vertices
of this dual graph are possible positions of the 3-robot team considered as a
whole.

Surprisingly, our result bears some similarity to that of [15] in which
a Kohonen Self-Organizing Network (SOM) is used to obtain a topological
graph representation of the environment. The SOM vertex positions change
during network convergence, but the graph itself does not, i.e edges are not
deleted. Our approach represents the environment better in the sense that
unnecessary edges and vertices are removed and obstacles are represented
as cycles in the graph. Whilst the SOM approach can build a map of the
environment, there is no planning capability and the single robot is not
guaranteed to cover all of the unknown environment. A further advantage is
a lower computational cost; neural network approaches can take a long time
to converge.

In the next section our approach is described in detail.

2. Framework

In this section we provide a discrete mathematical framework in which to
achieve the following goals.

• Enable a team of 3 robots to autonomously explore an unknown envi-
ronment.

• To make no assumptions about the environment beyond the graph em-
bedding.
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• To cover the whole of the accessible environment (Completeness)

• To intelligently recognize and avert the visiting of “redundant” regions
(via Intelligent rules)

• To make deductions concerning the final walk length.

2.1. Localization and Movement Graphs

Our approach fixes a virtual geometric structure on the unknown envi-
ronment, thus providing a coordinate system in which to position robots
and develop algorithms by means of graph theory. The structure is the infi-
nite triangular grid graph T∞, chosen for reasons discussed previously. The
infinite hexagonal grid graph H∞ dual to T∞ is also necessary.

A localization graph is an induced subgraph L ⊂ T∞ used to represent
possible robot locations. The unknown localization graph to be discovered
is denoted L⊂T∞, with the known graph denoted L⊂L.

The 3-clique of robots progressively learn the unknown localization graph
L as exploration proceeds until L = L − L′, where L′ is the undiscoverable
graph, at which point the algorithm terminates. At any one time L is the
learned localization graph. The undiscoverable L′ pertains to enclosed inac-
cessible regions of the environment.

Likewise, an hexagonal movement graph is an induced subgraph of H∞,
with the unknown (at any one time) movement graph denotedM⊂H∞, and
the known movement graph denoted M ⊂M. The movement graph M is
dual to L, and represents possible 3-clique movements governed by Rule (1)
below.

Rule 1. Let C = {Ri} ∈ L be a 3-clique of vertices as in Figure (2), with
corresponding dual movement graph vertex m ∈ M . A single robot is per-
mitted to move between two stationary robots. This move corresponds to an
edge connecting m to some other vertex m′ ∈M (cf. Figures 2 and 3)

Movement rule 1 is demonstrated in Figures 2 and 3. In figure 2 the
3-clique of robots, denoted by the square icons with black centres on the
localisation vertices, obey rule 1 by moving between two stationary robots,
arriving at their new configuration in Figure 2.

The justification of Rule (1) stems from the problem of odometry error
correction in real robots described earlier. This well known problem demands
careful consideration of the approach to robot movement to minimize the
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Figure 2: Robots ready for search. Neighbouring unvisited localization vertices are iden-
tified (large vertices and edges). The dual movement graph is constructed accordingly
(small vertices and edges)

accumulation of odometry error. Small errors in odometry result in large
errors over long distances.

2.2. Movement

Vertices of the current localization graph L represent robots (here on
referred to as entities) within the environment. However, it is the movement
graph M , dual to L, which facilitates actual movement.

Figure 3: A single time step demonstrating robot movement and dynamic extension.

Our approach uses the principle of dynamic exploration (search) within
M by moving from the current vertex to the next vertex on the outer face
(also called a level-1 face [3]) of M . On moving to a new location, L and M
are updated and the process repeats.
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Figure 3 demonstrates updating after a move has occurred. The 3-clique
of entities (square icons with black centres), are situated within the known
localization graph L (denoted by large solid circles). Localization vertices
with highlighted centres are visited, whilst those without, represent known
(sensed) vertices. The known (hexagonal) movement graph M shows the
moves available to the 3-clique (not necessarily from its current location).
Highlighted hexagonal vertices indicate those vertices of M that are visited.
The unknown localization graph L can be seen in the periphery.

As the 3-clique of entities move from vertex m to vertex m′ of the move-
ment graph the source vertexm is removed from the graph if removal does not
disconnect the graph, i.e. removal is permitted if and only if ω(G\m) = ω(G),
where ω(X) is the number of connected components of graph X. This simple
principle of

• traversing the current outer face of M ;

• dynamically extending L (and subsequently the dual graph M); and

• removing the source vertices where possible,

is a mechanism for automating the search of an unknown environment in
an ordered manner. On its own, however, the geometric embeddings imposed
on L and M coupled with this simple principle of search means the path taken
may not be optimal. Optimization requires the addition of intelligent rules,
discussed next.

2.3. Intelligent Rules

In addition to the constraints imposed by the unknown environment (such
as forcing the the movement graph to be 1-connected, for example), there
are other factors in which the discussed simple principle of search may be
non-optimal.

There may emerge, for example, a simple path of a level-1 face whose
vertices are enclosed entirely by visited vertices. Clearly it would be ineffi-
cient for the entities to revisit such vertices since we may infer from previous
investigation that they are empty regions of no interest. Indeed, since sensed
vertices were actualized (i.e. there were no obstacles found), and they are
surrounded by solely visited vertices, then they may be inferred to be vis-
ited as well (since they are empty and of no interest). A depth first search
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can quickly identify such regions and disconnect the located (possibly bicon-
nected) region on back-tracking.

This is the purpose of the ValidatePath(·) function. Following compu-
tation of the level-1 face (which is unique at any one time), each vertex of
the path proceeding from the current vertex is checked to see if it is enclosed
by solely visited vertices. If it is then the graph is disconnected at this vertex
since traversing the path is unnecessary and would be inefficient. Otherwise,
validation is complete and the entities must be allowed to traverse the path
in order to visit the unexplored region.

3. Algorithms and Complexity

3.1. Nomenclature

The logical denotations True (>), False (⊥), and the logical AND opera-
tion over a set of discrete values (

∧
) are used. The algorithms are presented

from an object oriented perspective, thus a → F() denotes that F() is a
member function of object (vertex) a to be called, for example. This should
not be confused with the long arrow notation u −→ v, denoting vertices u
and v of a graph to be connected by an edge.

The ComputeOuterFace(·) function computes the level-1 face (outer
face) walk of M [3], details of which are given in the next section. The
resulting outer face walk is denoted Ω, with the current member denoted
ω ∈ Ω. The next element of the walk is denoted ω′ = ω + 1. The list Ω is
understood to be cyclic in that ωn + 1 = ω1 and ω1 − 1 = ωn, where ω1 and
ωn are the first and last elements of Ω respectively, and is implemented in
C++ using the list container.

The current 3-clique of entities in the localization graph L are denoted
Ri, where i = 1, 2, 3. Position vectors associated with a vertex are denoted
a→ c, where a is a given vertex.

All pseudo code is written for the readers convenience, and more efficient
logic is possible.

3.2. The level-1 face

Although simple, the level-1 face algorithm (see Algorithm 1) is given
here for completeness. A vertex v is a level-k vertex if it is on the kth nested
face, e.g. a level-1 vertex sits on the outer face. We call a cycle of level-k
vertices a level-k face [3].
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Algorithm 1 ComputeOuterFace(G)
Computes the level-1 face of graph G.

1: Find left most vertex v ∈ G.
2: Let u = (0, 1)

3: Find argmin
w
{∠(u,

−→
vw)|v −→ w}

4: Let s =
−→
vw

5: f = v
6: while s 6= u do
7: f + w
8: Let u =

−→
wv, v = w

9: Find argmin
w
{∠(u,

−→
vw)|v −→ w}

10: end while
11: return f

Computing the level-1 face is equivalent to determining the outer face,
for which there is a linear time algorithm.

Figure 4 shows a connected triangular grid graph G ⊂ T∞. Finding the
level-1 face begins by determining the left most vertex v ∈ G, vertex d in this
case (if multiple vertices share this position then the last found is chosen by
definition of the algorithm)

Now consider a direction vector u parallel to the vertical axis. Vertex v
is called the pivot and is the first vertex of the face. Determining the next
vertex requires finding a vertex w −→ v such that the anti-clockwise angle
from u to

−→
vw is minimal, (f in this case).

Direction vector u is then replaced by u =
−→
wv, and the pivot by w. Re-

peating the process sweeps out the face from vertex to vertex as shown until
u is equal to the initial edge.

The notation ∠(u,v) in Algorithm 1 denotes the anti-clockwise angle
from vector u to v. The resulting level-1 face is an anti-clockwise cycle of
level-1 vertices. This process may be considered the discrete analogue of the
continuous curve fitting problem of an arbitrary set of points described in
[2], but applied to embedded graphs in the plane.

3.3. Main Algorithms

The main search algorithm is presented in listing Algorithm 2. The ap-
proach is partially inspired by the algorithms for Hamiltonian walks in known
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Algorithm 2 DynamicSearch()
Search unknown environment

1: if graph altered then {If true, compute new outer face walk}
2: ω′ ← ∅
3: if Ω 6= ∅ then {If a previous walk exists}
4: ω′ ← ω + 1 {ω points to the next element in the walk}
5: end if
6: Ω← (ω → ComputeOuterFace(·)) {Compute new walk}
7: if ω′ 6= ∅ then
8: if there exists v ∈ Ω such that (v = ω) ∧ ((v + 1) = ω′) then {Find exact position in Ω if

possible (should the local walk remain unchanged)}
9: ω ← v {Set current position}

10: Exit at step 15
11: end if
12: end if
13: Find ω′ ∈ Ω such that ω′ = ω {Since the local walk has changed, find any matching vertex}
14: ω ← ω′

15: end if
16: if ω → ValidatePath(ω + 1) then {Check necessity of path}
17: graph altered← > {Redundant paths have been removed}
18: Restart from step 1
19: end if
20: ω ← ω + 1 {Move to next vertex in walk}
21: Find i ∈ {1, 2, 3} such that Ri 6∈ (ω →S) {Determine entity to move}
22: Ri ← (ω →S)\((ω − 1)→S) {Move the entity}
23: r ← Ri {Remember which entity moved}
24: r →visited← > {Set it as visited}
25: if h is not a cut-vertex then {Remove previously visited vertex?}
26: Disconnect h from all neighbors.
27: end if

28: (ω →visited)←
3̂

i=1

(Ri →visited)

29: graph altered← (RealiseSurroundingArea(r) > 0) {Update L and M}
30: for all 3-cliques Ci ∈ L such that r ∈Ci and

^
c∈Ci

(c→visited) do {Remove visited movement graph

vertices v dual to Ci}
31: Let v ∈M be the hexagonal vertex dual to Ci.
32: if v 6= ω then {Do not consider current clique}
33: if v connects to any other vertices then
34: Disconnect those vertices connecting to v which are not cut-vertices.
35: graph altered = >
36: end if
37: end if
38: end for
39: for all connected neighbors s ∈ N(r) such that ¬(s→visited) do

40: s→visited←
^

s′∈N(s)

(s′ →visited) {s becomes visited if its surrounding vertices are visited}

41: end for

42: return
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Figure 4: Simplified example of computing a level-1 (outer) face f1 = abcdfgjihigeb.

environments, but adapted to unknown environments (see Takamizawa et al
[16], for example). Optimal Hamiltonian walks for known graphs that are at
least 4-connected are well established (see Tutte [4, 5], for example). The pre-
sented work provides a solution where no assumption as to k-connectedness
is made.

Algorithm 2 has the following mechanisms:

(i) Computation of ComputeOuterFace(·) and the identification and
taking of the next move in the walk, or, if the graph local to the 3-clique
remains unchanged, taking the next move in the current walk.

(ii) Checking whether the next move is actually necessary and removing
(deleting) unnecessary simple paths via ValidatePath(·).

(iii) Disconnecting the previous vertex ω− 1 following a move to ω if ω− 1
is not a cut-vertex.

(iv) Dynamic expansion of the 3-clique frontier via
RealiseSurroundingArea(·), or similar.

(v) Maintaining the flagging of graph vertices as visited, either explicitly
or implicitly.

For this last mechanism, note that explicit flagging occurs when a move-
ment graph vertex is physically surrounded by the 3-clique, whereas implicit
flagging occurs, for example, when a recently visited movement vertex has
neighbors that are themselves surrounded by entirely visited vertices.

The complexity of algorithm 2 is given by the following proposition.

Proposition 1. Algorithm 2 has complexity O(nH), where nH is the number
of vertices in the final movement graph M∗ ⊂M.
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Proof. The first subroutine of algorithm 2 is ComputeOuterFace(·)
which computes the level-1 face of the current movement graph M . This is
a simple O(n) time algorithm as discussed in section 3.2.

Following computation of the level-1 face requires locating where in the
new level face corresponds to the previous location in the previous level face
so that we can take the next move. This takesO(|Ω|), where nH ≤ |Ω| ≤ 2nH .

Path validation and removing of unnecessary paths via ValidatePath(·)
takes O(nH) time (see proposition 2).

The remaining subroutines remove remaining implicitly visited regions
local to the 3-clique. Finally, by Proposition 3 (see below), the RealiseS-
urroundingArea() subroutine has complexity O(1). Summing gives an
overall complexity of O(nH).

Algorithm 2 makes use of the ValidatePath(·) function (see algorithm 3
and Recur(), its helper function), introduced in the previous section, which
has complexity given by the following proposition.

Proposition 2. Algorithm 3 has an upper bound complexity of O(nH).

Proof. A level-1 face P ⊂M has a maximum of nP < nH vertices. Since
algorithm 2 is effectively a depth first search of P , its complexity is O(nP ),
or a weaker condition states that for any path P algorithm 3 has complexity
O(nH).

Algorithm 3 ValidatePath(p)
Searches for and removes unnecessary paths

avoid← this
if p→ Recur() then

Disconnect p from avoid.
return >

end if
return ⊥

The RealiseSurrouondingArea() function (see algorithm 4), used by
algorithm 2, depends on the application at hand. A robotics setting would
require this function to physically scan the surrounding area to determine
which vertices to add to the localization graph L, and to connect vertices
appropriately.

However, for simulation purposes an algorithm based on a known con-
nected graph L is presented. Only those vertices on the periphery of the
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ValidatePath: Recur()

1: rtn← >
2: visited←

∧
s′∈S

(s′ →visited)

3: this→ visited← >
4: if ¬ visited then
5: return ⊥
6: end if
7: for all p ∈ N(this), p ∈ Ω such that p 6=avoid of this vertex do
8: if p has not yet been traversed by DFS then
9: if (p→Recur()) then

10: Disconnect p from all its neighbors.
11: else
12: rtn← ⊥
13: end if
14: end if
15: end for
16: return rtn

3-clique within L are made available to the algorithms. Thus, RealiseS-
urroundingArea() examines the unknown localization graph L, with the
entities only being aware of the vertices of the induced subgraph L ∈ L which
they have previously visited, and the traversal boundary (i.e. unvisited yet
sensed, or “known”, vertices). A real implementation with robots would see
the entities (robots) making use of a sensory device (such as a laser) to realize
the surrounding area in real-time.

The complexity of RealiseSurroundingArea() is given by the fol-
lowing proposition, which, given the fixed graph embedding, ought to be the
case in practically all applications.

Proposition 3. Algorithm 4 has complexity O(1).

Proof. Algorithm 4 operates on induced subgraphs of the infinite trian-
gular grid graph T∞, and the number of 3-cliques about vertex r is constant
(cf. Figure 5). Thus, there are a maximum of five such 3-cliques since there
are six 3-cliques containing a single given vertex of the induced sub-graph
and we disregard the current 3-clique since it is occupied. The set P then
has a maximum of 5 elements.
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Algorithm 4 RealiseSurroundingArea
Dynamically extend the graph

1: P ← ∅+ {(ω → c, ω)}
2: r → known← >
3: for all 3-cliques Ci = {r, a, b} ∈ L where (¬(a→ known))∧(b→ known)

do
4: v → c← 1

3

∑
c∈Ci

c→ c {Make v ∈M the dual vertex to Ci ∈ L}

5: v → visited←
∧
c∈Ci

(c→ visited)

6: v → S ← Ci

7: P ← P + {(v → c, v)}
8: end for
9: counter ← 0

10: for all elements s ∈ P do
11: for all elements t ∈ P such that all t proceed s do
12: if ‖(s→ c)− (t→ c)‖2 < 3/2 then {Is this a neighboring hexago-

nal vertex}
13: if s 6−→ t and s has not been previously disconnected from t then
14: Connect s to t. {Establish new connections (edges)}
15: counter ← counter + 1
16: end if
17: end if
18: end for
19: end for
20: return counter
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Figure 5: Example of 3-clique formation centered on r. C = {{r23} , {r34} , {r45} , {r56}}.
Here two possible cliques are missing.

Finally, each element s of P considers all elements t ∈ P proceeding s.
Since there are a maximum of 5 elements in P this requires a maximum and
constant number of 4 + 3 + 2 = 4(4 + 1)/2 − 1 = 10 operations. Therefore,
the total complexity is O(1).

Figure 6: Dynamic graph construction.

4. Analysis and Discussion

Figures 6 and 7 show example outputs of the system (algorithm 2) given
different unknown environment graphs L. The system achieves the goals
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set out at the beginning of this section, taking into account the restrictions
imposed by the unknown environment (such as a lack of information as to
the k-connectedness of the representative movement graph).

Empirical results aside, a number of theorems concerning completeness
and walk length may be proved.

Figure 7: Dynamic graph construction.

4.1. Completeness

Completeness (briefly mentioned in section 2) ensures the algorithm com-
pletely covers the accessible induced subgraph of an environment graph L.

Theorem 1 (Completeness). Let L be the localization graph of the envi-
ronment, initially unknown to the 3-clique of entities C = {Ri} whose dual
vertex is m∈M . Then the final walk Ω∗ ∈M produced by Algorithm 2 spans
the entire graph L − L′, where L′ is the graph of undiscoverable vertices of
the environment.

Proof. Consider the unknown localisation graph L and initial movement
graph M (cf. Figures 2 and 3, for example). Wherever L permits, each
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3-clique of L instantiates a connected vertex m′∈M of the movement graph.
Moreover, on moving to a new movement node, m′ say, where m −→ m′, L
is updated according to L. Moving from m to m′ will disconnect the two
nodes if ω(M \m) = ω(M), i.e. m is not a cut vertex. Thus, the mechanism
of extension exists to instantiate and connect those vertices having potential
to exist, but which have not previously been disconnected. The proof is
completed by induction.

By this mechanism of extension, there always exists a simple path P ∈M
of length l + 1, where P = mp1p2 · · · pl, such that there exists q ∈ N(pl)
unvisited, where N(pl) is the set of neighboring vertices of pl. The case for
which l = 0 is simply the case for which one or more neighbors m′ of m
are unvisited. If no such simple path exists then the algorithm is complete
since, by definition, a path is only ever disconnected when m is a cut vertex
rooting one or more biconnected components which are wholly visited or
enclosed by wholly visited vertices. Thus, a simple path connecting to an
unvisited biconnected component of the graph is never disconnected.

In the case where the next move of the movement graph M relative to
the 3-clique is unaltered from the previous level-1 face walk, then the next
vertex within the previously calculated level-1 face (ω′ = ω + 1) of Ω ∈ M
is traversed. Traversal continues until an unvisited vertex is reached, in
which case the graph is dynamically extended, and the outer face walk is
recalculated, thus completing the induction.

4.2. Walk Length

The system deals with unknown environment exploration with no a priori
knowledge of the search domain. Thus, determining an exact upper bound
length for the final walk Ω∗ is difficult since clearly this depends on the
unknown.

However, in this section we present a logical argument which makes head-
way in understanding the walk length resulting from algorithm 2. An upper
bound is given on the length of the final walk Ω∗.

To do this consideration of the key subroutines (mechanisms (i)-(v) listed
in section 3.3) of the algorithm is required.

Let L∗ be the final localization graph discovered by algorithm 2, where
L∗ = L − L′ and L′ is the graph of undiscoverable vertices due to enclosed
inaccessible regions of the environment. Then the final walk length, h(Ω∗),
depends on the features contained within L∗ which, of course, directly effects
the final movement graph M∗.
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Figure 8: Concentric level-k faces of two regions C and D of graph G connected by a
simple path P = vw1w2 · · ·wmv′.

Assuming we work with L∗ and M∗ for the moment, then by mechanisms
(i), (iv), and (v) the algorithm, by definition of the level-1 face algorithm,
follows the boundary vertices of L∗. In addition mechanism (iii) deletes the
graph vertex of all previous moves ω−1 where possible, thus reducing (before
dynamic expansion) the graph of available future moves.

This mechanism causes previously visited vertices to act as “walls” of
the environment, thus the algorithm will not tread these vertices on its next
return unless doing so would allow access to one or more unvisited regions
(such as biconnected components)

We can deduce that this leads to a “spiders-web”, or spiraling, approach
to graph discovery until all available vertices become visited.

Additionally, however, the remaining mechanism (ii) implements an ele-
ment of intelligence which makes spiraling more efficient. During the course
of the algorithm it may emerge that certain simple paths of the graph are
surrounded entirely by visited vertices. Clearly it would be inefficient to
traverse such simple paths, and the mechanism identifies and removes them
using depth first search.

An inefficient property of the mechanisms presented so far concerns the
existence of biconnected components connected by a path, however short,
one or more of which may contain a number of concentric level-k faces (see
Figure 8). This inefficiency is highlighted by the following lemma.

Lemma 1. Let biconnected components C and D be two regions of M∗, con-
nected by a simple path P = vw1w2 · · ·wmv

′, containing quantities c and d of
level-k faces respectively such that c ≥ d. Then P must be traversed 2d times
to discover D fully.

Proof. The previous discussion demonstrated that cut-vertices are not
deleted (by mechanism (iii)) if returning to them would allow access to one
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or more unvisited regions. This is demonstrated in Figure 8. Traversing the
outer boundary (level-1 face) of region C to the indicated cut-vertex v, the
level-1 face, by definition, would then traverse path P to join cut-vertex v′ in
region D before traversing its level-1 face. Traversal would proceed until v′ is
rejoined and P is traversed in the reverse direction to join v. Any remainder
of the level-1 face in C would be traversed until a join side-stepped the outer
face walk into the level-2 face. Note that by mechanism (iii) the level-1
face in region D would be fully deleted (assuming no further biconnected
components are connected to the level-1 face of region D), as would that
of region C. Thus, the simple path P is traversed exactly 2 times, with a
remaining d− 1 outer boundaries in region D.

Clearly, repeating this procedure results in a total traversal of 2d traver-
sals of the simple path P to fully discover region D.

Now suppose mechanism (ii) is omitted from algorithm 2 for the mo-
ment. Then by the previous discussion a spiraling approach to discovery
occurs, with recourse to the outermost cut-vertices of the boundary of the
movement graph as the boundary is traversed (bearing in mind the boundary
is continuously reduced where possible by mechanism (iii)).

Therefore, h(Ω∗) depends on the outer-boundary cut-vertices within M .
Now let Di be the ith biconnected component connected to any other region
C by a simple path P = vw1w2 · · ·wmv

′, such that σ(C) ≥ σ(Di), where
σ(X) is the number of concentric level-k faces contained by region X such
that each level-k face contains the vertex v′.

We may use Lemma 1 to compute the traversal cost of the simple path
joining the two regions. However, before doing so, a further consideration is
required:

Every time a simple path P connecting regions C to Di is traversed,
the length of P increases since on reaching Di the walk traverses the outer
boundary therein and returns to v′. If this was not the last level-k face of this
region then the region will be revisited once more, but to reach an unvisited
vertex of that region it must travel 1 vertex further than before. Therefore,
each time the path is traversed, then due to mechanism (v) the path length
must be noted to increase by a value of exactly one. Therefore, a given
isolated region Di would require the following number of steps.
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Figure 9: The walk completes isolated regions, unlike in Figure 8

2|Pi|+ 2(|Pi|+ 2) + 2(|Pi|+ 3) + · · ·+
2(|Pi|+ σ(Di))

= 2|Pi|σ(Di) + 2(2 + 3 + · · ·+ σ(Di))

= 2(|Pi|σ(Di) +
σ(Di)(σ(Di) + 1)

2
− 1)

= σ(Di)(2|Pi|+ σ(Di) + 1)− 2,

This gives the undesirable result of exiting a biconnected component mul-
tiple times, stripping the biconnected component of its level-1 face on every
exit (except where additional biconnected components are attached to it, in
which case they may persist longer)

It would be much more efficient and desirable if the system completed
a biconnected component before exiting (as in Figure 9). To remedy this,
the level-1 face algorithm gives priority to unvisited yet known (i.e. sensed)
vertices. Visited nodes, in the context of current discussion pertaining to
paths connecting biconnected components, are given lower priority. This
new mechanism (mechanism (vi)) is in addition to those stated in section
3.3.

Thus, in Figure 10 the biconnected component shown would cause algo-
rithm 1 to consider the cut-vertex dual to the 3-clique as inaccessible. This
has the effect of the next level-1 face computed to be that of the interior
of the biconnected component. This process continues until the biconnected
component is fully explored at which point the region is exited.
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Figure 10: Demonstration of Lemma 1.

This simple addition gives a much improved performance, and will in
fact seek out the furthest possible biconnected components, completing bi-
connected components from the furthest reaches backwards to the starting
point. This includes nested biconnected components, meaning that very
complex environments are efficiently discovered.

Given the previous discussion and the introduction of mechanism (vi), we
can deduce an estimate for a maximum bound of h(Ω∗),

h(Ω∗) ≤ |M∗|+ 2

p−1∑
k=1

|Pk|,

where p is the number of biconnected components emerging as M develops
and Pk are paths connecting their centres.

4.3. Overall Complexity

Consider the final movement graph M∗. We know there exists an induced
subgraph Ω ∈ M∗, where Ω is the final path taken, such that the 3-clique
of robots traverse M∗ as optimal as the rules governing algorithm 2 allow.
The upper bound of exactly how optimal was given above. Thus, since |Ω| ≤
|M∗| = nH , we are justified in basing all deductions concerning complexity
of the algorithm to search an unknown environment on the input size nH .
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Thus, we know that algorithm 2 is called nH times. Looking at algorithm
2, the very nature of when (if at all) and for what constant of complex-
ity some of the internal functions of algorithm 2 are called depends on the
environment. Thus, we may deduce that the algorithm to search an entire
unknown environment takes O(k ·nH), where 1 ≤ k ≤ nH is to be determined
and depends entirely on the environment. The trivial example of a square
environment, with no internal features, for example, would correspond to
k = 1.

5. Closing Remarks

This paper gives a solution to the difficult problem of unknown environ-
ment search using graph structures and elements of graph theory.

On imposing a virtual structure on the environment, a principle of search,
basically amounting to wall following, was developed into a number of algo-
rithms and additional mechanisms were reasoned and applied to achieve a
desired result each of which improved efficiency of the search in some way.

The result is a simple, discrete, and robust ready made system of linear
time complexity which is both useful in its current form yet allowing room
for further development.

The authors believe this to be a novel approach in that the system assigns
virtual structure to the environment thus availing pragmatic deployment of
entities within the environment and eventual metric map construction. Pre-
vious approaches traditionally overlay the topological structure once the en-
vironment has been searched and a metric map built.

Future work is to include improvement (possibly by way of convolution)
of algorithms, and theoretical improvements of the walk length upper bound.
This may itself improve on the already good time complexity. Practical ap-
plications on a real world problem (such as robots) is a major goal, and recent
work has shown that the outer face walk (algorithm 1) can be optimized to
consider only local graph vertices (much like algorithm 4 does), thus reducing
to constant time complexity.

Finally, development of algorithms to coordinate n entities for efficient
search is desirable, for large team exploration, for example.
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