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Abstract 

We present here the results of a series of molecular dynamics (MD) simulations of 
systems of soft repulsive tapered particles. Essentially, the objective of the project 
was to investigate the effect that changing the degree of taper of these particles 
has on the collective behaviour of the system. The particle shapes were modelled 
using the parameterised Gaussian overlap (PHGO) contact function, which had 
previously been used in Monte Carlo (MC) studies of systems of hard particles 
with the same range of shapes [Phys. Rev. E 68,021708 (2003)]. 

The work carried out falls into three main categories. Firstly we calculated the 
splay and bend reduced flexoelectric coefficients, eil and e33, for a number of sys- 
tems in the nematic phase. This was done using the linear response approach 
developed by Nemtsov and Osipov [Kristallografiya 31 2,213-218 (1986)]. The 
values of e11 measured for the tapered systems studied were all positive and of the 
order of +0.1, whilst the e33 values were of a similar magnitude but negative in all 
cases. These numbers correspond to values of the order of pCm-1, which is consis- 
tent with typical values measured experimentally for the flexoelectric coefficients. 
The reduced coefficients for systems of uniaxial particles were also calculated and 
found to be approximately zero, as they should be for particles with this type of 
symmetry. 

The second major theme in the project was the mapping out of the shape-density 
phase diagram, through both compression and decompression sequences, for ta- 
pered particles having a constant length to breadth ratio of 3 but different degrees 

of tapering, ranging from an extreme tear-drop shape to the uniaxial Gaussian el- 
lipsoid. The results of our MD simulations broadly agreed with those obtained by 
the MC route [Phys. Rev. E 68,021708 (2003)]. Isotropic, nematic, smectic and 
ordered solid phases were clearly identified. In addition a so-called `curvy-bilayer' 
(CB) phase was observed, which locally possessed similar order to the smectics 
but did not exhibit any clear long range order. 

The structure of the CB phase was investigated further and found to be a type of 
bicontinuous cubic phase, specifically the Ia3d or gyroid (G) as it is also known 

-a phase never before obtained from this type of simulation. Characterisation 
of the I-G transition was undertaken, which indicated that the gyroid freely self- 
assembled from precursors present in the isotropic fluid. The Sm-G transition 
was also characterised and found to take place via the formation, firstly of stalks 
joining two adjacent smectic bilayers and then subsequently pores which bisect 
these bilayers and initiate the emergence of the gyroid morphology. 
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CHAPTER Z 

Introduction 

1.1 Overview of liquid crystal phases 

The properties of all materials ultimately derive from the molecules of which they 

are comprised. However, it is often the case that the most useful properties of 

a material, rather than deriving solely from the intrinsic characteristics of its 

constituent molecules, also strongly depend upon the collective organisation of 

those molecules. An important class of materials which provides an excellent il- 

lustration of this are liquid crystals (LCs). LCs are so called because they have 

properties in common with both the liquid and solid crystalline phases of matter. 

On the one hand, the molecules that comprise LCs are able to diffuse and change 

their orientations and so the material is fluid. On the other hand, whilst the 

molecules have mobilities similar to those found in simple fluids, they have a ten- 

dency to collectively adopt configurations which possess long range orientational 

order and in many cases long range positional order also. LC phases are therefore 

often referred to as mesophases, from the Greek meso meaning `intermediate', the 

molecules that form them are similarly termed mesogens. 

Liquid crystals are an extremely diverse class of materials in terms of their con- 

stituents, the structures they form and the physical processes which are responsible 
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for the formation of the mesophases. What follows is a very basic overview to give 

a flavour of some of their essential characteristics, for the purposes of putting the 

objective of this project into context. For a proper introduction to the subject, 

the reader is directed to the texts [1-3]. 

In terms of classifying the types of molecules that form liquid crystals, two main 

categorisations have traditionally been used, which relate to the overall shapes 

of the molecules. Calamitic LC molecules have an overall shape that is rod-like. 

A classic example of calamitic mesogens is the nCB family. These consist of 

an essentially rigid aromatic core of meta biphenyl. At one end of the core, a 

cyano headgroup is attached and at the other end a flexible alkyl chain, CnH2n+1. 

Calamitic LC molecules typically range in size from 20-50A in length and 3-5A 

in width. Discotic LC molecules, on the other hand, have a disk-like form. In 

general they consist of a flat rigid core made up of several aromatic rings from 

the perimeter of which radiate flexible alkyl chains. The dimensions of discotic 

LC molecules typically range from 20-50A in diameter whilst the thickness of the 

central disk is 3-5A. 

The simplest mesophase formed by calamitic LCs is the nematic, denoted N, in 

which the molecules have no long range translational order but do have a pre- 

ferred orientation. This preferred orientation is defined by a unit nonpolar vector, 

n, called the director. The degree of orientational order is characterised by an 

orientational order parameter, P2, which may be defined as a microscopic average 

over the molecular orientations with respect to the director 

P2(cos2e i-2 
3 1/ 

where Oi is the angle between the major axis of molecule i and A. P2 is zero for 

the isotropic phase, denoted I, in which the molecular orientations as well as the 

positions are randomly distributed. For an ideal system in which all the molecules 

are perfectly aligned P2 = 1. Typical order parameter values for real liquid crys- 

tals range from 0.3 to 0.8. Discotic mesogens also form a nematic phase but in 

these, the orientational correlation is between the minor axes of the molecules, 
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which are perpendicular to their central disks. 

Another important mesophase formed by calamitic mesogens is the smectic phase, 

denoted Sm, in which the the molecules have a mutually preferred orientation 

and, in addition, stack into layers, thus imbueing the system with one dimen- 

sional translational order. If the director is perpendicular to the layers, the phase 

is termed smectic A (SmA). If it makes an angle other than 90° to the layers, it is 

known as a tilted smectic phase, denoted SmC. In both SmA and SmC, there is 

no intralayer ordering of the molecules. However smectic phases do exist in which 

the mesogens organise themselves into hexagonal or rectangular arrays within the 

layers, these are termed SmB phases. The variant of this phase in which the direc- 

tor is also tilted with respect to the layer normal is denoted SmI. In the SmB and 
SmI phases, there are no correlations between the mesogen positions from layer 

to layer, however the directions of the axes which define the ordered intralayer 

packing are correlated. This is known as bond orientational order. If smectic LC 

phases are cooled to sufficiently low temperatures or compressed to high enough 

density, they crytallise into the solid phase, which by definition possess both intra- 

and inter-layer long-range order. 

So called chiral variants of some of the phases described above are also observed. 

These form when the mesogens, rather than being uniaxially symmetric, possess 

a distinct inversion assymmetry - they have a handedness. In the chiral nematic 

phases, which are by convention denoted by an asterisk like so N*, the preferred 

orientation of the molecules rotates as one moves through the sample in a direction 

perpendicular to the director. In the chiral variants of the tilted smectic phases, 

the director, whilst maintaining a constant tilt angle with respect to the layers, 

rotates from layer to layer about the layer normal, thus describing a cone. 

Discotic mesogens exhibit a markedly different type of positional order compared 

to the smectics formed by rod-shaped molecules. Instead of forming layers, they 

assemble into columns rather like stacks of coins. The positions of the disks along 

the axis of the layer may be periodic or disordered. Also the minor axes of meso- 

gens may either be parallel to the column axis or tilted at an angle to it. The 
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columns themselves tend to form into two-dimensional lattice arrangements in 

which the ordering can be hexagonal, rectangular or oblique. 

Besides categorising liquid crystals according to the symmetries of their con- 

stituent molecules and those of the structures that they form collectively, liquid 

crystals are also grouped according to the principle external agents which drive 

their phase transitions. In this regard, there are two major categories, namely 

thermotropic and lyotropic. With thermotropic LCs, phase transitions are driven 

by changes in temperature. Thermotropic LCs are usually composed purely of 

mesogenic molecules or blends of different mesogens. Mesophases are obtained 

from these types of materials either by cooling the initially isotropic fluid or else 

heating an initially crystalline solid. The phase transitions in these systems are 

brought about principally by the effect that thermal energy has on the confor- 

mations and mobility of the flexible parts of the mesogens. Lyotropic LCs on 

the other hand consist of mesogens in a solvent such as water or oil. Here phase 

changes are brought about principally by altering the concentration of the solu- 

tion and, thus, the number of mesogens per unit volume. However in lyotropic 

LCs temperature will also play a role to a greater or lesser extent. 

1.2 Predicting mesophase behaviour 

Relating the properties of the constituents of LCs to their collective behaviour and 

thus gaining a better understanding of how to engineer them in order to better 

exploit there unique properties is indeed a formidable problem. The theoretical 

modelling of LCs and indeed of complex fluids in general, is extremely compli- 

cated due the fact that these systems are dense and inhomogeneous, making it 

very difficult to treat the many body interactions which determine, at the molec- 

ular level, how the fluid behaves. 

One of the key strategies adopted in theoretical modelling of dense fluids, which 
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avoids this difficulty, is mean field theory (MFT), also known as self consistent 

field theory. In this approach, the many interactions of a model fluid molecule 

with its neighbours are replaced by an average or effective interaction. Several 

such theories have been developed which makes qualitative predictions for phase 

transitions in liquid crystals consistent with experiment the most successful of 

these being Maier-Saupe theory. In general, MFT has been fairly successful in 

making qualitative predictions for phase transitions in thermotropic LCs that are 

consistent with experiment. However the approach rarely succeeds in making ac- 

curate quantitative predictions. The main reason for this is precisely that they 

neglect the contributions of short range interactions and also fluctuations in the 

overall interaction potential from the mean. 

A second, more technically challenging approach, that does attempt to take into 

account short range interactions, is density functional theory (DFT). The most 

celebrated application of DFT, in relation to liquid crystals, was made by On- 

sager [4]. In this theory, the liquid crystal molecules are modelled as hard sphero- 

cylinders. A spherocylinder (SC) consists of a cylinder of length L and diameter D 

whose ends are capped by hemispheres also of diameter D. The term `hard' means 

that each object interacts with its neighbours via an interaction that is repulsive 

and infinitely steep - in other words a pair of such particles may not overlap. In 

order to develop the theory, Onsager made the simplifying assumptions that the 

spherocylinders were extremely thin, i. e. L»D, and the volume fraction, 77, of 

the system very low, i. e. 77 = Nv/V = pv « 1. Here N is the number of particles 

in the system, V the system volume, v the particle volume and p is the number 

density. The result of this analysis was an expression for the free energy of the 

system that could be used to determine its equilibrium phase at a given density. 

This led to the prediction of an isotropic-nematic transition at a density of the 

order of p-1 /(L2/D). 

The crucial point is that Onsager theory predicts that volume exclusion effects 

alone, mediated by repulsive hard-core interactions, may be sufficient to bring 

about an LC phase transition. At the fundamental level, the driver of this phase 
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transition is entropy. In the model system of spherocylinders, the number of parti- 

cles, N, the system volume, V, and the temperature, T, are constant. As such, the 

appropriate free energy for the system is the Helmholtz free energy, F=U- TS, 

where U is the internal energy and S the entropy. Since the particles are purely 

repulsive, their interactions do not contribute any potential energy, and therefore 

the internal energy is zero. By the same token, their interactions will be unaf- 

fected by temperature and so T can be treated as a constant. What remains 

then is a free energy that is dependent on entropy alone and the phase which is 

stable, i. e. the one that has the lowest free energy, at a given density, will be the 

one with the maximum entropy. That this is responsible for an isotropic-nematic 

transition appears counter-intuitive at first in as much as one would not expect 

a nematic, with its orientational order, to possess an entropy larger than the ap- 

parently more disordered isotropic phase. The reason the nematic is favoured at 

higher density is that, as the system is compressed and the elongated particles 

come into closer proximity, the effect of excluded volume will increasingly result 

in there being, on average, fewer positions available for a given particle to occupy. 

Consequently there are fewer different ways for the particles to arrange them- 

selves, thus decreasing the positional entropy. If however the particles align with 

each other, though orientational entropy will be lost, excluded volume is reduced 

thus freeing up more space and increasing the number of positions the particles 

may occupy. It so happens that, at the isotropic-nematic transition, the loss in 

orientational entropy is outweighed by the gain in positional entropy. It should 

be added that this is not the only evidence for entropy driven phase transitions. 

In some of the earliest computer simulations performed, Alder and Wainwright [5] 

observed a liquid-solid transition in hard spheres qualitatively similar to that ob- 

served in simple atomic fluids such as argon. Also, experimentally, the tobacco 

mosaic virus, which has a shape very similar to the spherocylinder, has long been 

known to undergo a density driven isotropic-nematic transition [6]. 

Indubitably other agents such as attractive (dispersion) forces, electrostatic in- 

teractions, polarisabilty, intramolecular degrees of freedom and so forth have sig- 
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nificant roles in influencing the behaviour of real LCs and other complex fluids. 

However, gross molecular shape is widely held to be one of the most important. 

Further investigations into the behaviour of dense fluids consisting of anisometric 

hard particles may therefore provide valuable insight into mesophase behaviour. 

Theoretical approaches are inherrently best suited to treating systems with a high 

degree of homogeneity and symmetry. It is therefore unsurprising that in the case 

of complex fluids it is often very difficult, if not practically impossible, to incor- 

porate into them the essential physical details which distinguish these types of 

system. In particular, the predictions of Onsager theory become increasingly less 

accurate as the aspect ratio, ic, of the spherocylinders is decreased to the sort of 

values encountered for real mesogens, say is =3-5. Because of these difficulties, 

computer simulation is increasingly used as a powerful tool for gaining insight 

into the drivers of phase behaviour in LCs and other forms of soft matter at the 

microscopic level. A computer simulation could be viewed as a discrete, rather 

than continuous, mathematical model played out on a machine. Like theory, a 

computer simulation tries to capture the essential physics of the system of inter- 

est and involves numerous simplifications and approximations. However, with the 

latter there is much more scope in terms of the level of detail that can be included. 

In particular the many body interactions, that are so difficult to incorporate in 

analytical models, are an intrinsic feature of the computer simulation. 

A substantial body of simulation work has been carried out on model systems 

of hard anisometric (non spherical) particles. For a comprehensive overview, the 

reader is referred to the reviews by Allen [7] and Cleaver and Care [8]. Here we 

confine our attention to the hard spherocylinder and the hard ellipsoid of revolu- 

tion (HER). These are to date probably the most extensively studied single-site 

anisometric hard particle models. 

The first simulations of hard spherocylinders were carried out by Vieillard-Baron 

in the early 1970s [9]. He used constant volume, constant temperature (NVT) 

Monte Carlo to simulate a system of 616 hard SCs with an aspect ratio, y, of 3, 

the aspect ratio for SCs being defined as ry = (L + D)/D = (L/D) + 1. The shape 
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of spherocylinders may alternatively be characterised by their shape anisometry 

k= L/D. The density range explored, as expressed in ternns of the volume frac- 

tion, was i=0.30 - 0.54. Unfortunately in this work, no ordered phases were 

observed for this aspect ratio and density range; the limitations of computer power 

at that time made it impractical to run with particles of larger aspect ratios or at 

higher density. 

In the years that followed, more ambitious simulation studies were carried out 

culminating in those of Bolhuis and Frenkel [10], who comprehensively mapped 

out the hard spherocylinder phase diagram from the limitting case of hard spheres 

Fig. 1.1: The phase diagram for hard spherocylinders as determined by Bolhuis and 
Frenkel [10]. The shaded areas represent phase coexistence regions. The dashed line is 
a rough estimate for the phase boundary between the AAA and ABC solid phases. 
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at one extreme (h = LID = 0) to infinitely thin particles at the other (A- = )C), 

the latter corresponds to the model particles featured in Onsager's theory. The 

phase diagram they obtained is presented in figure I. I. It should be noted that 

the density scale they use is normalised iw dividing the number density by the 

9 



number density for close packing: p* = p/pep. Systems consisting of particles 

with a shape anisometry in the range 0<k<0.35, as they are compressed, freeze 

into a plastic crystal phase (P) in which the particles have translational order, 

i. e. their postions define a regular lattice, but their orientations are disordered. 

For 0.35 <k<3.1, an isotropic-solid (I-S) transition is observed; in this k range, 

the solid consists of layers of SCs stacked one on the other in the ABC hexag- 

onal stacking arrangement. At k=3.1, the smectic phase emerges between the 

isotropic liquid and the crystal solid. For slightly more elongated particles with 

k=3.7, the nematic phase also becomes accessible and so for k>3.7 the phase 

transition sequence is I-N-Sm-S. Also for k>7.0, on freezing, the initial stacking 

arrangement of the solid becomes AAA. 

The first simulations of ellipsoidal particles were again pioneered by Vieillard- 

Baron [11]. In fact this work was a 2D simulation study of 170 hard ellipses with an 

aspect ratio, r., of 6. Nevertheless both solid-nematic and nematic-isotropic phase 

transitions were observed in this system. Fully three-dimensional simulations of 
hard HERS were later carried out by Frenkel and Mulder [12] using constant pres- 

sure, constant temperature (NPT) Monte Carlo. This work looked at both prolate 

and oblate ellipsoids with aspect ratios of 3,2.75,2,1.25 and 1/1.25,1/2,1/2.75, 

3 respectively. The phase diagram obtained is shown in figure 1.2. The phase dia- 

gram also included data from previous work: the limiting case for oblate particles, 

K=0, is the infinitely thin disk, which had been studied previously by Eppenga 

and Frenkel [13]. The extreme case for prolate HERS meanwhile, with K= oo, 

corresponds to the needle like particles featured in Onsager's theory of the I-N 

transition. The other special case, K=1, corresponds to hard spheres whose phase 

behaviour has been rigorously investigated. To summarise the phase behaviour of 

HERS, the nematic phase is observed for oblate ellipsoids with c< 1/2.5 and for 

oblate ellipsoids with K>2.5. Oblate and prolate ellipsoids with more moderate 

aspect ratios in the ranges 1/2.5 <K< 1/1.5 and 1.5 <K<2.5 respectively un- 

dergo freezing transitions from the isotropic to the ordered solid (S) phase without 

an intervening nematic phase. For 1/1.5 <K<1.5 the freezing transition is from 
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Fig. 1.2: The phase diagram for hard ellipsoids of revolation as determined by Frenkel 

and Mulder [12]. The shaded areas represent the authors best estimates of the phase 
coexistence regions based on the state points studied. The density has been normalised 
by dividing it by 8ab2 where (a) is the length of the seminiajor axes of the ellipsoid 
studied and (a) is the length of their semiminor axes. 
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isotropic to plastic solid (PS). No sniectic phases are observed. the reason for this 

is essentially that in the high density fluid, side-to-side arrangements of ellipsoids 

to collectively form layers is not efficient packing (in contrast to splierocylinders 

in the same situation), rather fcc packing is favoured. The most striking feature of 

the phase diagram overall is the near perfect symmetry of the oblate and prolate 
halves. This symmetry is not fully understood. 

11 



1.3 Objective of the project 

Clearly then molecular shape is an important factor in determining the mesophases 

formed by liquid crystals. The essential aim of this project is to contribute to the 

body of hard particle simulation work by investigating the behaviour of systems of 

particles with tapered shapes i. e. particles that, unlike the uniaxial spherocylinder 

and HER, have polar shape anisometry. To this end we have carried out molecular 

dynamics (MD) simulations of soft repulsive tapered particles, or `pears' for short. 

The main body of work investigates the effect which systematically altering the 

degree of taper has on the general phase behaviour of the system. This builds on 

previous MC studies of purely hard particles having a similar type of shape [141. 

The soft repulsive variant of this potential is used here because the hard particle 

potential is non-differentiable and therefore cannot be used in constant timestep 

MD, which involves calculating derivatives of the potential in order to obtain the 

intermolecular forces which drive the dynamics. One may well ask why we bother 

to carry out this type of simulation at all using MD when a very similar system has 

been studied using MC? There are two main reasons. Firstly, if the results of the 

MC simulations are found to be closely reproduced by the analogous MD study, 

then the latter provides good verification of the former and vice versa. Secondly, 

MD provides additional dynamical information about the system which cannot 

be obtained from MC runs. 

We have also studied the flexoelectric properties of systems of tapered particles. 

Flexoelectricity is a property of LCs whereby when a net mechanical distortion is 

imposed upon a sample of the material, a net polarisation is induced. It is analo- 

gous to the more widely known piezoelectric effect observed in certain crystalline 

materials. According to Meyer, flexoelectric properties may be engendered by 

certain characteristic shapes of the materials constituent molecules - one of which 

being a wedge-like or tapered shape. The use of the MD simulation technique was 

essential in this work since, in the method used to determine of the parameters 

which characterise flexoelectricity, the calculation of torques is required. 
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1.4 Outline of the thesis 

In chapter 2 we will describe precisely the shapes of the particles to be consid- 

ered and demonstrate how they are generated. The shapes range from a uniaxial 

particle, which is very similar to the hard ellipsoid of revolution, to extremely 

tapered tear-shaped particles. We will then explain the method used to model 

the particle shape in the simulations. This is known as the parameterised hard 

Gaussian overlap (PHGO) model as used previously the simulation work on sys- 
tems of hard particles [14]. In the final section of this chapter the potential used 
to mediate the interactions between the particles will be described. This potential 
is essentially a continuous analogue of the strictly hard particle potential used in 

the MC studies. 

Chapter 3 describes the simulation methodology, beginning with a brief overview 

of how the MD simulations are organised. The forces and torques which drive the 
dynamics of the system are then defined as well as the observable properties of 
the system calculated in the course of the simulation. Since the latter are actually 

calculated during the simulation, they are referred to as `runtime' observables. 
The final section describes a battery of distribution functions, which were used to 

analyse in detail the structure of the phases formed in the simulations once they 

had reached completion. 

In chapter 4 the results from a series of preliminary simulations are presented. 

These were designed primarily to test that the code was performing satisfactorily. 

They also provided an opportunity to develop the analysis techniques later used 

to elucidate the properties and phase behaviour of the systems generated by the 

main simulation runs. 

Chapter 5 describes how a specialised analysis technique, known as the linear re- 

sponse approach, was used to calculate the flexoelectric coefficients, ell and e33, 
for our systems of pears. These are respectively the splay and bend flexoelectric 

coefficients and are the key quantitative measure of the flexoelectric properties of 

a material. They were calculated for several tapered particle systems at various 
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ttieasured. This served as a control test since uniaxial lpartitle". such as ellipsoids. 

should not possess flexoe1ectric properties. 

In chapter 6 we follow up on the previous \IC' siiº>>ilatio>> stn(li('s of Barines et 

al. [14] by carrying out a sVsteinatic survey of the shape-(lensitV phase diagnim 

for soft repulsive pears with a length to breadth aspect ratio. K. of 3. In this, 

the isotropic, nematic. sru('ctic, crystal and what we refer to as the 'cmvy-l)ilaver' 

Fig. 1.3: The density-shape phase diagra»i for soft repulsive pears with an aspect ratio 
ratio of n; = 3. This was obtained through a series of decompression rims fier particles 
with different degrees of taper. 
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(CB) regions of the phase diagram are mapped out. This was accomplished by 

carrying out a series of compressions and decompressions of monodisperse systems 

of 1250 particles for a range of particle shapes. The phase diagram obtained from 

the decompression series is presented in figure 1.3. 

The structures of the various phases were thoroughly interrogated using the distri- 

bution functions defined in the methodology chapter. However, the precise nature 

of the curvy-bilayer encountered in the 03 survey was not clear. Therefore, a fur- 

ther series of compressions and decompressions was performed on larger systems 

of 10000 particles, the results of these simulations are presented in the final main 

chapter. Stored configurations from these simulations were subjected to a clus- 

ter analysis technique in order to elucidate the structure. This analysis enabled 

us to identify the phase as consisting of two identical, interpenetrating periodic 

networks. Further analysis confirmed that the CB phase was in fact the bicontin- 

uous cubic phase Ia3d, otherwise known as the gyroid (G). This phase has been 

observed previously in a small number of simulations which included attractive 
interactions in the potential but never in a hard particle model. We have recently 

published a paper [15] summarising this unprecedented result and discussing its 

significance and wider implications. These matters are also touched on in the final 

chapter of the thesis in which we draw together the major conclusions from the 

simulations carried out so far and indicate some promising directions for future 

work. 
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CHAPTER G 

A model for tapered particles 

2.1 Defining the shape 

The particles used in our simulations have two characteristic shape related prop- 

erties. Firstly, they have an overall aspect ratio, c, which is simply defined as 

the ratio of the length of the particle to the width at its mid-section. Secondly 

they have a degree of taper which is labelled by the parameter k9, which will be 

described shortly. Thus a particle with an aspect ratio of three and a degree of 

taper of five, say, would be denoted by the short hand K3k05.0 1. 

The cross-sectional profile of the tapered particle is generated by a pair of cubic 
Bezier curves [16], each of which is defined by a parametric equation of the form 

P(t) = (1 - t)3ao + 3t(1 - t)2a1 + 3t2(1 - t)a2 + t3a3 (2.1) 

where a0_3 are the control points which determine the shape of the curve and 
t lies in the range 0-1. A general example of a cubic Bezier curve is shown in 

'Occasionally ASCII based notation like K3kth5-0 may be encountered, this format having 
been used for the naming of directories and files associated with simulations of particles of a 
particular shape 
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figure 2.1. The curve begins and terminates at the points a0 and a;; resI)('ct ivel. N . 

whilst a, and a, ) serve as attractors influencing the curve's trajectory 1)etXNween the 

endpoints. 

Fig. 2.1: An example of a Bezier curve. 
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Fig. 2.2: Examples of the cross sectional profiles for particles with all aslxe("t ratio of 

H. -3 and various degrees of tapering, as constructed from a pair of Bezier curves. 
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The cross-section of a tapered particle is generated using two of these curves with 

their control points placed in arrangements such as those shown in figure 2.2. 

wherein the curve defining the profile of the top half of the particle is coloured 

red and that defining the bottom half is coloured blue. The control Points ao. a:, 

and bo. b; 3 of both curves are always placed at (-w. 0) and (w, O) respectively (w 
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being the half width of the particle at its mid-section) so that the ends of the two 

curves meet. A second constraint is that the points bl, bo, ao, al must always 

be positioned so that they are colinear, as must b2, b3, a3, a2, this is to ensure 

that there is no discontinuity in the gradient of the profile at the meeting points. 

Points b1, b2 and al, a2 have fixed y-coordinates of -h and h respectively. For 

particles with a particular aspect ratio, the value of h is constant; for 0 particles 

it is equal to 2.0. The degree of taper is controlled by altering the horizontal 

positions of b1, b2, al, a2 subject to the overall arrangement remaining symmet- 

ric about the long axis of the particle. If the control points are positioned such 

that the line segments albs and a2b2 intersect at a point lower than the apex of 

the particle, i. e. below (0, ic/2) as illustrated in figure 2.2 (a), then the taper is 

very pronounced and the particle has a partially concave tear-drop shape. If, on 

the other hand, the intersection point of these line segments (or the extensions 

thereof) occurs above the apex, the profile will be less tapered and, in addition, 

purely convex, as illustrated in 2.2 (b). The situation shown in figure 2.2 (b), 

where the control points al and a2 are coincident marks the threshold between 

concave and convex particle profiles, and corresponds to ke = ºK. So in general, as 

the intersection point occurs higher up the y-axis, the degree of taper is reduced, 

which corresponds to increasing ke value. In the extreme case, illustrated in 2.2 

(c), where b1, al and b2, a2 are placed such that the two lines passing through 

them are vertical, the particle is no longer tapered and is reduced to a symmetric 

elliptical shape, for this situation, ke is equal to infinity2. 

2The scheme used to generate particle shapes was developed by Zannoni and coworkers and 
is described in [17] 

, 
however this description does not include a precise quantitative statement 

specifying the relationship between 0 and ke 
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2.2 The Gaussian overlap contact function 

In order to perform simulations of systems of many particles, we require a closed 

mathematical expression that describes the steric interaction of one particle with 

another. We refer to this as the contact function, cr. Formally, the contact, function 

defines the distance at which two particles, positioned and oriented arbitrarily 

with respect to one another, make contact if brought towards each other along 

the line joining their centres, as shown in figure 2.3. The most trivial form of 

contact function is of course that of a pair of spheres it is simply the suinni of 

their radii. since all points on the surface of a sphere lie at a constant distance, 

namely the radius, from its centre. We might naively expect, that. given a precise 

Fig. 2.3: Schematic illustrating the contact function for (a) a pair of spheres and (h) a 
pair of tapered particles. The interparticle vector r; j is defined as ri - rj, where r? and 
rj are the positions of the particles. The unit vectors t2j and üt define the orientations 
of uniaxial particles. 

(a) (b) 

ü. 

il 

ai, o '.. 

Q(ül., ý4. 
liii) 

geometric definition for the surface of a particular object, we could devise an 

analytical contact function for a pair of such objects. In fact this is a far from 

simple problem as illustrated by the fact that it is only recently that, an analytical 

contact function has ben devised for two arbitrary ellipses in 2D [18]. And so it 

is that even though the geometric description of the shape of a solid figure, say, 

an ellipsoid (which we note has a shape very similar to a ko = oe pear) is itself 

very simple, there is as yet no analytical expression for the contact function for 

a pair of ellipsoids, let alone for a pair of tapered particles. For certain classes 
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of particle, there do exist well defined criteria for testing whether particles are 

overlapping, just touching or not overlapping. For a pair of spherocylinders (SCs) 

i and j, with diameters di and dj, Vieillard-Baron introduced the following test 

criteria [9] 

<0 if i and j overlap 

`Js 3(ri3, Uj, ü3) _=0 if i andj are externally tangent (2.2) 

>0 if i andj do not overlap 

where rid is the interparticle vector defining the relative positions of the two 

ellipsoids, i and i and üi and ii are unit vectors defining their orientations. The 

test function is given by 

ýijýTijýuiýij) =(Sij(Tý7, i2,14, )-ý(ýi+d ý2 (2.3) 

where S is the closest distance between the line segments along the axes of the 

cylindrical portions of the spherocylinders. There is also an analogous test criteria, 

developed by Perram and Wertheim [19], which holds for for non-identical general 

ellipsoids: 

<1 if i and j overlap 

. 
fib(rij, 9i111j) _=1 if i andj are externally tangent (2.4) 

>1 if i and j do not overlap 

Here rid is the interparticle vector and R and Sly denote sets of coordinates defin- 

ing the particle orientations. The test function, fib, meanwhile is given by an 

expression which is very much more complicated than the analogous one for SCs. 

Such test algorithms are suitable for use in MC simulations of hard particles, 

where one simply requires a means of deciding whether a trial move should be 

accepted or not. However they are unsuitable for constant timestep MD simu- 

lations because they do not specify the contact distance in an analytical form. 

Fortunately an approach exists which has been used to derive an analytical form 
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of contact function that closely approximates the steric interaction for hard ellip- 

soids of revolution (HERS). Furthermore, as we will show, this analytical form 

can be adapted to yield a contact function for tapered particles. This approxima- 
tion to the contact function for ellipsoids is known as the Gaussian overlap (GO) 

model, introduced by Berne and Pechukas [20]. Wee will now describe the model 
in some detail. 

The GO model starts by conceiving an idealised elongated molecule as represented 
by a three-dimensional ellipsoidal Gaussian distribution. 

G(r) = 12 1-112 exp[-r . 'y-1. r] (2.5) 

where r is a general position vector and y denotes the range matrix which serves to 

modulate the directional variation of the distribution in space. The range matrix 
is given by 

ry=(l2-d2)üü+d2I (2.6) 

where 6 is a unit vector along the principal molecular axis, üü denotes the outer 

product and I is the unit matrix. The parameters 1 and d quantify the half-length 

and half-width of the distribution representing the molecule. 
The second step is to postulate that the interaction potential, Uzi, between a pair 

of such molecules, i and j, is, in some sense, proportional to the mathematical 

overlap of their Gaussians 

Uij(iai, üj, rij) - f-0,00 drGi(r)Gj (r - rig) (2.7) 

The result of this integral is itself a Gaussian function of the intermolecular vector 
rid and the molecular orientations 2i and ü. (on which ry= and yj respectively are 
dependent). 

12i 
+ 2j 

1-1/2 
exp 

{. 
_rii. 

(-v. 
+ 7j) . rij] " 

(2.8) 
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For a given particle-particle orientation (1^4, ü2), the principal axes of the distri- 

bution are given by the eigenvectors of (ry. + rye) and the equipotential surfaces 

are ellipsoids, which of course share these axes of symmetry. The variation in 

the potential profile observed along directions in rij space is modulated by the 

eigenvalues of (, y. + rye) whilst the prefactor Iry. + yj1-1/2 simply acts as a scaling 

factor for the magnitude of the potential. Berne and Pechukas emphasised these 

two controlling factors in the potential by writing Eq. (2.8) in the form 

r vi7(uii, u7, ri7) = E(fii, fij) exp I 
Q2ýZ1'iý u7ý fij)J 

(2.9) 

where c is called the strength parameter, which modulates the strength of the 

particle-particle interaction, and o is the range parameter which determines the 

width of the potential. By equating terms in equations 2.8 and 2.9, it transpires 

that the task of obtaining E and o, essentially amounts to determining expressions 

for the determinant and inverse respectively of 'y + yj. If both particles are 

identical, i. e. i= lj =1 and di = dj = d, then the following expressions result. 

Firstly the strength parameter is given by 

E( ýýý) = eo [1 - X2 (üi"üj)2]_h/2 (2.10) 

where eo is the basic unit of energy setting the energy scale of interactions. Sec- 

ondly the range parameter is given by 

a2 -1/2 

Clui, u7, Tij) o. 1-X ''1j + Zýj ij) + 
(ui rij - aj Tij) 

2 [1 +X (vj"üj)] [1 -X ('ý"üj)ý 

where oO = /d is the basic unit of length and X is the shape anisotropy parameter 

X= (12-d2) /(12+d2) (2.12) 
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In the special case where one of the molecules, j say, is replaced by a sphere (not 

necessarily of the same diameter as i) then e= co, cro = (d? +d )1/2 and the range 

and anisotropy parameters become 

cr(uj, r2j) = ao (1 
_X( uj"rrj)2)-1/2 (2.13) 

where 

X= (li - dzý (lz + dý) (2.14) 

In the case where both molecules are replaced by atoms, the range parameter 

reduces to or = ao = (d? + dß)1/2, which further simplifies to or = /d if both 

atoms are the same size i. e. di = dj = d. 

It is instructive to calculate the value of the range parameter CYGO for selected 

molecular arrangements and compare the values obtained to the corresponding 

contact distances, O HE, for hard ellipsoidal particles. This comparison is made 

Tab. 2.1: Comparison between values of the Gaussian overlap contact function and the 
hard ellipsoid contact distance for various inter-molecular arrangements. 

configuration QHE aGO 

side-to-side 
00 

2d V2-d 

end-to-end C_ C= 21 v l'2-1 

T l+d l2 ++d2 

X 2d fd 

in table 2.1. For the side-to-side, end-to-end and X-configurations, multiplication 

by a factor of v maps aGo exactly onto the equivalent hard particle contact 
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distance. For the T-configuration the same scaling gives an exact, match only 

when both particles are spheres l=d. Nevertheless, it still provides a fairly good 

approximation for non-unity aspect ratios. 

We now return to the main thrust of the GO model. which was the development 

of model potentials for molecular interactions. While the concept of an elongated 

molecule being approximated by a Gaussian distribution seeins quite acceptal, le, 

the Gaussian overlap potential, equation 2.9. is not in itself physically realistic. 

Real molecular potentials are not simply proportional to the overlap of molecular 

electron clouds. W'e'hen atoms come into close contact. very strong repulsive forces 

of a quantum mechanical nature operate. At somewhat larger separations. the 

repulsive interaction falls off rapidly and the attractive dispersion forces come 

into play. These two general characteristics are represented in the Lenard-. loves 

Fig. 2.4: The Leriiiard-Jones 12-6 potential plotted for aruu = 1.0 and Fo = 1.0. 
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12-6 potential. equation 2.15 and figure 2.4, which approximates the interaction 

betwecii a pair of spherically s-innietric" atoms 
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Hence, the parameter (To is the distance at which the interaction between a pair 

of at. onis becomes repulsive: Go could be thought of as analogous to the contact 

distance for hard spheres. The other parameter, fo. defines the depth of the 

potential at its mininnini. which occurs at it value of r; j = 21'ýc'1a0. In order then 

to obtain a physically realistic potential to describe the interactions between a pair 
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of idealised elongated uniaxial molecules, Berne and Pechukas proposed replacing 

the constants oo and co in equation 2.15 with the orientation dependent range and 

strength parameters, Q(t2 , 21j,, %j) and e(i. j, t2 ), equations 2.11 and 2.10, as follows 

(ai))[2 /fzlu9+rti7) )61 
luiýuýri7_ UsP(ý6i,, 'tL7,1'tij) = 4E 4Lý 1\ 2.16 

rte rZj 

The result was an anisotropic, stretched version of the Lennard-Jones potential as 

shown in figure 2.5 (a); the two graphs illustrate the potential for the side-to-side 

and end-to-end configurations. The crucial point to take on board here is that 

the Gaussian overlap approach, though it does not automatically yield a potential 
describing the interactions between atoms and molecules, does provide, in the 

guise of the range parameter Q(üi, 46j, Tzj), an extremely useful contact function for 

describing the hard-core interactions of elongated molecules. We will henceforth 

refer to Berne and Pechukas' range parameter as the Gaussian overlap contact 
function, QGO = 01 co(, 

'üj', rj) 

Some years after its introduction, Gay and Berne [21] made two modifications to 

the original GO model. In brief, they proposed that the existing contact function 

be inserted into the Lennard-Jones potential in the following alternative manner 

ca( Uij 
lui, uj'rtij) - EOfGB(ui, uj, fj) {R12 - R6} (2.17) 

where 

R= 
( '70 

a/ 
(2.18) 

rz7 -l th u7 , ri 7) + 010 

and again Qo =fd. This generates a shifted rather than a stretched form of 
the potential. The second modification was to introduce a new and more com- 

plex strength parameter, fGB(vi, Ü. %.. ), dependent on the orientation, rid, of the 

interparticle vector as well as the relative orientations of the particles themselves. 

These changes were motivated by the discovery that major differences existed be- 

tween the attractive part of the Gaussian overlap potential and that of an equiv- 
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alert multi-site representation of a linear molecule (a line of four overlapping 

Leonard-Jornes spheres linked by rigid bonds). Figure 2.5 makes a comparison 

between the modified and original potentials. The modified Gaussian overlap 

Fig. 2.5: Potential profiles for ellipsoidal particles in the side-by-side and end-to-end 

configurations using (a) the original Gaussian overlap model and (h) the Gay-Berne 

model. The values used here for the half-width and half-length of the particles are 

QL = 0.5 and 011 = 1.5 respectively. 

(a) (h) 
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model. or Gay-Berne potential as it came to be known. has gone on to become 

the most widely used soft potential for coarse-grained simulations of fluids of ('loll- 

gated molecules. The original GO contact function nmeanwhile. which furnishes 

the Gav-Berne potential with its hard-core volume exclusion. continues to he used, 

on its own. in simulations of anisotropic hard l)articlc5. The extensive use of the 

GO contact function owes much to the fact that it closely reproduces the points of 

close contact that would be obtained for a pair of HElis whilst having a c"o llVenient 

mathematical form. This means that it can readily be differentiated and that the 

geometric attributes of the particles and their nnttual arrangements appear in the 

potential in a transparent fashion. 

Recalling Eq. 2.8. it is apparent that. in principle. the approach of Berne and 

Pechukas may be applied to the overlap of two clis. 5i7n, iiur Gaussians distributions 

and thus lead to a more general forth of contact function. By following this route. 

Cleaver et al. [22] obtained the following expression for it generalised Gaussian 

Stretched Lcnnard-Jones potential 
siae-to-sae 

Shitted Lcnnard-lone. Ixnential 
sd -lo dp 10 

0.0 

1.0 
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overlap contact function for non-identical uniaxial ellipsoidal particles 

co (a a+ a-lb)2 + 
(a a- a-' b)2 1/2 

(ýh'ýý'ri7) = ao 12r2 
1+ Xc 1- Xc 

(2.19) 

which contains a new constant appropriate for particles of dissimilar dimensions 

ýö co = (di + d; )-1/2 (2.20) 

as well as two new anisotropy parameters 

1ý2 ý2 
1/2 

L 
(1 - ui) (lj 

- uj 
X= (2.21) (l + df) (l1 + d) 

a2 
W- J2) (lý + d2) 1/2 

2.22 (l2 _ &) (l2 + dý 
() 

Within equation 2.19 we have made, for the sake of compactness, the following 

substitutions 

a=( "r2, ) b=('a r23) c _( üj) 

If one of the particles is made oblate then x and a2 become imaginary, it is 

therefore preferrable to express the contact function, equation 2.19, as follows 

X a2 a2 + (x-2 b2 - 2x abc 
o. o 1-2z 

}]_h/2 
(2.23) 

1-X c 

since the coefficients a2X, C, -2 X, and X2 appearing in this alternative form are 

always real. It should also be noted that if li = lj and d1 = dj then a2 goes 

to unity and the expressions for ao and X and, hence, a(ü;, üj, fjj) reduce to the 

original form for identical particles. 
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2.3 The pear-pear contact function 

We will now describe how the semiaxial lengths di, li, dj and 13, which feature 

as constants in the above generalised contact function for arbitrary uniaxial el- 
lipsoidal particles, can be parameterised in such a way as to to mimic the steric 
interaction between a pair uniaxial tapered particles of the kind presented at the 

beginning of this chapter. The first step is to reduce equation 2.23 to the con- 

tact function for a single arbitrary ellipsoid, i, and a point particle, j, by setting 
d; = lj =0 and ü3 = 0, which results in the following particle-point contact 
function 

G'( A, rxj-_ 
dill dxlx 

(2.24) 
[l? + (d2 

- l? a2j 
1/2 jl? + (d2 

- 
l? ) cost 0]1/2 i)1lxl 

(di 2 

where 0= cos-'(a/r) = cos-'(üß " 9'tß) is the polar angle between the major axis 

of ellipsoid, i, and the interparticle vector, rtij, as shown in figure 2.6. If we set 
di = 1j, then the particle-point contact function will simply describe a spherical 

surface. If we set di jz: li then it sweeps out the surface of an ellipsoid. However if 

d2 and i are replaced by functions of a, in other words if they are parameterised 

so that di -* di(ä) and li --4 li(ä), where ä= a/r = üj - rid, then the contact 
function can be made to sweep out a more complex profiles as a varies, such 

as the Bezier generated particle cross sections depicted in figure 2.2. A suitable 

parameterisation scheme is to make di(ä) and li(ä) polynomials in ä 

Nd N1 

dt(Q) =E kdn)an 12(ä) = klnýan (2.25) 
nn 

where Nd, N1 denote the numbers of terms in di(ä) and lß(ä) respectively whilst 
the kd) and ki") are the polynomial coefficients. Suitable values for these coef- 
ficients, corresponding to the desired Bezier profile, were obtained using a least 

squares fitting procedure set up on a spreadsheet. In essence, this involved making 
initial guesses for the coefficients and then, using the spreadsheets solver facility, 
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Fig. 2.6: Schematic illustrating how the particle-point contact function (Eq. 2.24) traces 

out the profile of different classes of shape. 

(a) dz = li (b) di li (a) di = di(a), i = le(a) 

ül ü; ü; 
00 

Ci 

li 

the coefficients were adjusted recursively until the coordinates generated by 2.24 

matched, within an acceptable margin of error, the profiles of interest. The details 

for this procedure are as follows 

" Define the desired profile of the particle by obtaining a set of 100 points 

(xj, yj) from equation 2.1 (the origin of the coordinate system being the 

geometric centre of the particle). 

" Convert the points to polar coordinates (rj, 4j). 

9 Calculate for each point the scalar product ä= di Tf = cos(0j). 

The recursive fitting procedure then proceeds as follows 

" For each point, calculate, using equations 2.25 the parametric half width 

and half length di(ä) and l=(ä). 

" Substitute these trial values into the particle-point contact function, equa- 

tion 2.24. 

9 For each point calculate the square of the difference between value given by 

2.24 and the true particle-point distance, rj: 0= [r - oij]2. 13 

" Minimise the sum "ý00 O by adjusting the polynomial coefficients. 
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Figure 2.7 shows the results of this procedure for a range of tapered particle 

profiles. In nearly all cases the procedure resulted in excellent shape reproduc- 

Fig. 2.7: Selected K, =3 tapered particle profiles as reprodced by the paran)eterised 
dja) and i (a). Also shown with each particle is an ellipsoid of aspect. ratio 3 to give 

an impression of the degree of taper in each case. 
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tion, although for the lowest, ko values one does observe undulations ill the fit ted 

profiles. 

Table 2.2 gives the expansion coefficients for the paraiii tº'risº'º1 (1, (a) and l, (n) 

for a number of different tapered particle shapes. In general. the expansions for 

dp(a) consist of 11 terms, «"hilst those for l, ((c) contain only 2 terns, with 1,: j( 
0) 

Tab. 2.2: Sets of coefficients used in the polynomial expansions of (/ and l for various 

tear shapes. 

h. 3k63.0 H44. ()4.0 n 5_"05.0 

k, d» 0.501852454 0.501377232 0. -197721868 
k(1) -0.141145314 -0.129608758 -0.123155821 
k; d2) 

-0.060542359 -0.074219217 0.024405876 
k, (l 0.225813650 0.484166441 0.723627215 
kd4) 0.832274021 0.923492941 0.389831429 
kd5 -1.015039575 -1.987232902 -3.018638148 
kd6 -2.504045172 -2.943008017 -1.951629076 
kd7 1.375313426 2.808075172 4.413215403 
k(8) 3.196830129 3.815344782 2.998417509 
k9 -0.699241457 -1.426641750 -2.241573216 
k('° -1.430400139 -1.682476460 -1.416614353 
k l«» 1.498259615 1.995906501 2.493069403 

ki(t) -0.002027616 -0.004518187 -0.008067236 
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approximately equal to k/2 and k, (') typically having a value much smaller colu- 

pared with that of the other coefficients. The consequence of this is that l, ((/) 

remains essentially fixed for all ýi., whereas the more niinierous and more heavily 

weighted terms in dz(a) play the main role in modulating the parametric ellipsoid 

shape so as to trace out the required pear profile. These choices for the iniiiibers 

of coefficients were made on the recommendation of Barirres etal. [14]. olio found 

that they consistently, gave good polynomial fits to the required 13ezier profiles. 

To summarise: when suitably parameterised half lengths and half widths (i (ii) sind 

l;, (ä) are inserted into the particle-point contact function, Eq. 2.24, said function 

accurately reproduces the shapes of tapered uniaxial particles we wish to study. 

This means that the overall shape of each parametric ellipsoid. i. approximates 

fairly well to the excluded vvolunie of a hard pear as it would he seen froiuu the 

perspective of a point particle J. For example, when = 0° and j is at the apex of' 

the particle, as shown in figure 2.8 (a), it 'sees' a thin ellipsoid N'11i("1º, iti a sense, 

mimics the three-dimensional shape of that, part of the pear which is closest to 

j. Similarly, when (: ) = 180° and j is at the base of the particle. it sees' a fatter 

Fig. 2.8: Plots of the parametric ellipsoids generated by the particle- j )irit, contact 
function for selected polar angles 0. 
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ellipsoid. On this basis, it is reasonable to suppose that , 
if' both sets Of' sentiaxial 

lengths are paratneterised. i. e. cl, --> il; (a), l; -4 li(«) and (Ij -* (lj(6), l., 1j(b) 

(wehere b= b/r = ir. j " r, j) and inserted into t lte fall particle-particle contact ftttic- 

tion. equation 2.23. then the resulting contact fiinction iliac svilve as a reasonal>ly 

accurate approximation of a pear-pear contact function. This is known as the 

parameterised hard Gaussian overlap (PHGO) model. 
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The behaviour of the PHGO model was assessed graphically by plotting, for var- 

ious mutual orientations of particles i and j, the contact profile generated by the 

contact function, the contact profile being the locus of contact points traced out 

as j is translated through 360° about i. In addition, the shapes of the pears and 

the parametric ellipsoids mimicking their shapes were superimposed onto the plot 
for selected polar angles, 0, in order to gain an impression of how accurately the 

(PHGO) contact function modelled the steric interaction between two tapered 

particles. The contact profiles for a pair of parallel and antiparallel 'c3k93.0 pears 

are presented in figure 2.9 along with that of a pair of parallel ßc3 Gaussian ellip- 

soids. 

The parallel contact profile has a symmetric torpedo like form reflecting the equiv- 

alence of configurations (a) and (e) as well as that of (b) and (d). In general the 

contact function would appear to represent the steric interaction accurately ex- 

cept for when the particles are side-by-side and the bottom halves of the pears 

overlap somewhat. This is due to the fact that, for this arrangement in particu- 
lar, the true contact point lies some distance from the line joining the centres of 

the two particles. Recall that the parameterisation of the model is based on the 

particle-point contact function, which best approximates the topography of that 

region of the pear that is close to this line. In fact, when the particles are exactly 

side-by-side, the parameterised version of equation 2.23 gives an identical contact 

distance for both the parallel and antiparallel arrangements. 

The anti-parallel contact profile is asymmetric, as it should be, for arrangements 

(f) and (j) and also (g) and (i) are quite distinct. This time the side-by-side 

contact distance given by the PHGO contact function is accurate, in fact for an- 

tiparallel configurations the contact function would appear to perform well across 

the entire range of polar angle. 

Contact profiles for other pear-pear orientations are shown in appendix E, along 

with the equivalent profiles for Gaussian ellipsoids. For the ry = 45° and -y = 135° 

the contact function again performs quite well in general. For the ry = 90° arrange- 

ments, the contact distance appears to be somewhat overestimated. However, as 
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Fig. 2.9: The plots below show contact profiles (red lines) generated as particle j is 

translated through 360° about a second identical particle, i, in the :c ,y plane whilst the 

angle ry subtended by the particles' orientation vectors remains constant. Plots (a-c) 

show the contact profile for a pair of identical n. 3k©3.0 pears parallel to each other. Plots 
(f-j) show the contact profile for a pair of identical n3k03. () pears antiparallel to each 
other. Superimposed on each plot for a selected polar angle 0 are the shapes of the two 

pears and the parametric ellipsoids which mimic their tapered shapes. Plots (k-o) show 
the contact profile for a pair of parallel n3 Gaussian ellipsoids. This contact profile is 

also included in both (a) and (f) (dashed line) for comparison. 
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mentioned earlier, the original GO contact function itself departs somewhat from 

the HER contact distance for the `T' configuration (see table 2.1), which is similar 

to the ^y = 900 arrangements. 

Though these graphical characterisations of the contact function are not exhaus- 

tive (in particular they are only two-dimensional), they strongly suggest that, in 

general, the parameterised version of the GO contact function provides a satisfac- 

tory approximation for the steric interaction of hard tapered particles. Certainly, 

figure 2.9 confirms that the model is imbued with the correct symmetry proper- 

ties. Also in the course of analysing the simulation results, particularly the three 

dimensional renderings of the particles as well as certain distribution functions, 

there were no indications of excessive overlaps of particles (symptomatic of the un- 

derestimation of contact distance) nor of unnatural gaps inbetween them (due to 

overestimation of contact distance). Given that the PHGO approach is computa- 

tionally very efficient, requiring little more computational effort than the standard 

GO shape parameter, these modest imperfections appear justified. Indeed, given 

current hardware capabilities, the PHGO approach offers the only viable route to 

producing the volume of results on tapered particles described in this thesis. 

2.4 The model potential 

To obtain a continuous interparticle pair potential for MD studies, analogous to 

the hard particle potential used by Barmes et al [14] in their MC simulations, the 

PHGO contact function, oPHCO(, , U-i, rij), was inserted into a potential of the 

Weeks-Chandler-Anderson (WCA) type, also described as soft repulsive (SR) or 
hardcore, which resulted in the following potential 

PHGO oiý 
4Eo {R12 

- R6} + co rsj < ro 

0 rte>ro 
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This is simply a truncated, shifted variant of the Lennard-Jones potential. It 

is shifted in a similar way to the Gay-Berne potential, equation 2.17, that is in 

equation 2.26, R is given by 

Qw \ 
R=/ (2.27) 

r%j - a(u'i, uj, fij) + Qw 

However note that here we have introduced the new constant a,, which, for all 

the simulations reported in this thesis, was arbitrarily set to a value of 

QW = (0.52 + 0.52) = (2.28 

This new parameter is required because the prefactor oO appearing in C'xco (, a , üj, Ttij 

is no longer constant since the particle half-widths di and dj are parameterised, 

i. e. 

0ö Hco - 
(d(a)2+d()2)-1/2 ( 2.29) 

The choice of a., is in keeping with the nominal half-widths of the tapered par- 

ticles (or rather the half-widths of their Gaussian distributions, since the contact 

function ultimately derives from a Gaussian overlap integral). In all cases these 

half-widths have a value of 0.5. Thus a,, may be taken as the basic length unit 

in our simulation studies and corresponds to the separation of a pair of particles 

when they are placed side-to-side, this is effectively the width of the particle. 

The potential is made purely repulsive by truncating it at the potential minimum 

by defining the cutoff distance as 

ro = at'HCO( , *, fij + (21/6 - 1)ßw (2.30) 

Finally the potential is shifted vertically by co, with the result that it goes to zero 

at the cutoff, a property that is essential; this also has the effect of making the 

gradient equal to zero at the cutoff, a property which, improves the stability of 

the integration algorithm. The resulting soft repulsive potential is shown in figure 

2.10 along with the hard particle potential. Since the former rises so steeply, a 
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system of particles interacting via this potential should behave very niuclh like 

ideal hard particles. Also since the soft, repulsive potential is purely repulsive and 

Fig. 2.10: The soft-repulsive potential for the side-to-side and end-to-end arrangefiecºts 
of a pair of 3 pears with ao = 1.0 and Fo = 1.0. The black lines indicate the analogous 
hard particle potential. 
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given that co is a simple constant, the simulations carried out wising it «-ill he 

essentially athernlal. 

As a footnote to this section. it is perhaps worth mentioning that the volumes of 

the solids of revolution corresponding to the fitted profiles. some of which were 

presented in figure 2.7, were calculated. The results of the volume calculations 

Fig. 2.11: Approximate volumes of the solids of revolution corresponding to the fitted 

profiles for n. =3 tapered particle profiles. 
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are plotted in figure 2.11. It is true that volume is something of' a uelnilo1is 

concept when it comes to the tapered particles as modelled by %iý'rIco for two 

reasons. Firstly the potential is not strictly a hard potential it does not describe 
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a strictly solid figure - although it is intended to closely reproduce the behaviour 

of a system of hard particles. Secondly the contact function does not perfectly 

model the profiles of the particles featured in figure 2.7. Nevertheless it is worth 

noting that the lower ke particles have an appreciably larger nominal volume than 

their less asymmetric cousins. Whereas the volumes of particles with ke greater 

than about 6.0 are little different from that of the lie = oo particle. It is also 

interesting to observe that an ellipsoid of revolution has a distinctly lower volume 

than the ke = oo PHGO particle. 
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CHAPTER 3 

Simulation methodology 

3.1 Overview 

The overarching logic for the simulation and the key computational tasks are sum- 

marised in the flow chart, figure 3.1. This sort of organisation is, by and large, 

generic to all MD simulations. For the studies carried out here, a typical sim- 

ulation involved a compression or expansion `series' consisting of a succession of 

`runs' wherein the density was increased or reduced in the early part of each run. 

The system is then allowed to equilibrate for a certain period prior to the accumu- 

lation of time averages of so called `runtime' observables in a second `production' 

phase of each run. A taxonomy of these observables is set out in section 3.3. 

We should state, at this point, that all parameters and observables quoted in this 

thesis are given in a dimensionless reduced form in that they are expressed in 

terms of fundamental units of length, energy and mass, a,,,, co and mo respec- 

tively. The usual convention is to denote reduced quantities by the superscript 

`*', however since quantities are quoted in reduced form throughout the work re- 

ported in this thesis, we choose to omit the superscript henceforth. Appendix A 

lists the relationships between reduced quantities and there SI counterparts. We 
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assign the following numerical values to these basic units, c= 1// i. e. the 

width of the particle as given by equation 2.28, co =1 and mo = 1. In addition 

we define the moment of inertia of each particle as unity, I* = 1. 

Fig. 3.1: Simulation architecture. Here r, u, v, il, f, g represent the particle positions, 
orientations, linear velocities, angular velocities, forces and gorques respectively. s and 
r are the timestep and simulation run indices whilst N, tep and N,. u,, are the number of 
timesteps in a given run and the number of runs in the simulation. The particle indices 
are i and j and N is the total number of particles in the system. 

Read in series parameters: principally system composition. 
Define any constants based on series parameters. 

for(r=1; r<_N run;; r++) 
Read in run parameters: p, T, run length, averaging Interval etc. 
Define any constants based on run parameters. 
Zero runtime observable accumulators. 

if(r==1) 
Set up or read in initial configuration. 

else 
Get coordinates from end of previous run; compress or expand the system. 

fors=1; s<_ N step; s++) 

Integration step 1: Calculate v(s+1/2), (i(s+1/2) 
Integration step 2: Calculate t(s+1), 1(s+1) 
Integration step 3: 

for(i=0; i_<(Iw1); f++) 

for(ý-0; 1_<N, l++) 
Calculate i(s+1), g(s+1) along with total potential C(s) 

Integration step 4: Calculate v(s+i ), ir(s+i ) 
Maintain zero net linear momentum. 

Calculate runtime observables; accumulate tallies. 
At intervals log the runtime observables and save configurations. 
Apply ensemble rescaling as necessary. 

Attempt anisotropic rescaling if required. 

At intervals, back up full set of system coordinates to maximum precision. 

Calculate and log averages of runtime observables. 
Save final configurations. 

39 



All the simulations were carried out within an orthorhombic volume, V, having 

dimensions Lx, Ly, L. This is henceforth referred to as the simulation box or 

simulation volume. The number density of particles within this volume is simply 
defined as the number of particles N divided by the volume, p= N/V. The 

position of each particle, i, is specified by a position vector ri, the origin of the 

coordinate system being located at the centre of the simulation box. The relative 

position of another particle, j, with respect to i is defined as rid = ri - rj, the 

corresponding unit vector being specified by r"zj = rij/rid. In order to perform 

simulations of bulk fluids, standard periodic boundary conditions (see for exam- 

ple [231) are applied in all three Cartesian directions. 

Changes in density are implemented by resealing the particle coordinates and the 

box lengths by the same proportion in each Cartesian direction. On occasions so 

called anisotropic resealing is applied, whereby the ratios of the box dimensions 

are allowed to vary whilst the volume is kept constant. This is intended to prevent 

pressure anisotropy from developing in systems with anisotropic supramolecular 

order, in particular the smectic phase. The details of the anisotropic resealing 

algorithm will be discussed in the next chapter. The initial configuration for a 

compression series usually consists of an FCC arrangement of particles, each of 

which is oriented in the [111] direction. In specifying the initial density, care must 
be taken that it is sufficiently low that the particles in this starting formation 

are not overlapping. The particles are then randomly assigned with initial linear 

velocities from the Maxwell-Boltzmann distribution 

IMB(T) =(m 
) 3/2 

exp[-mv2/2kBT] (3.1) 27r kBT 

An analogous distribution could also have be assigned to the angular velocities 
however, as we will show in chapter 4, energy equipartition between the transla- 

tional and rotational degrees of freedom occurs very rapidly compared to a typical 

run length. Therefore, in these simulations at least, assigning an initial rotational 

velocity distribution is not strictly necessary. 
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Most of the simulation runs are carried out in the constant NVT or canonical 

ensemble, although from time to time runs in constant NVE or microcanonical 

ensemble are performed for the purposes of thermalisation or as acid tests for 

coding or procedural errors. In the NVT runs, the temperature is maintained by 

periodically adjusting the linear velocities, vi, thus 

Tet 
tT (3.2) 

where vi is the rescaled velocity, Tset is the target temperature and T the instan- 

taneous measured temperature. In addition, the linear momenta of the individual 

particles are shifted in order to maintain zero net linear momentum for the system 

as a whole. The shifted momenta are given by 

Pi - Pi - mivi " 
(3.3) N 

i 

Temperature and momentum rescaling are applied at every time step. The particle 

positions, orientations linear and rotational velocities are advanced through the 

four so called integration steps within the time stepping loop featured in figure 3.1. 

The integrator used here is the velocity-Verlet algorithm [241, which is summarised 
in the next section along with definitions of the forces which ultimately drive the 

dynamics of the system. 

3.2 Forces, gorques and their integration 

In our simulations, the net force on a given particle i is assumed to be the vector 
sum of pairwise forces fib 

. This force may be expressed as an appropriate gradient 

of the pair potential U{j 

.I i9 = Vii Uij (3.4) 
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The assumption that the interparticle potential contains only pairwise contribu- 

tions and no higher body terms is entirely justified here. The very nature of 
the hard particle potential ensures that the interaction between any given pair 

particles will be in no way affected by the presence of other particles in the vicin- 

ity. We observe that UýPHGO contains three scalar products involving r23, namely 

a= (üi " rte), b= (ti " rid) and r= rte = (rtij " rte). It is therefore convenient to 

rewrite equation 3.4 as 

fij = -ýjVrtjUij 
(8'rij) (3.5) 

wherein s represents the set of vectors {tl 
, üi, Iij}. Manipulation of the right hand 

side of 3.5 (see appendix B) leads to an expression for f Zj in terms of derivatives 

with respect to the dot products a, b and rzp. 

au=; A- auz; ̂- auz; ýý =- as ab uj ar rye (3.6) 

According to Newton's third law, the force on particle j due to i is the equal and 

opposite of f tip, i. e. f j_ = -f zj. The total force on each particle is simply the sum 

of all the pairwise contributions 
N 

fi=I: fi;. 
jai 

(3.7) 

The full explicit expressions for the derivatives appearing in 3.6 are not given here 

since they are unwieldy even for a pair of Gaussian overlap particles with constant 

half-widths and half-lengths, let alone for PHGO particles wherein di, l; and d;, 

lj are parametric in ä= (t2 " fij) = a/r1 and b= (üj" f'ij) = b/rij respectively. 
As far as the coding of these derivatives was concerned, the strategy adopted 

was essentially repeated application of the chain rule which naturally breaks the 

calculation down into small steps, which makes checking for errors less daunting. 

The angular acceleration of a body are related to its moment of inertia and the 

net torque acting on it by 

Ti = Iiai = Iiaji = Iiei (3.8) 
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where It is the inertia tensor, ai is the angular acceleration, wi is the angular 

velocity and Oi is a vector parallel to wi which defines the orientation of the body 

in space. A linear particle (that is to say one with cylindrical symmetry), whose 

orientation is defined by a unit vector, ü, pointing along the long axis, has only 

two degrees of rotational freedom since it is invariant to rotation about ü. Further, 

rotation is at all times perpendicular to 6 and the inertia tensor reduces to the 

principal moment of inertia I. The expression for the torque on such an object 

reduces to 

Tti=f4.. n9z='4ý9ý (3.9) 

where gi can be thought of as the turning force acting on 61 and is referred to in 

this context as the `gorque'. In the above expression the full gorque can always 
be replaced by its component perpendicular to ü, since 

t4 9= =A gi (3.10) 

where the perpendicular component is given by 

9zj = 9i - (9i . üi) 72Z (3.11 

The gorque, g23, on i due to a second linear particle j can be obtained by taking 

the gradient of the interparticle potential with respect to the unit vector 1t; ß of the 

former 

9si =- Vdi uij " (3.12) 

We note that UPHGO contains two scalar products involving üz, namely a= 

a/rij = (t2j " Tij) and c= (t2 " üj). It is therefore convenient to rewrite equation 3.12 

as 

where 

9ii-- Va. Ut? (s"üz) (3.13) 

8= {ti 
, '%} . 
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By manipulation of the rhs of 3.13, in a similar fashion to the treatment of 3.5, 

we obtain an expression for gib in terms of a and c 

auz; aus; 9tij -- as raj - ac Ui (3.14) 

and, simply by interchanging üj and ü� a similar expression for gji in terms of b 

and c 
anti; aui; A 9; ý=- ab raj- --äc-14 (3.15) 

The total gorque on each particle is simply the sum of all the pairwise contributions 

N 

9i =E gib " (3.16) 
0i 

Singer [25] showed that it is possible to express the dynamics of a linear particle, in 

terms of the rotation of the axial vector, A, as a second order differential equation 

of the form 

IA. = gii + ý41ý (3.17) 

where A is a correction factor necessary to maintain the modulus of üZ at unity. 
Discretised forms of equation 3.17 have proved highly suitable as a means of evolv- 

ing the rotational dynamics of systems of uniaxial particles in MD simulations. 

One such integration scheme is the velocity-Verlet algorithm, which we use in our 

MD simulations, and which we now briefly outline. Within the velocity-Verlet 

scheme, given the positions, linear velocities and forces on all particles at time 

step s, the following four steps are applied to obtain riß+1), vie+l) and fi3+1) 

(s+1/2) 
vý = 

(s) 
vi 

At (s) 
+ f (3.18) 

2m 
ris+l) _ Tis) + Qtvis+1/2) (3.19) 

Calculate f ý'+1) (3.20) 

vis+l) , di8+1/2) + 
At 

r(s+1) (3.21) 2m2 
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An analogous set of steps are used to advance the orientations, angular velocities 

and gorques 

uis+1/2) = 94is) + 
ýt 

g(1) + iýlluis) (3.22) 

d(s+1) = s((s) + Otis+l/2) (3.23) 

Calculate g! 9+1) (3.24) 

"((s+1) _ jl(s+1/2) +'At g(1ý}1) + 
(8+112 ). 

U(s+l) 
) 

u(s+1) (3.25) 
21j 

Note that here, where we denote the first and second time derivatives of the 

orientation vector as it and ü, the hat (") above u has been dropped for clarity. 

The extra terms in equations C. 5 and C. 8, as compared to C. 1 and C. 4, are the 

correction factors required to maintain the unit modulus of u. In particular, The 

factor A" in C. 5 is a Lagrangian correction factor whose initial value is obtained 

from equation C. 9 and then refined by two identical iterative steps C. 10 and C. 11 

°22i 27y 911 'i 271911 =- 
ßt (3) ý(S) + 

At (8) 
\24") 

+ 
ýt (8) 

/ 
(3.26) 

(1 + A0 t)2(UIý8) " ups)) = A0 --1- 
a°ot (3.27) 20t(1 + Ao t) 

A' - 
(1 + A1Ot)2(uis) . uis)) -1- A°At 

20t(1 + A' t) 
(3.28) 

If transcribing these equations into computer code, note well that the A that ap- 

pears in the final term of the numerator in C. 11 retains the original value AO as 

given by C. 9, whilst the A that appear elsewhere in C. 11 have the value A' obtained 

from the preceeding iteration, C. 10. The velocity-Verlat algorithm was selected 

for use in our simulations because of its stability over long simulation times. In 

all simulations the time step used was At = 0.0015. This value was chosen for 

two reasons, firstly this length of time step has been used in many other studies, 

therefore use of the same value here allows, if needs be, for a more direct com- 
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parison with those studies. Secondly this length of time step consistly resulted in 

excellent energy conservation in test runs in the NVE ensemble. 

3.3 Runtime Observables 

In this section we set down the definitions of the system observables that are 

computed and accumulated during the course of each run and then time averaged 

at its end. The total potential energy of the system is simply the sum of all the 

pairwise interactions 

Utot = Uij =2 Uij . (3.29) 
i=1 j>i i=1 jai 

The total kinetic energy consists of translational (trans) and rotational (rotor) 

parts associated with the linear and rotational velocities of the particles. These 

are calculated separately for the x-, y- and z-components of the velocities 

KE(a) - trans tot 

KErot 
tot = 

N 
1 

miv(a)2 
i=1 

N1 

2 mifiia)2 

(3.30) 

(3.31) 

KEtrans 
tot 

KErotor tot = 

KEtýana tot 

KEr t 
tot 

KEtot = KEtrans tot + KErotor tot 

(3.32) 

(3.33) 

(3.34) 

where a=x, y, z. The total system energy is the sum of the system potential and 
kinetic energy 

Etot = Uta + KEaot 
" (3.35) 
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The temperature of the system is based on the fundamental energy equipartition 

relation, which states that the average kinetic energy per degree of freedom is 

equal to (1/2)kBT. Since each particle has three translational degrees of freedom 

but only two rotational degrees of freedom, because it is a linear particle, the 

temperature is given by 

T= 
5NkB 

KEtot (3.36) 

Note that the Boltzmann constant, kB, simply equals 1.0 when physical properties 

are expressed in reduced units. The temperatures associated with translational 

and rotational motion are calculated individually in order to check for energy 

equipartition 

K (3.37) Trans rans = 3Nk 
Etrana 

B 

(3.38) 7'rotor -2 2NkB 
KErotor 

The ideal pressure, Pj al, is given by the ideal gas equation PV = NkBT, which 

assumes that the molecules comprising the gas have negligible volume and exert 

negligible forces on each other 

NkBT 
Pideal =V= PT . (3.39) 

The excess pressure, PexCess, which accounts for the finite particle volume and 
interaction potential, is given by a form of virial equation 

NN 
Pexces8 = vW =T -d 

EE 
rid "f ij 

(3.40) 

i=1 j>i 

where d is the dimensionality of the system, which is obviously 3 in this case. Nat- 

urally, this quantity is accumulated within the interactions loop. The Cartesian 

components of the excess pressure are calculated separately in order to provide a 
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gauge of pressure anisotropy 

NN 
P(xcess- 

dEErid)fýý) . 
(3.41) 

i-1 j>i 

The total pressure is simply the sum of the ideal and excess pressures 

Ptoc = Pideal + Pexcess 
" 

(3.42) 

The mobility of particles is characterised by their mean squared displacements 

((Or(t))2) =N 
(AAA) 2 (t) (3.43) 

where Aric) = ri') (t) - ri(a) (0). As we shall see, monitoring the mean squared 

x-, y- and z- components of displacement is useful for determining if diffusion is 

favoured along a certain axis, whilst the magnitude of the overall mean squared 

displacement is a good indicator of liquid-solid transitions. The diffusion coeffi- 

cient is also measured 

1 C(Sr(t))2> 
=1 iah)2 (t) (3.44) 

6N 
.{ 

Sr } D 
2d At 

: -ý aJ 

where Orin) = r2 (t) - r. (t - st). 

The orientational order within the system is characterised by the director, n, and 

the nematic order parameter P2. The classic definition of the order parameter is 

/ 
P2=(2cos0i2-2)= E (3(t. 

n)2-2l (3.45) 

where Bt is the angle subtended by the individual particle orientation vectors and 

the director. To obtain P2 using this equation, one must have it In principle it is 

possible to solve this problem by treating 4 as a variable, and finding the value 

of it which maximizes P2. This would be done by evaluating equation 3.45, at 

a given timestep, for the particle coordinates üt and a discrete distribution, on 

a unit sphere, of trial 4 values. The maximum P2 value and hence the director 
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would then be determined by calculating numerically the gradient with respect 

to n of the resulting set of P2 values. This is clearly quite an involved procedure. 

Fortunately the solution can be arrived at more directly by diagonalising of the 

Q-matrix, 

Q=3 
(tZt2i-31j 

(3.46) 
1 

where I is the unit second-rank tensor. The Q-matrix contains within it the 

contributions of all the particles to the collective orientational ordering of the 

system. According to this procedure, the nematic order parameter is the largest 

eigenvalue of the Q-matrix and the director is the eigenvector corresponding to 

this eigenvalue. This is the method we use, it is implemented with the aid of 

standard mathematical functions from the Numerical Recipes library. A polar 

order parameter Pl is also defined. To obtain it we first compute a polar director 

npl thus 

N 

fps =N üi 
i 

npi 
np1 = 

npi 
(3.47) 

then the polar order parameter itself is calculated using 

1N Pi = Nt "ipi . 
(3.48) 

The runtime observables described above are calculated at each and every timestep 

in the production phase of each run and accumulated for time averaging at the end 

of the run. The instantaneous values of observables are saved to file, usually every 

100 timesteps, throughout the entire run. Particle positions and orientations are 

also saved to file, normally just during the production phase, at intervals typically 

of 10000 timesteps. 
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3.4 Post processing 

As we shall see in the forthcoming results chapters, plotting the averages of certain 

observables can provide good indications of phase transitions. Also, one can often 

immediately recognise the type of phase that prevails by inspecting visualisations 

of the system, as generated using an appropriate computer graphics package. 

However, for quantitative information relating to phase structure, we often need 

to compute distribution functions or correlation functions as they are also known. 

The simplest of these is the radial (list ribut ion function yo(re). To compute Ihis. 

a spherical sampling volume centred on a given particle, i, is divided into it series 

of concentric spherical shells as shown in figure 3.2 (a). We choose to limit the 

maximum radius of the sampling volume to R, 
ph , ax = L,,, i�12, where L,,,;,, is 

Fig. 3.2: Schematics showing cross-sections through the sampling voltmies used in Ow 

computation of (a) radial, (b) longitudinal and (c) lateral distribution functions. 

(a) (h) (c) 

H 
ryl 

D- 

length of the smallest simulation box dimension'. The radial distance of each 

neighbouring particle, j, from i is calculated and is `binned' according to Which 

shell it lies within. In other words an array element is incremented every time a 

distance rij is found which lies within a certain interval and, thus, a histogram of 
º By this we mean the smallest boxlength associated with any of the configm-ations that 

contribute to the analysis since this value determines the shell thickness, a parameter that, is 
best kept fixed, for a given class of g(r), throughout the course of its compilation 

50 

go(r, Y)II0 0 MOO 1101 



distances r2j is compiled. The principle of this operation is illustrated in figure 

3.2 (a). This is repeated for all particles in the system and for a number of 

configurations, these having been saved during the simulation run (correlation 

functions are nearly always calculated after the simulation has finished). The 

purpose of the exercise, of course, is to reveal distinctive patterns in the way 

the local population density of particles varies with rah and, thus, gain insight 

into the subtleties of the phase structure. The bigger the system and the greater 

the number of configurations analysed, the better will be the statistics and the 

finer the structural detail revealed. The totals accumulated in each bin, b, of the 

distribution function are normalised by dividing by three quantities 
111 

J nf 
(b) 
orm = 

(b) x (3.49) 
Hide ai 

N 

nZdeat is the number of particles that would be expected to be found in shell b if 

the particles were distributed randomly like those of an ideal gas, i. e. 

fib) N 
V(b) nideal -V shell 

(3.50) 

If rb is the inner radius of the shell b and t the thickness of the shell, then its 

volume, V( b) 
, will be given by shell 

Vb =3 [(rb + t)3 - rb] 

=3 [3rbt + 3rbt2 + t3] (3.51) 

The shell thickness is usually defined by specifying the number of bins, so that 

t= Ryphmax/Nbins. As for the other two terms in equation 3.49, N is the total 

number of particles in the system and N, �fi9 the number of configurations anal- 

ysed to obtain the distribution function. Thus the normalisation allows for a fair 

comparison to be made between g(r)s obtained from different system sizes and 

different numbers of configurations. 

The next major type of distribution function is the longitudinal distribution func- 

tion g1(r2jll;, ), which is designed to capture particle-particle correlations as a func- 
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tion of the distance parallel to the director. Hence rzjjj4 _ -rte " n. Note that a 

minus sign is included here due to the fact that we happen to have defined the 

interparticle vector such that it points from j to i, that is rij = ri - rj. This 

function is used, in particular, to quantify the interlayer distances between the 

lamellae of smectic phases. The sampling volume for this function is a cylinder 

divided into a series of disks each of thickness t, as shown in figure 3.2 (b), the 

axis of the cylinder being parallel to Ti. To ensure that the volume does not 

overstep the periodic boundaries, its dimensions are constrained by the following 

inequalities. 

Hcyl < Lmin COS CY 

Dcyl < Lmin Sin a. 

where a= tan-' (K), K being the desired height to diameter ratio of the cylinder. 

The normalisation factor for gl(rij114) is similar to that of the radial distribution 

function, equation 3.49, except that the shell volume for g'(rtijljj) is given by 

Vb = 27r(D, yt/2)2t 

In the analysis of the structures formed by tapered particle we also make use 

of a second variety of longitudinal distribution function, namely g1(rýýýJ'%. ). This 

is similar to gl(rjj n) except that it is a function of the distance parallel to the 

molecular orientation, 6j, as opposed to n, hence ri, 11, = -rte " i4.. Accordingly 

the axis of the cylindrical sampling volume is parallel to f4. 

The final major type of distribution function is the lateral distribution function 

g2(rzj1, z), which is designed to capture particle-particle correlations as a function 

of the distance perpendicular to the director, hence rzjls = 
Vri 

- rold. The 

sampling volume for this function is again a cylinder aligned with the director but 

this time divided into annular shells as shown in figure 3.2 (c), with volumes given 

by 

Vb = 27rHH&l(2rt + t2) 
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where once again r is the inner radius of the shell and t its thickness. This func- 

tion is designed to pick up intralayer correlations in smectic phases i. e. between 

particles within the same layers. The height of the cylindrical sampling volume 

is therefore chosen so that it should encompass a single layer. The radius is then 

automatically set to the largest value it can have without exceeding the periodic 

boundaries. A second variety of lateral distribution function is defined, namely 

g2(ryjlu), which is a function of the distance perpendicular to üe as opposed to 

A, hence rij-Lai =rý- rij1111. Naturally, in this case, the axis of the sampling 

volume is perpendicular to C4.. 

All of the g(r)s described so far give correlations in terms of local particle popu- 

lation densities. However we also find it useful to consider variants of the above 

functions which reflect the correlations in terms of the relative orientations of par- 

ticles. For example we define a polar radial distribution function, go(rjj)(P1), which 

has a sampling volume identical to go(rt). The difference is that with go(rij)(1 1) 
, 

the quantity that is accumulated in the histogram is API = cos(ry) = (üt. " üj), 

ry being the angle subtended by the two orientation vectors. Also the histogram 

is normalised differently, it is normalised using the corresponding unnormalised 

go(r23). Thus a high value of go(rzj)("), for a given distance rah, would indicate 

that particles at this separation are strongly correlated in terms of their relative 

orientation but it does not necessarily mean that such a correlation is common- 

place. In a similar vein, a nematic radial distribution function go(rzj )(''2) is defined 

in which the quantity that is binned is LP2 = (3/2) cos2(y) - (1/2), Again, the 

corresponding unnormalised go (r13) is used to normalise go (rte) ("2) 
. 

Analogous 

polar and nematic varieties of the longitudinal and lateral distribution functions 

are also defined. This menagerie of functions is summarised in table 3.1. 
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Tab. 3.1: Summary of the distribution functions used to clarify and quantify phase 
structure. The entries in the `shorthand' column are truncated forms of the full function 
notation, which are used in the text henceforth as well as for the labelling of graphs of 
these distribution functions. 

function shorthand distance quantity binned 

9o (rij) 90 (rij " rij) number density 
9o(rij)(Pl) 9o(P1) (Tij , rij) Cos('y) _ (tu " üj) 

9o(rij)(P2) 96(P2) (rij ' Tij) (3/2) cos2(7) - (1/2) 

91 (rijlln) gin (-rij " n) number density 
91(rijllfi)(P1) (Pi) 

g1 n (-rij " n) cos(9) _ (n" üj) 
91(rijlln)(P2) g1P2)n (-ri " n) (3/2) Cos 

2 (e) - (1/2) 
g1(rijll+, ) glu (-rij " üz) number density 
91(riIIIß)(P1) (PI) g1 u ri . 

(- 
ý 60 COS(Y) (ut ' 'uj) 

91(rijllui)(P2) g1P2)u (-rij ui) (3/2) cos2(1') - 
(1/2) 

92(rijlß) 92n ij 
- 

(r{j 
" n)2 number density 

92(rijln)(P1) g2P1)n r- (rij , n)2 Cos (0) _ (n ti ) 

92(rijln)(P2) g2P2)n r? - - r. ., n)2 2ý 
(ýý (3/2) cos2(8) - (1/2) 

92(rijJ.. u) 92u r2j - (rij üi)2 number density 

92(rijlfi; )(Pl) g2P1)u rý _ (rij , f1j) 2 cos('Y) = (th " üj) 
92(rijlii; )(P2) g2P2)u r?. - T... 2 Vag (Zý ui) 2 (3/2) cos ('Y) - (1/2) 
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CHAPTER 4 

Preliminary simulations 

In the first section of this chapter, we present results from simulations of 1000 

'5k95.0 particles, the first simulation proper to be performed using the MD code. 

The main purpose of this exercise was to check that the code was performing 

satisfactorily and to allow a comparison to be made with a corresponding MC 

simulation series performed previously by Barmes et al. [14]. Despite the con- 

trasts between the MC and MD simulation techniques as well as the differences 

between the representations of the particles i. e. a pure hard particle model versus 

a soft repulsive potential, we would expect the two studies to produce similar 

results. The K5k05.0 was chosen because, in the MC simulations, it underwent 

an I-N-Sm-solid phase transition sequence. Such phase behaviour, if reproduced 

in the MD simulations, would, therefore, provide an opportunity to develop ef- 

fective methodologies for processing the raw simulation data. The I-N-Sm-solid 

phase transition sequence also provides an excellent testbed for the distribution 

functions introduced in section 3.4. This is the main focus of the second section 

of this chapter, where we examine in detail the structures of the various phases 

formed in the course of the ic5ke5.0 simulations. `Snapshots' of the system are 

also presented to provide visual evidence in support of conclusions drawn from 
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the distribution functions. The third section discusses a number of supplementary 

simulations in which so-called anisotropic rescaling is implemented. Anisotropic 

rescaling is an algorithm which essentially allows the simulation box dimensions 

to change in order to better incorporate phases with periodic order, in particular 
the smectic phase. Hence compression sequences which include the application of 

this rescaling method are referred to as anisotropic compressions as opposed to 

isotropic compressions in which the ratios of the boxlengths remain fixed. The 

fourth and final section presents the results of four anisotropic compression series 

which are identical except for the numbers of particles simulated. The system sizes 

used here are N=1250,2500,5000 and 10000. These simulations were performed 

to check whether the periodic boundary conditions have a significant influence on 

the stability and structure of the phases formed. 

4.1 Isotropic compression series 

The first of our MD simulations for soft repulsive pears to be performed was an 
isotropic compression of ic5ke5.0 particles, as summarised in table 4.1. The initial 

run, at a number density of p=0.20, used, as its starting configuration, the stan- 

dard arrangement of 1000 particles arranged parallel to each other on an FCC 

lattice. Having assigned a Maxwellian translational velocity distribution to the 

Tab. 4.1: Summary of main run parameters for isotropic compression of 1000 K5k95.0 
soft repulsive pears. 

run p Op ensemble Nt (averaging interval) 
1 0.20 0.00 NVE 500k (250-500k) 

2-43 0.21-0.62 0.01 NVT 500k (250-500k) 
44 0.62 0.00 NVE 500k (250-500k) 

system, it was then run for 500 ksteps in NVE for the purposes of thermalisation. 

This run also provided an opportunity to monitor the energy conservation of the 

system. The number density was then increased over a series forty-two NVT runs 
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from p=0.20 to 0.62 by applying single clensity increases of . 
gyp = 0.01 at t lie 

start of each run. All runs in the series were 500 ksteps long vVit It a tilnestel) 

of Jt = 0.0015: time averages were accumulated and configurations periodically 

recorded over the interval 250-500kstel)s. The series «gas concluded bY a final NVE 

run at p=0.62. Running a simulation in the NVE ensemble acts an effective. 

though not infallible. test to check that the MD code is free of' mathematical or 

transcription errors. It also provides reassurance that the simulation has been 

correctly initialised and appropriate parameters have been assigiie(f. It is self- 

evident that, over the duration of' an NVE rust. the total energy should remain 

essentially constant. If any errors have been tirade ist writing the code or setting. 

Fig. 4.1: Kinetic. potential and total energy vs. time for a svtiteiii of 1000 n5 A! ()5.0 
running in NVE at a density of p=0.20. 
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ºº1) the simulation, the total energy of the sýsteºn Aoill. more ººfteu thaiº not. ºli- 

rectly increase at a catastrophic rate. Figure 4.1 shows the kinctic. potential and 

total energy per particle over the course of ill(, iººit ial NVL run of the compres- 

sion series. Note that the potential makes a relatively small contribution to the 

total energy. This is due to the fact that the soft. -repulsive potential is either very 

steel) and repulsive or else zero. Tins, the interparticle potent is I is finite only 

when the particles come into close contact and. NA-lien they do, the interaction is 

fleeting since the repulsive force acts to drive the pair away from each other. On 

the scale used ill figure 4.1. there is no perceptible fluctuation or drift iºº the total 
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energy. However in figures 4.2 (a) and (h), which show details of the total energy 

over the course of both the initial and final NVE runs of the compression series, 

a certain amount of fluctuation/drift is observed. AV'(, also notice an abrupt drop 

in the total energy in the p=0.20 plot at around 300ksteps. To investigate this 

Fig. 4.2: Detail of total energy vs. time for the system of 1000 n5k05.0 running in 

NVE at a density of p=0.20. The horizontal dashed lines indicate the average values 
determined over the interval 250-500 ksteps. 
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further, the run was repeated on the same processors as the original simulation 

in order to reproduce exactly the particle trajectories. The instantaneous values 

of observables were logged at every timestep over the interval 303000-304000 in 

order to scrutinise the anomaly at a higher time resolution. The plots ill figure 

4.3 show the step by step changes in the total. potential and kinetic energies and 

reveal that the drop in total energy is actually preceeded by an equally steep rise 

in total energy. Moreover, this feature coincides with a peak and a valley in the 
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potential and kinetic energies respectively. The peak in the potential would seem 

to suggest that the energy anomaly is due to an excessive overlap of two particles, 

due perhaps to a high speed collision. This seems reasonable given that the run 

Fig. 4.3: Detail of energy anomaly visible in 4.2. Note that the energy scales on the 
plots of PE and KE are ten times 
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was carried out at low density and under these conditions the particles spend a fair 

amount of time in ballistic flight'. Nevertheless, at both densities, the total vari- 

ation in energy over the course of the run amounts to less than 0.15%. Also there 

do not appear to be any monotonic long term trends in the energy drift (at least 

over the time scales studied) which might otherwise indicate a systematic problem 

'This is evidenced by inspection of the configuration files stored during low density runs, 
they show that at any instant a fair proportion of the particles experience zero total force. 

59 

303400 303410 3034 20 

303400 303410 303420 



with the simulations. A supplementary validation of t he code is to check for the 

equipartition of kinetic energy between the system's degrees of freedom. 'Since 

the particles each have two rotational and three translational degrees of' freedom, 

one would expect the values of the average rotational and translational kinetic 

energies to be in the ratio 2/3. In the initial NVE run. the average rotational and 

translational kinetic energies per particle were found to he (hE;; iý 
ý. 
) = 1.9() and 

(hEt(, ', 
rý,, t. 

) _ 2.681 (to 3 decimal places). giving a ratio of (). 668. as value which 

is very close to the theoretical prediction. The evolution of' these kinetic energy 

Fig. 4.4: Energy equipartion for the system of 1000 n, 5k, 05.0 runhiiug in NVE at a 
density of p=0.20. In plot (h), dashed lines indicate the average values of the various 

energy components. 
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coniponents over the first 5000 steps of the run is shown in figure 4.1. At the 

very start of the run. the particles possess oilly the translational kinetic energy 

initially assigned to them via the Maxwellian velocity (list ribut ion. The potential 

energy at the start of the run is also zero since the particles are initially well 

60 



separated from each other on the FCC lattice. However the particles somi begin 

to collide and the process of transferral of kinetic energy from the trarnslat ional to 

the rotational degrees of freedom begins. Also sonne potential energy is gained at 

the expense of kinetic energy. The equipartition of energy takes place surprisingly 

quickly: as figure 4.4 shows, after as little as one thousand time steps the energy 

components are seen to fluctuate about their equilibrium values. Nute that fig- 

ure 4.4 (a) shows the average kinetic energy components with respect to the lab 

frame. In the lab frame both the translational and rotational kinetic energies have 

kinetic energy components for each of the three Cartesian directions. "These are 

not, to be confused with energy componeiits in the particle based frame. wherein 

the rotational kinetic energy component along the major axis is zero. 

The mobility of particles in the system is quantified by the mean squared dis- 

placement per particle as a function of time, this is shown in figure 4.5 fuur the 

first run in the low density isotropic phase. BY the end of the run, the nieaii 

Fig. 4. ): Mean squared displacements as afunction of time in the N1OUO n5k05. O system 

running in NVE at a density of p=0.20. 
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squared displacement is approximately 3000 length units. The riiis (I ispi a(. (,, I, (,, it 

is therefore approximately1 55 units, Which corresponds to roughly three tinier the 

]engt li of the simulation box (at p=0.20, L, 
1 = L,, = L: = 17.100). We iºute t hat 

the three components of the mean squared displacements are ('qua] au(l iuu reise 

linearly with time. in other words the particles undergo ran(loiºº walk or Linstein 

diffusion. Given the low density of the initial cmififurat ion and. hence. the c"orn- 

sid(ral)lc latitude for particle translation and reorieutatioti, it unsurprising that 
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the orientational order in the system also decays very rapidly. as figure 4.6 shows. 

The features discussed above give us some confidence that the simulation code is 

performing satisfactorily: energy conserv-atiou/ecruilpartitioii are oheVe(1 and the 

particles in the system undergo random walk diffusion both of* which constitnte 

physically realistic behaviour. A further validation is to compare the results of t he 

Fig. 4.6: The decay of polar and nematic order in the N1000 h5k: 05.0 sytiteiu at f, - 0.20. 
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MD coinl)ression series with data from the corresponding \IC simulations. This 

constitutes a rather stringent test since although hot 11 sicinulatimis are based 111)(m 

the same contact function, the simulation tcchlýiqucýs are completely dissimilar 

and were implemented independently on different platforms. 

The most natural observables to compare l)etWcen the two siuiiiil; it ions are t lie lime 

averages of the order parameters and the pressure at corresponding state points. 

Figure 4.7 compares the polar and nernatic order parameters. The agreement in 

the P2 Profiles is excellent. A\e note also in passing, that in the isutrol>ic phase nt 

the lowest density. the finite size error in P2 is roughly 3`X. a value similar to that 

predicted by Eppenga and Frenkel in their study of infinitely thin disks [13] (see 

figure A1 in this reference). There are distinct differences between the \IU and 

"\1C P, data. Specifically. the values for P, calculated from t lie \II) siuuiilat ioiis 

are all positive and have magnitude of the order cif' - 0.02 whereas for the \I(" 

simulations' the magnitudes are smaller. typically 0.001 or less and in addition 

their sign fluctuates. This discrepancy-. hoWeVer, is thought to he duce principally 

to the different method used to calculate P, in tue SIC studies. 
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Figure 4.8 meanwhile compares the pressure profiles in which there is excellent 

agreement up to a density of p=0.49 which, as we will discuss shortly. nmrks t he 

beginning of the sinectic phase. At a deiisitV of f) ý. 0.35. which coincides wit ha 

Fig. 4.7: The Pº and P2 vs. density profiles as obtained from the isotropic compression 
in NVT of a system of 1000 rc5k©5.0 soft repulsive particles compared with the results 

of an anisotropic NPT compression of an analogous system of hard particles by Monte 

Carlo simulation. 
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Fig. 4.8: N1000 n, 5ky5.0 system: Pressure vs. density comparing results of MI) siiuui- 
latioliti to an analogous MC simulation. The insert shows the high deeiisity portions of 
the pressure profiles in more detail with the MD profile vertically offs('t by -1. U to allow 
the data to be inspected more clearly. 
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marked rise in A. the pressure levels off until the dlenisit readies p ýzt 0.38. This 

type of discoutirruity is the classic signature of a first order phase tr<uisitiuu. of 

Which the I\ ti ansit, ion is an example. A second order please transition. (iii t lie 
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other ]rand. would be marked only lit au ittflec"t iott iu t the Itretitittre (profile. The \ID 

pressure profile also exhibits two distinct discontinuities around f) = (1.52 - 0.53 

and p=0.56 - 0.57, which are not ohserved in the the \l(' profile. Aii additional 

feature observed in the MID pressure data is the increasing disparity between the 

Z-component of the cxceSS pressure and the x- and V-components at high density. 

This is readily seen in figure 1.9. Such pressure attisot ropy almost certainly derives 

from the fact that the sittntlatiott box ttse(l in this compression remains cubic al 

all times. It is often the case that high density ordered phases such gis t lte shied ic" 

have difficulty 'fitting, into a volume of fixed aspect ritt io if the dimensions of 

Fig. 4.9: Excess pressure components vs. density fi)r the MI) NVT cum' ressiu1i. 
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that volume (10 not happen to be c"tºnºtuetºsºtrate with t he jwt iudiº"itV of I Ile 1ºImse 

(in this case the re eat distance 1)PtvVVec'tº tiºººc'c"t ic" layers). Evidence t hat t his is 

indeed What has occurred in our simulation is provided by inspection of selected 

snapshots of t lie situnlaticºu lox as shown in Hgnm -I. 10. wrlºi(-lº we will now (Iiscuss. 

in the density range f) ti 0.37 - 0.18. t 1ººe system is in t 1w nenºat ic" phase its ev- 

i(IPI1(c'd ley high P2 value aºº(I fiat lcnºgitnciinal (list rilntt ion function profiles (see 

section 4.2). Throughout the ººetºiatic" phase. t In» ºlirec"to r is aligned with the x-axis 

or [100] direction. as indicated b the clirectºn- components (not shown) and. at 

the higher density Pnº1 of the ººeinatir phase, by inspection ºof the snapshots (fig- 

ure . 1.10). At p=0.49, the system begins tu lake ººn a (listiººº"tl layered º"haraeter. 
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marking its transformation into a sitiectic 1>ilay('r phase. At the raine time the di- 

rector begins to reorient itself limit il. by the iinie the density has reached f) = 0.53. 

it is aligned approXimittely in the [112] direct ion. This collective reacrratigettcent of 

the system would appear to allow For an alternative c"oitincecctinral, ility of Nilavers 

within the simulation box and coincides with t lce disc cýiºt iu»itý iii the pressure 

profile at p=0.52 - 0.53. By the end of the f) = ().,, -)7 run. we find that it sec- 

ond rearrangement of the I)ilaVers has taken place ýicicl t he director now points ill 

the [102] direction. Again this process is au"collif>aniecl lbY ;I cliscontiuiiity Ill the 

pressure and. indeed. it noticeable decrease in its value (see figures . 1.8 mid . 1.9). 

Looking carefully at figure 1.9. both reorientations appear to he prereeclecl In it 

Stilall but steady drift, of t lie z-("c01111)Onc'tºt of the excess pressure from Ille 

other two components'. This strongly suggests that the rearraiigeºueuts are clrivern 

lhy the need to better acrcniitlloclate the lavicerecI l)hatic within Ilie rcibic" box and. 

thus, alleviate pressure anisotropy. Iii the final States of' the compression. the 

Fig. 4.10: N1000 n; 5k95. U systcººº: Siatip hots of the sitºººº1at iuºº box at the cºº>1 º>f sc1c'ctº'º1 
runs. The x. y. z axes are colcnºr(' 1 rect. g1('('11 it, )(] 1>l11c I( 1)('c tivº4y. 
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increase in pressure iuisotroppv goes unchecked. This could be (111V the fact that 

there is no rearraiigeni('nt of the layers within the given vohiittu' that (lull lead 

to the alleviation of the pressure nnlsotropv or t hat even it' such an arl-angenjent 

(WI exist, the particle 111Ol)ility is tu()1(m" at tll('s(' high (leilsitivs for the svstetti to 

rearrange itself'. We will return to the issue of' how the siutulat i(u box dimensions 

iutiucttc"e the formation (J <>rclerc'cl I hns'vs and vi('(' V'(, I. s l Ill til'('1 lull 1.3. 

TO conclude this sectioli. we t'XatiuirºO llow t>arti<"k, tºmhility 1" alfec tod by inc"reas- 

ing clcýntiity. This is host illustrated by 1)101Iing Ilse runs displacements at Ow 

c'iºcl of each Tllll as shown in figure 1.11. We ungut uaiV('ly expect the lllobility 

of the particles within the svsteººº to dec"rea. s e ºººcºncºtcºriicall willi clenSitV as the 

free v-cºlurººe accessible to each diminishes. However an iut crest ing 1>hc'rncºruc'non 

Fig. 4.11: N1000 n5k: p5.0 system: Meaºº sum-cd displacements at the º'u(l ººf º'aº"Iº Hill 

vs. the density at which the run was performed (; º. 11 runs iºº this compression series were 

of 500ksteps duration). 
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is observed at the isotropic-ucttiati( transition density. As tbe phase transition 

begins'. the ttteatt squared (liti}tla(etuwttts of the prtrticIvs ill tlºe y- and ý> direc- 

t. iorns contimt('S to (le<"rceasee WW-itIi illcreaHittg (letºsitV. 

which approximately coincides wit11 the director axis. Cliff lsio n is enhanced. This 

has been observed before in simulations. h otahivv 1iv Allen in it svtitcui of hard 
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ellipsoids of both the prolate and oblate varieties [26]. As it consequence, froiii 

p=0.35 to 0.38 the overall mean squared displacement actually increases. an 

effect that is concomitant with the increase in the iieiuat is order parameter ill 

that interval. This simultaneous increase in orientational order and gall ill iuo- 

bilit. v nicely illustrates the entropy handover between rotational and translational 

degrees of freedom. The increase in orientational order, representing a loss of 

orientational entropy, is compensated for 1)v an increase in translational entropy 

via the enhanced mobility facilitated 1)v the former. If tlhe svst('ui v're toi re- 

inain in the disordered isotropic phase. the overall entropy would be lower since 

the system's ability- to explore its translational degrees of' freedom vv'O»ild be in- 

creasingly curtailed by the decrease ill mobility brought about bY the increasing 

density. BY the end of the compression series. at p=0.62 as shown ill figure 1.12. 

the mean squared displacement has decreased i soiue two Orders of' magnitude 

compared wit hi that at the start of the series at p-0.20. However the svstetu 

remains fluid and the ineaiº squared displaceuºetit still varies liuearlY with titue. 

\Ve note also that the mean squared displacement in the ; /J-direct i()Ii is nnighly 

Fig. 4.12: N1000 h5k05.0 system, p=0.62 NVE: Mean squared d1isplaceriment, vs. time. 
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foiu' tirnn, s greater than that in the z-clircection. The fact that the dlirec"to (which 

is hner)eindicular to the suiec ti( 1avers) has a large Z-(. OüiI)Ot1<qit but r(iiiglilV z('rc) 

v-corühon('1it. suggests that iiitralawr (liffiisioli of l)ärtid"lees within a give ti leaflet 

of a hilaver is considerably' easier than iilterlaver (liffusiom of partic"1ees hei veer 

adjacent layers. This tyj)e of behaviour has been observed in several previous 
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simulations. For example Aoki and Yonezawa [27] observed, in a smectic phase 

formed by soft-repulsive spherocylinders, that the rate of diffusion of the particles 

in the two directions parallel to the layers was approximately four times that in 

the perpendicular direction. 

4.2 Structural detail 

The previous section provided an assessment of the nature and location of the key 

changes undergone by the rc5ke5.0 system during its compression. This section 

presents a more thorough characterisation of the structures of the phases formed 

via a detailed examination of their distribution functions, as defined in section 

3.4, in conjunction with further visualisations of the simulation configurations. 

We begin by considering the radial distribution functions shown in figure 4.13. 

These were compiled by dividing the spherical volume around each particle i into 

100 spherical shells. The number of configurations sampled at each density was 

51, these having been recorded in the production phase of each run i. e. in the 

interval 250-500 ksteps. In the plots shown in figure 4.13, and indeed in all sub- 

sequent plots of g(r)s, the interparticle distances are normalised by dividing by 

the particle diameter aw (the basic length unit in our simulations, as defined in 

equation 2.28), thus making it easier to interpret the distributions in terms of 

particle dimensions. 

At all densities during the compression, the go(r) are zero for r ti< o,,,, as they 

must be, for this is the minimum distance that particles can approach without sig- 

nificant overlap. Obviously, for elongated particles such as our K5 pears to reach 

this minimum separation, they must be more or less parallel or antiparallel and 

side-by-side. As the density increases beyond p=0.35, a peak starts to develop 

at r: 1.250, just beyond the minimum separation value. This coincides with the 

emergence of the nematic phase. The fact that the gr' (r) profile is, for the most 

part, positive up to r 3.0a indicates that, particles closest to each other have 
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a preference to lie parallel. particularly in the ordered phas'es at higher densities. 

The negative hollow in the (list rihººtioIº at larger distances. on the other hand. 

reflects the tendency of groupings of loutualiv parallel particles to iººtº'rºiigitate 

with similar groupings aligned in the opposite ºlirec"tioºº. This is particularly tree 

Fig. 4.13: N1000 K, 5kg5.0 system: The effect, of increasing density on the radial distri- 
bution functions (go). 
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in the sinectic" please Which. its figure 4.16 (f) clearly indicates. ("Olisists of* hilav ers 

eac"li of Whlic"h is compri5(i1 of a pair of antiI)aIallcl 'leaflets'. 

The family of plots of the radial tieniatic or(ler (listril»>tim g p2) (r") illntitrates the 
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difference between short-range orientational correlations and long-range orienta- 

tional order. At all densities, short-range orientational correlations are present. 

In the isotropic region (p = 0.20 - 0.35) the order naturally falls to appruxiinately 

zero at long distances. In the neniatic and siiiectic phases oil the other hand. 

orientational order persists at long distances and, as the (lensit V increases, the 

difference between the peak value of' P2 associated with strong nearest-neighbour 

correlations and the long range order is reduced. This is illustrated in figure 4.11 

wherein the peak values of the iiematic radial (list rihlition function. as measured 

at ra, are compared with the values at r -- 8.3a, ß. 
Also plotted are the 

Fig. 4.14: N1000 n, 5kg5.0 system: Comparing the order parameter value calculated in 

standard way at ruiitime with the 'local' and 'distant' values given by yO! (r (11. ) 

and g0 (r 8.3(7u. ). 
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squared values of time-averaged fl as calculated in t he standard way at runt hue. 

The latter are excellent agreement, with (Jo (r S. 3(r,,, ). this is in agreement 

with the prediction made hy statistical th(eorv IIIat Pz = qýý (r x). Next 

we turn to the longitudinal distribution fiuiict ions, qi, presented in figure 1.15. 

These provide quantitative information regarding the spacing of the 5inectie lay- 

ers and. by observing how they change as the system is compressed. indicate the 

(IPnsity at which the phase emerges from the iieinmie. According to these data. 

the onset of the sinectic occurs at approximately f) - 0.50. since (it this point 

both the gi u and gi'r profiles become distinctly sinusoidal having been essentially 

flat at lower densities. This is slightly lower than p=0.52 - 0.53. the density at 

which the second discontinuity in the pressure is observed (see figure 4.8). 
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Fig. 4.15: N1000 h, 5 k05 system: The effect of increasing density oil the longitudinal 

distribution functions. Two variants of the functions are shown. On the left are versions 
based on the particle orientation vector whereby the longitudinal distaiices are defined 

as rll = (-ri. i - üj). Positive TH corresponds to objects iºº front of particle i whilst 

negative 7-II corresponds to objects behind particle i. On the right are the director-based 

versions. here the longitudinal distances is defined as rll = (-r, 1 . n). They were compiled 
by dividing the cylindrical volume around each particle i into 200 thin disks, 100 for 

positive I-ll and 100 for negative I-ll and sampled fron 51 production rºnº configurations. 
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The structure of the sinectic at p=0.50 is somewhat anihigucnis. in particular 

the iuaxiriiutºi of the first peak in yin is offset from zc'r(º by i (Ta. and coincides 

with it Switch in g. ' ii from }positive to negativ-c. In it well Orclere(i siiicc"tic. as 

shown schematically in figure -1.17 (c), one expects g1 ii to peak at zero and to 
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correspond to positive yiPiiu, in keeling with well ordered layers of' particles leint; 

more or less parallel to each other. However as figure 4.16 (d) shows, the sinectic 

at p=0.50. though it has a decidedly layered structure. is not very orderly. The 

layers appear disjointed and perhaps somewhat slanted as sketched in figure 4.17 

(b). This characteristic perhaps goes some way towards explaining why the peak 

in 
. ginL is offset frone zero although the frill picture niav be more complicated. It is 

Fig. 4.16: N100() n5k65.0 system: Close up snapshot., taken at various densities. In 

all cases the view is down the positive y-direction; the angles in brackets are caiiiera 

rotation angles about the y-axis. 

(d) ýý _- 0.50(40°) (f) f) 1). 60(29°) 

possible that at p=0.50, the density around which the system is in the process 

of transforming frone the neinatic to the stii('ctic lphase, the system adopts some 

sort of intermediate domain structure, although extensive sul)l)leiiieiitary aiºaly- 

5i5 wolil(l the necessary in order to ascertain if this was indeed the case. It inav, 

also be the case that this weakly ordered siiiectic is a metastable phase which 

arrises as a result of the incompatibility of III(' eniergeuit true stuiectic «"it h the 

periodic boundary coiiclitions. Yet another possiblity is that the siniulatioii ruins 

are simply not long enough to allow the smectic to foriii properly. Nevertheless, 

at high cleiºsitV the smectic ordering becomes more regimented and, as it result. 
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the longitudinal distribution functions become easier to interpret. 

This is particularly true for Yt u and yI' u (the upper an(] middle left plots in 

figure 4.15). The p=0.50 profiles indicate that looking down the orientation vec- 

tor of any given particle. i, one sees a layer of antiparallel particles (the opposing 

leaflet of the bilaver in which i resides) at a (listnnce of 2.7co(). Looking behind 

particle i. one sees another layer of antiparallel particles (the closer leaflet of the 

adjacent bilayer in contact with i) at a distance of -- 4.9uuOý. Both versions of qi 

Fig. 4.17: 

at f) = 0.50 

p=0.60. 
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N1000 n5k05.0 system: (it) Local distribution functions for sinectic phase 
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are shown in figure 4.15 to illustrate the different interpretations of the "Inec"tic" 

structure that they provide. Recall, from section 3.4, t hat for ill U. r1l is defined as, 

(-r, - ü) so that the function picks up correlations as seen from t1w perspective 

of the orientations of individual particles r. Accordingly. the contributions to the 

corresponding polar (list rilnit ion function yi u are given by cos(O) = (-ü; " üi ). 

On the other hand for yin, i is defined as (-r; j " n), This (list ril)ution function 

therefore picks up correlations wit lt respect to the orientation of the (hrector and 

the contributions to the corresponding polar (list rilnition function qi 
iu are given 

by cos(O) _ (-üj " n). Figure 4.18 and tables 4.2 and 4.3 are designed to show 

how the structure of the sinectic" phase relates to the qi and q Plata. In the fig- 

ure, we arbitrarily label leaflets with particles facing left to right as `A' and those 

facing in the opposite direction as 'B'. A(O) and B(U) denote reference layers frone 

which rjl is measured whilst A(-1). B(-1) and A(+1). B(+1) denote the leaflets be- 
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longing to the bilayers left and right respectively of the reference hilayvr. The 

tables then summarise the correlations seen with respect to A(U) and B(0), the 

symbols ® and 8 denoting Whether the correlation makes a positives or negative 

U. `Strength' is simply the 1nitiiher of distinct corr('I Htions contribution to g, 
Pil 

Fig. 4.18: Schematics of smectic phase showing how the various corellatious between 
the leaflets of aligned particles contribute to the two versions of longitudinal distribution 
functions, namely the particle orientation vector based qi u and the director based gIn 
(see text for further explanation). 
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Tab. 4.2: Summary of the pair correlations with respect, to the two opposing leaflets in 

a sinectic bilayer for the particle orientation vector lased (list. rihutiou function gin (see 

text for further explanation). 

7,11 -7.6 -4.9 -2.7 0.0 2.7 4.9 7.6 

wrt A(0) A(-1) ® B(-1) 8 A(0) B(0) (-) A(+1) 

wrt B(0) B(+1) ® A(+1) 8 B(0) A(0) e B(-1) 

strength 2 2 - 2 2 2 

polarity ® e - ® e - 

Tab. 4.3: Summary of the pair correlations with respect to the two opposing leaflet's ill 

a smectic bilayer for the director based (list, rihution function gin, (see text for further 

explanation). 

r -7.6 -4.9 -2.7 0.0 2.7 4.9 7.6 

wrt A(0) A(-1) ® B(-1) e - A(0) ® B(0) e A(+1) 

wrt B(0) B(-1) e - A(0) ® B(()) e A(+1) B(+1) e 
strength 2 1 1 2 1 1 2 

polarity 0 e ® 0 e ® 0 

that contribute at a given distance, whilst `l)olaritV' indicates the net polar order 

associated with the resultant correlation. Note that the contributions to y(l I'I), I 

cancel each other out when r1l is a multiple of the basic repeat distance. hi g etneeral 

the director based distribution functions are, therefore. tiioýre difficult toi interpret: 
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gin does, however, give a more accurate quantitative measure of the intra- and 

inter-bilayer distances since r1l is the distance measured parallel to the director 

and, thus, perpendicular to the layers. The nematic distribution functions g(P2)u 

and g, n are relatively featureless. 

The third class of distribution function 92, shown in figure 4.19, provides in- 

formation about intralayer ordering. These data were compiled by dividing the 

cylindrical volume around each particle i into 100 cylindrical shells. The height 

of each shell was set at o,,,, the intention being to restrict the correlations picked 

out to those between pairs of particles in the same leaflet of a given bilayer. Once 

again, 51 production run configurations were sampled. At p=0.60, both g2u 

and gen exhibit a sequence of five peaks of diminishing height at perpendicular 

distances of approximately 1.15,2.20,3.28,4.30 and 5.40 0'0. This is somewhat 

reminiscent of the distribution function for close packed spheres. A snapshot of of 

the simulation box looking down at the smectic layers is shown in figure 4.20. Due 

to the orientation of the layers in the box, we see several alternating dark and light 

bands of particles comprising the opposing leaflets of the bilayers (recall that the 

rounded end of our tapered particles are coloured dark blue and the pointed ends 

light blue). The intralayer packing of the particles is roughly hexagonal, however 

at this density particles are still fairly mobile, particularly in directions parallel 

to the layers, consequently the arrangement is fairly disordered. 

It would be interesting to run this system on to higher densities to obtain a highly 

regimented smectic phase in order to elucidate the fine detail of the intralayer 

ordering. One would suspect that the leaflets of the bilayers pack hexagonally in 

an ABAB sequence so that the pointed ends of particles in opposing leaflets of a 

bilayer can interdigitate. Similarly the rounded ends of particles on the surface of 

a bilayer can sit in the interstices formed by the rounded ends of particles on the 

surface of an adjacent bilayer. Intuitively this would seem to be the most efficient 

space filling arrangement. 

A slight difference between g2u and gen worth commenting on is that at the high- 

est density shown, the particle based distribution function decays towards a value 
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Fig. 4.19: N1000 n5k05.0 system: The effect of increasing density on the lateral (listri- 
hutioiº functions. 
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of 0.5 at large distances whilst the (hirector based version approaches a value of 

1.0. The reason for this is that, the particles in the hilayers are not perfectly 

aligned with the director. therefore the c"vlincirical sampling vcºliººueti ceººt reI on 

caclº particle will ill general be slightly tilted out of the plane ()l' the leaflet iºº 

which particle i resides. Therefore, at large r, . the in-layer correlations begin to 

he lost as the sampling v-olºuººce eººc"rmc"Iºes Oil the adjacent leaflets as shcm"n ill 

figure 4.21. A similar effect is observed in the profile c, f gz u. As for y (2 I) ii. the 

c"05(0) contributions from leaflets parallel and antiparallel to the director ºººcºrc' 
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Fig. 4.20: N1000 n5ko5.0 system: Snapshot looking down it, siiw tic layers at p=0.60. 

Fig. 4.21: N1000 t 5kkp5.0 system: Schematic of a sriiectic", bilayer at, 1, = 0.60 based 

on the central bilayer across the simulation box shown in figure 4.16 (f). The particles 

clracwci with bolder darker lines are those of the central repeat unit of the hilayer, the 

lighter particles are the adjacent repeat, units. The saiiipliiig volume has a clia icier of 
11.7 o,,,, whilst its thickness is 1.0 rr,,,. 

or less cancel out. The longitudinal (listrihution function q1/'2 ui is very similar 

to its radial counterpart g0 : at all densities there are short-range orientational 

correlations but as the density increases, and the system becomes more highly or- 

dered, these correlations persist at large distances. The limiting values, for y (1'2) it 

are higher than those of ýýzýýt a because, on average. the orientation vectors, u, are 

more closely aligned to n than they are to ü;. 
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4.3 Decompression with anisotropic rescaling 

In section 4.1 we noted that, on two occasions during the compression, the smectic 

bilayers rearranged themselves, apparently in response to the build up of pressure 

anisotropy in the system. At high density the pressure anisotropy became more 

severe as the box dimensions were reduced and the simulation volume increasingly 

became incompatible with the periodicity of the bilayers. There is, therefore, a 
danger that the simulation box may unduly influence the structure of the ordered 

phases which form within it and/or the density ranges over which they exist. To 

try to prevent this, a procedure was devised which allows the aspect ratio of the 

simulation box to change so as to better accomodate ordered phases. The scheme, 

which we refer to as anisotropic rescaling, is now outlined. 

" At a given timestep, calculate the potential energy of the system as it stands, 

this value we will call U(old) = EN-1 Eý 
z Uta, 

" Define a random scaling factor a=1+ (ran(0,1) x OL71ý) where ran(0,1) 
denotes a random number between 0 and 1 and AL�, a. is a predefined pa- 

rameter specifying the maximum allowable change in the box dimensions. 

" Choose at random which of the box dimensions L, LY, Lz to rescale, then 

choose randomly whether to multiply or divide that dimension by the reseal- 
ing factor. 

" Rescale the other two dimensions in order to conserve the volume of the 

simulation box. For example if an increase in Ly was randomly chosen i. e. 
L(new) = L(old) xa then the other two dimensions should be decreased thus 
Lxnew) = Lx old) - a2 and LzneW) _ Lzold) - a2, 

78 



" Create a trial new configuration by similarly rescaling the corresponding 

components of the coordinates r(i) in the box: 

rxi)(new) _ ý. 
ýi)(old) 

_ a2 

r(i)(new) _ r(i)(old) x ce y- T/ 

r(i)(new) = r(i)(old) _ aI 

Calculate the potential energy U(new) for this configuration. 

" Accept or reject the new configuration on the basis of the difference in energy, 
AU = U(new) 

- 
U(old) 

, between the old and new configurations: 
if AU <0 Accept new configuration 
if AU >0 Accept new configuration if exp[-AU/kBT) > ran(0,1) 

9 If the resealed configuration is rejected then the old one is retained. 

The assumption is that pressure anisotropy is a manifestation of excessive overlap 

of particles along a certain direction. For example if smectic layers lying perpen- 

dicular to the z-direction, say, are constrained by the simulation box to take on 

a repeat spacing smaller than that which they would naturally adopt, overlaps 

in the z-direction will tend to be greater than they would in the unconstrained 

system. An increase in the simulation box size in the z-direction would then serve 

to decrease the overall overlap and, in so doing, reduce the potential. As a conse- 

quence, trial increases in Lz (or equally reductions in either Lx or Lz) should be 

favoured, via the AU based acceptance criterion, until such time as the pressure 

anisotropy is lifted. 

The anisotropic resealing scheme described above was first put to the test in a 

decompression series of the K5ke5 system. This simulation used the final con- 

figuration from the compression series as its starting point. The decompression 

sequence is summarised in table 4.4. It essentially amounts to a reversal of the 

compression series but with resealing applied from p=0.62 to p=0.52 - the 

density range over which the smectic phase is present. Figure 4.22 shows data 
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relating to the simulation box resealing for the p=0.62 run. In all runs, resca1- 

ing was applied between steps 50000 and 200000. luring which tiluP (lirnPnsion 

changes were attempted every 100 tiliiesteps. Figure 4.22 (a) reveals that over the 

Tal). 4.4: Summary of main run parameters for <lecouipressioii of 1000 n, 5k05.0 soft, 
repulsive pears. Resealing moves were attempted every 100 tiiime steps over the interval 
50025-200025 in runs 2-12, the moderator was 0.25 and the tiairi})le size 10. 

run p . 
1p ensemble _'Vg,.,, 

(averaging interval) rescalitig 
1 0.62 0.00 NVE 500k (250-500k) OFF 

2-12 0.62-0.52 0.01 NVT 500k (250-500k) ON 
13-43 0.51-0.21 0.01 NVT 500k (250-500k) OFF 

44 0.20 0.00 NVE 500k (250-500k) OFF 

course of the run. L1 and L. increased somewhat at the expense of L, 
1. 

Figure 4.22 

(h) shows, the acceptance rate for Inas reesealiiig llIo es. The require(( rate is 0.5. 

to achieve this AL,,,, was dvnaiiiically altmal via a simple feed1) l("k mechanism 

Fig. 4.22: N100() ß;, 5k05.0 deauiiipression: Box resealing data for run 2 at p-0.62. (a) 
hoxlengths. (b) overall acceptance rate fier hox reticýile nnoves ((, ) fractional change ill 
l)ox dimension. (d) energy change associated with trial box rescaliIig move. 
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which consisted of the following. For every' 10 attempted resealing moves, it block 

average of the acceptance rate, J? b! o(. k for tI1(>tie 10 iiwveti was c"oiiipai'edi to 0.5 to 

give a difference 6= Rb! ock - 0.5. -ýL,,,,. J. was tlien adjusted as f()llu vs: 

= , Lýoldi x1- 
`11 

x (1 
, 11 11.1 Id) 

The adjustment factor in brackets takes into account the difference (between the 

required and actual acceptance rate as well as the magnitude of JL;;;;; 1,. In addi- 

tion it includes a damping term M. which after some trial and error Was set to (1.21. 

the purpose of which was to temper the magnitude of the change to AL,,, 
(,.,, and 

thus steer the acceptance rate more slilo(lthly towards, its required value (without 

it the acceptance rate tended to oscillate about 0.5 and took longer to converge 

towards the target value). Figure 4.22 (c) shows, how 
. 
ýL,,,,:,. is, modified by this 

feedback Inechanislll frone an initial guess of' 0.00,50 to around 0.0035 in order to 

get the required acceptance rate. Note that the iiiax1111n111 vilergy changes 

associated with trial box rescalings roughly correStlund t(1 t Ile Droll(' of' 
As figure 4.23 shows, the application of anisot r(1pic rescaling and, 11111s, the 

Fig. 4.23: N 1O00 r- 5k05. (): Comparing t, ltt' excess pressure ("cnttlxOttetit's (Iltrittg c"ottºltrPs- 
Sion and decompression. 
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change in the aspect ratio of the Simulation box. ilIlIlidiately leads to a reduc- 
t10I1 ill the allisotI'OJ)y of the average excess pressure components. There is also 
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a considerable drop in the overall pressure as compared to the corresponding nin 

in the compression series. In the early stages of the decompression. the average 

hoxlengths are nearly equal, but. as figure 4.21 reveals, at p=0.59 they start 

to differ frone each other. It is not clear wlietlwr this is it purely ran<loin effect 

Fig. 4.24: N100() n, 5 k05 decompression: Average box lengths. 
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or is related ill some way to structural changes in t 1w siiiert ic" phase. At several 

points in the decompression, namely f) = 0.59.0.57,0.56 and 0.51-0.50. the excess 

pressure conl))oilents exhibit some disparity. albeit temporarily. Also the over- 

all pressure )profile exhibits a number of kinks over the tiniectic" region although 

the large discontinuities that teere observe(I ill the compression are not repeated. 

1'herniodýnainicallý. fluctuations in pressure in response to volhiiiie change", are 

connected by changes in the compressibility of the system. The kinks in the pres- 

sure profile at high density may therefore relate to changes in the c"oinl>r('tisihilitV 

of the system that arrise as a result of the chaliging orienntatioýu of the sincwtic" 

layers within the simulation box as it struggles to acc"oincýclate itself to the box 

shape. 

Figure 4.25 presents snapshots frone the decompression series. these show tInn the 

sinectic" hilayers remain oriented along the [102] planes down to ;i density ofaroiIII(I 

p=0.51. Subsequently at p =0.49, the bilavers rearrange themselves iii the [112] 

orientation. Recall that this same reorientation occurred (luring the compression, 

but at the higher density of 0.56. Shortly afterwards. between p =0.48-0.47, the 

rescahflg app4 od 
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sinectic layers break up and the sVsteiris returns to the neimati( phase. There- 

after. the pressure profile for the decompression series is almost identical to that 

of the compression. Throughout the entire de("orºipression, the order parameter 

profile (not shown) closely reproduces that of the (lecoiiipression. There are also 

few differences between the corresponding sets of (listrih1it ion fuin("tions. as figure 

Fig. 4.25: N1000 h, 5kO 5.0 system: Siigwhots of dip siSiiulatioii liox at the end of selected 

runs from the decompression series. AliistroQe resealing was ai phied in the density raffige 
p=0.62- 0.52. The x, y, z axes are coloiire(1 re(l, greeiº all(i blue respectively. 

j) - 0.35 p-0.40 j, - 0.13 u, - 0.17 

p 1). IS 

p-0.56 

/) -- (). -19 

I) - Iº. i, 7 

p=0.51 

Ii 0.59 

f) - 0.53 

f) U. (i2 

4.26 illustrates. The only dissiiiiilarity is that ill the high density phase of the 

isotropic compression. the intrala. ver separation of opposing leaflets iii the same 

bilayer shrinks somewhat. whereas at the corresponding (lentiitV in the auuisotro pic 

decompression this distance is essentially constant. 

Further testing of the resealing scheme was carried out by performing two supple- 

nieuitary compressions for the K5ky5.0 sýsteiui. Ili the first. rescaliiig was activat('(I 

froiii f) = 0.37 onwards. the density around which the isotropic-iienlilt ic transition 
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takes place. The initial configuration for this, simulation was taken from the end 

of the p=0.36 run from the isotropic compression discussed in sect ion 1.1. Snap- 

shots frone the anisotropic compression, as presented in figure 4.27. show that on 

this occasion the bilaVOrs arrange themselves iii the [211] planes. Figure 1.28 (a) 

Fig. 4.26: N100() n, 5k; o5. O systeiiº deconºp: Comparing 1uc gl. for the isotropic com- 

pression series and the decompression series with aiºisotropic rescaliiºg. 
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riieearrvvllile shows the average l)oxletigtlºti as a function of deiitiity. Initially L. 

grows at the expense of L,,. and Ly. Given that the presSsure tensor is isoýtrOj)ic in 

the neniatic phase [281 one would conc1u Ie that what we observing is a random 

walk in L. L. L, - there is no driving force present to induce the simulation 

volume to expand or contract in any particular direction. As the system enters 

the snºectic phase, however. the trend is reversed L.,. begins to increase whilst 

Lv shrinks, presumably in order to allow the phase too a((ot>>Odal P the 

nascent SIIIP('tic phase. 
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In the second anisotropic compression. resraling was applied from 1) = 0.51 oll- 

wards, the density around which the N-Sin transition occurs. Again the initial 

configuration was taken frone the original isotropic compression. Figure 4.28 (h) 

shows that here the 1ioxlengtlis rapidly deviate frone each other in a virtually 

Fig. 4.27: N1000 h5k65. () system: Resealing applied from I-N transition onwards (p) 
0.37-0.62) 

p=0.37(i. socolrtp) p=0.37 p- 0A) 
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monotonic fashion with L, and L, growing at the ('XI)Pnse of L,,. I)nriug the 

p=0.57 ruts, the latter fell below 2r,.,,, causing the simulation to be automati- 

cally aborted. There is no sense in continuing the simulation beyond this (point 

since the systeIn would subsequently he subject to spurious periodic I)oiuº(larv 

effects i. e. the particles would begin to interact, with their own periodic 'images'. 

Snapshots from the siInlllation. as (presented in figure 4.29. show that on this occa- 

sion the sinectic phase forms along the [2021 planes. The observed rescaling of the 

(box in conjunction with this alignment of the l, ilaVers. suggests that the forlneer 
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is driven by the longitudinal expansion of' the bilavers. As the sVsteºu is COili- 

pressed. the average lateral distance between particles iii the layers lutist decrease 

so that they have less space iii which to tilt with respect to uue another and also 

Fig. 4.28: N1000 n5k, ©5.0 system: Box rescaliiºg data for anisoh-opic compression se 
quences p=0.62. (a) Series relaunched with reSc"aliTlg on at, p-0.36. (1)) Series 

relaunched with resealing on at p=0.51. The latter was automatically aborted before 
it was due to finish as a result of Ly falling below 2r,.,,,. 
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Fig. 4.29: Snapshots of the simulation box at, the end of "'elected runs during compres- 
sion of the N1000 #5k05.0 system wit, lº rescaliººt; activated From /) _ 0.51 onwards. The 

x. y. z axes are coloured red. greed and blue 1('slxeº tivel. N. 

to inter(ligitatP. The result is that the 1ºilaVers tend tº> *swell' in the direction 

perpendicular to the layers. Bariºws et al. [14] ºuadl<o siºººilar o)l)servaI hmti iu t heir 

MC studies of this If the svstertº was beim; - compressed isotropically, the 

result vVould be elevated pressure in this ýlirýýý tiou, however when rescaliiig of tile 
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box dimensions is implemented the system is able to expand in order to relieve 

the pressure anisotropy. In this particular simulation then, the expansion of the 

bilayers drives the increase of L., and Lz, via the resealing scheme, whilst the Ly 

must shrink in order to preserve constant volume. Reduction of the Ly is expe- 

dited by the relative ease of lateral movement of particles within the layers. 

In conclusion, the resealing scheme is successful in so much as it would appear 

to allow the smectic phase to take on its natural periodicities and, thus, relieve 

pressure anisotropy. However, in some instances it does seem prone to instability 

which can result in rather extreme simulation box aspect ratios. As we have seen, 

this may ultimately lead to the cessation of a simulation. Another concern is that 

excessive fluctuations of the box dimensions may actually disrupt the formation 

of periodic structures. The most obvious way to avoid these undesireable side 

effects would be to apply resealing more judiciously, i. e. to adjust the box dimen- 

sions for only as long as is necessary to relieve pressure anisotropy. Since it is 

usually impractical for a human to monitor simulations as they actually unfold, 

the decision as to whether to rescale or not would need to be based on some sort 

of algorithm. A natural basis for this would be to block average the excess pres- 

sure components and use the difference between them as a criterion for toggling 

resealing on or off. However great care would need to be exercised in the design 

of such an automated procedure not least because inappropriate application of 

resealing may in itself lead to pressure anisotropy. 
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4.4 System size effects 

As a final road test of the simulation coole and procedures. iº1eººtical º"oºººj>ressiºnºti 

were carried out on systems containing. 1250.2500.5000 and 10000 particles. 

The parameters for these compressions are sliiiiiiiarised its table 4., i. Figure 4.30 

Tab. 4.5: Summary of main run parameters fir compression of systems of N- 

1250.2500,5000.10000t, 5k85.0 soft repulsive pears. R. escaliug moves were attempted 

every 100 time steps over the interval 50025-200025 in runs, 33-43. the moderator was 
0.25 and the sample size 10. 

run p . gip cns(»ii1hle Niep (averaging interval) rescali! ºý; 
1 0.20 0.00 NVE 500k (250-500k) OFF 

2-32 0.21-0.51 0.01 NVT 500k (250-500k) OFF 

33-43 0.52-0.62 0.01 NVT 500k (250-500k) ON 

44 0.62 0.00 NVE 500k (250-500k) OFF 

show the order parameter data oi)taiiºc(l for the four tiVstenus toi be ill (-1()S(' agree- 

ttictit. Quantitatively the profile's duller s1iglitiv iii t«"O r1's1x'(-tti. Firstly- 1 ill t1' 

isotropic phase is it little higher lot the tirºýýillýýr tiYstýý»i sizes, Owing tu the fact 

that the relative contribution from close range correlations is greater for sVstettts 

of smaller size, as discussed ill sect ion --1.2. Sc'co»ui1v the isotropic-ueinat ic" t ransi- 

Fig. 4.30: System size effects: Order parameter profiles. P2 vs. density 
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tion takes place at a slightly higher density for the N10000 systeººº. 

The pressure data presented in figure 4.31 itttlicate that the Onset of titttectic or- 

Bering, corresponding to the scýccºncl inflº'c'tion in tLw jºrcýtisnrcý 1ºr<ºfilcýý, occurs at 
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around p=0.47 for all the svsteiii sizes. However at higher <leiisitiPS t here are not- 

icable differences, the third inflection appears at p=0.51 - 0.52. p=0.53 - 0.36 

and p=0.53 - 0.55 for the N1250. N5000 and N10000 systems respeCtivel. v. 

Fig. 4.31: System size effects: total pressure profiles. P vs. density 
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although at densities higher than p=0.57 t he profiles of these t liree SVstenis (on- 

verge once more. Th(' most noticeable (liff('retic(' is that the N230O (profile exhibits 

only a very slight inflection. at around( p= (1.: x: 3. ain(1 remains at a higher pressture 

than the other three for the remainder of the compression. 

The origin of this disparity is apparent Wli('ti we inspect snaj»4l1otti of the final 

configurations from the four simulations as shown in figure 1.32. The N1250 tiYs- 

temil (not shown to save on space) fornI('ci a well-ordered s1ne("ti( Dilaters Ori('nt('(1 

in the [3001 direction. the N5000 and Ni000(1 svst('nº5 too, exhibit or(l('rlV hilaV('rS 

Fig. 4.32: System size effects: Final configiir it ions. 
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but, in the [241] and [044] planes of their siutulation boxes respectively. The \2510 

system meanwhile has formed 1)ilaVPrs in the [231] plan which appear (le iýlýýýllý 

distorted. in particular the particles have an noticable tilt wilh respect to the 

bilayer normal. This is confirmed by the ("1) 
rý profile for the N251)0 systetmm. 

as shown in figure 4.33, which decays much more rapidly with (list attce than f'or 

Fig. 4.33: N100() h5 k65 system: The effect of tiystcui size on the lateral (listril)ntiOll 
function (g(P1)u) as measured at a density of p=0.62. 
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the other three systems. In fact nºotit Of the (listrilºººtinuu film tiwºs for the 125(1(1 

svstcnº exhibit significant differences when º"º>ºnpareº1 to the º ýºrrºýýlxºnºlitºt; fºuºº- 

tions for tlºe other three systems, the tatter heiººg alºnOst ident ic"al to ea(1l ºº1 her. It 

«w0ºº1(1 appear that the N2500 s st eni failed to find aºn arraIIgeºneººt wit II iºº I he sitºº- 

illation box that comfortably incorporates the iuterlayer repeat distance for this 

species of particle. This is further eviºlence(l hV the e olnt iuu ººf the 1º(xleugt his 

(figure 4.34) which continued to diverge right ill) to t lie end of t he sequeººº"e. This 

coiºt rants With the other systems Whose hººsleugt hs, whilst cleanging c"ººººsiclera1º1V 

iºº t he course of the compression, appear t0 have settled ý own iºº the latter stages. 

Finally we note that the : 10000 svsteºn has formed 1ºilavers in an orientation 

similar to that, which was observed in the similar r. ºººººpression of the 1 iDU(l svs- 

tenº. the latter having been aborted when its L,, diuºcnsioºº fell below 21-,.,,,. In tlºe 

110000 sstcenº the bilayers are in the [044] planes so that their swelling causes tile 

Ly and L. increase at the vx eIise of L, 
r� whereas in the X1000 system wherein 

the layers formed in the [202] planes. Lf and L. increase at Ilse expense of L. 
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4.5 Summary and Conclusions 

0.5 density 0.6 

The \ID cocl1' and I)1 w(hu"es 1151'(l for thl' co»ºI)r<Pssiuu <in(I ('xi)aiisioii of svsl('tilS 

of soft-repulsive tapered particles appear to be sound. When run in N1'G, total 

energy is conserved within an acceptable margin, wit li variations- over t he course 

of 500kstccp runs carried out at low and high densities not exceeding I). 15`% of' 

the average value. Also kinetic energy is (list iii )lut ('d between Ilia svst('Ills degree's 

of freedom in the correct ratio, this ('(tiiil)artitiou 1 'iug achieved rather swiftly. 

within 1000 titiiesteps of' the beginning of the simulation. The menu squared 

displacement is assuredly linear at all densities: at the I-N transition we observe 

all etihanceiueirt of the tiiol)ili"V along the (Iireec"t for axis whereas ill the suIIe(ti( 

phase, in plane (liffusion perl)endicular the director and confined to particular 

N 
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leaflets of the bilayers would appear to be favoured. The results of the MD 

NVT compression studied here agree well with those obtained from an MC NPT 

compression of an identical system of hard particles, both in terms of the positions 

of the phase transitions and the characteristics of the phases formed. 

The anisotropic resealing scheme introduced in section 4.3 is effective at relieving 

pressure anisotropy, however in some situations, both during compression and 

expansion, the boxlengths can diverge to an extent which disrupts the simulation. 

A pragmatic solution to this problem would be simply to apply resealing moves 

at a reduced frequency and perhaps over a more restricted density range. Results 

presented in the final section indicate that system size in of itself does not appear 

to have a significant effect on the structural characteristics of the phases formed 

and has only a minor impact on the density at which phase transitions take place. 

Nor are the structural characteristics of ordered phases affected by the particular 

orientation at which they form in the simulation box except on the occasions when 

they fail to achieve commensurability with it. 
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CHAPTER 15 

Measurement of flexoelectric 

coefficients 

In general, when external stresses are applied to a sample of liquid crystal, they 

result in a deformation of the director field, A(r). If the material has flexoelectric 

properties, the distortions will result in a reorientation of its constituent particles 

such that a net polarisation, P, is induced. This is analogous to the piezoelectric 

effect in crystalline materials, the main difference being that in the latter case, the 

charges are ions which are anchored to the crystal lattice, whereas in a liquid crys- 

tal the charges sit on particles, which, of course, form a fluid state. Conversely, if 

an external electric field, E, is applied to a flexoelectric material, the constituent 

particles will experience torques, by virtue of their charge distributions, causing 

their reorientation and, thus, a deformation of the director field. This is often 

referred to as the inverse flexoelectric effect. The latter effect clearly has ramifi- 

cations for the switching properties of liquid crytals in devices. Therefore there is 

considerable interest in understanding and harnessing this property. 
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Two mechanisms have been proposed to explain how the effect occurs. In the 

theory of Prost and Marcerou [29], the liquid crystal molecules are uniaxial in 

shape but possess an electric quadrupol, that is to say they possess a pair of equal 

and opposite dipoles and thus have zero net dipole. When a splay deformation, 

for example, is applied to a system of molecules of this type, the change that this 

effects in their packing arrangement results in changes of the relative positions of 

the charges on different molecules, so producing a net polarisation. 

In a second theory developed by Meyer [30], the liquid crytal molecules are as- 

sumed to possess electric dipoles, p and, in addition, polar shape anisotropy. 

Specifically, the types of particles considered are tapered and crescent-like as fea- 

tured in figure 5.1. In the quiescent state (5.1 (a) and (c)), the particles in the 

system will tend to arrange themselves in a nematic like fashion with, on av- 

erage, as many dipoles pointing up as point down. However, when the system 

is deformed, the particles are forced to pack in ways which result in an excess 

of dipoles pointing up and, thus, a net polarisation. For the tapered particles, 

such polarisation will be induced by a splay deformation (5.1 (b)) whilst for the 

banana like particles it will be induced by a bend deformation (5.1 (b)). Meyer 

derived the following equation relating the net polarisation to the splay and bend 

deformations. 

P=elln(0"n)+e33i A(VAA) (5.1) 

where n(V - n) and nn (VA 4) are the splay and bend vectors S and B respectively, 

which characterise the distortions of the director field at any given point. The 

prefactors ell and e33 are the splay and bend flexoelectric coefficients, which char- 

acterise the flexoelectric properties of a particular material. For a liquid crystal 

consisting of purely tapered particles, with dipoles pointing towards their rounded 

ends, one would expect to observe positive ell and zero e33, since, for this shape 

of particle, bend deformation would not be expected to bring about the kind of 

rearrangements resulting in a net polarisation. Similarly for the banana-shaped 

particles, with their dipoles oriented as shown, e33 would be expected to be finite 

and negative and eil zero. These coefficients have been determined experimentally 
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and so. in a very real sense, reflect how the microscopic packing arrangements of' 

liquid crystal molecules. which cannot themselves be directly ob»erN-cd. affect the 

bulk material properties. If these saine coefficients could he ineasIIled from sim- 

ulations, specifically simulations in which the degree of' shape asYninietrv. be it 

taper or bend. can be varied systematically. then the results may provide insight 

into how molecular attributes affect the Milk flexoelectric properties. As it hap- 

pens. it method does exist which allows one to obtain cl, and c':;:; fromm simulation 

data. This is known as the linear response approach. which we will omit line iii t he 

following section. 

Fig. 5.1: Schematics illustrating the effect of splay and 1)eä(1 deformations Oil SY'stellis 
of tapered and banana-shaped molecules respectively. The panels on the far right, tihuw 
the relatiorishil) between the the director fields (dashed blue lilies) and the splay and 
bend vectors S and B at the points in the fields tiiarked by the red spots. 

(a) (b) 

((°) (d) 

i) s 

B 
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5.1 The linear response approach 

In the absence of an applied field there is no net splay or bend deformation of 

the director field and therefore, on average, no net polarisation of the material. 

However, random thermal fluctuations can produce short-lived, localised pertur- 

bations of the director field producing a transient contribution to the polarisation. 

The coupling of thermally induced director deformations to the polarisation is a 

manifestation of the flexoelectric effect and as such provides a means of calculat- 

ing the flexoelectric coefficients, as we will now show. 

Small director deformations may be described by incremental rotations 90 of the 

director about an axis 9. Formally, the incremental rotation and the change in 

the director are related by [311 

aB =nA an (5.2) 

ah = -AAaO (5.3) 

Or alternatively in component form 

ä8a = EaoyApaT. r (5.4) 

0972. = E. 
'a' 

L90,6 (5.5) 

where e is the third rank Levi-Civita tensor as defined in Appendix D. The 

components are generated using the summation convention, whereby any subscript 

that appears twice in any term should be summed over all possible values. Here, 

the range of values is 1,2,3 corresponding to the three Cartesian directions x, y, z. 

So, for example, the x-component of 99 would be given by: 

33 

aOx = 1901 = fioalýj 
= E1, ByrßO7y (5.6) 

6=1 7=1 

where /3 and y serve as the so called dummy variables. The variation of the 
director at any given point in space is described by the gradient tensor, VO, of the 
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rotation axis. This quantity is referred to as the orientational deformation tensor, 

with components denoted -y,,, e. 

(ve_)ný=7nR=aneR=ä, 3 (5.7) 

The conjugate property to the orientational deformation tensor is the orientational 

stress tensor fl. Microscopically, this quantity is obtained by summing the vector 

products of interparticle vectors and torques 

NN 

17=-2Eri'A Ti' 17aß=-2ErýTä (5.8) 
iýj iý7 

where i and j are the particle indices and N is the total number of particles in 

the system. 

The linear response theory of Kubo [32] is a general theory which relates the 

changes in a dynamic property of a system to small mechanical disturbances 

taking place within the system. Nemtsov and Osipov [33] turned to this theory in 

order to derive a relationship between the polarisation (the dynamic property) and 

the director deformations (the mechanical disturbances) in a model anisotropic 

medium. In this work, the model system was assumed to consist of a set of 

particles with translational and rotational degrees of freedom, each possessing a 

unit dipole moment pi. The total polarisation of the system is given by the sum of 

these dipoles, j: N 
1 pi. The mechanical disturbance, meanwhile, was modelled as 

a cyclical deformation. Using this approach, the following linear response relation 

was obtained 

Pa = Eßß7 (5.9) 

Nerntsov and Osipov refer to Eaß. y as the flexoelectric tensor, although elsewhere 
[34-36} it is called the response function. In what follows we will use the latter 

nomenclature. In the long wavelength limit, i. e. when the frequency of the cyclical 
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deformation tends to zero, Egßy reduces to the correlation function 

E_ --! (P II) E,,, 37 =-i (Pa nß7) (5.10) 

where Q is the Boltzmann factor 1/kBT and V is the volume of the system. The 
response function relates the bulk polarisation of the material to the microscopic 
interactions occurring between its constituent particles. Nemtsov and Osipov then 
went on to show that the linear response relation 5.9 may be cast in a form which 
is similar to Meyer's formula by use of the following results. Firstly the response 
function may be expressed as 

Ea, B7 = Eifa, 
B7 + E2Eµaß7L77iN, + E3Eµ7snanµ ý' E4cyaµnß9 ýr5.11ý 

where E1, E2, E3 and E4 are simple constants. Secondly, using 5.4 and 5.5, the 
deformation tensor 'y can be written as 

ao än� /Yß'Y = 1900'Y = aß, 
ß 

= Ery,, vnµ Oro ' (5.12) 

Substituting these two expressions into 5.9 gives us 

Pa = Eaß7, yß7 - 
E1 

ön� 
(Eý@7EYýý)7lµ 

äro 
an� 

+E2(e ßE- )nµn7nµ 
Ör 

+E3(f, ryßE7{`ý)nrznryfIý är 
ön 

+E4 (E 
yaµ EryµL1) ryZµnß nµ 

8r, ß 

each term on the rhs may be simplified using identities relating the Levi-Civita 
tensor and the Kronecker delta function öij (see Appendix D). When applied to 
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the first term on the rhs this approach yields 

/ än� alit, Ei 1EnýJ7EYµv)nµ arß = El (8aj(5R� - aa�8ýr)nµ 
Ör 

,P 
= Ei(ö, Sßß - 8aßbßa)na ßEi(aaßSßa 

- saaaýe)ný 
ara ßR 

= ü� ýLn -"El(0-1)nßß p 
d9r äna aüß 

= El 
(no 

ärq - na är / 

and similarly for the other three terms 

E2(e ße7µv)nµn7n, Läan 
i� 

= E2nß 
ana 
ar 

E3(f, 
i? ßf p)nµntxnA ar 

E3n, 
ar 

( än ý 
E4lE7aµE'Yµv)nµnßnl, 

ar =0 

Substituting these results into 5.1 we obtain 

än, än, a äng änß Pa = E«$ti'YR7 = E1 nß ärß - n° 
ara + E2h, 3 + E3 ha 

,6) 
aro i9r, 6 

Finally, by equating terms, we obtain the following expression 

Pa = Ea, 67'YHti = (E3 - El)na 
Lrý 

+ (El + E2)np 
9rp 

_ (E3-El)n(V. A)+(E1+E2)AA(VAa) (5.13) 

Comparing this to Meyer's equation 

l'=e11'n(0"n)+e33nn(VAA) (5.14) 

we immediately see that 5.13 is equivalent to the latter when we set ell = (E3 - EI) 

and e33 = (El + E2). We can obtain the constants El, E2 and E3 explicitly in 
terms of the response function, Eaß, y, by manipulation of 5.11. The resulting 
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expressions for the flexo coefficients are 

eil =-1 2Eýß7Eµý7nanµ (5.15) 

1 
e33 = +1 Ea#, 

yca, eµ127hµ (5.16) 

Thus, the linear response approach provides a link between the microscopic details 

of a system, namely particle positions, orientations and torques, from which the 

response function Ea, O. y and the flexoelectric coefficients can be obtained. 

5.2 Simulation technique 

We now specify the precise details of how the linear response approach described 

in the previous section was applied to our simulation data in order to compute ell 

and e33. The procedure is based on the methods described in references [34-37]. 

In what follows the superscript (s) is used to indicate explicitly the instantaneous 

value of an observable, s being the time step at which the calculation is made. 

The analysis begins by calculating the intermolecular torques, as defined in section 

3.2, within the interactions double loop 

9) = Cis) 1- c9ý csý =48) 
aU ^ 

cs> 
Tip - 

4Ly A gt; tA 
(-OU-ijrjj 

as - ac uýý (5.17) ( 

c9ý _ cs> 1= (s) A c9> _ c9ý aUtij au. , Tji -9lß A gjZ - üE ýßýUzj) 
- 

Uj n 
ý- 

,% 
Tij - 

19C 
ILiý ýS. lÖý 

where a=%" rij, b= üj " rij and c=t" üj. As the torques and intermolecular 

vectors are computed, the stress tensor components for the system as a whole are 

accumulated 

N 

, (S) 

2 
r# (s)Tiji9) 

_ 

i0j 

NN 

Lý rý 
(8)Ta (8) + 

z j>i 

N 
ii(8)? i(s) r L. ý ßa 

3>i 
(5.19) 
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We arbitrarily assign a reduced dipole moment to each particle with a magnitude 

of unity and a direction which is the same as the particles orientation vector, i. e. 

pi = t2.. The polarisation is then obtained simply by summing the orientation 

vectors of all the particles in the system 

_ 1dzi(3) P(8) (5.20) 

The components of the stress tensor and the polarisation, along with the direc- 

tor components, are written to file at regular intervals. These stored data are 

subsequently processed to obtain the response function and, thence, the flexo co- 

efficients. Given the finite system size and limited simulation time, the response 

function E, ß7 must be approximated by a time average 

E«, B7 =- (paney> -1a> 

Ndata 

(PnH)) (5.21) V Ndata Vn 07 

where Nda, ta is the number of lines of data saved to file. Finally ell and e33 can 

be calculated using the expressions derived using the linear response approach 

described in the previous section i. e. 

1 
e11 = 2ai3'YEli7nYn!, 

e33 = +2Eaß7Eaýlýnanµ 

In fact three modes of processing were implemented to arrive at the response 
function: 

1. Eap y was calculated from Pa') and H expressed in the usual lab-based afl 

coordinate frame. 

2. Eaß 1 was calculated from P. () and H after the latter were rotated into a 
director-based coordinate frame; this is essentially the method followed in 

[34-36]. 
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3. Eaßry was calculated from the covariants of the director-based polarisation 

and stress tensor. The covariants are defined as (P,, (, 9) - Pa), (f () 
- Hap) 

where the overline indicates the time average. This follows the procedure 

used in [36]. 

Regarding the second mode of processing, it is not clear from the literature 

whether rotating the polarisation and stress tensor into the director frame is ac- 

tually a necessary feature of the linear response approach as applied to this type 

of system. References [34-36] merely allude to the change of coordinate system 

as being convenient. It is certainly true that switching to the director frame sim- 

plifies the expressions for ell and e33, for if we rotate P and II into the director 

frame so that n=z we have n., = 0, ny =0 and ft, = 1. Then, in summing 

over the indices a, ß, -y, p to obtain ell, we find that the summation contributes 

only when a=p=z and nanµ = n, zn, z = 1. Furthermore the Levi-Civita ten- 

sor elements are non-zero for just two permutations of z/3ry namely exxy =1 and 

Ezyx = -1 thus 

111 
eil =- 2EaHryEµarynrynµ -+ 2EzßryEzßry = -2 (Ez2y - Exyýý 

= 2V 
((PZHXY) - (PZHYX)) (5.22) 

In a similar fashion, the bend flexo coefficient reduces to 

111 
e33 =2 EaßryEaßµnanµ -2 Ea, 

BzEaßz =2 ýEýyz - Eyxz ) 

= 2V 
((PYHyz) - (P. 17 y. )) (5.23) 

The simulation technique described above was applied to a number of monodis- 

perse N10000 i3 systems, namely 03 ke = {5.0,6.0,7.0, oo}. The expectation 

was that the value of ell calculated would be greater for particles with more pro- 

nounced taper, i. e. those with lower ke value. For the keoc particles, we would 

anticipate ell being approximately zero, since these particles are uniaxial. The 
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ic5k95.0 system was also studied to see if an increase in aspect ratio would have 

any noticeable impact on the flexoelectric properties. Each of the above systems 

was also studied for a range of densities to try to uncover trends in ell as a func- 

tion of order parameter, since the value of P2 in these systems increases with 

density. In all cases, the observed value of e33 would be expected to be negligible 

since tapered particles do not intrinsically possess the required shape necessary 

to engender bend flexoelectric behaviour. 

The systems were prepared by first performing isotropic compression runs in NVT 

of smaller systems of 1250 particles. The simulation method used here was similar 

to that followed for the preliminary simulations, described in section 4.1. The 03 

systems were first compressed from FCC starting configurations at p=0.15 to a 

density of 0.75, at which the system is an isotropic fluid. Compression was then 

gradually continued from p=0.75 - 1.15 in a sequence of 1000kstep runs taking 

the system into the nematic phase. For the r. 5ke5.0 system, the initial fast com- 

pression was from p=0.15 - 0.30 it was then compressed gradually to p=1.00 

in a sequence of 500kstep runs. End configurations from various points in these 

compressions were then tesselated to generate the N10000 systems as required 

for the flexoelectric studies. This was achieved simply by replicating the N1250 

systems 8 times and joining the configurations together. This enlargement was 

performed in order to ensure that statistics of sufficient quality were obtained in 

order to make accurate calculations of the flexoelectric coefficients. These sys- 

tems were then run on in NVE for 500ksteps (or 0.5Msteps). The first 100 ksteps 

were reserved for equilibration, in particular to allow the periodicity engendered 

by the scaling up procedure to fade away. For the remainder of the run, data 

and configurations were regularly saved. In particular, the instantaneous values 

of the director, polarisation and stress tensor were recorded every 10 time steps 

thus providing 40,000 data points for the subsequent analysis. 
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5.3 Results of 0.5 Mstep simulation runs 

Before discussing the results obtained for the 0.5 Mstep runs, a practical issue 

that arose during the data processing should be mentioned. The director n de- 

fines the axis of symmetry of a nematic phase, a symmetry that is invariant under 

a rotation of 180°. Therefore, as far as nematic order is concerned, it is irrelevant 

which way along the the symmetry axis the director points. Consequently, it is not 

uncommon for the director, as calculated via the diagonalisation of the Q-matrix, 

(see section 3.3), to flip polarity from time to time in the course of a simula- 

tion. This has an important practical implication in relation to the calculation 

of the flexo coefficients using covariants, as we will now illustrate. Figure 5.2(a) 

shows data from the simulation of the n5k95.0 system at a density of p=0.47; 

the average order parameter value at this density being P2 = 0.834 (to 3 d. p. ). 

The lab-frame director components presented in panel (a) clearly exhibit spon- 

taneous sign reversals. Meanwhile the polarisation in the lab-frame, as shown 

in figure 5.2(c), naturally remains steady, since it is the sum of the orientation 

vectors of the individual particles, which cannot of course change direction in 

an instant. However, the rotated components, of the director-frame polarisation 

shown in figure 5.2(e)) are subject to the same reversals in sign as the director. 

Director flips are therefore compensated for by monitoring the sign of the largest 

director component as each line of the (lab-based) simulation data is read by the 

processing programme. A change in sign of this component occurring between 

consecutive logging intervals could only be caused by a reversal in director po- 

larity. If such a flip is registered, a counter sign-change is automatically imposed 

until such time as the director reverses once more and in doing so reverts back 

to its original polarity. Figure 5.2(b) shows the director components after having 

been compensated for in this manner. The result is the set of stable director-frame 

polarisation components shown in figure 5.2(f). 

Figure 5.3 (a) to (f) show that, although director flips affect the polarisation and 

stress tensor components and hence their respective time averages, the flexo co- 
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Fig. 5.2: Time series data of the director and polarisation over the course of a 0.5Mstep 

run for h5 k05 system at p=0.47 (P2 = 0.834). Plot (a) shows the spontaneous 
reversals that occur in the polarity of the director and ((, ) how this is passed on to the 

polarisation components when they are rotated into the director frame. Plot, (1)) shows 
the director after compensation has been tirade for the reversals and (f) the resulting 

stable polarisation. 
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Fig. 5.3: Running averages of polarisation, stress tensor components and flexo coef- 
ficients calculated over the course of a 0.5Mstep run for K5 k()5 systemic at. p=0.47 
(P, = 0.834). The plots on the right are derived from data in which director reversals 
have been compensated for whereas for those on the left no corrections were applied. 
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hand are only marginally different. This i5 ºlue ºnainly to the fact that, ill this par- 
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titular case, Pb happens to have a large magnitude in the director frame whereas 
P, z remains close to zero throughout the simulation. Recall from equations 5.22 

and 5.23 that in the director frame e33 depends on PP and PP whereas ell depends 

only on P. It goes without saying that in all subsequent results presented in this 

chapter, director sign changes have been compensated for. 

We return now to our chief concern - the attempt to uncover physically meaning- 
ful trends in the values of ell and e33. Figure 5.4 shows the coefficients calculated 
for the Oke5.0, 'c3ke7.0 and r6k95.0 systems as a function of order parameter. 
The corresponding numerical data appear in table F. 2, of appendix F. The main 

observations are that the ell values are nearly all positive whilst the e33 values 

are nearly all negative. We also find that both coefficients generally have similar 

magnitudes of the order of 0.1. Notable exceptions are the two large ell values 

calculated in the lab-frame for the k5k95.0 system and the corresponding e33 val- 

ues calculated in the director-frame. Taking covariants would appear to eliminate 
these extreme values but, overall, the spread of data points is still too large to 

infer any physically meaningful trends from the results. Moreover the magnitudes 

of the e33 values are by and large still comparable to those of the ells. This runs 

contrary to our assumption that tapered particles should not possess bend flexo- 

electric properties due to their axial symmetry. 

Figure 5.5 shows the flexoelectric coefficients calculated for the rod-like tc3keoo 

systems. Since K3keoo particles lack a steric dipole we would expect both ell and 

e33 calculated for these systems to be approximately zero. However comparing the 

results from these simulations with those obtained from the tapered particles, we 
find that the coefficients calculated for rodlike particles are in general roughly of a 

similar magnitude to those obtained for the tapered particles, if not larger. This 

manifestly unphysical trend strongly suggests that either there is a fundamental 

oversight inherent in the linear response approach as applied to this type of sys- 
tem, or else the statistics obtained from the simulations are not good enough to 

produce sufficiently accurate results. 

In order to better assess whether the latter was the case, the time series data from 
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Fig. 5.4: Flexoelectric coefficients calculated froiii 0.5 million step runs for various 
systems of tapered particles. 

(a) as determined in the lab based frame 

s. o 

4. 

3 

2 

U, 

t 

0 

10 0.5 0.6 0.7 0.8 09 

order parameter P, 

(b) as deteriIiine(i in the director fraiue 

1. a 

0.0 

-1.0 

-z. 0 

-3,0 0.5 

K95 
KI 

K5-5 
K5-5 e, - 

06 07 08 09 
order parameter Pw 

(c) as determined frone covariants of P, and II( 
03 

0.2 

01 

00 

01 

-0.2 

_o a 

K35 e, " 
K35 

K5-5 e, 1 --ý- 
K5.5 a33 --ý 

0.5 06 0.7 0.8 0.9 

order parameter P, 

the kc3kooc system at p=0.945 (corresponding to P2 = 0.761), were examilw(1 

in more detail. Out of all the 0. SMstep simulations, this one gave the highest c : j: 3 

value as calculated from covariants. Figure 5.6 shows the polarisation components 

and selected stress tensor components. as calculated fron this simulation in the 

director frame, over intervals of 100.1000.10000 and 100000 tinºestel)s. First of 

all WPe note that the character of the fluctuations in the polarisation and the stress 

tensor differ markedly from each other. The polarisation exhibits fluctuations, of 

a relatively low frequency and small amplitude whereas the stress tensor shows 
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Fig. 5.5: Flexoelectric coefficients calculated from 0.5 million step runs for the r;. 3 A: 0-)c 

system. 
(a) as determined in the lab based frame 
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higher frequency fluctuations of a ºunch larger amplitude. Another crucial dif- 

ference is that the polarisation components remain fairly steady over the course 

of the ruu and, in this particular case P, also remains far fron zero. The stress 

tensor components on the other hand cross the horizontal axis ºuany times ill tile 

course of a run. although. as figure 5.7 (b) shows. Hic running averages of the 

stress tensor components fl and 11. y- actually retain negative and (positive signs 

respectively for most of the ruin. Recall that when eºi is calculated Witlºitº tile 

director frame it depends only on Pý. fl and fl .. 
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eil =-2 (Exxy - Eyý, ) =V ((Pznxy) - (Pznyx)) 

This being so and given that P, z remains fairly steady, it follows that the running 

average of the splay flexo coefficient should be closely related to the difference 

Il, y -H. This is evidenced by the noticeable correlation between the running 

average of IIxy -Hyx and that of ell seen in figure 5.7. It is also worth commenting 

that, since P, remains large and positive throughout the course of this particular 

run, it is not so surprising to find that that the value of ell calculated from the 

covariants (P. - Px), (II., - II., y) and (IIyx - 
Hy-x) is considerably smaller than 

that determined from correlations of the unaltered instantaneous values. This 

does not necessarily mean that taking covariants will improve the accuracy of 

the calculation. Such an approach would only succeed in instances when the key 

observables are subject to a steady state bias. However, the time series data 

hint that the polarisation and/or the stress tensor components may be suffering 

fluctuations/drift of a somewhat random nature over time scales comparable to 

or greater than the 0.5Mstep simulation duration. This might account for the 

lack of meaningful trends observed in figures 5.4 (c) and 5.5 (c). With this in 

mind, a series of longer simulations was carried out in the hope that the improved 

statistics would result in better convergence of the flexo coefficients. The starting 

points for these runs were the end configurations from the 0.5Mstep runs. 

5.4 Results of 10 Mstep simulation runs 

Before discussing the results of the 10 Mstep runs it is worth highlighting another 

practical point, this time relating to the size of the data sets generated by these 

longer simulations. In the initial 0.5 Mstep runs, flexoelectric data were saved 

every 10 timesteps with double float precision resulting in datafile sizes of approx- 

imately 50Mb per run. This is a rather large file size but it is still relatively easy 

to move or copy the file to a different location. Also inspection or plotting of the 
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Fig. 5.6: Director frame time series data for n, 3 ko3c system at p=0.945 (12 = 0.767) 

plotted over intervals of 100.1000,10000 and 100000 tinleSteps. 
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data using standard Linux applications did not present any difficulties. However 

files of a similar format generated by lOMsteel> runs were around a gigabyte in size 

and these turned out to be cumbersome to move around. Moreover it was imprac- 

tical to routinely inspect or plot the data. The files were therefore reformatted 

into a more manageable format as follows. 

Firstly the twenty seven response function components recorded during the sinn- 

ulation were removed from the files since these can always be calculated later from 

P, and H, 3 if required. Also the E, 3,, recorded at run time were calculated in the 
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Fig. 5.7: Running averages accumulated during the 0.5Mstep simulation of the t;, 3 k©oc 

system at p=0.945 (P2 = 0.767). 
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lab based franse but we are more interested in the values of observables calculated 

in the director frame. Secondly the precision of the n uººil)ers was reduced to six 

decimal places. this has a negligible effect on the final averages calculated since 

the decimal part of the instantaneous values of the observahles is iusignificaººt 

relative to the fluctuations in these observables. Thirdly the data was sampled 

at one tenth of the frequency- at which the original data was saved i. e. in the 

reformatted files data appears at intervals of 100 time steps as compared to 10 

timesteps ill the original file. To check that this would not significantly affect the 

results of calculations made from the data, the cl, and c3:; Avere calculated for 

a range of sampling intervals as shown in figure 5.8. Clearly an increase in the 

sampling interval from 10 to 100 (which in this case reduces the nn1nl)er of data 
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Fig. 5.8: Effect of sampling interval on the calculated flexodectric coefficients for 

a range of systems run over 10 Msteps. 
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points frotu 106 to 105) does not have itiuch impact on the c"alcillat ed averages. 

It should be added that reformatting all the data from the 1(LMstep runs and 

ensuring that they were not. through sonne oversight or error. distorted in t he pro- 

cess. was not a trivial task and contributed significantly to the Nvork loml involved 

in this part of the research. It illustrates that,, whilst ensuring that all important 

information is Sated during simulation time, one should also be niindfiil of ill(' 

effort and possible technical difficulties associated with subsequently processing 

that information. 

The coefficients. as determined from the 10 million step runs, for the tapered 

particle systems are shown in figure 5.9. Whether calculated in the lab-franse, 

the director-frame or by covariants (which are also lased ill the director-frame). 

there are no conspicuously- Wayward values as were seen for some of' the calcu- 

lations based on the 0.5 Mstep runs. We note also that there is little difference 

between the director-frame and covariant based datasets shown in figures 5.9 (1>) 

and (c) respectively. Furthermore, the c11s and c;; ss determined front the co- 

variants obtained from the 10 Mstep runs are of a siiiiilar order of magnitude 

to the corresponding ones determined from the 0.5 Mstep runs. The sl>rc'adti ill 

the datasets fron" the two sets of' simulations are also comparable so, despite the 
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Fig. 5.9: Flexoelectric coefficients as calculated from 10 million step runs for various 
systems of tapered particles. 
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longer simulation tithes, clear physical trends ill the values are still not appal-cent. 

The coefficients calculated from the K3/-0x 10 Mlstep simulations. b all inethocls 

of calculation. are all smaller than the 0.5 AIst(, l) values hý" at least an order of' 

magnitude. This gives some hope that, longer simulation tiinies ina. N" result ill Itiore 

accurate calculation of the ficxo coefficients. 

Looking at the running averages from some of the simulations. as calculated from 

the director-based polarisation and stress tensor (without the average subtracted 

"""" 
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sh 
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Fig. 5.10: Flexoelectric coefficients as calculated from 10 million step runs for the 

n3keoc systems. 
(a) as determined in the lab based fraine 
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i. e. these data are not computed from the covariants of P, and I1,,; ß). there is a 

suggestion that the coefficients are converging towards steady values. For exani- 

ple, the en and C:; s running averages for the n3k07. () system at p=0.90. sho«"iº 

on the bottom left panel of figure 5.11 are stable throughout most of the run and 

nearly flat for the last 40() ksteps or so. The final averages are al>l)proxiiuatelV 

+0.1 and -0.1 respectively. Iii contrast, for the seine type Of system at a slightly 

higher density of p=0.94. the running average of cl, undergoes a relatively- large 

and rapid increase at 200 ksteps as shown in the hottoin right panel of figure 5.11. 
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Fig. 5.11: 10 Mstep time series and running averages of polarisation along with and 
running averages of selected stress tensor components and the running averages of Heexo 

coefficients as calculated in the director-franse. 
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'T' his shift seems to be correlated wit Ii large changes in the polarisat ions. It apl, eiirs 

to have a major influence on the final value of ('11. which i's approximatelY double 

the value obtained for the lower (leiisity svsteiii. 
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5.5 Summary and Conclusions 

The flexoelectric coefficients have been calculated for systems of particles with a 

variety of degrees of taper and across a range of densities, and thus a range of 

average order parameter values. The values of ell and e33 as determined from 

director-based polarisation and stress tensor components collected in the course 

of simulations of 10 million steps duration are consistently of the order of - +10-1 

and N -10-1 respectively. To assess whether these values correspond favourably 

with the values typically measured experimentally for molecular liquid crystals, 

we define a basic unit, po, for the dipole moment having a value of 1Debye = 

3.336 x 10-30 Cm and assume that its diameter a,, is 5A, these values are of 

the appropriate order of magnitude. The relationship between the flexoelectric 

coefficients as measured in real units and its reduced equivalent is 

eii = 
p2 

e*.. 
Orw 

(5.24) 

Substituting the values of po and a,, into this equation along with the order of 

magnitude of our calculated reduced flexoelectric coefficients, we obtain eii 

6.7 x 10-12Cm-1. This is indeed similar to the type of magnitude measured for 

the flexo coefficients of real liquid crystals. This gives us some confidence that the 

method and its implementation in our simulations is basicly sound. Also, control 

studies, as it were, were carried out on systems of rod-like particles. Symmetry 

dictates that both coefficients for these systems should be zero within experi- 

mental error margins. In the longest simulation runs performed, the calculated 

values do indeed appear to be tending to zero. However, despite the length of the 

runs and the relatively large systems of 10000 particles used, no clear meaningful 

trends in the coefficients, either as a function of shape or of order parameter have 

emerged from the data. Comparison of the running averages of the key quantities 

calculated in the simulations (see figure 5.11) suggest that long period fluctua- 

tions in the polarisation may be biassing the results. An obvious extension to the 

work reported here would be therefore be to run for even longer times to see if 
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sufficiently long simulations have the effect of smoothing out the effects of' these 

fluctuations. Another approach would be to Fourier transform Ihc polarisation 

and stress tensor components and subtract the low frequency components before 

calculating the flexo Coefficients, although that does raise the question as to how 

much of the frequency spectrum should be filtered out. 

The observed fluctuations may have something to (10 with the trat ure of the sitn- 

ulated nematic phase itself. In fact as figures 5.12 show. the netnatics formed bY 

the moderately tapered particles studied here. have something of' a shied is char- 

acter about there. The particles have a tendency to interdigitate and form what 

might be regarded as loose domain-like associations. Perhaps it is the fornmtioti 

and breaking up of these domains that, causes the fluctuations in the properties 

relating to the flexo coefficients. In fact it is probably true to say tliat the prop- 

erties of these netnatic phases should have been studied more thoroughly before 

attempting to derive values for the Hexo coefficients from theor. 

Finally. the consistently finite and negative value calculated for c; i; i u('dds toi 

Fig. 5.12: Snapshots of the i-3k95. () half way through the lOMstep runs'. 

he explained. Tapered particles of the type used in our simulations should not 

be intrinsically capable of inibueing the system with a bend flexoelectric charac- 

ter. However detailed interrogation of appropriate (list ril)iition functions suggests 

that pairs of particles have a preferred azinntthal angle as shown s("liennatically 

in figure 5.13. The Collectively two particles in this arrangement resemble the 
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Fig. 5.13: Schematic showing an arrangement of a pair of tapered particles that resem- 
bles a single banana-shaped particle. 

_, - ýý> 
banana-shaped particles depicted in 5.1 (c) and (d). It is known that pairs of 
liquid crystal molecules tethered to each other, so-called bimesogens, can exhibit 
bend flexoelectricity and that the extent to which they do depends partly on the 

average angle subtended by the long axes of their two halves, see for example [38]. 

It is possible that the pairs of particles in our simulations behave, albeit tran- 

siently, like bent bimesogens and this may explain the finite values calculated for 

e33" 
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CHAPTER 6 

General phase behaviour 

This chapter draws together the results of a set of simulations carried out on sys- 

tems of 1250 r-3 particles with varying degrees of tapering. These studies revisit 

the phase diagram mapping carried out by Barmes et al. [14], which we review 

in the first section. The second section describes the phase transitions that were 

observed in our own MD simulations when the systems were compressed from 

initial low density configurations. For the most part, the methods used to inter- 

rogate the results follow along the lines of those described in chapter 4 describing 

the preliminary simulations. Broadly the phase diagram from compression was 

found to consist of three distinct regions in qualitative agreement with the work 

of Barmes et al. At low ke values, there is a direct transition from the isotropic to 

the smectic phase which eventually freezes at high density. At high ke values, the 

systems undergo first an isotropic-nematic transition which subsequently trans- 

forms into a smectic and freezes at high density. Although, for ke values of 6.0 or 

so and above, the N-Sm transition virtually coincides with the freezing point. In 

the central portion of the phase diagram, we again encounter what Barmes termed 

the `domain-ordered' (DO) phase although here we rechristen it the `curvy-bilayer' 

(CB) phase. In order to confirm that the curvy-bilayer is a genuine phase and not 
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merely a metastable state i. e. a frustrated smectic phase, we generated so-called 

`artificial' smectic configurations which were subsequently expanded to obtain the 

phase diagram from decompression. The artificial smectics were derived from a 

repeat compression of one of the systems that entered the CB phase but with an 

orienting field applied along the z-axis, which encourages the particles to align in 

that direction and, at high density, assemble into smectic bilayers. This procedure 

is described in more detail in section 3. The fourth section draws together the 

results of the decompression simulations. The chapter concludes with a general 

appraisal of the phase diagrams obtained and suggestions for further work that 

could be carried out both to refine them and to lead to a better understanding of 

the fundamental drivers of the phase behaviour of tapered particles. 

6.1 Phase diagram from MC simulations 

Barmes et al. had previously carried out MC simulations of hard K3ke3.0, k4k04.0 

and K5k05.0 particles [14]. These made use of the same PHGO contact function as 

was used in our MD simulations of soft-repulsive particles. Subsequently a series 

of similar simulations were performed for hard ic3 particles across a range of ke 

values (unpublished), the results of which were used to map out a kB -p phase 

diagram. The simulation methodolgy for these studies is now summarised. 

Systems of 1000 particles were compressed in a series of NPT runs from initial 

low density configurations in which the distributions of particle orientations were 

isotropic. The equilibration and production phases of the runs consisted of 0.5- 

1.0 million MC `sweeps' (a sweep consisting of one attempted MC move for every 

particle in the system). The types of moves attempted were standard translations 

and rotations as well as a orientation inversions, which constituted 20% of the 

attempted moves. A form of anisotropic resealing was employed which involved 

volume changes was attempted, on average, once every two sweeps by allowing 

each box dimension to change independently. The resulting phase diagram is 
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presented in figure 6.1 For particles with kA values of between 2.0 and 3.0. a 

transition from the isotropic to an iuterdigitate(l sinectic a phase was observed 

upon compression. For intermediate values, ka = 3.0 - 4.5, it transition into 

a so-called domain-ordered (DO) phase was observed 5o called because it was 

characterised by localised sinectic like order but lacked long range order. This 

Fig. 6.1: Phase diagram obtained frone Monte Carlo NPT compressions of systems 

of 1000 h3 hard particles [14]. The diagonal dashed black lines are estimated phase 
boundaries. 
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gras apparent fromm snapshots of the simulation box and was also confirmed by 

low order parameter values as well as the decay of the peaks in iiiolcciile-ceiitred 

correlation functions. Thora was some uncertainty as to whether this, Do structure 

was a genuine phase or a metastable state. Resolution of this issue was one of' 

the motivations for carrying out further investigations of the K3 phase (liagraiºl 

by way of the SID simulations. At the high end of the k0 Scale. the system first 

underwent. an 1-N transition followed by an N'-SniA transition. 

6.2 Phase diagram from compressions 

1'lie initial configurations fUr the compressions consisted of 1250 l)artir"lkks ill. - 

ranged, as usual. on an FCC lattice at a density of p=0.20. These vV('rP ral)i(hly 
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compressed to p=0.80 by increasing the density in increments of 0p = 0.001 ev- 

ery 100 timesteps. The systems were then compressed to p=1.10 via a sequence 

of 1000 kstep runs in each of which the density was increased by 0.01. This change 

of density was applied gradually by small increases of Ap = 0.00001 every 100 

timesteps over the interval 100-200ksteps. 1 From 500-1000ksteps, averages were 

accumulated and configurations stored periodically. Additional runs were later 

carried out to compress the systems further to p=1.20 in order to ensure that 

the liquid-solid transitions were properly captured. Anisotropic rescaling was ap- 

plied to all of the systems, the density at which rescaling was switched on was 

generally chosen to coincide approximately with the onset of smectic or CB phases, 
based on the experience of previous simulations. Compressions were carried out 
for the following set of shape parameter values: ke = 2.0,2.2,2.4,2.5,2.6,2.8, 

3.0,3.2,3.4,3.5,3.6,3.8,4.0,4.2,4.4,4.5,4.6,4.8,5.0,5.2,5.4,5.6,6.0,10.0, 

50.0, oo. Recall that with increasing ke value, the degree of tapering of the par- 
ticles decreases; in the limiting case of ke = oo the particle is essentially uniaxial. 
A similar compression series for a system of 0 soft-repulsive Gaussian ellipsoid 

particles (K3 rods for short) was also performed for the purposes of comparison 

with the '3keoo `pears' simulation. 

On compression, the ke 2.0 and 2.2 systems were found to enter the smectic phase 
directly at densities of p=0.82 and 0.85 respectively. Figure 6.2 shows the evo- 
lution of various properties of the ke 2.2 system as a function of density. The 

location of the isotropic-smectic transition point can be related to a number of 
features in these data. Primarily, the nematic order parameter rises steeply, of 

course, and there is an inflection in the pressure profile. Also the rate of decrease 

in the overall mean squared displacement lessens somewhat and its components 
diverge - diffusion becomes enhanced in the x- and z-directions but diminished 

in the y-direction, the latter being the Cartesian direction to which the director 
'This contrasts with the preliminary simulations, in which the same density change of 0.01 

was imposed in a single step immediately at the start of each run. The use here of a more gentle 
compression procedure was motivated by the concern that the imposition, at a stroke, of the 
full density increase might conceivably perturb the system and thus affect the observed phase behaviour. 
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is triost closely aligned. This indicates that intralaver diffusions is more favourable 

than interlaver diffusion. as was also found to be the case for the n5 svstein dis- 

cussed in the preliniinarY results chapter. On entering the sniec"tic" phase. the 

Fig. 6.2: N1250 n. 3 k02.2 compression data. The dashed vertical lines indicate the 
densities ascribed to the isotropic-sinectic (I-Sin) and liquid-solid (1-s)transit. ioiis. 
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director components settle clown to essentially fixed Values. which suggests that 

the disposition of the eniectic" Nilavers within t lie simulation lox at this point Is 

commensurate with the p<'ricxfiCitY of the phase. That the 1>ha, 5c is c"OnifurtaNY 

accomniodated by the simulation box is confirmed by I he parity that exists he- 

tAl, (Nc'n the excess pressure components throughout the compression. 

At high density, the systems solidify, with I he liquid solid transit ions occurring at 

p =1.08 and 1.07 for the k0 2.0 and 2.2 systems respectively. The freezing point 

is indicated by a small step in the I'", value. a marked drop in pressure and a 

falling off of the mean squared displac"eºnent. A slight reorientations of the clirc'(tOr 
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is also observed. An additional effect of solidification is that fluctuations in flic 

boslengtlis become very ranch reduced and. as a consequence. the aspect ratios cif' 

the simulation box remains essentially fixed following the liquid-solid trans-ition. 

Figure 6.3 presents (listribution function profiles for the k0 2.2 svsteun, across the 

full density range of the compression. Note that in these figures each profile has 

been displaced vertically 1) 0.1 with respect to the prec"eediiig profile so that 

Fig. 6.3: Evolution of selectc(1 distribution functions for the N1250 n. 3 /: 02.2 ruull)res- 
siou series. The sampling volumes were divided into 200 shells: the distributions were 

accumulated from 100 configurations stored over the interval of 500-1000ksteps every 
5ksteps. These same parameters were used for the (OIImp)11tatiO11 of all the lq(T)s presented 

in this section. 
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changes in their appearance with iucreasittg density are more casily discerned. 

The radial cli5tril)ution fitttctiott, qty, does not change tºtu("li at the 1-Sitz transi- 

tion. However the lateral (list ril)ttticnt full 'tiou ! J2U 1)e9itt5 to shOvVV 5ec'Olid attcl 

third peaks at this density. Moreover regular peaks enterte in the lunt; it iiditºal 

(listrilttttion functions g, u and yon Will f) = 0.86 inwards. a dear sigttatttrc' oft he 

the onset of sntectic ordering. At first. the ( iitral peak. correslu uuhug u) t he in- 

plane correlations. and next nearest peak. corresponding to correlations between 
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particles in opposing leaflets of the same bilayer, are not clearly distinguishable. 

This is particularly so in the case of the gl u profiles where the two peaks merge 

into a hump centred at approximately r1l = 0.8o . However at higher density, 

beyond p=0.90 or so, the hump clearly begins to split into a double peak. The 

positions of the maxima corresponding to these peaks were determined simply by 

inspection of the distribution function datasets, in order to quantify, in a rudimen- 

tary fashion, the changes in the intra- and interlayer separations as a function of 

Fig. 6.4: Schematic representation of part of the smectic bilayer phase with the intra- 

and linterlayer distances as discussed in the text labelled. 

d3 

density. The distance between the central peak (at r= 0) and next nearest peak 

(at roughly r= +1.2ow) corresponds to the modal separation between particles 

in antiparallel leaflets of the same bilayer as shown in figure 6.4, i. e. the intralayer 

distance, which we will label dl. The distance between the central peak and the 

second nearest peak (at roughly r= -3.0a) corresponds to the modal separation 

between particles in antiparallel leaflets of adjacent bilayers, we refer to this dis- 

tance as d2. Finally, the distance between the central peak and its equivalent in 

the next double peak, in either the positive or negative direction, corresponds to 

the modal separation between particles in equivalent, i. e. parallel, leaflets in adja- 

cent bilayers. This, the interlayer distance per se, we refer to as d3. The resulting 

plot of these bilayer periodicities, for the ke 2.2 system, is plotted as a function 

of density in figure 6.2 (f), alongside the usual runtime averages. It should be 

mentioned that, given that we are dealing with a fairly small system size and that 

the aspect ratio of the simulation box can change considerably over the course of a 
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compression series. the volume from W1iio"li particle-particle correlations are sani- 

plecl. for certain runs. is not large enough to ('Ilcotnpass the interlayer correlations 

corresponding to d:. 'T'herefore, this data set is not ("oiiil)l('t(' Over the full (Wnsity 

range. Ideally. d3 should he eynivalent to d1 + d2. HOAN-ever, due to the al)l>r1iXi- 

inate manner in which the modal separations have beemi <lemmino4l here. as Ml 

as the uncertainties in the in(livi(lttal longitudinal separations. rlj. measured for 

each pair of of particles 2. the two gnantitie s Al1 in practice differ somewhat. As 

Fig. 6.3: N 1250 hI compression K3kt li2-2 snapshots. 

p=(1.89 p=0.86 p= 1.06 /) _ ]. 08 

the system is compressed, ill the liquid slnccti(" region. the intralayer separation 

increases slightly as the harticks are sglleeze(1 closer together laterally within the 

Nilavers. Nute that the increase in dl is reflected, in figure 6.2 (e). in' an increase 

in L1. the box length most closely aligned to the director. At the freezing transi- 

tion. l)etween i=1.06 and 1.08. (ll decreases abruptly. Also. as figure 6.3 shows. 

there is a general sharpening of' positional order, along with the appearance ()I* 

additional peaks in go and Y271. Thus at the liclui(i-sOii(I transition. the entropy 

associated with particle disorder and translational motion is sacrificed for the sake 

of packing efüciency. The distance dz between particles sitting base-to-base in ad- 
jacent bilavers remains virtually' unchanged throughout the cold )ressi II at a value 

of aJ)1)roXilnatelY- 3a,,.. the particle length. Figure 6.5 shows visualisations of the 

system before and after the I-Sni transition (/) = 0.84 and 0.86) as well as before 

and after the li(1iiici-solid transition (p = 1.06 and 1.08). These provide visual 

confirmation of what the tlititril)utiOit fiiitctiOiis tell us. i. t'. tliat 11JX)11 colIIpressioni 

211w tilt of particle orientations With I-espe t to the normal to the Inlayer in ti"Li("li t11eey , it 
(see section 3.4) will affect the value of the distance r'; ill+ý+ = (-r, i - u+') 

127 



the low ko systems form we11-ordered, highly interdigitated sinectic pliases. 

For systems defined by ke values from 2.4 to 4.5 inclusive. we observe a compres- 

sion driven transition from the isotropic to the so-called cnrvy-hilayer (CB) phase. 

This phase consists of bilavers which, locally at least, appear structlirallV similar 

to those of the low kg l>ilayer smPctic systems. However the lavers are contorted 

Fig. 6.6: N125()s 3 compression. Representative snapshots of the curvy-bilayer (CB) 

phase. Images (a). (b) and (c) are visualisations of the n; 3k: p2.5 system looking down 

the x-, y- and z- directions respectively. Images (d), (e) and (f) are vistialisations of 
the K3kg4.5 system looking down the x-. y- and z- directions respectively. Both sets of 

visualisations are derived frone the end configurations of each systems p=1.00 run. 

(1) ((") 

H (f) 

into curved structures. of which examples are shown in figure G. G. The upper three 

panels show views of the k3k02.5 system looking in the : c-. y- and z- directions, 

respectively, whilst the lower three feature similar views of the K3k04.5 system. Iii 

solue of the images, such as figures 6.6 (a) anal (e), the hilaVers appear to iiiidulate 

in a zig-zag fashion from one end of the siniiihitioii box to the other. In others 

they loots back on themselves, sometimes forming almost circular features such as 

those in figures 6.6 (b) and (d). Whatever the morphology of this arrangement 
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phase, the constituent bilayers, in general, appear to be continuous rather than 

disconnected fragments. 

Figures 6.7 (a)-(f) present basic simulation data for the ke = 3.5 system, which 

turns out to lie approximately at the centre of CB region of the 0 phase diagram. 

This system, like most of those that enter the CB phase, has an essentially flat 

P2vs. p profile, although ke=2.4 and 4.5, which mark the low and high ke bound- 

aries the CB region, do exhibit small, short-lived elevations of nematic order. The 

P2 profiles for these these three sytems, as well as that of k02.2, are shown in 

figure 6.7 (a) for comparison. The onset of the CB phase is more difficult to pin- 

point than the classic I-N or I-Sm order-disorder phase transformations. However 

two fairly distinct features in the data would seem to be associated with the I-CB 

transition. Firstly, there is a gentle inflection in the pressure profile, as shown 

in figure 6.7 (b). Secondly, coinciding with the end of the pressure inflection, 

there is a decrease in the rate of decline of the overall mean squared displacement 

(figure 6.7 (c)). The latter suggests that the curved bilayers, disorganised as they 

may appear to be, must provide a somewhat more effective mechanism for par- 

ticle mobility than a completely disordered isotropic phase would otherwise do. 

Presumably the particles migrate chiefly within the bilayers in a similar manner 

to which they move within smectic bilayers. We note also that the mean squared 

displacement does not exhibit a distinct fall-off at high density, in other words 

there is no definite liquid-solid transition, the diffusion simply tails off. For all the 

CB systems, throughout the compression, both the diffusion and the pressure re- 

main isotropic. With higher ke values, the inflections in the pressure and diffusion 

profiles indicating the I-CB transition, move to higher density. The datasets for 

the boxlengths and director components, figures 6.7 (d) and (e), do not exhibit 

any significant features or trends. We merely note that the simulation box di- 

mensions remain fairly stable throughout the compression. Also, the fluctuations 

in the director components lessen as the system enters the CB phase but this is 

largely irrelevant since this phase has no long-range orientational order. 

The distribution functions for the curvy bilayer phase, shown in figure 6.8 for the 
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k© = 3.5 system. are relatively featureless, which i5 only to be (, XI) ec"tee(l givicen the 

apparent lack of long-range order present in the CB phase. There are. however. 

some subtle features to indicate the onset of the CB phase, noteahly the emergence 

of very shallow double peaks in yiv as well as more distinct peaks and troughs in 

Fig. 6.7: N1250 r;, 3 k03.5 compression data. The dashed vertical limes indicates the den- 

sity ascribed to the isotropic-curvy l)ilayer (I-CB) transition for this particular system. 
Graph (a). for the order parameter, also includes the P2 profiles for a number of other 
systems for the sake of comparison. 
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iu. The positions of the maxima in the former Wei' detterminted. ati they had 

been previously for the ko = 2.2 S stem, and an, presented in figure 6.7 (f). The 

int ralaver distance, d1, is of a similar value to that of the k0 = 2.2 sinec"tic svsttein 

but, in contrast to the latter. remains essentially constant. throughout the c"oni- 

pression. The separation. d2. between particles in antiparallel leaflets of adjacent 

bila. vers meanwhile appears to decrease gradually with densit. v and. along «witlt it. 
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the overall interlaver distance. It should be emphasised though that we should 

not real too much into the longitudinal (list rilnition fiinc"tioiis presented here for 

the C'B phase. This is because for all the systems surveyed in this chapter, for the 

sake of both practicality and consistency. the height and Nvi<ltli of' the ("vliu(lric"al 

sainpling volume for the gj are both autoiiiatically set at (L,,,;,, /2)*c where 

L,,, i� is the smallest simulation box dimension over all the contributing configura- 

tions for as given density. A cross-section through the cylinder is. Ilius. a square 

whose length of side which. for a system size of 1250, is Ivpically of the or(icr 
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Fig. 6.8: N1250 ', 3 k03.5 coiºipressioii: selected distribution fuiict. iotis. 
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of 10Q�". This is a suitable sampling volume Wlien it ccºuºe5 to (1, m-act vri, iiig t 1ºe 

sinectic phases. «"hick of course. consist of essentially fiat, Nilavers. However for 

the CB phase. a samt)ling volume of these dimensions will. to soºne degree. tike in 

the curvature of the Nilavers. In other words, i he computation of' the longit nclinal 

distribution function, as it stands, averages out soºne of the fine tit riet ui ul (let ail 

of the CB phase. For a more accurate characterisation of the structure wie could. 

perhaps. recompute the gº using narrower sampling Voluºues that take in has of 

the curvature of the bilayers. On balance though, one is draaxvn tºº the conclusion 
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that a proper investigation of the phase in question calls for the development of' 

more advanced analytical tools, in particular algorithms to characterise and take 

account of hilaver curvature. 

moore. When we reach k0 4. G. we find long-range orientational order ret liming once 

at a density of approximately 0.93. However, this time the disorder-order tran5i- 

Fig. 6.9: N1250 n, 3 k04.6 compression data. The dashed vertical lilies indicate the 
densities ascribed to the various transitions undergone by this system. 
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Lion is froiºi the isotropic into the iietnatic phase rather than from the is()tl. ()I)i(. 

into the siriectic as it was for the highly tapered k"0 2.0 and 2.2 5V5t('ilis. Thai 

the ordered phase is nematic, rather thall siºicctic, is indicated 1) thee dliffiisioii 

data. sho«'ti in figure 6.9 (c), Nullich, cOilicidilig Will, the rise of P2 (figure 6.9 (a)). 

exhibits a characteristic increase in the overall tiieaii syuarc(l dislAaceuient. Also 

the mean squared displacement components diverge at this point with cliffitsioll ill 
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the x-direction enhanced frone approximately p=0.93 to 0.98 (the director poinis 

roughly in the f-direction at the transition). For as long; as the neinatic please 

persists. there are no peaks in the q1 profiles. as featured in figure 6.10. Coiise- 

4.0 

3.0 

a)2.0 

1.0 

nn 

Fig. 6.10: N1250 k, 3 k94.6 compression; selected (listrilnitiO>>i functions. 
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(Illelitly the iutralayer separations. (11, plotted in figure 6.9 (f), hover around zero 

for much of the nematic phase because peaks in yi t hat correspond to this curn - 

lat. ioii simply cannot be identified. At a density of' around 1.00. however. peaks 

do begin to emerge in the longitudinal (listrilnition functions. indicating a trans- 

formation into the sniectic phase. In fact when one looks at visualisations of the 

system at densities lower than this, for example at p -O. 95 as shown in figure 6.11 

(a), precursors of smectic Nilavers appear to be visible, although apparently Iliv 

nascent bilayer structure is too disordered and fragment (51 to be picked up by t he 

correlation functions until the density reaches 0.97. 

The smectic phase turns out to be short-lived, for at p-1. ()3 the peaks in ql ii 

Fig. 6.11: N1250 K3 compression K3kt1º4-6 Snapshots Showing the System in the process 
of traiisforniing from the sinectic to the CB phase. 

(a) (b) (c) (d) 

p=0.95 +y-view p=1.00 +y-view p=1.03 +y-view pp 1. (13 +z-view 
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disappear and, at the same time, the order parameter drops rapidly to a value of' 

approximately 0.4. Looking oil(-(, again at visualisations of' the sVst('ni. «"(' recog- 

nise the cause for this rather unusual interine'diate P2 value. In figure 6.11 (<"). 

wherein Ave view the simulation box looking along the positive ? J-direction, the sys- 

tem appears to be in the snlectic phase. but if' we instead look along t lie positive 

z-direction it looks much more like a CB please. As the s st elºº is furl hier com- 

pressed, it maintains an order parameter of' A -- (1.: 3.5 and seenis to relitin some 

level of vestigial smectic character. This niav simply be a result of t 1ie low tuo- 

bility over this density range impeding the transformation into a pure ('B phase. 

Alternatively. this arrangement Inmw be represclit'itive of* phase coexistence. The 

observed finite order paranieter is probably also part lv an artefact of' 1 he "mall 

system size. 

Moving on to the k©-4.8 system, we find that long-range orientational order now 

persists throughout the compression, as clearly shown by the Pl profile for this 

system (figure 6.13 (a)). The systein init ially eiit ers the neuºait i(" phase, t his t inne 

Fig. 6.12: The effect of particle shape oil intra- and iiiterlaycr separations. The sepa- 
rations shown here are based on the positions of maxima ill 11ie gi U PrOfiles Oi)tai1ie(l 
from the p=1.10 runs. 
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at the slightly lower density of 0.91. and theft. at it density of around 1. UO. starts 

to till-,, sinectic. as indicated lbY the emergence of peaks ill the I' }profiles (not 

sho, w-11 fiere). The onset of the sinec"tic is also marked by a gradual decline in the 

gradient of the pressure profile (figure 6.13 (b)). The main difference ItetvVPPeu 

this srnectic phase and its k02.2 counterpart is that the former has a considleeratfhly 

larger intralayer separation and, hence, overall Itilaver thickness. . 
As illitst rattee(I 
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1iv figure 6.13 (f), di for ko4.8 teIl(b to a value of - 2(r,,, at high density compared 

to - 1Q,,, for k02.2. This seems entirely reasonable since k04.8 Imi-ticles are only 

slightly tapered and so have less to inter(ligitate. Figure 6.12 slows 

the perioclicities. at p=1.10. for all of the tapered particle svsteniti iip to k, 110.0 

Fig. 6.13: N1250 n. 3 k04.8 compression data. The dashed vertical lines indicate the 
densities ascribed to the various transitions undergone by this systeiu. 
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as determined from their g, a profile's. From k()2.0-1., 5. t here is a gradual rise ill 

he itºtralayer separation, however between k04. G and 4.8 a sizeable and abrupt 

increase in its value occurs. This marks the eilte of the CB region of the phase 

diagram. for with the marked increase in (ll. the local structures that the particles 

adopt (become more like iiiunwlavers which cannot exhibit the kinds of distortiolis 

(i. e. curvature) that bilayers (10. As A"f) is further increased. there is a second phase 

of gradual increase in the intralaver separation. At the satiie time, the cliffereiice 
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between di and d2 diminishes and tends to zero in the limiting case of k0 = x. 

This defines particles that are uniaxially svintnetric and, therefore. forma a simple 

Sin_A phase with a reheat distance of approxiinatei 2.62,,,. a little less than the 

nominal particle length. 

A further trend related to increasing the particle svninuet rV is that the N-Sill t raun- 

sition is pushed to higher (IPllSitV instil it irtually c oi>>cides with the liquid-solid 

transition. For k0 > 4.8, the freezing point occurs at around p=1 . 
05. as indicated 

Fig. 6.11: N1250 rß, 3 compression K3ktli2-2 snapshots Illustrating the transition into 

the sniectic phase for a number of systems. 

by a sharp discontinuity in tlºe gradient of the A c»rve and a downturn ill the 

rnean squared displacement as well as an iiºHectioii in t hp pressiire. NO also note. 
from the p=1.20 images in figure 6.14. that, with increasing It. polar c orrelations 
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within l>ilayers become reduced and eventually coiripletelV randotIlise(f. 

To conclude our surrey of the K3 phase space by coil, f)r('Ssioli. we luiefl com- 

pare the results of the k0x simulation to those of a similar compression for h3 

rods. Figures 6.15 (a-c) contrast the P2. pressure and overall ilieati squared dis- 

Fig. 6.15: N125() compression data. comparing ni k0 c and h3flMi, s. The dashed ver- 
tical lines indicate the densities ascribed to the various transitions undergone by these 

sySteIIis. 
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placements profile's. These show t he I-N transitions to occur at siiiiihar <lensit i('5. 

p=0.86 and 0.85 for the kyx pears and K3 rods respect iveiv. There is. however. 

a considerable cliffcrcnce at high cletitiity with the k'()-)c s st('ºii exhibiting a N-Sui 

transition at /) 1.05, whereas the rods go directly toi the solid at p-1.15. We 

attribute these differences to the sor leNvIl t lower volume of the latter type of pill. - 

ticle. 1.57 as compared to 1.62 for the kox pee The dif Creuce in volume is also 

reflected in the lower pressure and higher IllobilitY ill the 1. ()(I Ill addition 

the high density phase for the rods has a slightly smaller interlaver separatiootº as 

illustrated by the g1u profiles shown iii figure 6.15 (d). 

N'i'e now end this section by presenting. in figure 6.16. the phase diagraue as, coii- 

strnete(l frone the interpretation of the ruuul ilile data and (list rii)lut io n functions. 

The solid squares iii(licatc the transition points that have I eeui ix ) it ively i(lPn- 
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tified. Where appropriate, the hues representing the iioi>>iii al phase boundaries 

have been extended so as to more clearly delineate the vairio lls phase regions. So, 

in sui unärv, at low k© we observe a transition from t! 1(' isotropic to the I>ilaver 

siiiecti( phase which subsequently solidifies at higher dellsit. y. III the central region 

Nve have a transition from the isotropic to a so-called c iirvy-hilayer phase which 

Fig. 6.16: N1250 h3 compression please diagram based oil ins'pection of the changes ill 

runtiiiie observables acid distribution fuiictic»is as a fuiictioni of density. 
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heecOnies glassy at high density. For A"o > 1.8. the system transfornis first into a 

neuiati( and thence an Hiter(ligitated smectic phase which solidifies at ht>j)rOxi- 

niiaw1V /) = 1.05. With higher kO. whereby particles tend to the uniaxial ellipsoid 

shape. the 1-Sin transition moves to higher density and iiltitiiatei coincides gritli 

the freezing point as kB - cc. 

6.3 Creation of artificial smectics 

lii un(lPr to test "WORT the ("ttrv V-hilayvr 1pha5m' ('11( 11111('r('d ill the celIt Ia l 1)0rtiutº 

of the phase diagraitº from coiiipression was huh "I a g('uuiue phase. a sec d l)au"li 

of siiinilations Was set 111) with the purpose of al)proaclii1ig t lie CB region from the 

opposite direction. so to speak. 1, - E'Xpäncling high (tensity siliectic svstenis. Since 

the CB region effectively acts as it barrier to the self asseinhly of uiid-k0 sniect icti 
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via compression, it was necessary to generate `artificial' smectic configurations 

to act as the starting points for these decompression sequences. To achieve this, 

a system of 1250 r, 3k93.0 particles was compressed to a density of 1.10 with an 

electric field, E, applied in the positive z-direction during most of the compression 

to encourage the particles to align themselves along the z-axis. The coupling of 

the field to the particles was implemented by associating an induced axial dipole 

with each particle i: 

pi = aEll = aE(v1, z)ü; = aEcos(8) (6.1) 

where Ell is the projection of the electric field onto particle fi and a is the 

polarisability of the particle, which we arbitrarily set at unity. In general, the 

energy associated with a dipole in an electric field is given by: 

Un=-(P"E) (6.2) 

Substituting p= pi = aE(A. " £)üt. and E= Et into equation 6.2 we obtain 

Up = -aE(A. z) ü; Ei = -aE2(A " z)2 = -aE2 cos2(0) (6.3) 

In general a torque may be defined as the partial derivative of the potential energy 

with respect to a rotation 0 about some arbitrary axis 0 thus 

--ae 
e 

T (6.4) 

Substituting Up into equation (6.4) and choosing (t ̂ &j z) for the rotation axis 

gives us the torque exerted by the applied field on each particle: 

i ae 
{-aE2 cos2(B)} (t1, A z) 

= aE2 2(0)} (eA z) 
äe{cos 

t 

-2aE2 sin(g) cos(O) (ü; A g) 
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= -211iEsin(0)(üj A z) 

= -2pi AE 

= -2aE(t " z)üi A Ez 

= -2aE2(üi " z)(th. n z) 

2_ -2(xE2üzi) (ü(z), -2lis), 0) (6.5) 

Through this term, which is simply added to the usual torque resulting from in- 

terparticle interactions, orientational order can be induced in the system. At a 

density of 0.80, at which the system would ordinarily be in the isotropic phase, the 

field was ramped up gradually from zero to E=2.0 in increments of AE = 0.01 

at intervals of 1000 timesteps. Following this, the system was compressed using 

the scheme described previously. At the lower densities, the field promoted ne- 

matic ordering whilst at higher densities the expectation was that it would lead 

to the formation of a smectic phase. Anisotropic resealing was therefore applied 

from p=0.90 onwards, in anticipation of the need for changes in the aspect ratio 

of the simulation box to accommodate this phase. When the system had been 

compressed to a density of p=1.20 the field was ramped down to zero. Then 

it was decompressed from p=1.20 to 0.80 to compare the ordering within the 

system over that density range with the density range with the field- enhanced 

ordering. This sequence of runs is summarised in table 6.1. 

Figure 6.17 shows the nematic order parameter and pressure data obtained dur- 

ing the three distinct simulation regimes, namely isotropic compression (black 

line), anisotropic compression with field applied (blue line) and anisotropic de- 

compression (green line). When the field was first applied, at p=0.80, the order 

parameter rose slightly from approximately 0.056 to 0.072. At the same time, the 

pressure increased from 11.35 to 12.22 as a result of the extra work done on the 

system by the electric field; the average potential energy per particle also rose 
from 0.981 to 1.053. Thereafter, there was a steady, almost linear, increase in 

P2 over the density range p=0.80-0.93. This is reflected by the longitudinal 

distribution functions for the compression sequence, shown in the left panels of 
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figure 6.19. which indicate a ýiºiootli development of struc"t viral order. Another 

apparent result of applying the field was a rather sharp increase iii the i>>eaii 

squared displacement, as shown in figure 6.18 (a). The fact that the : r, -. that this 

Tab. 6.1: Summary of sequence of runs for conilpressioii/dlecoiiipressioni of a system of 
1250 H A03.0 particles. The entire sequence is coiiiprised of three sill inlatioii series: 
(a) /Early_siintilations/N1250_isocoiiihs/2006-02-14_K3ktIi3-0_coiiilp 
(b) /Early siinulatioiis/N1250_anisocoiiips_E2-0/2006-03-1)1_K3kt1i3-0_aiiisocoiiilp_E2-O 
(c) /K3BATCH_07/2006-04-14_K3kth3-0 

treall11CIIt C11ti(! II1Ne N 
lcp 

(ý) 0.15 0.75 rapid isotropic cotnpressioll NVT 100k 

(a) 0.75-0.80 isotropic colllpressioI! NVT 1000k 

(b) 0.80 ramp up E-field NVT 1000k 
(b) 0.80-0.90 isotropic compression with field oil NVT 500k 
(b) 0.90-1.00 anisotropic compression with field on NVT 500k 

(c) 1.00-1.10 anisotropic compression with ficl(l on NVT 600k 
(c) 1.10-1.20 anisotropic compression with field on NVT 300k 
(c) 1.20 ramp clown E-field; anisorescali11g oil NVT 1000k 
(c) 1.20-0.80 anisotropic decompression NVT 500k 

increase of inuhility owes more to the extra energy being I)nt jilt (I the svsteiu. via 

the electric field. than it did to the increase in orient atioiiial order (as would be 

the case for a normal isotropic- nematic transition). 

y- aii(l z-co1nponent. 5 of the itieati ; (! 11 ur(xi (liýlýla( ('ane'nt r('lImiI led ('**Ptit ial1 equal 

im p1i( 

Fig. 6.17: N1250 h. 3 ky3. () system: Comparing order parameter and pressure profiles 
for the compression and decompression sequences. 
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At a density of around p=0.88, the sinectic phase began to emerge, as indicated 

by a gentle inflection in the pressure (figure 6.17 (h)). We also observe, at this 

point, the divergence of the mean squared displacement components, with diffu- 

sion in the x-y plane (parallel to the Nilavers) clearly favoured over diffusion in the 

z-direction, a signature feature of the sinec"tic phase. The transition is, of course, 

Fig. 6.18: N1250 0 k; y3.0 systeiii: Coiiiparüig 111( 1 squared displacements. excess 
pressure compoiieiits and simulation boxleiigtlis for the coiiºpressioii and (lecoiºipression 
sequences. (a) (d) 
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also indicated by the appearance of regular leaks in q, u and q1 ii. Upon fart her 

compression, a liquid-solid transition occureci between p=1.04 and 1.06. as ev- 
i(lenced by a falling off of the ineaii squared displacement and a sharp inflection 

in the pressure. Throughout the conipressioni, the cexce55 pressure components 
(figure 6.18 (b)) rPiTiainc'cl essentially equal. The lx»lengtlis (figure 6.18 (u)) also 

remained fairly stable. wvith L. increasing steadily iii the fluid smectic phase so as 

to accomodate four bilayers perpendicular to the z-direction. 
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Having obtained a stable. voll-ordered stºtet"tic phase, at, p=1.20. via compression 

with an orienting field applied. the field was ramped down and the decompression 

commenced. From p=1.20 1.06, the decompression data are virtually iti(lis- 

tinguisltal)le from the corresponding cotttpressiott Plata. The first difference that 

we encounter between the two simulations is that the solid-liquid transition for 

the decompression occ"urecl at a slightly lower density than it did for the ("otul)res- 

Fig. 6.19: Comparing selected distribution functions fi)r tue N1250 t, 3 ko3. O conup1es- 
sion and decompression sequences. 
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5i1n. p=1.04 1.03 as opposed to 1.04-1.06, and it was more Sharl>lV (l('fihPdl. At 

p=0.93 the sniectic phase began to break down. as indicated b. v the collapse of 

P, and it slight pressure (11-01). There was, also it reduction in the uºean 5(tual-e f 

displacement. with niOhilitt- iii the z-ý1irýýctiýýu increasing whilst 1)01Ii 1110 :c and :r 

mean squared (Iisl)lacetnents (I('crease(l until all tIiF(P ('01"Po"Clits converged. The 

bollciigths also lxvgan to diverge. Figure 6.20 (f) gives the imiºlpression that the 

deiºiise of the sinectic Was initiated 1) fusion of adjacent Dilaters. As the detº- 

sity Was further decreased. the Nilavers adopted curved conformations as sliown 

in figure 6.20 (e), redolent of the ('B phase cncountere(f in the compression sini- 
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ulations. These bilavers remained essentially intact until the density had fallen 

to around 0.89. at, which point they begin to fragment. thus marking the end of 

the CB phase and the return of the isotropic. This transition was also marked by 

an inflection in the pressure. We note that qiu retains vestiges of the correlations 

associated with bilaYer structure at p=0.80 whereas the corresponding distribu- 

tion obtained frone the compression series was essentially flat at this point. 

Rather than generate sniectics for the other shape parameter values by can-Y- 

Fig. 6.20: N1250 K3 k03. () system: Snapshots looking down the y-axis. The upper 
snaps are taken from the compression phase during which an electric field was applied. 
The lower images are taken froiii the decompression l)lia. e. 

(a) p=0.80 (comp) (b) p=0.90 (comp) (c) p=1.20 (coiiip) 

(d) /) - (l. 'O (rlecnrnip) (c) p= (). 90 (decunii) (f) p-0.93 (dýýcýýtiip) 

ing out compression sequences with it field applied fier each system, a task which 

would occupy a large number of CPUs for many clays. the required configurations 

were created simple by taking; the k03.0 sinectic at p-1.10 as the starting con- 

figuration for a simulation of a k02.8 systeni at the saiiie density. This approach 

proved viable because the difference in shape between k03.0 and A02.8 particles i5 

very slight such that a sudden switch in identity from the one to the other did 

not incur the creation of large overlaps or voids in the system. The k©2.8 system 
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smectic thus created was then run for lOkst, eps with anisotrol)ic resealing to allow 

the simulation box to adjust to the repeat distance associated with this shape 

of particle. A srnectic for the next value of k0, namely 2.6, was then created hýusing 

the end configuration from the k02.8 equilibration run as input to a similar 

equilibration run for a k02.6 system. This process was repeated dowel to ko2.0. Iii 

a similar fashion the k©3.0 sinectic was used as the seed for k"o values higher than 

3.0 to furnish a complete set of starting configurations as required for Our survey 

of K3 pear phase behaviour via decompression. 

Before moving on to the next section, it is interesting to look once again at the 

effect of particle shape upon the hilaver I)eriodicities at pp = 1.10. Figure (3.21 

shows the d> 
_ ('2 and d. 3 obtained frone distribution functions derived from sn>ec"- 

tics consisting of 10000 particles. 't'hese svstenis were obtained hV taking eight 

replicas of each of the X1250 artificial snuectics and joining thenº> together. two 

Fig. 6.21: Comparing iriterla. yer separations at p=1.10 for N1250 systems obtained 
from compression (solid lines) and equilibrated NiDOOO artificial Suie("ti(5 (symbols). 
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on each side, to form a larger siiiiii atioll boX witll t he salve aspect ratio but hai-- 

Ing eight times the volume and, of course. eight times the number oF particles. 

These configurations were then equilibrated over three 200kstel) runs, the first 

was in NVT with rescaliiig applied throughout, the second in NVE with constant 

boxlengths, and the third another NVT ruin with rescalillg. The configurations 

from the end of these three ruins were subsequently- used as the starting points for 

. 10000 decompression sequences (not discussed at length here). The periocli(i- 

ties plotted in figure 6.21 are derived frone configurations dumped over the course 
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of the first production run of these decompressions. The data marked by boxes 

were computed from the glu whilst the crosses mark the data computed from 

g1n. Also plotted, for comparison, are the periodicities that were shown earlier in 

figure 6.12, as determined from the glu originating from the N1250 compressions 

at p=1.10. Broadly the data from the two different system sizes are in fairly 

good agreement except for the fact that the big step up in dl occurs between k94.6 

and 4.8 for N1250 whereas for N10000 it occurs somewhere between k05.6 and 6.0. 

A possible explanation for this is that all of the N10000 systems were artificial 

smectics seeded from the field-induced k93.0 smectic, which consisted of well in- 

terdigitated bilayers. It is therefore possible that the N10000 systems up to and 

including k05.6 inherited and retained this structural characteristic. This is made 

more plausible by the fact that, at p=1.10, all of the systems are solid and so 

perhaps less able to relax into their natural arrangements. To test this theory, one 

could try seeding artificial smectics from a high ke field-induced smectic system, 

say 6.0, and recomputing the periodicities. Nevertheless the qualitative similarity 

of the existing datasets shown in figure 6.21 strongly suggests that the shape- 

driven crossover from curvy-bilayer to nematic/smectic character in 03 systems, 

is abrupt and relates to a threshold in the degree of taper of the particles. 

6.4 Phase diagram from decompressions 

In terms of procedure, the decompressions, which were all started from p=1.10, 

essentially amounted to a reversal of the compression sequences. All of the sys- 

tems were initially held at p=1.10 for 1000ksteps, then they were expanded via a 

sequence of 30 runs, in each of which the density was decreased by 0.01. As with 

the compressions, the change of density was applied gradually by small decreases 

of Ap = 0.00001 every 100 timesteps over the interval 100-200ksteps. All runs 

were of 1000kstep duration, with averages accumulated and configurations stored 

over the interval 100-200ksteps. Most of the simulations used, as their starting 
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configurations, the artificial smectics described in the previous section. However, 

a few, namely k"02.0,2.2.5.2,5.4,5.6, were started frone `natiira1' sinectics which 

formed during the compression sequences without the aid of an aligning fiepe. 

The reason for this was to check if this choice would have any major effect on 

Fig. 6.22: N1250 0 k©2.2 and k03.5 decompression data compared to corresponding 
compression data as well as boxlengths for the decompression series only. 
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the subsequent behaviour of the 5Vsteni5 (hiring decompression. Plots (a) to (d) 

in figure 6.22 show key simulation data frone the decompression of the k02.2 svs- 
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tern, the corresponding P2, pressure and diffusion profiles frone t lie compression 

series are also included for comparison. A glance at these graphs tells us that 

the phase behaviour of this system oil decompression closely resembles tlhat NN-liich 

it exhibited on compression. The only differences are that the solid-liquid and 

sinectic-isotropic transitions occur at slightly lower densities. The distribution 

functions frone the decompression (not shown here) and compression also prove 

to match one another very- well. 

For systems k02.4--3.5 encompassing the central region of the phase diagraue. where 

the CB phase was previously encountered, we expect major differences betweell 

the decompression and compression data. These are illustrated for the k03.5 sý"s- 

tein in plots (e) to (h) of figure 6.22. The system begins t lie deconipressionº as 

a well- ordered artificial sniectic with an intralaver separation of approxililat('IV 

1.4Q,,,, as illustrated in figure 6.23. Note that the pressure (fig. 6.22(f)). for the 

Fig. 6.23: Visualisations of the N1250 h, 3kp3.5 systems as it is dec(nnpressed, Tbc 

melting point occurs at p=1.05. the suiertic to Cß transition at p=0.97 mid t he ('13 

to isotropic trausitiolº at, approximately p=0.91. 

ýý 1. O(i 
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solid smectic phase is very much lower than it was in the compression simulation 

over the corresponding density range, in which the phase was curvy-bilayer. At 

a density of 1.05, the smectic melts, an event signified by a small but abrupt 

drop in P2 and a rise in pressure, which brings it to a value only just below that 

measured in the CB phase at that density. With further lowering of the density, 

the bilayers become progressively more disordered, until, at a density of around 

0.98, we observe a few particles that have escaped from their parent bilayer and 

lie horizontally between adjacent layers, as shown in the top right panel of fig- 

ure 6.23. The bilayers also show undulations and what appear to be alternate 

regions of swelling and contraction. These changes would seem to prefigure the 

collapse of the smectic into the CB phase which occurs at a density of 0.97. This 

transitional stage is pictured in the bottom left panel of figure 6.23. This image 

suggests that the Sm-CB phase transformation is facilitated by some sort of fu- 

sion event, in which the second from top bilayer and the bottom bilayer link up 

through a perforation in the intervening bilayer. In terms of the simulation data, 

the transition is marked by a precipitous drop in the order parameter and a slight 

inflection in the pressure profile which brings it into coincidence with the corre- 

sponding compression profile. The CB phase itself starts to break up at a density 

of approximately 0.91 as indicated by yet another inflection in the pressure and 

a characteristic upturn in the rate of change of mean squared displacement. The 

CB-I transition occurs at a slightly lower density than the I-CB transition did in 

the compression. 

Moving on to the k04.6 system, the data in figures 6.24 show that this system re- 

mains solid down to a density of 1.01, a considerably lower value than those found 

in any of the compressions sequences. Prior to the melting point, between p =1.05 

and 1.04, the boxlength L, z increases significantly which could only be due to a 

spontaneous expansion of the bilayers. Immediately thereafter, the aspect ratio 

of the simulation box remains essentially fixed until the melting point is reached. 

This suggests that the intralayer separation of the initial (artificial) smectic was 

not able to relax fully from the initial value inherited from the K3ke3.0 seed to the 
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preferred value intrinsic to the k04.6 system. A similar expansion of* the bilaYers 

in the solid phase is also observed for systems k04.2,4.4,4.5.4.8 and 5. () but not for 

k65.2,5.4 and 5.6 whose starting configurations were, significantly, sinectics that 

Fig. 6.24: N1250 n. 3 k04.6 and k04.8 decompression data compared to corresponding 

compression data as well as boxlengths for the decompression series only. 
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formed naturally during the compression sequences. Iillille liatelV following the 

solid-liquid transition. the k04. G system undergoes a Sin-: A transition as, ill(licated 

by a sudden collapse of the regular peaks in the longitudinal distribution funct ions 
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(not shown) as well as by a drop in P2 and the onset of drift and fluctuations in 

both the box lengths and director components. The nematic persists down to a 

density of 0.92, a similar value to that observed in the compression sequence. 

The phase behaviour for ke > 4.8 follows along similar lines to k94.6 as illustrated 

by the data shown in figures 6.24(e)-(h). The solid-liquid transitions occur at 

lower densities than the liquid-solid transition on compression and coincide with 

the Sm-N transition. The subsequent N-I transitions for these systems occur at 

or near the densities that were observed for the compressions. 

6.5 Summary and conclusions 

Figure 6.26 presents the phase diagram from decompression alongside that ob- 

tained from compression. At the low ke end, both studies indicate an isotropic- 

Sm(1)-Sm(s) phase sequence. At the high ke end, on compression, the systems 

enter first a nematic phase and then a narrow liquid smectic region which disap- 

pears as ke tends to infinity, whereupon the N-Sm transition coincides with the 

liquid-solid phase boundary. Upon decompression from the solid smectic phase, 

the liquid-solid phase boundary is found to lie at lower density and there is no 

liquid smectic region. Rather the systems enter the nematic phase directly on 

melting. The lower boundaries of the nematic region, as mapped out by com- 

pression and decompression sequences, are in close agreement. Also these phase 

diagrams agree broadly with that obtained from the MC simulations (figure 6.1). 

The of the most important conclusions to be drawn from these studies is that the 

curvy-bilayer phase is observed both in compression and decompression, which 

strongly supports the view that this is a genuine phase and not a metastable 

state. Moving from left to right across the phase diagram, it would seem that 

the preference for smectic or CB structure at low to intermediate ke must be re- 

lated in some way to the degree to which the particles interdigitate in, which in 

turn derives from their degree of taper. Certainly, at high k9, the particles are 
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only slightly tapered and so tend to behave more like uniaxial particles and thus 

favour the nematic phase. The observed step increase in the intralaver separation . 

as presented in figure 6.21, suggests that there may he a rather sharp threshold. in 

Fig. 6.25: N1250 0 compression phase diagram based on inspection of the changes in 

runtime observables and distribution fiuictions as a function of density. 
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further simulations were carried out on larger CB-forming systems as reported in 

the next chapter. 

It would also have been desirable to carry out a more detailed study of the phase 

behaviour in general. The following is a list of possible refinements and additions 

that could be made to the simulation and analysis procedures. 

" Increase the system size to say 10000 to check whether this has any major 

effects on the phase behaviour. This would also provide better statistics 

in relation to the characterisation of structural details. The quality of the 

information provided by the distribution functions might also be improved 

by devising curve- fitting routines to facilitate more accurate and efficient 
determination of quantities such as the bilayer periodicities. Routine and re- 
liable characterisation of bilayer periodicities as a function of density and ko 

value could turn out to be a crucial step in identifying the primary drivers of 

the observed phase transitions. This knowledge would be particularly valu- 

able if it turned out that there was a relationship between say the intralayer 

separation and the mechanical properties of bilayers. 

" Incorporation of runtime measurement of the components of the mean squared 
displacement parallel and perpendicular to the director. Besides providing 
better insight into the preferential mode of diffusion in the system, this would 

provide a more sensitive indicator of certain phase transitions, in particular 

the N-Sm transition. 

Introduce analysis procedures that better characterise the CB phase i. e. ones 
that take into consideration local curvature. 

" Extend the analysis of particle dynamics to fully characterise the linear 

and rotational motion of the particles. This could provide a useful insight 

into the relative contributions of these modes to the entropy of system and, 

thus, provide pointers to the fundamental drivers of the observed phase 

transitions. 
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" Attempt to map out the phase boundaries more thoroughly, particularly for 

the regions k02.4 - 2.6 and k94.4 - 4.8. To establish the phase boundaries 

with greater precision would require simulations using a range of intermedi- 

ate ke values, say 4.40 to 4.80 in increments of 0.02 (it might even be worth 

attempting to alter the ke value of a system whilst holding the density con- 

stant in order to map out small portions of the phase diagram horizontally. 

The application of more rigorous analysis techniques such as thermodynamic 

integration (see for example section 7.1 in [39] would also be desirable in or- 

der to establish the equilibrium phase at a given state point with greater 

accuracy. 

" Extend the study to systems of particles with different aspect ratios, e. g. 

K=2.0,4.0 and 5.0. This would effectively add an extra dimension to the 

phase space of tapered particles which might provide a useful alternative 

line of investigation in terms of understanding the fundamental drivers of 

the phase transitions. 
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CHAPTER 

The gyroid phase 

The investigation of the 0 phase diagram, described in the previous chapter, pro- 

vided a fair characterisation of the isotropic, nematic and smectic phases formed by 

these particles. The structural nature of curvy-bilayer phase, however, remained 

unresolved. Some of the images of this phase were suggestive of long-ranged order 

on a scale comparable to the size of the N1250 simulation volume. For example 

the sinuous shapes traced out by the bilayers in figure 6.6 have the appearance of 

being tesselated. It was therefore natural to investigate the CB region further by 

carrying out simulations on a larger system size. The first section of this chapter 

discusses the first large system to be examined, which was the K3ke3.8. In the 

N1250 compression of this system, indications of periodic supramolecular organ- 

isation had emerged at high density. To obtain a larger version of this system, 

comprising 10000 particles, a configuration stored at a somewhat lower density 

was scaled up and run on in NVE for 10 million timesteps. Three-dimensional 

periodic order was indeed found to exist in this system. The structure was iden- 

tified as the bicontinuous cubic phase Ia3d, otherwise known as the gyroid (G). 

The second section of this chapter describes the results of a set of compressions 

of N10000 systems from the low density isotropic phase. Primarily these were de- 

signed to see if isotropic-gyroid (I-G) transitions would take place across the range 
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of particle shapes that had entered the CB phase in the course of the N1250 com- 

pressions, namely ke2.4-4.6. Most of these systems did indeed form well-ordered 

gyroids. The phase seemed to assemble via the formation of small domains which 

subsequently grew and merged to form its distinctive interpenetrating double net- 

work structure. The third section reports the results of a set of decompressions 

of N10000 artificially created smectics aimed at capturing the transformation of 

these lamellar phases into the gyroid. The majority of the systems indeed un- 

derwent smectic-gyroid transitions. The transformation was found to be initiated 

by bilayer fusion events consisting essentially of the formation of `stalks' between 

two bilayers which pass through pores in the intervening bilayer. The chapter 

concludes with a brief assessment of the wider relevance of simulations of the gy- 

roid phase and an outline of further work that could be carried out to learn more 

about this fascinating structure. 

7.1 Study of a scaled up CB system 

That the CB phase might possess long-range order, was most forcibly suggested 

by the snapshot, shown in figure 7.1 (a), of a ic3ke3.8 system that had undergone 

compression to a density of 1.10. The system appears to contain a diagonal row 

of circular features consisting of sections of bilayer looped back on themselves. 

One is tempted to interpret these arrangements as being the cross-sectional views 

through vesicle or tube like structures. 

This system clearly merited further investigation. Therefore, it was decided to 

scale up the N1250 ic3ke3.8 system to one consisting of 10000 particles simply by 

duplicating eight copies of a configuration from the former. However, the N1250 

configuration actually chosen for duplication was taken from earlier on in the 

compression sequence at a density of 0.95. This system is shown in figure 7.1 

(b). The reason for selecting the lower density configuration to generate the large 

system was that this less ordered system was judged fluid enough to eventually 
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Fig. 7.1: Snapshots of the N1250', 3103.8 system at (a) f) = 1.10 and (b) p 0.95. Panel 

(c) illustrates the N10000 obtained by duplicating eight tunes over the configuration 
shown in (b). 

(a) (1i) (c) 

Fig. 7.2: Snapshots of the N10000 t 3kp3.8 system at p=0.95 after 1.5 million 

tiinesteps. 
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lose the periodicity inherited fruni the duplication OOf' the smaller system. The 

intention here was to allow any structural periodicity intrinsic toi the sý-titein toi 
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emerge afresh in the larger simulation volume rather than replicate that which 

might have been inherited from the original boundary conditions. 

The initial arrangement generated from the eight copies of the N 1250 p=0.95 

configuration is shown in figure 7.1 (c). This system was simply run on in NVE at 

this density for 10 million timesteps. No resealing of any kind was implemented 

during this first run. The progress of the simulation was frequently checked by 

inspection of the logged data as well as snapshots of the simulation box. For 

the first million or so timesteps of the p=0.95 run, there were no significant 

changes. However, when a snapshot was made of the configuration at 1.5 million 

timesteps, the outward appearance of the system was noticably altered as shown 

by figure 7.2, which includes head on views of each of the faces of the simulation 

box. The most striking aspect of this is the hexagonal distribution of circular 

features on the two opposite faces perpendicular to the x-direction. A similar 

pattern is seen on the faces perpendicular to the z-direction, although here the 

arrangement appears somewhat skewed. The remaining two faces, perpendicular 

to the y-direction, on the other hand, exhibit a staircase-like pattern of bilayers 

that zig-zag their way along face diagonals. Selected simulation data meanwhile 

indicate that the changes responsible for the emergence of this ordering occurred 
in the interval : 1.2 - 1.4 million timesteps. As figure 7.3 (a) shows, there is a 
drop in the excess pressure at this time. We note also that there is a suggestion 

of pressure anisotropy prior to the drop which appears to be redressed after it. 

Figures 7.3 (b) and (c) exhibit small but unmistakable increases in the average 
kinetic energy per particle coinciding with the pressure drop. However, the rate of 
increase of the mean squared displacement with time decreases slightly at around 
1.5 million timesteps. This is perhaps due to the fact that, before the ordering 

transition occurred, particles were moving in concert to effect that transition and 
this would add to the apparent average mobility of the individual particles. Oth- 

erwise the mean squared diffusion is almost perfectly linear and its components 
isotropic. 
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Fig. 7.3: N10000 K3 k03.8 ruiitime data logged froiii time zero to 2 million steps. 
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Returning now to the issue of visualising the phase, the programme used to gener- 

ate snapshots of the simulation box was augmented so that arbitrary cross-sections 

and thin slices through the simulation volume could be viewed. These confirmed 

that the hexagonal ordering extended throughout the interior of the simulation 

volume. However this did not provide much insight into the overarching three- 

dimensional structure that underlies the superficial hexagonal and staircase pat- 

terns. In order to recognise what sort of phase we were dealing with, we needed 

to visualise the system in a more transparent mode, so to speak, to obtain a global 

view of it. Fortunately, a ready-made freeware application was available to provide 

this facility, namely `RasMol", an application normally used for rendering ball and 

stick models of molecules. RasMol has a so-called wire frame mode, whereby lines 

are drawn between atoms that lie within a certain distance of each other. The 

utility of this approach, in the context of our system of 10000 particles, is that 

the wireframe construction is partially transparent, unlike the existing visualisa- 

tions where solid figures represent the particles. Moreover, RasMol allows objects 

to be freely rotated, which provides further insight into their three-dimensional 

structure. Initially a wireframe image was constructed using simply the raw par- 

ticle coordinates, as shown in figure 7.5 (a). The network is rather too dense to 

properly see through the system, however it is possible to discern that the surface 

formed by the locus of particle coordinates describes a network of some kind. From 

the angle shown, one can look down some of the channels of the network right 

through to the other side of the box. These channels coincide with the centres 

of the hexagonally arranged circular formations and with the interstices between 

them as seen in the full rendering of particles (figure 7.5 (b)). Now at these loca- 

tions we find that the rounded ends of the particles (coloured dark) are very close 

to each other. This prompted the idea that if we were to subject the nominal 

coordinates of each individual particle to a translation along its orientation axis, 

i. e. towards the rounded end, then this might result in a more compact wireframe 

network which would afford a better view of its three-dimensional structure. The 

1RasMol Molecular Renderer, Roger Sayle, August 1995. (C) Roger Sayle 1992-1999; Version 
2.7.1 June 1999; (C) Herbert J. Bernstein 1998-1999 
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translation chosen was -1.06. or approximately 1.5 or,,, which is half the particle 

length. so the transformed coordinates approximately coincide with the rounded 

ends of the particles. The resulting «"irefranne image is shown in figure 7.5 (c). 

By carefully inspecting this ol)ject whilst rotating it, it hecauºe apparent that the 

loci of translated coordinates, that is to sad- the positions of the rounded ends. 

formed two separate yet identical three- dimensional networks which interl>ene- 

Fig. 7.5: Renderings of the N10000 n, 3k©3. t1 system at the end of a 10 million step NVE 

rtni at p=0.95. (a) shows RasMol wirefraine construction of raw particle coordinates. 
(b) the corresponding povray image and (c) wirefraine image of coordinates whose 

positions have been translated a dlistance -1.06 along time orientat. io ii axis of ea("li particle. 
All images are viewed from the same angle. 

(a) (l>) (<) 

trateº1 one another but never touched. In order to formally assign º'ach of the 

translated particle coordinates to one or other of t hest uet works. the former were 

subjected to a cluster anal sis routine. In the cluster analysis algoýrit lun ººsed, it 

cluster is defined by the following statenicººt: it is a set of part ides. each member 

of «'hich lies within a certain cutoff distance of at least one other inPnºlxer of, the 

set. The hope was that, given a sensible choice of cººtººif. the cluster analysis 

algorithm would pick out two large clusters correspondhig to the two networks 

identified visually frone the Nvireframe images. 

As it turned out. the analysis easily picked out the networks as evidenced by 

the data presented in figure 7.6. This plot shows the rºººurnbers of particles (occu- 

pancies) belonging to the three largest clusters iºIeººt ifieºl 1) the cluster analysis 

routine as a function of cutoff. For a broad range of' r,.,, j. from alºt)roxiºuatelN' 1. () 
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to 1.25 U. two large clusters containing at least : 3(1(10 particles (corresponding 

to the two networks) «"ere identified. The ººezt largest (luster contained at most 

only a few hundred (particle',. For this particular svst('111. if' the (l itoff ex("ee(le(1 

Fig. 7.6: N10000 n. 3 k03.8 the numbers of particles assigned to t Le t 1Lree largest clusters 
identified by our cluster analysis algoritlºiº< as a fiiii("t ion of uto f[ iiistaII u, 
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- 1.25ö .. sohle t)articles l)e("alhle identified «"itli b 0b of these networks and the 

cluster identification algoritliiu Failed tu (list iiigiiisli t lieh 1. Figiin' 7.7 (a) shows 

a wirefraiiie image of the twos nowt I'ks. c"olound ldue and real. Figures (b) and 

(c) show two images of one of' these networks frmn slightly different viewwpoinits. 

leai1ý illustrating its two major sVnºrºuet ries. 

Fig. 7.7: N10000 t 3k 3.8 systeiºi: end of 10 iºiillio n step 1) = 1.02 run. Wi efr. uue 
visualisatioiis of' the hicolitiuuOýus I1Ctwuýrks formed by t he loci of' t he rounded ends of 
the particles. (a) shows the two separate biet interpenetrating h etw('rks (t, ) and (e) 

show two views of it single network illustrating its form- and six-fold wiiiiuetries. 

(a) (h) ((") 
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Closer inspection of a single network suggested that it consists of' nodes. each liay- 

ing three branches which connect to other nodes (see figure 7.8. A rudiment rv 

characterisation technique, with the working title of density analysis. was con- 

cocted with the aim of quantifying the positions and, hence. the colinectivities of' 

the nodes. This approach aniounted to identifying the regions of network in which 

the highest densities of translated particle coordinates were tc, lxs fonuicl. In 1)rief. 

this procedure involved the following steps. First 1 it ii>>>>il)'r of saved c"onfigura- 

Fig. 7.8: Rasniol renderings of sections of the N 10000 n; 3ko3.8 system at, the end of 
a 10 million step NVE rain at p=0.95. These images were made lising t lie 'tit i(k' 
display option to give a better impression of the networks in three-dinionsions. (a) 

shows sections of both bicoiitinuouti networks whilst, (1>) shows a single network only. 

tions were subjected to cluster aaialvsis to extract, from each. a set of coordinates 

fur the larger of the two single networks. The configurations 50 analysed had been 

saved within it relatively short Span of sininlati0»i tinnc. iiaiiiely O-50OO tiiiuest('l>s 

at intervals of 100 steps. "'hile the orient atioiº and 1>u Bition of any given iAiAliSI- 

ual particle will tend to vary cunsid dralle over a salIif>liiig umnerval of As hint Ii, 

due to its finite 'nobility, the overall structure of' the l, i("O»it iunOýlS networks oh- 

served in this phase slid not change significant I. Thereliirc t he l)ru("('ssiiU, of mu l 

a set of configurations lxeriiiit5 an avei'agiºig of' the gross structural ("fiara("t("ristics 

of the phase. The cubic siunilationi voluiiie was then subdivided into a uiesli of 

42 x 4.5 x 42 grid locations, this grid heilig chosen to correspond approxillialely 

to the proportions of' the siimiulatio»i box which had (liuieliSiOils of* L,,. = 2(. 910. 

L� = 22.469 and L, = 20.867. The average tnituher of particles within a certain 

radium ro. of each mesh point was (leterniiiie(l over the 51 saved (omifiglirat i0 115 
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and then norinalised bV dividing by 0. Next. all points having it 

particle density below a certain threshold «Vere eliminated. the objective being to 

remove those not close to the nodes or their branches. As figure 7.9 (a) shows. 

this had the desired effect since all of the spheres shown in this iniage correspond 

to surviving nieshpoints. A second elimination procedure was then implemented: 

Fig. 7.9: N10000 n3ky3.8 system. Density analysis based on 51 single network configu- 
rations obtained by running on from the end of the 10 million step p=1.02 run. Figure 
(a) shows all uieshpoints which were surrounded by a local particle density exceeding 
a certain threshold. Figure (b) shows nieshpoints which survived an elimination step 
designed to retain only the ineshpoints associated with the nodes of the network. Figure 
((! ) shows the meshpoints after their positions had been refined to bring theiu closer to 
the nominal centres of mass of the nodes. 

(a) 

as 

ft-% 

f ýý 

ý. ý 

the density of each meshpoint. i, surviving the first round was compared to that 

of its neighbours. J. within a given radius r i. If the density of atºv neighbouring 

rneshpoint was higher., then i was eliminated. This step was intended to single 

out the nreshhoint5 lying closest to the node centres based on the hyl) ut hesis t hat 

these locations have greater densities of translated particle coordinates than the 

branches. Again, this filtering step appears to have suc"c"eedecl, since t he remaining 

rneshpoints. sho«-n in figure 7.9 (b). appear to be located close to nude centres 

rather than the Irranches. Finally, the positions of' the surviving mesh points' i were 

refined by detcrniining the collective centre of prass of all nieshl)oints j within a 

given radius rz (including those that had been previously eliminated) and lnoviug 

nreshpoint i to this position. This algorithm was repeated several times so as to 

allow the surviving meshpoints to gravitate towards the geometric centres of the 

nodes. 
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The exercise described above involved quite a lot of trial and error ill arriving 

at suitable values for the various parameters. In fact it has to be said that the 

procedure. as it stands, is something of a black art that demands it high level 

of manual input. In addition it proved effective only when a fine grid was used 

(42 x 45 x 42 =X9380 ineshpoints) and a fairly large number of configurations 

were sampled (fifty here) with the result that each analysis took several minutes 

of CPU time. Development of the method into a more reliable and efficient char- 

acterisation tool would require considerable effort. 

Nevertheless the process did provide important clarification as to the structure 

of the networks. Figure 7.10 shows a view of the surviving lneslipoiiits or rather 

Fi, t;,. 7.10: N10000 r; 34-03.8) svsteni. 

the branches joining there. It clearly demonstrates that the basic building blocks 

of the networks. the nodes, have three branches of approximately equal 1eººgtlº. 

The structure overall is not perfectly symmetrical which is probably (hic to one 

or a combination of the following. Firstly. the simulation box may not have had 

dimensions that were perfectly commensurate with this phase and, therefore. ºººav 

have introduced sonic degree of imperfection. Secondly. at a density of p-1.02 

the system was still fairly fluid, therefore one might not expect the phase to have 

perfect crystalline order. Tliir(I1V, the cluster analysis proceedure used to provide 
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the input for the density aualvsis was soille«"hat flawed ill that it diel not yººite 

furnish complete networks the trailing end", of clusters, at the boundaries of' Ille 

simulation volume. tended to be somewhat straggly (because t lie pati('Ies here were 

iºlherrently more isolated (literally out on a inn1)) and, them'efore, less, likely to be 

picked up by the cluster analysis code. 

So to sunumiarise this section. AVe have found that the phase earlier c"hristenedI the 

curvy-I)ilayer actually possesses «-ell-defined three-dimensional posit ioiºal order on 

a suprainolecular lengthscale. This consists of' two identical iilterpetºet rat iººg tºet- 

Fig. 7.11: N10000 n, 3kg3.8 system. Wirefraine iiºiagcs of a single network at (a) the 

zeroth and (b) 10 millionth steps of the f) = 0.95 run. 

(a) (h) 

works defined by the loci of the roull(led ends, of' the tapered K3 particles. ti 

Junctions of these networks all having three branches. This information strongly 

suggests that the phase is. ill fact. the Ia3d or gyroi(l (C) r>>hic phase. 

Before the results generaled by the l)fOjec"t were fully analysed. toi ]prepare this 

thesis. it had been assumed that the gVroi(l phase "as only aI)Ie to foriii I)rcqxerly 

in a large simulation i-ooluiiie. But in Net analysis of the initial mul final c"uiifigii- 
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rations of the 10 million step run at p=0.95 indicate that it was essentially intact 

before the system was scaled up. This is illustrated by figure 7.11 which shows 

the double network identified for the initial configuration of the scaled up system 

and also compares single networks identified for the system at the beginning and 

end of the p=0.95 run. The latter show that although the initial system is a 
little distorted (no doubt due to the constraints of the original N1250 simulation 
box) it is nonetheless an essentially fully formed gyroid network. So what appears 

to have happened at around between : 1.2 and 1.4 million timesteps, as marked 
by the drop in pressure over that interval (see figure 7.3), was simply a collective 

readjustment of the system resulting in a more symmetric network structure as 

exemplified by the single network identified from the end configuration. 

7.2 The I-G transition 

In an attempt to obtain gyroid phases across a range of ke values, compressions of 

a number of N10000systems were performed. The system size was chosen in the 

belief that it would allow for the emergence of the fully-formed gyroid. Further- 

more, the larger system volume would extend the distance range of the correlation 
functions, which might be expected to provide insight into the processes by which 

the phase assembles. On the other hand, this number of particles was not so large 

that it would necessitate excessively long simulations occupying a large fraction 

of the available computational resources. 2 

The initial configurations for these simulations consisted of 10000 particles ar- 

ranged on an FCC lattice at a density of p=0.15. These were rapidly com- 

pressed to p=0.85 by increasing the density in increments of Op = 0.001 every 
100 timesteps. The systems were then compressed to p=1.02 via a sequence of 
1 million step runs in each of which the density was increased by 0.01. As with 
the N1250 compressions, this change of density was applied gradually by small 

2Each compression series took approximately three weeks to run on two to four processors 
depending on the intrinsic speed of the processor type. 
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increases of Op = 0.00001 every 100 timesteps over the interval 100-200ksteps. 

The systems were further compressed to p=1.10 via a final run of 3 million 

steps duration in which the density was increased in increments of 0p = 0.00001 

every 200 timesteps over the interval 100-1700ksteps. This was conceived as a 

means of capturing the liquid -solid transition in a more economical way (by look- 

ing for changes in the runtime data), rather than extending the series to higher 

densities by the more usual route of consecutive equilibration /production runs. 

Anisotropic resealing was applied to all of the systems, with the density at which 

it was switched on chosen to approximately coincide with the onset of ordered 

phases. Compressions were carried out for the following set of shape parameter 

values: ke = 2.0,2.2,2.4,2.5,2.6,2.8,3.0,3.2,3.4,3.6,3.8,4.0,4.2,4.4,4.5,4.6, 

4.8,5.0,5.2,5.4,5.6,6.0,10.0,50.0, oc. 

All the systems from k02.4 to 4.6 inclusive manifestly entered the gyroid phase, 

as evidenced by the wireframe images in figure 7.12 which show, for each system, 

one of the two bicontinuous networks. These were derived from cluster analysis 

of configurations stored at the ends of the p=1.02 runs in the compressions. 

Nearly all of these systems clearly exhibit the distinctive square and hexagonal 

symmetries of the gyroid phase, although generally with some level of distortion. 

For example, the k92.4 and 4.6 systems, at the edges of the gyroid region, ap- 

pear to contain what might be described as stacking defects of the voids between 

networks when viewed from certain angles. Probably the most common form of 

distortion is shearing perpendicular to one or more of the directions along which 

the square symmetry is observed. It is present to some degree in systems ke3.6 

through to 4.5. The k84.4 and 4.5 systems suffer, in addition, from shear distortion 

of their hexagonal symmetry. The most poorly ordered of the systems is k92.5 

which contains multiple defects and disparity in the size and shape of the voids 

between the networks. Nevertheless the cluster analysis routine was still able to 

pick out two separate networks for this system without difficulty. The ke3.0 sys- 

tem on the other hand exhibits perfect symmetry. It is, perhaps, significant that 

the symmetry axes for this system lie in the planes defined by the Cartesian axes 
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Fig. 7.12: Wireframe images of gyroid phases formed during the compression of N1000O 

K3 systems with shape parameters in the range k02.4 - 4.6. The density in all cases was 
p=1.02 and the cluster analysis parameters r, ti, t = 0.70, u-shift= -1.06. 
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of the simulation box. This again suggests that the quality of the ordering in the 

gyroid phase depends strongly on the intrinsic coin iiensurabilit}- of the simulation 

box and perhaps the orientation at which the phase happens to form within it. 
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It is possible that the formation of the gyroid phase could also be influenced h. N. 

operational factors. principally the alteration of the simulation lox aatilx'("t ratio als 

a result of anisotropic resealing as well as insufficient rani length at (rit is ail st ages 

in the transition. 

The time averaged observables. plotted as a function of density, closely reseuuilile 

those calculated for the equivalent \1250 compressions. with the isotrol)ic-gvroi(l 

transition marked by infections in Ill(, pressiere and nieaii squared (lisl)ha"euueut. 

Figure 7.13 presents these data for both svst('111 size"". Ili boll) vases the generaaI 

Fig. 7.13: Comparing families of excess pressure awl inean squared disl>la("cinviit (profile's 

ol)tailled frone the N1250 and N10000 compressions. The mean squared displacement 

values are those measured after 500 ksteps fruuº the start of the 1-1111. 
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trend is for the isotropic-gyroid transition to nºoVV(' to Iiit; h(, r (I('nsitV, with iu("r('aS- 

inK kA W im For most of the svstenis. I1H transition oc cured at high (II, (1('1º. it vv 

(and therefore higher pressure) in thv \1000O tiiniýilýitioný than it did in the N125 

counterpart. Also in the \1000() ("oriipressioli, Ilse k04. G system underwent ;I (Ii- 

rect I-G transition whereas, in the \1250 simulation the same Svtiteui A"0.1.6 vent 

through the sequence 1-\-Snº-G albeit with a very narrow and l)ostiiI I iu('taistjul)l(' 

sinO("tic region. 
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The correlation fiiiirtioiis for the A'03. () svsteerii were ex. Iiniu('(l fur f0at lures relit in g 

to the gvroid structure. This systeiii was ("hoseIl lxeca Isee it it l)l>('aIredl to he tlie onv 

most him of defects or distortion. The polar radial distribution f slict i( ii. (J( I ). , iti 

shown in figure 7.14. ttiriied out to 1)(' the clearest ili(licator of gvroli outer. At 

Fig. 7.14: N1O O h3k03.0 system. The evoliitio»i of tlu' Molar radial (list rihlItiuu 
fiiuction With increasing density. As usual. for f 11( the profiles 

arc displaced upwards in order of increasing <lciisity. 
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0.93. the nominal (1('Ilsity- for the I-G transition in this system. three h 11g- 

range peaks are clearly (iiS("('rual)l(' at approximately 5. (1.9.; and 11.3 (r,,.. 'flu's' 

call otilV be due to the correlations 1atýýýýýýn (00rrr"poll(1ing. that Is tu naiv tmral- 

lel. particl('s ill iiciphbonii-itig 11O(1(' of' the networks. I'Iiis 11111(11 is confirmed by 

inspection of the full reiicleriiig of the networks. figure 7.1T. which shows the irue 

positions and orientations of t lie particles ill both (li1titers. The first l(ng-rati e 

peak is (lie to ("orrelati(1115 1 etveeii next-iiearest iiO(les ill oppo-,; dc networks. the 

second 1)e1weon next nearest nodes ill ill(, , 5mzui network and the third Ixetww-('en 

ºuº, rº'. ti((O11(1 iººýai est iºcýighhuºirti ill t hC opposite networks once 

There are a number of similarities l)et «"º'ell t Itte the ºiist rilººtt ion f'ºttºº"t iuns ()f t Itºý 

gvroid phase and those of the s1iiecti(. This is not so surprising given dint bot 11 
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Fig. 7.15: Comparing the gyroid and Sinectic phases formed by a syste>>i of 1001)11 

H, 3ky3.0 particles. (a) Wirefraine image showing the two interpenetrating n etworks of 
the gyroid phase. (b) An equivalent povray image of the two networks employing the 

same colour coding. (c) Wirefraine image of a single network. (d) A ))ovr y image of 
the smectic system, here the colour coding is simply used to emphasise the s'linilaritics, 
between the two systems in terms of the correlations between particle's iii alternate 
bilayers. The density of both phases is p=1.00 
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0110100 

ý: 1 
01000- 

(d) 

phases consist of Myers having similar ürira- awl tutCrlap'r (listauI(es, a fact (ml- 

phasi. sed by figure x. 15 (d). Figure 7.1(i roiiipares the (list rilmt uni 11111("1 i(ms fur t lie 

gvrOid phase, as obtaüic'cl I) (Ollipression of the h-3/ o3. () systeui. wit li t hp sinew- 

tic phase obtained from decompression of a field-induced artificial shied is also 

consi. stiiig of t 3ko3.0 partu les. The radial (listrihuit ions functions, yO, built show 

three prominent peaks at apl)roxiiiiately 1.1.2.2 and 3.3 n. the first (urretilmni(ls 

to a positive peak in y( 
() ]'I). 

which indicates that the correlation is glue toi parallel 

nearest neiglibuurs. W. particles lying side I, - AN in the saiuºe leaflet of a Waver. 
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The second peak in go, for the smectic phase at least. coincides with it second 

positive peak in q(P1) which indicates that the correlation is due predominantly to 

next nearest neighbours in the same hilaver leaflet. The corresponding q(()I'I) value 

in the case of the gyroid system is however approxiºnately zero. which probably 

stems from the fact that the bilavers that for this phase are curved rather than 

being flat. The third go peak, at - 3.3(T.,,.. corresponds in both phases to it trough 

Fig. 7.16: N10000 k3ke3.0 system. Comparing key distribution functions at pp = 1.00 
for the gyroid phase (formed on compression) and the sutectic phase (decompressed 
from a high density field induced smectic). 
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in g(()"') indicating that it relates princil)all), to correlations between anliparallel 

leaflets of adjacent hilayers. The longer range peaks in o. at approximately .5 and 

9x211. are weak for both the sniectic and gyroid phases. however in both cases they 

are in phase With much Ynore distinct peaks in go"'). As mentioned earlier. this 

implies that these long-range features correspond to correlations between parallel 

particles in successive bilavers or network nodes. 

The longitudinal distribution functions, cute, exhibit double peaks with it l)eriocl- 

icity- of , 4.4(T,,,. For each double peak of' gin. the maxima are in register wit Ii 

the positive peaks and negative troughs. respectively. of' the q(ýýýýitprofile, thus 
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indicating that they correspond to correlations between parallel and antiparallel 

particles in successive bilayers. 

As for the lateral distribution functions, the smectic phase exhibits four or five 

prominent short-range peaks at 1.1,2.1,3.2,4.3, and 5.4o, corresponding to cor- 

relations between parallel particles in the same bilayer leaflet. These correlations 

diminish at long distances as a result of the tilting of particles with respect to the 

bilayer normal, as previously discussed in section 4.2. For the gyroid phase, the 

short-range correlations decay much more rapidly as a result of the curvature of 
Pi) the bilayers. However a long-range peak in g2 u is observed at N 9. Oc, which 

again is due to correlations between equivalent particles in next-nearest nodes in 

the same network. 

The presence of a long range correlation in göPl) (figure 7.14) at densities consid- 

erably lower the the I-G transition, which occurs at p=0.93 for the c3ke system, 

suggests that the formation of the gyroid is gradual and that some sort of struc- 

tural precursors are involved. This theory is supported by the wireframe images 

shown in figure 7.17, which feature the ten largest clusters identified at various 

points in the compression of the ic3ke system. Figure 7.18 meanwhile charts the 

occupancies of these ten clusters as a function of density. At p=0.87, well before 

the nominal I-G transition occurs, numerous clusters having occupancies of around 

one hundred are observed, many of which exhibit a three-branched structure. By 

p=0.89, the size and morphology of the clusters would seem to indicate that they 

are the precursors to the gyroid networks which eventually formed. Subsequent 

images suggest that the gyroid forms by the growth and subsequent unification 

of individual branched nodes. At p=0.92, two large clusters, containing around 

3000 particles each, dominate the structure of the phase; they clearly form a pair 

of interpenetrating networks. The nominal I-G transition at p=0.93 is marked 

by the appearance of the distinctive symmetry of the gyroid phase. As the system 

is compressed further, this structure becomes increasingly well defined, such that 

at a density of 1.02 nearly all the particles in the system are contained in the two 

networks comprising 4798 and 4465 members. 
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Fig. 7.17: Wireframe images of the ten largest clusters identified from the end configu- 

rations of selected runs during the compression of the N1000O t; 3k0 system. In all cases 
the coordinate shift along the particle long axes was -1.06. the cutoff fur the (Nistet 

analysis was 0.70 except for p=0.92 where a slightly lower value of 0.695 was used in 

order to discriminate the emerging twin networks. 
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Fig. 7.18: The occupancies of the ten largest clusters identified during the compression 
of the N10000 .3 

k©3.0 system. In all cases the cutoff used für the analysis was 0.70. 
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7.3 The Sm-G transition 

For all the decompressions of N10000 systems, the starting configurations were 

artificial smectics originating from the field induced N1250 ic3ke3.0 smectic. As a 

precaution these smectics were equilibrated, prior to starting the decompressions. 

In particular this was to check that the interlayer distances of were stable. The 

equilibration sequence consisted of three 200 kstep runs at p=1.10, the first and 

third were carried out in NVT with anisotropic rescaling moves attempted every 

100 steps over the interval 1000-191000. The middle run was in NVE with the 

simulation box dimensions held constant. 

The first stage of the decompression, from p=1.10 - 1.04, was implemented 

via a sequence of 200kstep NVT runs with rescaling moves attempted every 100 

steps over the interval 70000 to 120000. In each of these runs, the density was 

decreased in increments of Ap = -0.00002 every 100 timesteps over the interval 

10000-60000. For the remainder of the decompression, from p=1.03 - 0.85, the 

density was reduced by increments of 0p = -0.00001 every 100 timesteps over the 

interval 100000-200000. All of these runs were of 1 million steps duration except 

for p =1.00,0.95,0.90 and 0.85 which were extended to 2 million steps. Rescaling 

moves were attempted every 100 steps over the interval 50000-250000. Rescaling 

was deactivated, in most cases, well in advance of the predicted break-up of the 

smectic. This early cessation of rescaling was intended to prevent extremes in the 

aspect ratios of the simulation box, particularly as these might prove detrimental 

to the formation of well-ordered gyroid phases. For k02.0 - 2.8 inclusive, rescaling 

was applied down to a density of 0.95, for k93.0 - 3.8 down to 0.98, for k94.0 - 4.8 

down to 1.01 and for k85.0 - oo 1.07. 

In what follows we shall show wireframe images of selected systems after the break- 

up of the smectic or, in some cases, just prior to it. It should be emphasised once 

again at this point that the cluster analysis procedure used to generate these 

images is based on particle coordinates that have been translated down the long 

axis of each so that they are situated at the particles' rounded ends. Therefore, 
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when a sniectic phase is put through this analysis, the clusters identified are the 

loci of these points. Essentially. these are surfaces that demarcate the (liv-isioll 

between the structures that we conventionally label as hilayers, that is to say a 

pair of interdigitating leaflets of particles. This is illiist rat ed by figure 7.19. vvliic"li 

compares a wireframe image of the nine largest clusters of translated particle 

Fit;. 7.19: Povray and wirefr<t. ttie images of the same n1k', 4.0 system at a density of 
1.10. The numbers on the left, of the wirefraiºie image indicate the order of cluster 
occupancy. The cluster containing the most particles is coloured deep blue and t he orte 
with the fewest red. 
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coordinates (right) with a full rendering of the structure (l(, f't ). Note t hat t lie 

clusters are coloured front blue to red in clescentlitºt; order of their occupancies. 

Notice also that the analysis algorithm has identified only small regions of' the 

top and bottom leaflets of the configuration as clººsters. The reason fror this is 

that these two leaflets. being on the edge of' the configuration. have no abut t ing 

opposite leaflets anal so. as far as the cluster identificalion scheme is concerned. 

lack the connectivity possessed by the pairs of a(ljacetºt leaflets in t he interior of 

the configuration. 

Turtling now to figure T20. for the systems k02. --1 to 2.6, we find that the lamellar 

phase disintegrates into a rather fragntente(l tracery of clusters. l'hese th) exlºilºit 

some of the characteristics of the gyroicl (phase in that many of' the clºº5ters have 

three branches and they int ert«-ine like the I)icOnt inººuti network structure of the 

gyroitl. However it was not possible to discriminate two large clusters for these 

svstetnsancl nor are the characteristic gvroid synºtºtetries in evidence. perhaps 

We should not he surprised that these systems failed to fornº orderly tit ruº"t tires 

since the cubic region of the phase ºliagraºtº from decompression has ah aºrrowr tail 
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at the low ko end (see figure 6.26). Also at 1 million steps, the r11ä l iigt lis at 

the assumed pivotal densities of p=0.86 - 0.88 ilia. simply not have been 1eiig 

enough to allow the cubic to form full-. 

Fig. 7.20: Wireframe images of the phases formed (hiring the decompression of'NIOO()O 
K3 systems with shape parameters in the range k©2.0 - 4.8. In all cases the coordinate 
shift along the particle long axes was 1.06 the cutoff for the cluster analysis was 0.7(1 

except for k02.8 where it was 0.7250 and k03.0 which used 0.7125. 
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In passing, it is interesting to observe the difference between the transition from 

the smectic to these quasi-cubic systems and the direct smectic-isotropic transi- 

tion. Figures 7.20 (a) and (b) show two views of the latter the k02.0 in the 

process of disintegrating. This process seems to be preceeded by large amplitude 

undulations of the bilayers which have a perforated appearance 3. However, de- 

spite these considerable disturbances, the cluster images suggest that the bilayers 

manage to maintain an essentially sheet like topology right up to the point where 

they disintegrate completely. The bilayers of the k02.4 system by contrast appear 

to break up via some sort of trans bilayer bridging mechanism, this will be inves- 

tigated in more detail later in this section. 

For the k92.8 system, two distinct networks have been identified and for the k93.0 

system, additionally, the characteristic symmetry of the gyroid is beginning to 

emerge. Systems k03.2 through to 4.2 all undergo transitions from the smectic to 

fairly well-defined gyroids. In general these are more distorted and have a some- 

what more ragged appearance than the equivalent images of the gyroids obtained 

by compression, as shown in figure 7.12. However, it should be remembered that 

the latter were derived from configurations at a density of 1.02, whilst the former 

were taken at appreciably lower densities at which the systems would have been 

in a more fluid state. 

The k94.4 system appears to be a failed gyroid phase - it consists of three-branched 

nodes but these could not be resolved into two separate networks. The k94.5 could 

be resolved into two networks which have something of the gyroid symmetry about 

them but are otherwise badly distorted. The k84.6 system, which on compression 

did form an orderly gyroid, does not appear to fall into the same phase on decom- 

pression. Although cluster analysis suggests that the smectic bilayers may have 

some tendency to break down into a network like structure, the runtime data 

shows that this system behaves more like a nematic - mobility is enhanced in the 
3This is not due to actual voids in the bilayers, rather it is due to regions where there happen 

to be several particles with their orientations more or less parallel to the bilayers rather than 
perpendicular, as they are when the bilayers are well-ordered. Since the cluster analysis used 
here works on particle coordinates that have been translated towards the rounded ends of the 
particles, the clusters it identifies will appear depleted of coordinates where these regions exist 
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z-direction over the density range 0.99-0.94 besides «hick the order i) 1 1ni('ter. 

though in steely decline. remains appreciable over this range. Snapshots of the 

sv-stein at p=0.97 also show the system to have all the appearance of a neuiat i( 
. 

with weak and localised vestiges of sniertic order. 

The visual interrogation of the systems of tapered l)artiules dlesrril>e<i ah )O (' shows 

that. as well as self asseitihlitig during the C0IiIpnosiou of iSotrol)i( iliti(Is. gvru&I 

r)liases also readily formed via the decompression of siue(ti("s and awross a siuiihai 

swathe of shape parameters. This is coºifirlue(1 hq- the l, roTmire mul Iiieiiu 5(jIOlrod 

displacement profiles. shown in figure 7.21 which exhibit similar shapes to those 

of figure T13. It probably true to say that the (le(onil>res ioii rollt (e is t lie more 

Fig. 7.21: Families of excess pressure and mean squared displacement profiles obtained 
from the N10000 decompressions. 
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difficult of the two. given that it afhuiils a uarrc, «ver dit'itsity range OV('I wIIi("I, the 

gyroid rast fo, ritº before reaching the low-dleiisity isc, trul, ic region. 'I'Ititi is reflected 

in the relativeiv untidy ai i earance of the pressure and displacement curves ; 111(1 

also by the failure of systeiºis with k0 of' 3.0 or less to forma orderly bic()it ittuu, us 

networks. 

: Nat orally-. the next (luestloll to ask is: lto does ýt sv stete of, [hit I, iIav('rti ýý it lt 

orte-ditiIplisional positional order transfon"tii into a highly (1IlVP<1 (1 , ul, l(' network 

of* l)ilaý-ers with three-dimensional positional order? To I, egiti tu a>iS«er t his ques- 

tion we followed the break-up of the sinec"tic l, ilavers rising. our(' toure. u"Inster 

at, alvsis. T hp svstetii chc, tieu fror stu(ty Nv- is t/'01. O since. out (, f all t he svst ('n-, it 
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seemed to form the iiiost orderly gyroid on decompression. Figure 7.22 illustrates 

the key stages which would appear to set in motion the transition from sinecti( 

to gyroid in that system. Following the gentle decompression of the SVtitº'ººº from 

Fig. 7.22: Wireframe images (upper panels) and povray images (lower panels) illiis- 

trating the Sm-G transition in a system of 10000 n-3ko4.0 particles. which took place 
at a density of 1.00. The numbers above the figures refer to the number of* tiluestel>s 

elapsed in the run. The cluster analysis parameters used to produce the wirefraiue 
images were reut = 0.70. u-shift= -1.06. in the irrvages themselves the z-components of 
the coordinates have been scaled by a factor of 1.5. 

stob 6OO000 

p=1.01 to 1.00 from 100-200ksteps. the l)ilaVers. for a tulle. rei»ain relatively 

stable. However they are somewhat distorted by undulations and the ill(Iiv. iddu. 1I 

particle's have a Wri(le (list ril)utloll of tilt angles with respect to the director. : Also. 
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it is common to see individual particles that have been ejected from i Iie tit rn(t irres 

we conventionally regard as hila ers and suhsequeiºtlV lie horiioiIt al lv. iiil iet weeii 

the lainellae. There are also occasions «-hen a group of' particles \N-1111111 a small 

region of a hilayer ' have toppled over and lie horizontally. ; iii event 1>us511)1V pre- 

cipitated by some kind of undulation or stretching of the bila. ver. Whatever the 

reason. when this does occur. particles frone the hilaVers above awl below IIIovv 

into the space created. This is illustrated sc"heniatic"allY in figure 7.23 (b) mid (air 

also he discerned in the circled regions of the step 1Ot)000 images ill figure 7.22. If 

the disturbance is large enough. it would appear that particles from the I, ilaVers 

above and below eventually interciigitate with those of the ititerVeuiug liebever its 

shown in 7.2: 3 (c) and highlighted in the step 500000 iniages of 7.22. We cau tMirk 

Fig. 7.23: Schematic illustrating the key stages iii pore formation leadliIig tu t lie bre: ikiip 

of the sinectic phase and the emergence of a hicoiitiinunts gyruid phase. I'aiiel (a) iuit 

silie(tic 1>ilayers. (b) a'stalk' forums between the middle two 1>ilayers. ((") a 'j ie' bisect irrig 

the middle two bilayers and forniiiig a bridge between the top and I)OttO»u Inlayer,,. 

(; 1) (1, ) 

of IIiis forººinliun ýº' a l)ri(lge vVlii(lº hiºti ro ii 1)('tvv, ccºº the first aºiºl third h il; 

through a pore in tll' intvrvº'niººg second 1)ilavcr. Figure 7.24 shows a closer viv\\. 

of 5aºne along with two thin slices through t he s teººº which sIºo)vV Selrºr; ºt clv t he 

(particles beloººKing to tlºee low ei and upper leaflets of the iººterveuing hilaver and 

thus a cross-section of the bridge running through the pore. This is ; ºn event ýý 1ºie li 

ººiarks the 1)egitºning of the end for the suliectic phase. for a Short tiºue later. Iºý 

step 600(100. another bridge has foriiml 1>etmwn tlºc tieco inn and fourth Iºilayers. 

111P1(. 1, }" I, ilaver. w Qieati the Lilaýei identified lbY- the i"luslor an'lly"tiis i. (. I lit, abut I ii! L 
rounded ends (if adjacent leaflets. 
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By the millionth step. stalk formation has spread throughout the entire right üuuid1 

side of the system. 

Subsequently the layered structure of the smectic phase begins to hreak (1UvVri 

Fig. 7.24: (a) Wireframe image illustrating the first `stalk' structure to form in the 
N10000 n3ka4.0 system. (b) Cross sections through the lower and upper leaflets of the 
bilayer through which the stalk passes. These images are based on configurations stored 
at step 500000. 

(a) (h) 

and the characteristic double network of the gvroid emerges. This is, illustrated 

in figure 7.25, the first six panels show the two largest clusters wvhi(h, by St(dl) 

1600000, extend throughout most of the simulation volume and are clearly in- 

terpenetrating. The structure is riddled with defects at this stage, and 11111(. 11 

making and breaking of bridge/pore pairs is required before. on deconlt)IOssion tO 

p=0.93, the networks attain the characteristic syininetry of the gVroi(i phase. 

This is maintained down to a density of approximately 0.93 at which point t lie 

twin networks start to disintegrate into the isotropic phase. 
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Fig. 7.25: AVirefraine images illustrating the development of the l)icontinuuIis network 

structure of the gyroid phase in a system of 10000 h, 3kg4.0 particlesT11(' inimbens above 
the figures refer to the number of tilnesteps elapsed in the run. The cutoff used to 
identify the clusters in the upper four images was ý",.,, r = 0.64. this slightly lower VaIII( 
being necessary to discriminate the nascent twin networks. The cutoff used fier t he lower 

four images was the usual r(. u1 = 0.70. 

p=1.00 p=1.00 
Steep 111f1O(1(lfl t('T) 12000(10 

ý_ " 

ýý_0.9ßi 

.. 

7.4 Summary and conclusions 

f) = 1. U(I 

Step 1(illllllllll 

f) = (L9 

\V-e have shovv11 iti this chapter that the curvy hila. ver. or (h)ulain ordered phaso 

;s it vv 1s christened in Barnies Work. is in fact the Ia3cl gyroi(l cubic phase. This 

phase freely- self-asseriihles from the isotropic fluid upon compression, to our kn<nrl- 

Pdge this is the first time that such a phase transition has beeil observed iu \11) 

sinnilatioiis. Furthermore it should be euiiphasised that it is particle sImpe alone 

that is rE"-, 'honsibl(' for this transition. a result that is without t Iºeoretiº al prodic- 

tion. It i5 PPrtiiient to note at this point that since our model is Ipturel 

i. e. n<u attractive interactions enter into it, its behaviour is not just rOI('Vaut tu 
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systems of molecules. It may in principle apply to any system of freely suspended 

bodies, in particular to colloidal solutions. The results of the simulations pre- 

sented here therefore suggest that if the correct shape of colloidal particle could 

be synthesised then it might be possible to obtain, through self-assembly of such 

particles, three dimensional periodic structures across a range of length scales. If 

realised, such structures would present considerable scope for technological appli- 

cations for example as photonic bandgap structures, high surface area frameworks 

for catalytic processes and scaffolds for tissue growth. We have also observed, in 

the decompression sequences, a transition from the smectic to the G phase. This 

transition appears to be mediated by the growth of stalks between two bilayers, 

subsequently leading to the opening up of pores which bisect the two bilayers and 

thus form a bridge between the bilayers immediatley above and below. This sort 

of mechanism is thought to operate in systems of lipid bilayers and in particular 

may play an important role in the process of membrane fusion taking place at the 

cellular level in living organisms, see for example [40]. The detailed study of the 

stalk-pore formation dynamics in our model system may provide useful insights 

into this fundamental biological process. 

Clearly then there is great incentive to intensify and extend these simulation stud- 

ies of the gyroid phase in order to gain a better understanding of its properties 

and the processes that lead to its formation. The most pressing need is to develop 

the proper tools to characterise the overall structure of the gyroid phase. Initially 

this could be done by perfecting the density analysis routine described in section 

7.1 in order to produce accurate maps of the network node locations. Batches 

of such maps could then be analysed using appropriate distribution functions to 

obtain the lengths of the branches between the nodes and their angles with respect 

to one another thus furnishing a precise quantitative description of the gyroids 

periodicities. Such knowledge might well lead to more effective simulation pro- 

cedures in terms of assessing what size of simulation box is most commensurable 

to a particular phase. A more advanced level of structure characterisation would 

involve describing the surfaces formed by the loci of particle coordinates. The 
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loci of the points midway between the two interpenetrating networks is actually 
described by an infinite periodic minimal surface (IPMS) [41]. These are well- 

established mathematical structures and techniques exist to describe their global 

packing and curvature properties. This provides a part of a formal theoretical 

basis for understanding why it is that phases like the gyroid actually form in the 

first place. Some preliminary work has already been performed by Scröder-Turk 

in mapping particle coordinates from configuration files onto an IPMS [42]. 

Another important extension to the simulation studies of the gyroid phase would 
be to run polydisperse systems, i. e. systems with a distribution of particle shapes 
in terms of aspect ratio and/or degree of taper. Such polydispersity permits 

greater variation in the width of the `tunnels' that run inbetween the periodic 

network and as a result different types of cubic network can form. Continuous 

transformations between the networks could be modelled by systematically vary- 
ing particle shape distribution. It is known that there is polydispersity in the 

constituents of cell mebranes and that this is one of the factors that contributes 

to their functionality. Also synthetic colloidal dispersions exhibit varying degrees 

of polydispersity. 

Finally, in relation to characterising the I-G and Sm-G phase transformations, it 

would be eminently possible to develop more sophisticated cluster analysis tech- 

niques which would allow one to track the evolution of individual clusters as the 

simulation progressed. Thus the changes in the morphology of aggregates of parti- 

cles could be followed through the phase transitions thus providing greater insight 

into the transformation dynamics than isolated snapshots. 
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CHAPTER O 

Summary and Conclusions 

Using the molecular dynamics technique, we have investigated the effect that po- 
lar shape anisotropy has upon the flexoelectric properties and phase behaviour of 

systems of soft repulsive particles. 

In the studies of flexoelectricity, reported in chapter 5, we measured the splay 

and bend flexo coefficients, ell and e33, for four types of monodisperse nematic 

system each consiting of 10000 particles. The systems considered consisted of 

the tapered ic3ke5.0, ic3k07.0 and rc5k95.0 particles as well as k3keoo particles, 

the latter being virtually equivalent to Gaussian ellipsoids. Each type of system 

was run for 10 million timesteps at various densities and, thus, different levels of 

prevailing nematic order. For the tapered systems, the ell values, as measured in 

the director frame, were all positive and ranged from a minimum of +0.060 to a 

maximum value of +0.202, the e33 values on the other hand were all negative and 

ranged from -0.039 to -0.285. For the uniaxial particles the sign of ell was not 

constant and the values varied between -0.011 to +0.022 whilst the e33 values were 
found to fall into a similar range of between -0.014 and +0.023. No clear trends 

in either coefficient were discerned for the tapered particles either as a function 

of particle shape or order parameter. The reasons for this were unclear but the 
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most likely cause would seem to be long-wavelength fluctuations in certain quan- 

tities from which the coefficients were derived. Extremely long simulation runs for 

the purposes of monitoring convergence (or lack thereof) for ell, e33 and related 

quantities would be an obvious if rather crude way of testing this hypothesis. 

Our study of the phase behaviour, upon compression, of tapered particles ranging 

from the highly tapered ke2.0 particles to Gaussian ellipsoids produced a phase di- 

agram that was broadly in agreement with the one previously obtained by Monte 

Carlo simulations of hard particles [14,43]. For ke{2.0 - 2.2} an I-Sm-Sm(solid) 

phase sequence was observed, for k94.8 and upwards the sequence was I-N-Sm- 

Sm(solid). Particles with intermediate degrees of tapering, ke{2.4 - 4.6}, entered, 

from the isotropic, a so called `curvy-bilayer' (CB) phase, which persisted to high 

density but without undergoing a clear liquid-solid transition. High density smec- 

tic configurations were then generated for all shapes of particle from a `seed' 

smectic configuration, this having been previously obtained by way of a compres- 

sion run during which an orienting field was applied. Upon decompression, the 

ke{2.0 - 2.5} systems underwent a Sm(solid)-Sm-I phase sequence, ke{2.6 - 4.5} 

an Sm(solid)-Sm-CB-I sequence, whilst for ke values of 4.6 and above the progres- 

sion was Sm(solid)-N-I. 

The structure of the CB phase was studied more intensively and found to be the 

bicontinuous cubic phase Ia3d or gyroid (G) as it is also known. The I-G phase 

transition appeared to take place via the self-assembly of clusters with branches 

which, as the system was further compressed, joined up to form the phase's distinc- 

tive double network. Most of the networks formed were highly orderly although 

some particularly those at the edges of the G phase region exhibited, shear dis- 

tortions and in a few cases stacking defects. The Sm-G transition took place via 

a mechanism in which stalks formed between adjacent bilayers which were then 

subsequently bisected by pores which thus formed a bridge between the layers 

immediately above and below the two that were initially connected by the stalk. 

The free self-assembly, by either route, of the gyroid phase has never before been 

recognised in MD simulations. 
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In conclusion, the rich phase behaviour of 0 tapered particles is purely a func- 

tion of shape. Because the particle interactions are purely steric, the behaviour 

observed in these studies may, in principle, be applicable to any collection of 
freely suspended bodies. Therefore, the mechanisms involved in the I-G transi- 

tions, observed in the simulations reported here, could equally apply to colloidal 

solutions. A route to the self-assembly of three dimensional periodic structures 

like the gyroid from colloidal solutions would be highly useful from a technologi- 

cal standpoint. Meanwhile the study of the Sm-G transition by way of stalk and 

pore formation could provide valuable insights into areas of biophysics such as cell 

membrane fusion, a process that is thought to take place by a similar mechanism. 

Here we have only investigated the effect of the degree of taper on gyroid phase 

formation. It would, however, be of considerable interest to achieve a more com- 

plete characterisation. as well as studying the effect of particle aspect ratio te, 
for example', it would be fascinating to study mixture systems so as to learn 

whether other more complex mesophases can be accessed. The results presented 

in this thesis have shown that a relationship exists between particle shape polarity 

and mesophase structure - the outstanding future goal, therefore, is to determine 

what, fundamentally, drives this relationship and, thus, know how to exploit it. 

IIn a one-off simulation, soon after our initial discovery of the G-phase in the K3kg3.8 system, 
we did observe the same phase in a system of 16000 k3k94.0 particles, scaled up from a N2000 
cofiguration generated by an isotropic compression sequence. 
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APPENDIX A 

Reduced Units 

Reduced quantities are expressed in terms of a fundamental set of basic units, 

typically a basic length unit, oo (which we instead name Qti, to avoid confusion with 

the uo that appears in the expression for the Gaussian overlap contact function and 

its variants), a basic energy unit eo and a basic unit of mass mo. In general their 

values are chosen so as to be commensurate with the characteristic length, energy 

and mass scales of the system being simulated. So for example in a simulation of 

an atomic fluid, a suitable value for oO would be the ionic radius of the atoms, CO 

would be set at the value of potential minimum and mo would simply be set at the 

mass of each atom. Since the tapered particles in our simulations are essentially 

objects of a purely geometric nature, and not intended to represent any particular 

species of molecule, the numerical values we choose for our fundamental units are 

entirely arbitrary. Equally, the SI units in which these values are measured is 

immaterial. Therefore the basic units are defined simply as 

o, w = 52 -+0.52) = 1/ / 0.707 (A. 1) 

CO =1 (A. 2) 

MO =1 (A. 3) 
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In this work we also find it convenient to arbitrarily define a reduced moment 

of inertia I* =1 and a reduced dipole moment µ* =1 for our particles. The 

relationships between reduced quantities, x*, and their equivalents, x, as expressed 

in SI units are obtained by dividing the SI quantity by the appropriate reduced 

unit, i. e. a unit expressed in terms of the fundamental basic units such as a, co 

and mo. 

Potential U* = UEo 1 (A. 4) 

Time t* 
1/2 

=t (_: ° 
Qw m0 

(A. 5) 

Temperature T* =T (kBE0 (A. 6) 

Distance r* = ra; 1 (A. 7) 

Linear velocity v* 
1/2 

=v 
(flk) 

(A. 8) 
Eo 

Linear acceleration a* =a 
(%MO) 

(A. 9) 
0 

Mass m * = m/m° (A. 10) 

Linear momentum p* =p (moEO)-1/2 (A. 11) 

Force f* =f 
(') 

(A. 12) 

Angular velocity w* = 
1/2 

w 
(_! 2_) 

w 
(A. 13) 

Angular acceleration a* = 
(crno) 

a (A. 14) 
CO 

Moment of inertia I* = I (moon, ) -1 (A. 15) 

* 
a2 

1/2 

w Angular momentum L = L (A. 16) 
MOCO 

Torque r* = 7-E0 (A. 17) 

Number Density p* = pow (A. 18) 

Volume V* = V0, 
w3 (A. 19) 

* 
3 

- Pressure P = P (A. 20) 
Eo 
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APPENDIX IE3 

Potential, forces and gorques 

B. 1 Summary of potential for tapered particles 

The key ingredient in the potential for soft-repulsive tapered particles is the pa 

rameterised hard Gaussian overlap (PHGO) contact function 

X a2 a2 + a-2 b2 - 2X abC 
1/2 

ýHGOrui, uirij - Qp 
Ll 

-el1- 
1(2 C2 l7 

where 

vo = (di + dd)-1/2 (B. 2) 

2) 2 2)] 1/2 di (1J7 
- dj' 

[(i+) (li + d) 

2- (l; - dý) (l2 + d=) 1/2 
(B. 4) (12-d)(l? +d? ) 

and 
a= rij) b= (üj " r=i) c= ('2+ " '2i) 
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Equations B. 1 - B. 4 have exactly the same form as those used in the generalised 

contact function for uniaxially symmetric Gaussian overlap particles [22] however, 

crucially, the semiaxial lengths di, 1j, dj, 13 contained within of'IIGO( 'uff rij 

are parameterised in order to model asymmetric uniaxial particles i. e. tapered 

particles. Specifically the semiaxial lengths for particle i and j are polynomials 
in (a/rzj) and (b/rte) respectively 

Nd 

di(a) =Z k(n)arr Ii(a) = Ent kln)a" (B. 5) 
n 

Nd 

d? (b) k brr li n kt n)bn (B. 6) 
n 

where 

ä= (t2 " rig) = a/rii b= (ü2.1"i. Y) = b/ri7 

In equations B. 5 and B. 6, Nd and Nl denote the numbers of terms in the polynomi- 

als for d and 1 respectively whilst the kdn» and k! 'ý) are the polynomial coefficients. 
Note that the set of polynomial coefficients used to describe particle i may be the 

same as that used to describe particle j or two different sets may be used. 
To obtain a continuous soft-repulsive interparticle potential suitable for use in MD 

simulations, the PHGO contact function is incorporated into a shifted truncated 

form of the Lennard-Jones potential. 

PHGO 
4Ep {R12 

- R6} + Ep rij < rp vii (ui, üj, rij) _ 
(B. 7) 

0 rid i rp 

where 
crw 

R= 
(1 

rij - Q(', üj, rij) +Qw 

and co is a constant. For all the simulations reported in this thesis, co was set 
at 1.0, whilst cr was set to a value appropriate for tapered particles having half- 

widths of 0.5 i. e. 
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Qw = N/-(0-51 + 0.52) 72 

The cutoff distance, ro, at which the potential is truncated is defined as 

1'p = OPHGO(f4,, a9ý, pfl7) + (21/6 
- 1ýo 

. 

B. 2 Derivation of forces derivatives 

(B. 9) 

(B. 1O) 

In general, the force between two linear particles i and j interacting via a potential 

U2j can be expressed as 
f 

ij = -Vrij Uij (B. 11) 

U2? HGO, equation B. 7, contains three scalar products involving rte, namely a= 

(üi " rij), b= (üj " ri j) and r= rzj = (# " ri j) . 
Therefore equation B. 11 may be 

written as 

Ii) >Vr,, vij (8-rij) (B. 12) 
8 

where 
8= tZ, fi, iiS} 

Expanding the gradient of the potential in equation B. 12 yields 

i; 
Uij (8 ' rij) 

OUtj (8'Tij) aUij (8'ri9) 
k 

aUij (8 rij) 
vr (B. 13 

9 r(j') 9r(v) 
+ 

ar(. ) 
) 

ti ii S3 

Then, by invoking the chain rule for each of the terms on the rhs of B. 13, we 

obtain 

VrtjUzj (8. r3) 

=z 
aUtj 9(a rig) + 

aUij a(8. rij) +k 
Wij a(s. rii) 

a(8'rii) ör(ý) 9(8'ri j) Or(y) ä(8'rij) Or(z) 23 u 
aUi1 

ä 
a(s"rij) 

19(8'rij) 
+k 

a(8 rig) (B. 14) 
Örij ariz) a(8'Tij) 

I 
Örýý) Y) 77 

194 



The derivatives of the dot products (s " rte) with respect to the components of rzj 
simplify as follows 

a(s " rtj) _a czý cz)1 (sr, (; ) +s rý +s r23 I= sý Ör(e) Örijý 

and similarly 
a(s'ri3) 

= s(y) 
a(s. rij) 

_ S(z) 
OrM Or(z) ti ii 

Substituting these results into B. 13 leads to 

BU'; (x) (Y) S(Z) _ 
ouji V*,; Uij (S'r=ý) - a(8. rz2) 

Ias 
+ý s+k}- a(8 rte) 

8 (B. 15) 

Finally, substituting this into equation B. 12 results in the following expression for 

the force 

auij fij =- Vr; 
j 

Uij (8'rj) _-8 a(8- rij) 

auz, A _aus; -. _au.. as u` äb uý ar rte (B. 16) 

where a= (tij. rij) b= (41j. rtij) r= Täj1'ij 
. 

The force on particle j due to i is equal and opposite to f ij, i. e. f j_ _ -f ij 

B. 3 Derivation of gorque derivatives 

In general, the torque exerted on a linear particle i by a second similar particle j 
is given by 

Tip - 
A/\ Vfi; Ui, 

9(ui, u9+ri. 7)] = 
[t A 9i9] (B. 17) 
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where g2j is termed the `gorque'. We note that UPHGO contains two scalar prod- 

ucts involving ij, namely ä= a/rah = (üi-Tip) and c= (t-iii). The gorgue may 

therefore be written as 

9ij_-V Utij( , U^j, rij)_-ýDaUzj(S' t4i) (B. 18) 

where 

a= {ü,, r"ij} 

By analogy to equation B. 15 we may write 

oiý. Uij (8 )= avt; (B. 19) a(8.4. ) 

substituting this into B. 18 results in 

gii 
äuij 

8 

aä rZj ac ui 

-- 
- rij 

acü 
(B. 20) 

as - ac i 

The gorque on particle j due to i is derived in a similar fashion, simply by inter- 

changing üz and üj, hence 

9'i aut, - -ýa(8 ý)8 

auy j_ aui; 
ab rZ3 ac u` 

_au-au.. - ac 
tot4 (B. 21) 

ab 
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APPENDIX C 

Equations of motion 

C. 1 The Velocity-Verlet integration algorithm 

Given the positions, linear velocities and forces on the particles at time step s, 
the following four steps are applied to obtain ri'+1), vi8+1) and fä8+l) 

vas+1/2) = výs) + 
At 

,f 
ýe) (C. 1) 

ris+l) =r 8) + Otvis+l/2) (C. 2) 

Calculate f i("+ 
1) (C. 3) 

dis fl) 
= v(si-112) + 

At 
f(s+1) (C. 4) 

2mi 
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An analogous set of steps are used to advance the orientations, angular velocities 

and gorques 

jgis+1/2) _ ßi9) + 
At 

9(s) +A"uis) 
21j 

(C. 5) 

, dis+1) = ui8) + Ot2ýýs+ý/z) (C. 6) 

Calculate gis+l) (C.? ) 

At 
g((8 1) + (j (s+1/2) u(8+1)) Sys+i) (C. 8) jjis+l) _ UZS+1/2) + 

2It J 

The factor A" in C. 6 is a Lagrangian correction factor whose initial value is ob- 
tained from equation C. 9 and then refined by two identical iterative steps C. 10 

and C. 11. 

A0 -- 
Ot 

ýýe) igý8) + 
At (8) (2i_i(sý 

+ 
At (8) (C. 9) 2ta 21ig" . 27s91i) 

r= 
(1 + Ao t)2(uie) " uae)) -1- Ao t 

A A0 
2zt(1 + A°Ot) (C. 10) 

A� _ A' - 
(1 + A'Ot)2(, 48) 

" utis)) -1- ýºa. ýt 
(C. 11) 20t(1 + A'Ot) 

If transcribing these equations into computer code, note well that the A that 

appears in the final term of the numerator in C. 11 retains the original value A0 

as given by C. 9, whilst the A that appear elsewhere in C. 11 have the value A' 

obtained from the preceeding iteration, C. 10. 
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APPENDIX 1II 

Mathematics 

The Levi-Civita tensor, eaßry is defined by. 

+1 even permutations of a,, 3, -y i. e. {1,2,3}, {3,1,2}, {2,3,1}, 

Eýý7 = -1 odd permutations of a,, 3, ,yi. e. {3,2,1}, {1,3,2}, {2,1,3}, 

0 all other permutations. 

and the Kronecker delta dap by 

1 jo = 

to a0fl. 

A number of useful identities exist which derive from the relationship between e 
and bis (see for example [44] for a their derivation). 

Ea#7E7µv = Öaµ5ßý, 
- Saýýßµ 

Eno7Eckµv = 613µs-y" 
- 

601, a7µ 

Eýß7EýµU = 67µ6. 
- 

6, 
Y"6"µ 

Eaý7Eaßv = SýýSyý 
- S0vSti, 6 = 35,6, - S0, = 2Sßv 

Ea, o7Eaoy -6 
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APPENDIX 

Contact profiles 

Fig. E. l: Further i3k03.0 contact profiles for a variety of iiiiitual orientations. The 
dashed profiles appearing in (a) (e) and (i) are the eyltivalvilt contact profiles' for h3 
Gaussian ellipsoids. 
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Equivalent Gaussian ellipsoid contact profiles 

Fig. E. 2: K3 Gaussian ellipsoid º"outact, profiles for mutual orient; ihows equivalent to 
those of the '3163.0 pears featured in figure E. 1. 
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APPENDIX IF 

Flexo data 

Tab. F. 1: Flexoelectric coefficients (quoted to 3 decimal places) for rodlike particles as 
calculated from 0.5 Mstep runs 

ýc ke p P2 1 ell (lab-frame) ell (ft-frame) ell (covariant) 

3 00 0.877 0.568 0.832 0.401 0.251 
0.894 0.660 -0.216 0.659 0.019 

" 0.911 0.706 -1.993 -1.689 -0.276 
0.929 0.743 0.247 1.454 -0.244 
0.945 0.767 -21.769 -19.125 -0.509 

ºc ke p P2 e33 (lab-frame) e33 
. 
(ii-frame) e33 (covariant) 

3 00 0.877 0.568 -0.011 0.007 0.161 
0.894 0.660 -0.446 0.162 0.315 
0.911 0.706 -0.267 0.034 0.307 
0.929 0.743 0.132 0.444 -0.031 
0.945 0.767 0.109 0.893 0.252 
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Tab. F. 2: Flexoelectric coefficients (quoted to 3 decimal places) for tapered particles 
as calculated from 0.5 Mstep runs 

ke p 152 ell (lab-frame) ell (ft-frame) ell (covariant) 

3 5 0.92 0.568 0.192 0.215 0.153 
" " 0.94 0.659 0.252 0.151 0.117 

0.96 0.703 0.126 0.138 0.135 
" 0.98 0.743 0.111 0.090 0.079 

1.00 0.777 0.350 0.153 0.152 
T [Tý . 90 F 0.614 0.007 0.085 0.111 

O. 92 0.682 0.295 0.271 0.070 
0.94 0.725 -0.007 0.114 0.078 
0.96 0.756 -0.015 -0.004 0.014 

" 0.98 0.782 0.012 -0.133 0.068 

5 5 0.38 0.616 0.100 0.037 0.029 
" 0.40 0.703 0.434 0.347 0.118 

0.42 0.753 0.623 0.549 0.053 
0.44 0.792 4.147 0.057 0.024 

0.47 0.834 1.959 0.089 0.089 
0.50 0.879 0.038 0.103 0.100 

FK kg p P2 e33 (lab-frame) e33 (n-frame) e33 (covariant) 

3 5 0.92 0.568 -0.259 -0.123 -0.123 
0.94 0.659 -0.228 -0.192 -0.100 

" " 0.96 0.704 -0.232 -0.103 -0.096 
0.98 0.743 -0.198 -0.116 -0.100 
1.00 0.777 -0.238 -0.222 -0.019 

3 7 0.90 0.614 -0.142 -0.115 -0.045 
" " 0.92 0.682 -0.140 -0.075 -0.072 
" 0.94 0.725 -0.165 -0.060 -0.048 

0.96 0.756 -0.130 -0.115 -0.117 
0.98 0.782 -0.124 -0.259 -0.110 

5 5 0.38 0.616 -0.083 -0.113 -0.076 
0.40 0.703 -0.123 -0.135 -0.083 
0.42 0.753 -0.132 -0.104 -0.086 
0.44 0.792 -0.096 -2.083 -0.021 
0.47 0.834 -0.147 -0.934 -0.012 
0.50 0.879 -0.171 -0.014 0.003 
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Tab. F. 3: Flexoelectric coefficients (quoted to 3 decimal places) for tapered par- 
ticles as calculated from 10 Mstep runs. 

K ko p P2 eil (lab-frame) ell (n-frame) ell (covariant) 

3 5 0.92 0.580 0.188 0.160 0.160 
0.94 0.659 0.165 0.139 0.139 

0.96 0.702 0.090 0.132 0.132 
0.98 0.740 0.250 0.148 0.137 
1.00 0.775 0.161 0.141 0.148 

3 7 0.90 0.608 0.173 0.114 0.114 
0.92 0.678 0.156 0.148 0.147 

0.94 0.723 0.256 0.202 0.199 
0.96 0.757 0.152 0.156 0.155 
0.98 0.785 0.060 0.103 0.091 

5 5 0.38 0.611 0.081 0.081 0.082 
0.40 0.700 0.068 0.060 0.060 

0.42 0.753 0.080 0.074 0.072 
0.44 0.791 0.529 0.099 0.083 
0.47 0.834 0.315 0.083 0.067 

" 0.50 0.882 0.070 0.087 0.085 

kB A P2 e33 (lab-frame) e33 (ft-frame) e33 (covariant) 
] = 0-92 0.580 -0.229 -0.156 -0.156 

0.94 0.659 -0.229 -0.135 -0.135 
" 0.96 0.702 -0.220 -0.075 -0.066 

0.98 0.740 -0.253 -0.185 -0.164 
1.00 0.775 -0.257 -0.117 -0.049 

3 7 0.90 0.608 -0.178 -0.130 -0.130 
0.92 0.678 -0.177 -0.136 -0.135 
0.94 0.723 -0.169 -0.150 -0.151 
0.96 0.757 -0.165 -0.119 -0.119 

1 0.98 0.785 -0.169 -0.074 -0.074 
5 5 0.38 0.611 -0.102 -0.087 -0.087 
" 0.40 0.700 -0.114 -0.082 -0.083 

0.42 0.753 -0.112 -0.058 -0.046 
0.44 0.791 -0.135 -0.285 -0.221 

" 0.47 0.834 -0.158 -0.211 -0.111 
0.50 0.882 -0.165 -0.039 -0.021 
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Tab. F. 4: Flexoelectric coefficients (quoted to 3 decimal places) for rodlike parti- 
cles as calculated from 10 Mstep runs 

K ke P P2 eil (lab-frame) eil (ft-frame) ell (covariant) 
[-3 T oo 0.877 0.573 0.010 0.015 0.015 

" 0.894 0.659 0.002 0.022 0.024 
0.911 0.707 0.019 -0.005 -0.002 

" 0.929 0.741 0.011 -0.006 -0.003 
0.945 0.769 -0.040 -0.011 -0.001 

ke p 1'2 e33 (lab-frame) e33 (ft-frame) e33 (covariant) 
3 00 0.877 0.573 -0.014 0.000 0.001 
" 0.894 0.659 -0.003 0.023 0.022 
" 0.911 0.707 0.006 -0.014 -0.012 
" 0.929 0.741 -0.001 -0.014 -0.012 
" 0.945 0.769 -0.004 0.010 0.012 
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